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Short abstract: 

The chronic complications of diabetes in humans include cardiomyopathy, neuropathic 

pain, cataract development and retinopathy. The rat is the most commonly used model of 

human disease. This study has determined whether chronic diabetes induced by 

streptozotocin in rats mimics the complications associated with human diabetes.  
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Abstract: 

 

Background: Diabetes in humans induces chronic complications such as cardiovascular 

damage, cataracts and retinopathy, nephropathy and polyneuropathy. The most common 

animal model of human diabetes is streptozotocin(STZ)-induced diabetes in the rat.  

Methods: This project has assessed cardiovascular, ocular and neuropathic changes over a 

period of 24 weeks post-STZ treatment in rats.  

Results: STZ-diabetic rats (n=96) showed stable signs of diabetes (hyperglycaemia, 

increased water and food intake with no increase in body weight); 52% of untreated STZ-

diabetic rats (n=50) survived 24 weeks. STZ-diabetic rats were normotensive with slowly 

developing systolic and diastolic dysfunction and an increased ventricular stiffness. 

Ventricular action potential durations were markedly prolonged. STZ-diabetic rats 

developed stable tactile allodynia. Cataracts developed to presumed blindness at 16 

weeks but proliferative retinopathy was not observed even after 24 weeks.  

Conclusion: The chronic STZ-diabetic rat mimics many but not all of the chronic 

complications observed in the diabetic human. The chronic STZ-diabetic rat may be a 

useful model to test therapeutic approaches for amelioration of chronic diabetic 

complications in humans.  

 

 

 

Introduction 

 

Glucose is the major energy source of cells. A stable blood glucose is necessary since 

energy must be supplied to all cells at all times despite intermittent food intake and 

variable demands, such as the level of physical activity. The major regulatory hormone 

for intermediary metabolism is insulin, produced and secreted by the β-cells of the islets 

of Langerhans of the pancreas. Impaired control of blood glucose concentrations by 

insulin leads to diabetes mellitus. In patients with diabetes, an increased blood glucose 

concentration (hyperglycaemia) causes an increased thirst, hunger and urine volume, but 

it is the chronic complications of diabetes that are the major health issues 1-6.  
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Diabetes is reaching epidemic proportions in developed countries 7. Estimations suggest 

that diabetes affects about 6% of the population in the USA or 12-15 million people, with 

up to half being undiagnosed 8,9. The prevalence of diabetes increases with age with up to 

25-30% of the elderly suffering from the condition and another 10-25% having impaired 

glucose tolerance 10. For many patients, diabetes is only diagnosed and aggressively 

treated when one of characteristic diabetic complications develops. These include 

cataracts and retinopathy which lead to blindness, impaired kidney function leading to 

end-stage renal disease, diabetic neuropathy which may lead to tactile allodynia, ulcers or 

amputations, macrovascular disease such as atherosclerosis and impotence, or heart 

disease and stroke. In humans, diabetes is associated with long-term cardiovascular 

damage (especially endothelial dysfunction, fibrosis and cardiomyopathy) with a much 

higher risk of coronary artery disease, heart failure, myocardial infarction and death 11.  

 

Diabetes can be induced by selective destruction of the insulin-producing β-cells of the 

pancreas with a single, rapid injection of streptozotocin (STZ), a glucose moiety with a 

very reactive nitrosourea group from the mould Streptomyces griseus. This procedure, 

first introduced in 1963, has since been used in over 7600 PubMed citations, probably 

making this the second most used animal model of human disease after the spontaneously 

hypertensive rat (SHR); cardiovascular changes following streptozotocin have been 

reviewed previously 11. STZ doses of 50-65 mg/kg lead to hyperglycaemia (20-30 mM) 

but severe ketosis does not develop even if insulin is not administered. Higher doses (75 

mg/kg and above) result in spontaneous ketosis and death within days if insulin is not 

given.  

 

Most investigations using STZ-diabetic rats have followed the course of the condition for 

4-6 weeks, sometimes 8 weeks. However, few studies have extended their measurement 

period to 24 weeks which is necessary to study the mechanisms of the chronic 

complications of diabetes such as neuropathy 12,13, retinopathy 14 and nephropathy 15. 

Since human diabetics have a markedly increased morbidity and mortality due to 

cardiovascular disease 1,2, we emphasise in this report the chronic changes in the 
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cardiovascular system that accompany chronic STZ-induced diabetes in the rat. A 

comparison with the chronic changes in human diabetes will indicate whether the STZ-

diabetic rat is an adequate model of the human disease.    

 

Methods 

 

Diabetes was induced in 8 week old male Wistar rats (n=96) using a single rapid injection 

of streptozotocin (STZ; 65 mg/kg) 16 into the femoral vein. The success rate of inducing 

diabetes (defined as a blood glucose concentration ≥15 mM and a water intake of >100 

ml/day at 7 days) was approximately 90%. Insulin was not administered. All control age-

matched male Wistar rats (n=10) survived the 24 week period; 52% of STZ-diabetic rats 

(n=50) survived 24 weeks after STZ injection. Food and water intakes and body weight 

were measured daily for 24 weeks. Blood glucose concentrations were monitored every 

four weeks by a Precision Q.I.D kit; values ≥ 15 mM were considered diabetic. Systolic 

blood pressure was measured every four weeks by a tail-cuff method 17. 

Echocardiography was performed every four weeks to non-invasively assess left 

ventricular size, wall thickness and systolic function 18.  

 

Cardiac contractility, relaxation and stiffness were measured using the isolated 

Langendorff heart preparation 19. A latex balloon catheter was inserted into the left 

ventricle for measurement of isovolumic left ventricular function via connection to a 

disposable pressure transducer (MLT1010) linked to a PowerLab system. Hearts were 

paced at 250bpm by attaching two electrodes to the surface of the right atria. End 

diastolic pressure was initially set to 5 mmHg by balloon inflation and all hearts received 

an equilibration period of approximately 25 minutes. End-diastolic pressure was 

measured for 3 minutes at 5mmHg increments beginning at 0mmHg up to a maximum of 

30mmHg. Measurements of diastolic pressure and systolic pressure were made after 2 

minutes of each 3 minute recording for further calculation of diastolic stiffness and left 

ventricular developed pressure. Myocardial diastolic stiffness was defined by the stiffness 

constant (k, dimensionless), the slope of the linear relation between the tangent elastic 
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modulus (E, dyne/cm2) and stress (σ, dyne/cm2) 19. At the end of the experiment, the atria 

were removed and the weight of the ventricles plus septum was recorded. 

 

Conventional microelectrode techniques were applied to the left ventricular papillary 

muscles to record action potential duration 20. A stainless steel hook was placed in one 

end of the papillary muscle fixed at the other end with a small stainless steel pin 

embedded into a rubber base. The hook was attached to a modified sensor element 

(SensoNor AE801) connected to an amplifier (World Precision Instruments, TBM-4). 

The muscle was slowly stretched to maximum preload over one minute. Contractions 

were induced by field stimulation (Grass SD-9) via electrodes on either side of the 

muscle (stimulation frequency 1 Hz, pulse width 0.5 msec; stimulus strength 20% above 

threshold). After maximum preload was attained, the muscle was allowed to equilibrate 

for a further 45 min before impalement with a glass microelectrode (World Precision 

Instruments, filamented borosilicate glass, outer diameter 1.5 mm) which had a tip 

resistance of 5-15 mΩ when filled with 3 M KCl. The reference electrode was an 

Ag/AgCl electrode. A Cyto 721 electrometer  (World Precision Instruments) was used to 

record bioelectrical activity. All signals were recorded via an Analogue Digital Converter 

(MacLab4S) connected to a Power PC G3. Data were acquired, derived and analysed 

using MacLab4S Chart 4.0 software (AD Instruments). Continual impalement throughout 

an experiment was not always possible. However, if displacement occurred, then the 

results of a subsequent impalement were accepted provided the data fitted the above 

criteria. 

 

Collagen deposition in the heart was visualised following picrosirius red staining 16,17 and 

quantified using laser confocal microscopy.  

 

Calibrated Von Frey filaments 21 were used for weekly assessment of the development 

and maintenance of tactile allodynia in the hindpaws of diabetic relative to non-diabetic 

rats. Von Frey filaments of varying tensile strength (2 – 20g) were applied to the plantar 

surface of the hindpaw of the rat in ascending order of force, until there was a brisk paw 

withdrawal response. If the rat failed to withdraw its paw, a response of 20 g was 

 5



recorded. Higher forces were not used in order to prevent tissue damage to the footpad of 

the rat.  

 

Every 4 weeks, rats were lightly anaesthetised for assessment of cataract genesis by 

examination of the rat lens magnified x36 with a slit-lamp biomicroscope. Tropicamide 

(1% solution) was administered to the eyes to dilate the pupils so as to give a clear view 

of the lens. Cellufresh® eye drops (carmellose sodium) were administered periodically to 

avoid drying of the cornea. Rat lens cataracts were graded using a grading scale: 0, 

normal clear lens; 1, visible posterior sutures; 2, isolated vacuoles; 3, coalescing 

peripheral vacuoles; 4, radial streaks and dense central opacities 22. Rat retinae were 

isolated at 24 weeks for histochemical evaluation using a diaminobenzidine and glucose 

oxidase staining procedure for blood vessels.  

 

Data are presented as mean ± SEM. Comparisons of the groups was made using the 

unpaired Student’s t test; p<0.05 was considered significant.  

 

 

Results 

 

STZ treatment rapidly produced the characteristic signs of diabetes such as increased 

intake of both water and food, failure to gain weight and increased blood glucose 

concentrations; these changes were maintained for the 24 weeks of observation (figure 1). 

As in humans, untreated diabetes in rats increases mortality as only 52% of STZ-diabetic 

rats survived 24 weeks of diabetes.  

 

Systolic blood pressure remained normal in STZ-treated rats for the full 24 weeks with 

mean systolic blood pressure measurements between 100 and 120 mmHg in both control 

and STZ-diabetic rats. Non-invasive measurement of left ventricular dimensions showed 

decreased wall thickness and increased internal diameter after 24 weeks only (figure 2). 

Systolic function using fractional shortening as an estimate was unchanged. Diastolic 

function was assessed as the ratio of the initial mitral inflow (maximal E wave velocity) 
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to the second mitral inflow (maximal A wave velocity) 18. Using this parameter, diastolic 

function was significantly decreased 24 weeks after STZ treatment (figure 2). Both 

contractility (dP/dt) and relaxation (-dP/dt) were impaired in the isolated hearts of STZ 

rats when measured in the perfused Langendorff heart preparation (figure 3). Further, the 

diastolic stiffness of STZ rat hearts was increased after 24 weeks (control: 0 week, 

20.6±2.0; 12 week, 23.4±0.9; 24 week, 24.6±1.3; STZ-diabetic: 12 week, 24.6±1.3; 24 

week, 32.7±2.1). In addition, STZ treatment was associated with a markedly prolonged 

action potential duration (APD at 20, 50 or 90% repolarisation in msec) measured at all 

stages of repolarization (12 week rats: control, APD20 7.1±0.7; STZ, APD20 17.7±2.2; 

control, APD50 15.1±1.2; STZ, APD50 34.3±4.0; control APD90 38.7±1.9; STZ, APD90 

77.1±6.6; 24 week rats: control, APD20 6.4±0.9; STZ, APD20 21.7±4.6; control, APD50 

13.0±2.1; STZ, APD50 43.8±8.3; control, APD90 29.0±3.7; STZ, APD90 101.0±13.8). 

The resting membrane potential was significantly less depolarised in papillary muscles 

from STZ-treated rats (control –72.3±0.7 mV; STZ –67.5±0.5 mV; n=6). 

 

In control rats (n=6), von Frey testing gave values of 14±0.6g, 14.9±0.7g and 15.6±0.7g 

after 0, 12 and 24 weeks. Tactile allodynia developed in STZ-diabetic rats (n=14) after 7-

10 days and reached a maximum after 2 weeks; this persisted unchanged for 24 weeks (0 

weeks, 14.7±0.6g; 12 weeks, 7.4±0.5g; 24 weeks, 6.4±1.0g). Bilateral cataracts 

developed early, with lens changes in the form of posterior streak opacities observed at 4 

weeks in STZ-treated rats. Cataract development was progressive with severe cataracts 

with presumed blindness in all eyes 16 weeks post-treatment (figure 4) while vascular 

changes were less pronounced, even after 24 weeks, with no significant differences in 

vessel numbers between normal and diabetic rats. However, ghost or loop-like vessels as 

well as microaneurysm formation was evident in retinas from STZ-treated rats (figure 5).  

 

Discussion 

 

Our studies on the chronic STZ-diabetic rat show that this model reliably produces many 

of the signs and symptoms of chronic human diabetes, in particular diastolic cardiac 

dysfunction, cataracts and neuropathy. An important difference is that rats do not develop 
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atherosclerosis and remain normotensive unlike human diabetics, at least over a 24 week 

observation period. However, these characteristics of the chronic STZ-diabetic rat allow 

investigation of hyperglycaemia-induced changes which are independent of the 

development of atherosclerosis and hypertension.  

 

Diabetes in humans is characterised by a progressive accumulation of complications 

which markedly increase morbidity and mortality. In both type 1 and type 2 diabetics, 

cardiovascular disease, especially coronary artery disease due to atherosclerosis, remains 

the major cause of this increase with a 2-3 fold increase over age- and gender-matched 

non-diabetic patients 1-3. However, there are important contributions from chronic renal, 

ocular and nerve damage. In a 10-year study of type 2 diabetics, 38% developed 

microalbuminuria as a symptom of nephropathy 4 while 55% had signs of retinopathy 5. 

Polyneuropathy is also an insidious complication of diabetes affecting about 42% of type 

2 diabetics 10 years after diagnosis 6. Understanding the basis for these complications 

requires an animal model of chronic diabetes that mimics the changes observed in 

humans.  

 

Hypertension, obesity, dyslipidaemia, microalbuminuria, endothelial dysfunction, 

autonomic neuropathy and diabetic cardiomyopathy are amongst the many factors that 

contribute to the high prevalence of cardiovascular disease in human diabetes 1,2. STZ-

diabetic rats slowly developed both diastolic dysfunction and systolic dysfunction as 

shown in vivo by echocardiography and also in the isolated heart. The diastolic stiffness 

was also increased in the isolated heart, consistent with an increased collagen deposition 
16. Fibrosis of the myocardium may be associated with inefficient conduction of cardiac 

pacemaker electrical impulses resulting in arrhythmia. Further, STZ-diabetic rats have a 

significant increase in duration of action potential in all phases of repolarisation possibly 

due to a reduction in the transient outward potassium current and the inward calcium 

current 23.  

 

The STZ-diabetic rat models diabetic neuropathy due to the similarities of the structural, 

functional and biochemical abnormalities in the periphery to human diabetic patients 22. 
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This study has extended this to the progression of tactile allodynia and painful diabetic 

neuropathy in chronic diabetes.  

 

Glucose-stressed lens have increased oxidative stress or reduced ability to remove 

reactive oxygen species or both. Ten- to twenty-fold increases in sorbitol concentration in 

the lenses due to membrane impermeability and slow conversion to fructose may lead to 

increased osmotic stress or an erosion of the components required to counter such stress 
22. This study demonstrated that the development of senile cataracts in diabetic lenses was  

rapid and severe especially considering the lack of cataract development in age-matched 

control lenses. 

 

Early degeneration of the endothelium by free radical damage, production of AGEs 

(advanced glycation end-products) and hypersecretion of various basement membrane 

proteins may affect transport, permeability and integrity of tight junctions and the blood-

retinal barrier 24. This leads to increased capillary leakage as well as microaneurysms 

which compromises blood and nutrient flow in the retina, causing an ischaemic state. A 

low oxygen tension stimulates VEGF (vascular endothelial growth factor) synthesis and 

VEGF receptor expression in an attempt to revascularise the ischaemic retina. Despite 

this, retinal vascular proliferation is a rare occurrence in animal models of diabetes 25, as 

observed in this study. However, we observed the formation of numerous 

microaneurysms and ghost vessels as well as loop-like vessels, all of which are indicative 

of progression towards proliferative retinopathy. This suggests that retinopathy does 

occur and vascular proliferation would be observed if the measurement period could be 

extended. 
  

The incidence and severity of chronic complications in diabetic humans necessitates 

therapeutic interventions. The chronic STZ-diabetic rat has been used for testing the 

effects of novel pharmacological agents, for example troglitazone in neuropathy 12 and 

ramipril or valsartan in nephropathy 15. These chronic studies should provide useful 

options for testing therapeutic approaches to ameliorate chronic diabetic complications in 

humans.  
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In conclusion, these results indicate that the chronic STZ-diabetic rat mimics many but 

not all of the chronic complications observed in the diabetic human.  
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Legends to figures 
 
Figure 1: Water (A) and food (B) consumption, body weight (C) and blood glucose 
concentration (D) in control (open circles) and STZ-treated rats (closed circles); n=10 
(control) and 37 (STZ-treated) for water and food consumption and body weight; n=10 
(control) and 20 (STZ-treated) for glucose measurements; *p<0.05 vs control. 
 
Figure 2: Ventricular dimensions and function as derived from echocardiography in 
control (open circles) and STZ-treated rats (closed circles): left ventricular wall thickness 
(A) and internal diameter (B), % fractional shortening (C) and maximal mitral E/A flow 
ratio (D); n=11 (controls) and 10 (STZ-treated rats) except for (D) where n=8 (control) 
and 6 (STZ-treated); *p<0.05 vs control.  
 
Figure 3: dP/dt (circles) and –dP/dt values (squares) in isolated Langendorff heart 
preparations from control rats (open symbols; n=7) and STZ-treated rats (closed symbols) 
after 12 weeks (n=9) and 24 weeks (n=7); *p<0.05 vs control. 
 
Figure 4: Cataract grade in lenses of control rats (n=6; open circles) and of rats for up to 
24 weeks after STZ-treatment (n=6; closed circles); *p<0.05 vs control.  
 
Figure 5: Retinal blood vessels in a rat 24 weeks after STZ treatment (x20 
magnification); loop-like vessels are shown by a blue arrow, microaneurysms are shown 
by a green arrow and ghost vessels are shown by a red arrow.  
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FIGURE 2:  
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FIGURE 3:  
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