
Aus dem Veterinärwissenschaftlichen Department der Tierärztlichen Fakultät 

der Ludwig-Maximilians-Universität München 
 

 

Arbeit angefertigt unter der Leitung von Univ.-Prof. Dr. Gerd Sutter 

 

 

 

Angefertigt im Institut für Virusdiagnostik 

des Friedrich-Loeffler-Instituts, 

Bundesforschungsinstitut für Tiergesundheit, Insel Riems 

(PD Dr. Martin G. Beer) 

 

 

 

Classical and African Swine Fever in Domestic Pigs and European Wild Boar: 

Optimization of Control Strategies and Laboratory Diagnosis 
 

 

 

 

Inaugural-Dissertation zur Erlangung der tiermedizinischen Doktorwürde  

der Tierärztlichen Fakultät 

der Ludwig-Maximilians-Universität München 

 

 

 

 

von Claudia Gabriel 

aus Grevesmühlen 

München 2012 



 

 

 
Gedruckt mit Genehmigung der Tierärztlichen Fakultät 

der Ludwig-Maximilians-Universität München 

 

 

Dekan:   Univ.-Prof. Dr. Braun 

 

Berichterstatter:  Univ.-Prof. Dr. Sutter 

 

Korreferenten:  Univ.-Prof. Dr. Dr. habil. Gareis 

      Univ.-Prof. Dr. Ritzmann 

      Univ.-Prof. Dr. Matiasek 

      Univ.-Prof. Dr. Müller 

 

 

 

 

Tag der Promotion: 21. Juli 2012 

 



 

Die vorliegende Arbeit wurde gemäß § 6 Abs. 2 der Promotionsordnung für die Tierärztliche 

Fakultät der Ludwig-Maximilians-Universität München in kumulativer Form verfasst. 

 

Folgende wissenschaftliche Arbeiten sind in dieser Dissertationsschrift enthalten: 

 

Blome, S., Gabriel, C., Staubach, C., Leifer, I., Strebelow, G. and Beer, M.: „Genetic 

differentiation of infected from vaccinated animals after implementation of an emergency 

vaccination strategy against classical swine fever in wild boar“, erschienen in Veterinary 

Microbiology 2011;153(3-4):373-376. 

 

König, P., Blome, S., Gabriel, C., Reimann, I. and Beer, M.: „Innocuousness and safety of 

classical swine fever marker vaccine candidate CP7_E2alf in non-target and target species“, 

erschienen in Vaccine 2011;30(1):5-8. 

 

Gabriel, C., Blome, S., Urniza, A., Juanola, S., Koenen, F., and Beer, M.: „Towards licensing 

of CP7_E2alf as marker vaccine against classical swine fever–Duration of immunity“, zum 

Druck angenommen von Vaccine, unter doi:10.1016/j.vaccine.2012.02.065 online verfügbar. 

 

Gabriel, C., Blome, S., Juanola, S., Urniza, A., Koenen, F., and Beer, M.: „Efficacy of 

CP7_E2alf pilot vaccine batches after intramuscular and oral vaccination“, als Poster 

vorgestellt auf dem 8th ESVV Pestivirus Symposium, Hannover, Germany, vom 25. bis 28. 

September 2011. Manuskript in Vorbereitung. 

 

Gabriel, C., Blome, S., Malogolovkin, A., Parilov, S., Kolbasov, D., Teifke, J. P. and Beer, 

M.: „Characterization of African swine fever virus Caucasus isolate in European wild boars“, 

erschienen in Emerging Infectious Diseases 2011;17(12):2342-2345. 

 

Blome, S., Gabriel, C., Dietze, K., Breithaupt, A. and Beer, M.: „High virulence of African 

swine fever virus Caucasus isolate in European wild boars of all ages“, zum Druck 

angenommen in Emerging Infectious Diseases 2012;18(4):708, unter 

doi:10.3201/eid1804.111813 online verfügbar. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For my family 
 

 

  

 

 

 

 

 



I 

1  Introduction ..................................................................................................... 1 
2  Literature review ............................................................................................. 3 

2.1  Classical Swine Fever ...................................................................................... 3 
2.1.1  Virus taxonomy, morphology and structure .................................................. 3 
2.1.2  Epidemiology, clinical signs, lesions and pathogenesis ................................ 6 
2.1.3  Immune response ......................................................................................... 10 
2.1.4  History, global distribution and economic impact ....................................... 11 
2.1.5  Control strategies and laboratory diagnosis ................................................. 13 
2.1.6  Vaccination .................................................................................................. 16 

2.1.6.1  Conventional vaccines ................................................................... 16 
2.1.6.2  E2 subunit marker vaccines ........................................................... 18 
2.1.6.3  Novel marker vaccines .................................................................. 19 

2.2  African Swine Fever ...................................................................................... 25 
2.2.1  Virus taxonomy, morphology and structure ................................................ 25 
2.2.2  Epidemiology, clinical signs, lesions and pathogenesis .............................. 26 
2.2.3  History, global distribution and economic impact ....................................... 31 
2.2.4  Control strategies and laboratory diagnosis ................................................. 34 
2.2.5  Vaccination .................................................................................................. 35 

3  Objectives ...................................................................................................... 36 
4  Results ........................................................................................................... 37 

4.1  Classical Swine Fever .................................................................................... 38 
4.1.1  Genetic differentiation of infected from vaccinated animals after 

implementation of an emergency vaccination strategy against classical 
swine fever in wild boar ............................................................................... 38 

4.1.2  Innocuousness and safety of classical swine fever marker vaccine candidate 
CP7_E2alf in non-target and target species ................................................. 48 

4.1.3  Towards licensing of CP7_E2alf as marker vaccine against classical swine 
fever–Duration of immunity ........................................................................ 58 

4.1.4  Efficacy of CP7_E2alf pilot vaccine batches after intramuscular and oral 
vaccination ................................................................................................... 81 

4.2  African swine fever ....................................................................................... 83 
4.2.1  Characterization of African Swine Fever virus isolate in European wild 

boars ............................................................................................................. 83 
4.2.2  African Swine Fever Virus in adult wild boar ............................................. 91 

5  Discussion ..................................................................................................... 93 
5.1  Classical Swine Fever control ....................................................................... 93 

5.1.1  Optimization of conventional vaccination ................................................... 93 
5.1.2  Assessment of marker vaccine candidate CP7_E2alf .................................. 95 

5.2  African Swine Fever ...................................................................................... 99 
5.2.1  Characterization of a recent Caucasian isolate in wild boar ........................ 99 

5.3  Conclusions and outlook ............................................................................. 101 



II 

6  Summary ..................................................................................................... 102 
7  Zusammenfassung ....................................................................................... 103 
8  References ................................................................................................... 104 
9  Abbreviations .............................................................................................. 135 
10  Acknowledgements ..................................................................................... 137 
 



Introduction 

1 

1 INTRODUCTION 

Classical swine fever (CSF) and African swine fever (ASF) are highly contagious viral 

diseases. Due to their tremendous socioeconomic impact, both diseases are notifiable to the 

World Organisation for Animal Health (OIE). Classical swine fever is caused by a small 

enveloped RNA virus of the genus Pestivirus within the Flaviviridae family. Natural hosts are 

domestic pigs and European wild boar (Sus scrofa). African swine fever is caused by ASF 

virus (ASFV), a complex DNA virus of the genus Asfivirus within the Asfarviridae family. 

Besides the natural infection of different members of the Suidae family, ASFV is able to 

replicate in soft ticks of the genus Ornithodoros and is therefore classified as the only DNA 

arthropod borne virus. Both diseases can cause a wide range of unspecific symptoms and 

lesions, which can not be distinguished from a variety of other viral, bacterial and non-

infectious diseases. 

In the case of CSF outbreaks in domestic pig populations, a strict stamping out strategy 

without prophylactic vaccination is applied within the European Union (EU). Nevertheless, 

EU legislation also foresees the possibility of emergency vaccination campaigns using either 

conventional or marker vaccines. Conventional modified live vaccines have been successfully 

used to eradicate CSF from the EU and to control outbreaks in European wild boar 

populations. However, the use of these vaccines implicates severe trade restrictions for 

domestic pigs and their products. The use of available marker vaccines, namely E2 subunit 

vaccines, would allow a differentiation of infected from vaccinated animals (DIVA) based on 

serology and thus ease trade restrictions. Unfortunately, E2 subunit vaccines lack important 

properties like early onset of immunity and full protection against vertical transmission. For 

this reason, emergency vaccination with the marker vaccine was so far only implemented for 

industrialized pig holdings in Romania. 

Different approaches have been followed to optimize the current control strategies and to 

develop new tools. 

For optimization of current strategies, recently developed multiplex real-time reverse 

transcription polymerase chain reactions for the simultaneous detection and differentiation of 

field viruses from vaccine viruses have been designed and can be used for a “genetic DIVA” 

concept. The evaluation of this approach in the framework of oral emergency vaccination of 

wild boar is part of the presented work. 
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In terms of new tools, several research groups worked on the design of new marker vaccine 

candidates and accompanying discriminatory laboratory tests. Among various promising 

marker vaccine candidates that have been developed over the last decades, the chimeric 

pestivirus “CP7_E2alf” has proven to be an efficacious DIVA vaccine candidate for both, 

intramuscular vaccination of domestic pigs and oral vaccination of wild boar. To obtain 

market authorization, several mandatory immunogenicity, safety, and efficacy trials are 

required. Here, studies are reported that cover innocuousness in target and non-target species, 

duration of immunity and efficacy against challenge with different strains. 

While Europe has a long history of CSF outbreaks, ASF is still considered exotic. However, 

the occurrence and persistence of ASF among domestic pigs and wild boar in the Russian 

Federation and the Trans-Caucasian Countries increases the risk of introduction into the EU. 

In contrast to CSF, control of ASF outbreaks can not draw on vaccination, as all attempts to 

develop an effective vaccine failed up to now. Therefore, knowledge about disease dynamics 

in different hosts including wild boar is of paramount importance for the design of disease 

control strategies and risk assessment. In the presented studies, the Caucasian ASFV Isolate 

was characterized in different age classes of wild boar. 
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2 LITERATURE REVIEW 

2.1 Classical Swine Fever 

2.1.1 Virus taxonomy, morphology and structure 

Classical swine fever virus (CSFV), the causative agent of CSF, belongs to the genus 

Pestivirus within the Flaviviridae family (Thiel et al., 2005). The virus is antigenically closely 

related to the approved pestiviral species Bovine viral diarrhea virus (BVDV) 1 and 2, Border 

disease virus (BDV), the atypical pestivirus isolated from a giraffe and a variety of 

unclassified pestiviruses (Harasawa et al., 2000; 2004; Stalder et al., 2005; Thabti et al., 2005; 

Vilcek et al., 2005; Kirkland et al., 2007; Stahl et al., 2007). 

 

Classical swine fever virus is a small, enveloped, icosahedral virus with a diameter of 40-60 

nm (Horzinek et al., 1967; Moennig and Plagemann, 1992) and has a single-stranded, 

positive-sense RNA genome of approximately 12.3 kb (Meyers et al., 1989; Moormann et al., 

1996). The genome possesses one large open reading frame (ORF) flanked by two non-

translated regions (NTRs) (Rümenapf et al., 1991a; Collett, 1992). The ORF codes for a 

polyprotein of about 3900 amino acids which is co- and posttranslationally processed by viral 

and cellular proteases into eleven viral proteins (Thiel et al., 1991; Rümenapf et al., 1993; 

Tautz et al., 1997; Xu et al., 1997; Bintintan and Meyers, 2010). Among these, four proteins 

constitute the structure, in particular the core (C) protein and the three envelope glycoproteins 

Erns, E1, and E2. Furthermore, seven non-structural (NS) proteins are encoded, namely Npro, 

p7, NS2-3, NS4A, NS4B, NS5A, and NS5B (Thiel et al., 1991; Elbers et al., 1996; Meyers 

and Thiel, 1996; Lattwein et al., 2012). The genome organization of Pestiviruses is depicted 

in Figure 1. 
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Fig. 1: Schematic representation of the genome organization of Pestiviruses. Genome regions 

encoding structural proteins are colored blue, whereas genome regions encoding non-

structural proteins are shown in grey (modified from Meyers and Thiel, 1996). The width of 

rectangles is scaled according to the different lengths of genome fragments. 

 

For immune response and thus vaccine development, the envelope glycoproteins E2 and Erns 

are of major importance. 

The envelope glycoprotein E2 is known to be the major immunogen of Pestiviruses including 

CSFV. It was also shown that it presents a virulence determinant (van Gennip et al., 2004; 

Risatti et al., 2005b; Risatti et al., 2006; Risatti et al., 2007), plays a major role in virus 

attachment and entry into target cells (Hulst and Moormann, 1997; Weiland et al., 1999), and 

is essential for virus progeny (van Gennip et al., 2002). In addition, it was identified as a 

target for cytotoxic T cells (Ceppi et al., 2005). The protein is present as disulfide-linked 

complex as homodimer or as stable heterodimer with the structural protein E1 (Weiland et al., 

1990; Thiel et al., 1991; Rümenapf et al., 1991a). Cysteins in the C-terminal or N-terminal 

half of E2 were shown to lead to intermolecular or intramolecular disulfide bonds, 

respectively. Using a panel of monoclonal antibodies, Wensvoort (1989) identified four 

antigenic domains (A, B, C, and D) on the E2 protein, from which the highly conserved 

domain A contains a linear epitope of the amino acid sequence “TAVSPTTLR” (Lin et al., 

2000; Qi et al., 2008; Qi et al., 2009). Advanced epitope mapping studies now indicate that 

the E2 protein consists of only three domains which contain at least 14 linear or discontinuous 

epitopes (Lerch, 2006). 

The envelope glycoprotein Erns is the second antigen inducing antibodies in the host (Weiland 

et al., 1992; König et al., 1995). This protein was characterized as a ribonuclease and is 
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presumed to be also involved in the determination of virulence and host adaptation (Schneider 

et al., 1993; Windisch et al., 1996; Hulst et al., 1998; Meyers et al., 1999; Hausmann et al., 

2004). Recent studies showed that the deletion of the pestiviral Erns protein leads to a lack of 

virus progeny (Widjojoatmodjo et al., 2000; Reimann et al., 2007), whereas mutated Erns-

coding sequences of several recombinant pestiviruses lead to clinical attenuation (Meyers et 

al., 1999; Meyer et al., 2002; Tews et al., 2009). The protein is stabilized by four 

intramolecular disulfide bridges, possesses seven to nine putative N-linked glycosylation 

sites, and is usually present in form of disulfide-bond homodimers (Rümenapf et al., 1993; 

Langedijk et al., 2002; Sainz et al., 2008). An unusual membrane anchor mediates the 

association to the surface of the virion (Fetzer et al., 2005; Tews and Meyers, 2007). 

Furthermore, Erns is secreted in considerable amounts from infected cells (Rümenapf et al., 

1993; Schneider et al., 1993). 

The other structural and nonstructural proteins have various functions in RNA replication and 

production of virus progeny, for instance as protease (NS3), or as RNA dependent RNA 

polymerase (NS5B) (Meyers et al., 1989; Weiland et al., 1990; Greiser-Wilke et al., 1992; 

Rümenapf et al., 1993; Stark et al., 1993; Tamura et al., 1993; Warrener and Collett, 1995; 

Elbers et al., 1996; Tautz et al., 1997; Xu et al., 1997; Zhong et al., 1998; Steffens et al., 

1999; Harada et al., 2000; Tautz et al., 2000; Qu et al., 2001; La Rocca et al., 2005; Ruggli et 

al., 2005; Tellinghuisen et al., 2006; Bauhofer et al., 2007; Murray et al., 2008; Ivanyi-Nagy 

et al., 2008; Fernandez-Sainz et al., 2009; Fiebach et al., 2011). 

Based on phylogenetic analyses of nucleotide sequences of fragments of the 5'-NTR, and the 

E2 encoding genome regions, CSFV strains can be divided into three genogroups (1-3). 

Genogroups 1 and 2 are further subdivided into three subgroups (CSFV 1.1, 1.2, 1.3, 2.1, 2.2, 

and 2.3), whereas genogroup 3 consists of four subgroups (CSFV 3.1, 3.2, 3.3, and 3.4) 

(Paton et al., 2000; Greiser-Wilke et al., 2006). Clusters, especially of subgroup 2.3 can be 

defined based on the partial 5'-NRT sequence. These clusters are often linked to geographic 

distribution and used for molecular epidemiology (Fritzemeier et al., 2000; Leifer et al., 

2010b). 
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2.1.2 Epidemiology, clinical signs, lesions and pathogenesis 

Susceptible hosts for CSFV are different members of the Suidae family, particularly domestic 

pigs (Sus scrofa domesticus) and European wild boar (Sus scrofa scrofa) (Depner et al., 1995; 

Blacksell et al., 2006). In a recent study in South Africa, the susceptibility of Common 

Warthogs (Phacochoerus africanus) and Bushpigs (Potamochoerus larvatus) for CSFV was 

demonstrated (Everett et al., 2011). 

Classical swine fever virus can be transmitted both horizontally and vertically. Horizontal 

transmission takes places through direct or indirect contact between infected and susceptible 

pigs. Important indirect routes include feeding of virus contaminated garbage and mechanical 

transmission via contact to humans or agricultural and veterinary equipment (van Oirschot, 

1999). Upon contact, infection usually occurs through the oronasal route, or less frequently 

via conjunctiva, mucus membranes, skin abrasions, insemination, and the use of contaminated 

instruments (de Smit et al., 1999a; Floegel et al., 2000; Moennig and Greiser-Wilke, 2008; 

Pasick, 2008). Infected pigs show high-titer viremia and shed virus at least from the beginning 

of clinical disease until death or specific antibodies have developed. The main excretion 

routes are by saliva, lacrimal secretions, urine, feces, and semen (Ressang, 1973a; van 

Oirschot, 1999; Pasick, 2008). In contrast, chronically infected pigs shed the virus 

continuously or intermittently until death (van Oirschot, 1999). Vertical transmission from 

pregnant sows to fetuses is possible throughout all stages of gestation and can lead to 

persistently infected offspring. 

 

Classical swine fever can cause a wide range of clinical syndromes after an incubation period 

of seven to ten days (Moennig, 2000). The clinical course can vary considerably, depending 

on different host factors and the virulence of the corresponding CSFV isolate. Among the host 

factors, the age of affected animals, the breed, the immune status as well as secondary 

infections determine the outcome of the disease (Kaden et al., 2000b; Moennig et al., 2003). 

Different courses of CSF can be distinguished: peracute, acute, chronic, and prenatal forms 

such as persistent infections. 

After infection with highly virulent CSFV isolates peracute courses can occur. In this case, 

piglets die peracutely after a short period with high fever but without any CSFV specific 

symptoms (Dunne, 1970). 

The acute course can either lead to death (acute lethal form) or recovery (acute transient form) 

of the animal. Acute lethal forms with severe clinical signs are mostly seen in weaner and 
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young fattening pigs after infection with moderately or highly virulent isolates. Initial signs 

are high fever, anorexia, lethargy, huddling, conjunctivitis, enlarged lymph nodes, respiratory 

symptoms and constipation followed by diarrhea. Neurological signs like a staggering gait, 

incoordination and convulsions are frequently seen. During the second or third week after 

infection, typical hemorrhages of the skin may appear on the ear, tail, abdomen and the inner 

side of the limbs (Moennig et al., 2003). As CSFV causes severe leucopenia and 

thrombocytopenia, secondary infections of the respiratory or gastrointestinal tract may mask 

or overlap typical signs of CSF, contributing in a further deterioration in health and 

misleading of farmers and veterinarians (Schmidt and Kaaden, 1968; Depner et al., 1999; 

Moennig et al., 2003). Affected animals usually die ten to 20 days post infection (Blome, 

2006). The pathological findings include lesions in the lymphoreticular system and petechiae 

and ecchymoses in several organs (Kleiboeker, 2002; Moennig et al., 2003). Regularly, 

infarctions of the spleen are observed and considered highly characteristic, almost 

pathognomic for CSF (van Oirschot, 1999; Kleiboeker, 2002). Complicated by bacterial 

secondary infections, purulent to necrotic tonsillitis as well as catarrhal to fibrinous 

bronchopneumonia may be present (Kleiboeker, 2002). A nonpurulent meningoencephalitis is 

seen in almost every pig (Gruber et al., 1995; Gómez-Villamandos et al., 2006). 

Apart from acute lethal courses, transient or subacute infections may appear associated with 

low virulent strains or with an increasing age of the infected animals. In these cases, atypical 

and less pronounced clinical signs and the production of antibodies occur and the animal 

recovers completely. The term “atypical course” arose due to the fact that clinical signs are 

not indicative for CSF (Depner, 2006). 

The chronic form of CSF is seen when the host’s immune system fails to establish an 

effective immune response against the virus and is associated with 100% mortality (Moennig 

et al., 2003; Moennig and Greiser-Wilke, 2008). Initially, clinical signs are similar to the 

acute form, followed by non-specific signs like anorexia, lethargy, intermittent fever, chronic 

enteritis, and wasting (Moennig et al., 2003). Periods of acute clinical disease and general 

improvement in the clinical condition may alternate and last for several months until the pigs 

die (Depner et al., 1996; van Oirschot, 1999; Moennig et al., 2003). Pathological changes are 

less pronounced, especially hemorrhages and infarctions are almost always absent 

(Kleiboeker, 2002). Most striking lesions are atrophy of the thymus and depletion of 

lymphocytes in peripheral lymphoid organs (van Oirschot, 1999). Necrosis and ulceration on 

the ileum, the ileocecal valve and colon are common (Moennig et al., 2003). 



Literature review 

8 

The prenatal form of CSF arises from the fact that CSFV is able to cross the placenta of 

pregnant sows, whereas antibodies cannot be transferred from the pregnant sow to the fetuses 

(van Oirschot and Terpstra, 1977; Meyers and Thiel, 1996). While sows mostly develop mild 

or subclinical courses of the disease, the outcome of transplacental infection of fetuses 

depends on the time of gestation and virus virulence. Infection in the early stage of pregnancy 

can lead to abortions, stillbirths, mummification and malformations. Infection from about 50-

70 days of pregnancy, however, may result in persistently infected piglets (Moennig et al., 

2003). Being immunotolerant to CSFV, these piglets stay seronegative and shed virus 

continuously and therefore play an important role in spreading of the disease (Kleiboeker, 

2002). The piglets may remain healthy for months, then develop the so-called “late-onset” 

course of CSF which is characterized by retarding of growth, wasting, conjunctivitis, 

dermatitis and diarrhea. All animals affected by this disease course eventually die. 

Occasionally congenital tremor occurs (van Oirschot and Terpstra, 1977; van Oirschot, 1999; 

Kleiboeker, 2002). 

 

After natural oronasal infection, the epithelial cells of the tonsillar crypts are the primary site 

of virus replication (Ressang, 1973a; Ressang, 1973b; Liess, 1987). Subsequently, the virus 

spreads via lymphatic vessels to the regional lymph nodes, followed by secondary 

dissemination into the spleen, bone marrow, visceral lymph nodes and lymphoid structures of 

the small intestine through the vascular system (Ressang, 1973a). Whilst secondary 

replication of CSFV occurs in lymphoid tissue and in circulating leukocytes and mononuclear 

cells, the level of viremia rises rapidly and results in the invasion of parenchymatous organs 

(van Oirschot, 1999). The spread of virus throughout the pig is usually completed in five to 

six days (Ressang, 1973a). The typical clinical picture of acute lethal CSF in form of a 

hemorrhagic disease is caused by direct and indirect interactions of the virus with its main 

target cells, namely macrophages (Gómez-Villamandos et al., 2001), endothelial cells (Heene 

et al., 1971; Trautwein, 1988), dendritic cells (Carrasco et al., 2004), lymphoreticular cells 

and epithelial cells (Moennig, 2000). 

According to Gómez-Villamandos (2003) macrophages may play a major role in the 

pathogenesis of CSF as viral infection, apoptosis, phagocytotic and secretory activation, and 

cell count changes appear in these cells after infection. Lymphopenia, thrombocytopenia and 

hemorrhages, however, were postulated not to be attributed to a direct effect of the virus on 

lymphocytes, endothelial cells and platelets (Gómez-Villamandos et al., 1998; Summerfield et 

al., 1998; Gómez-Villamandos et al., 2000; Sato et al., 2000; Sánchez-Cordón et al., 2002). 
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Instead, it is assumed that these processes may especially be due to mediators released by 

various activated macrophage populations, in particular tumor necrosis factor-alpha (TNF-α), 

Interleukin (IL) 1α, IL-1β, IL-6, and platelet-activating factor (PAF) (Gómez-Villamandos et 

al., 2003; Lange et al., 2011). 
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2.1.3 Immune response 

After CSFV infection, cellular as well as humoral immune mechanism are involved in the 

development of immunity against the virus. As natural CSFV infections are accompanied by 

severe lymphopenia, the immune responses in CSF are delayed. During the acute course of 

disease, pigs develop only low levels or even no neutralizing antibodies that may be 

detectable from two weeks after infection (Liess et al., 1977; Artois et al., 2002). 

Transplacental infection of fetuses can lead to immunotolerance, thus no antibodies can be 

detected in persistently infected piglets (Liess, 1987). If animals recover, high antibody titers 

against the glycoproteins Erns and E2, and the non-structural protein NS3 appear and may 

persist lifelong (Moennig and Greiser-Wilke, 2008). 

Neutralizing antibodies are mainly raised against the envelope protein E2. As these are 

sufficient for protective immunity, marker vaccine concepts are based on this antigen 

(Weiland et al., 1990; van Zijl et al., 1991; Weiland et al., 1992; Hulst et al., 1993; van Rijn et 

al., 1996; Bouma et al., 1999; van Gennip et al., 2002). 

To a lesser extent, the host’s immune system produces antibodies against the envelope protein 

Erns (Weiland et al., 1992; König et al., 1995). As most marker vaccines do not induce Erns 

antibodies, marker assays based on the detection of Erns antibodies allow a serological DIVA 

strategy. 

Furthermore, antibodies are raised against the highly conserved NS3 protein. These antibodies 

are not specific for CSFV, but show cross-reactivity with other pestiviruses, and thus are not 

suitable for most DIVA approaches (Paton et al., 1991). 

Generally, animals developing neutralizing antibodies are protected against subsequent CSF 

infection (Terpstra and Wensvoort, 1988). However, certain vaccination-challenge studies 

revealed protection in the absence of neutralizing antibodies (Aynaud and Launais, 1978; 

Rümenapf et al., 1991; Suradhat et al., 2001; Ganges et al., 2005), indicating that cellular 

immune mechanism are likewise involved in conferring protection. Indeed, the role of 

protective T-cell immunity could be confirmed, as specific epitopes for the stimulation of 

helper T-cells (CD4+ T-cells) and cytotoxic T-lymphocytes (CD8+ T-cells) have been 

identified on the viral proteins E2 and NS2-3 (Pauly et al., 1995; Armengol et al., 2002; 

Piriou et al., 2003; Ceppi et al., 2005; Ganges et al., 2005; Rau et al., 2006). Although several 

questions regarding the role of cellular and innate immunity remain open, it can be stated that 

a balance between humoral and cellular immunity seems to play a pivotal role for the 

development of optimized immune responses (Anonymous, 2009). 
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2.1.4 History, global distribution and economic impact 

The origin of CSF, formerly called “hog cholera”, still remains unclear. Chronicles go back as 

far as to the early 19th century. Accordingly, CSF was first observed in 1833 in Ohio, USA, or 

in 1822 in France (Edwards et al., 2000). For long time assumed to be a bacterium, the 

causative agent was found to be a filterable virus in 1903 (De Schweinitz and Dorset, 1904). 

During the late 19th century, the disease evolved to one of the most important diseases of 

swine with worldwide distribution. Nowadays, CSF has been successfully eradicated in 

Australia, Canada, the US and most EU Member States, whereas the disease is prevalent in 

Central and South America, the Caribbean, and many Asian countries (Moennig and Greiser-

Wilke, 2008). Apart from the occurrence of CSF in Madagascar and South Africa, the 

situation in Africa remains uncertain (Sandvik et al., 2005; Penrith et al., 2011). Despite 

intensive efforts to eradicate the disease in Europe, CSF was continuously observed over the 

last decades in several European countries in either wild boar or domestic pig populations 

(Edwards et al., 2000; Artois et al., 2002; Pol et al., 2008; Moennig and Greiser-Wilke, 2008; 

Floegel-Niesmann et al., 2009; Blome et al., 2010; Leifer et al., 2010b), partially reaching 

endemicity in wild boar (Moennig, 2000). These epidemics and related control measures 

caused major socio-economic damage, as seen during the epidemic in The Netherlands in 

1997/1998, where over 11 million pigs were slaughtered and the direct costs were estimated 

at about US $ 2 billion (Stegeman et al., 2000; Terpstra and de Smit, 2000). Since the 1980s, 

almost all isolates from Europe belong to genogroup 2 (Paton et al., 2000), and recent CSF 

outbreaks in the European wild boar population were mainly associated with CSFV isolates of 

subgroup 2.3 (Kaden et al., 2004; Pol et al., 2008; Leifer et al., 2010b). 

Particular attention must be given to wild boar populations, as infected wild boars may act as 

a reservoir for CSFV. Usually infected via contaminated food, persistence of CSF in wild 

boar populations may occur over long periods and is believed to benefit from large population 

sizes, accompanied by high densities of most susceptible young animals (Moennig, 2000; 

Artois et al., 2002; Penrith et al., 2011). Introduction of CSF from wild boar into domestic pig 

populations may occur through direct or indirect contact, and was supposed to be the reason 

for 59% of primary outbreaks in domestic pig herds in Germany between 1993 to 1998 

(Fritzemeier et al., 2000). 

A disease distribution map based on available data of the first half-year of 2011 according to 

the World Organisation for Animal Health web site (http://www.oie.int) is shown in Figure 2. 

Nevertheless, according to Paton and Greiser-Wilke (2003) the true extent of the disease 
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might be underrated, not least because of insufficient surveillance resources, political and 

economic pressure not to notify the presence of the disease and masking effects of 

vaccination. 

 

 
Fig. 2: Classical swine fever distribution in wild and domestic pigs, reporting period January 

to June 2011 (OIE, 2012a). 
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2.1.5 Control strategies and laboratory diagnosis 

The majority of countries with significant pig production has statutory control measures for 

CSF in place, but the efficacy and success of these measures varies in accordance with 

economical factors including the status of veterinary and laboratory infrastructure (Edwards et 

al., 2000). Integral part of these control measures are most often potent vaccines, especially 

live attenuated variants. Although vaccination in itself does not bring about disease 

eradication, vaccines have proven to present powerful tools for animal disease control. 

Through the use of mandatory vaccination campaigns in combination with strict veterinary 

sanitary measures, eradication of CSF has been achieved in many industrialized pig 

populations worldwide (van Oirschot, 2003b; Greiser-Wilke and Moennig, 2004a; Dong and 

Chen, 2007). Nevertheless, complete eradication of the disease could not be achieved and 

sporadic outbreaks keep occurring. In addition, endemically infected feral pig populations in 

some EU member states complicate the situation (Anonymous, 2009). 

Within the EU, control and eradication measures for CSF are laid down in Council Directive 

2001/89/EC and Commission Decision 2002/106/EC (Anonymous, 2001; Anonymous, 

2002a). In case of a CSF outbreak in domestic pigs, a strict stamping out strategy is applied 

since 1990 in order to prevent further spreading of the virus (Greiser-Wilke and Moennig, 

2004a). This implies culling of infected herds and potential contact herds, establishment of 

protection and surveillance zones and movement restrictions. Prophylactic vaccination is 

prohibited, but emergency vaccination of domestic pigs and wild boar populations is among 

the legal options. So far, emergency vaccination has been mainly applied for the control of 

CSF outbreaks in wild boar populations. Several Member States made use of the possibility of 

oral immunization, among these were Germany, France, Slovakia, Romania, Luxembourg, 

and Bulgaria. Due to the fear of trade restrictions, emergency vaccination of domestic pigs 

was so far only implemented in Romania (Anonymous, 2006). 

 

Control measures have to be accompanied by reliable diagnostic tools. Due to the high 

variability of clinical and pathological signs, laboratory tests are needed to confirm or rule out 

CSF in case of suspicions, and in the framework of monitoring and surveillance activities. 

Both direct and indirect detection methods are available for CSF laboratory diagnosis. 

Detailed laboratory procedures including sampling are laid down in the EU Diagnostic 

Manual (Commission Decision 2002/106/EC) and the accompanying Technical Annex 
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(Anonymous, 2002a; Anonymous, 2003a) as well as the Manual of Diagnostic Tests and 

Vaccines for Terrestrial Animals (OIE, 2008b). 

The “gold standard” for direct detection of the agent is virus isolation on susceptible porcine 

cell cultures (Blome et al., 2006; Grummer et al., 2006) in combination with direct or indirect 

immune staining, e.g. immunofluorescence test (IFT) or immunoperoxidase test (IPT). 

Although this method is laborious and time-consuming, it is an indispensable method for the 

confirmation of CSF outbreaks (Anonymous, 2002a; OIE, 2008b) and allows the 

establishment of strain collections and genotyping (Greiser-Wilke et al., 2007). 

Detection of antigen on fixed cryosections of tissues by IFT or IPT can be used as a rapid 

laboratory test in the case of suspicion, but requires experienced personnel for correct 

interpretation (Turner et al., 1968; de Smit et al., 2000b). Due to the limited sensitivity of the 

method, negative results can not be used for ruling out a CSFV infection (Teifke et al., 2005; 

Kaden et al., 2007). 

For surveillance on a herd basis, fully automatable antigen capture enzyme-linked 

immunosorbent assays (ELISAs) yield results within 4 hours. In consequence of rather low 

sensitivity and specifity (Kaden et al., 1999; Dewulf et al., 2004), this technique must not be 

used for individual animals, and is increasingly replaced by reverse transcription polymerase 

chain reaction (RT-PCR) (Anonymous, 2002a). 

Nowadays, the detection of viral RNA by RT-PCR has become a most valuable tool for 

diagnostic and research. Several gel-based RT-PCR protocols (Liu et al., 1991; Roehe and 

Woodward, 1991; Katz et al., 1993; Harding et al., 1994; Vilcek et al., 1994; Díaz et al., 

1998; Agüero et al., 2004; Liu et al., 2007) as well as real-time RT-PCR (rRT-PCR) assays 

(McGoldrick et al., 1998; McGoldrick et al., 1999; Barlič-Maganja and Grom, 2001; Risatti et 

al., 2003; Uttenthal et al., 2003; Hoffmann et al., 2005; Risatti et al., 2005a; Hoffmann et al., 

2006; Liu et al., 2007; Leifer et al., 2011; Eberling et al., 2011) have been developed so far 

and are either based on the detection of pestiviral or CSFV genome. Being considered to be 

one of the most sensitive method, RT-PCR can be used on pooled samples and for preclinical 

diagnosis (Paton and Greiser-Wilke, 2003; Depner et al., 2006; Le Potier et al., 2006; Depner 

et al., 2007; Le Dimna et al., 2008). Recently, RT-PCR assays have been developed that 

distinguish between wild-type CSFV and several attenuated lapinized vaccine strains (Li et 

al., 2007c; Pan et al., 2008; Zhao et al., 2008; Leifer et al., 2009a; Leifer et al., 2010a; Zhang 

et al., 2011b). Advanced multiplex real-time RT-PCR assays allow simultaneous detection 

and differentiation of viruses belonging to different virus families and are used to detect 
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disease clusters or pathogens with similar clinical picture (Agüero et al., 2004; Cheng et al., 

2008; Giammarioli et al., 2008; Jiang et al., 2010; Liu et al., 2011). 

Recent approaches, like reverse transcription loop-mediated isothermal amplification (RT-

LAMP) (Chen et al., 2009; Yin et al., 2010; Zhang et al., 2010a; Zhang et al., 2011a) and 

microarray technology (Deregt et al., 2006; LeBlanc et al., 2009; LeBlanc et al., 2010) 

yielded first promising results and may have significant potential for future diagnostic tools. 

The same applies for modern and alternative probes for real-time RT-PCR, for example 

primer-probe energy transfer (PriProET) technology (Liu et al., 2009b; Zhang et al., 2010b). 

For serology, the neutralization test (NT) is the most sensitive method. Although it is time-

consuming, work intensive, and requires a high biosafety standard, it allows the 

discrimination between highly cross-reactive antibodies arising after CSFV or other pestivirus 

infections (Anonymous, 2002a; Blome et al., 2006; OIE, 2008b). Thereby, the NT is an 

indispensable tool, since CSF outbreaks entail mandatory control measures, whereas BDV or 

BVDV infections in pigs do not impose legal regulations (Greiser-Wilke et al., 2007). 

Enzyme-linked immunosorbent assays for the detection of antibodies against the envelope E2 

protein (Wensvoort et al., 1988; Moser et al., 1996) are widely used for screening and 

monitoring purposes (Pejsak et al., 1993; de Smit et al., 1999b; Zupancić et al., 2002; Vengust 

et al., 2006), and especially to evaluate oral vaccination campaigns in wild boar (Kaden et al., 

2002; Kaden et al., 2005). In addition, two commercially available ELISAs for the detection 

of Erns specific antibodies have been developed as accompanying tests for E2 subunit marker 

vaccines (Moormann et al., 2000; Floegel-Niesmann, 2003). Although the evaluation of two 

available discriminatory Erns ELISAs has revealed deficiencies in both sensitivity and 

specificity compared to conventional E2 antibody ELISAs (Floegel-Niesmann, 2001; Floegel-

Niesmann, 2003), they remain useful tools for CSFV serology. 
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2.1.6 Vaccination 

Due to the tremendous socio-economic impact, the development of potent vaccines posed and 

still poses a challenge for research groups worldwide. For CSFV vaccination campaigns, 

different vaccination scenarios are possible, requiring different characteristics of vaccines 

(van Oirschot, 2003b). While vaccination in endemically infected areas is meant to prevent 

economic losses and may be a first step towards eradication, emergency vaccination 

campaigns during epidemics are mainly intended to prevent spread of the disease (van 

Oirschot, 2003a). According to Dong and Chen (2007), a perfect vaccine that could be used in 

all scenarios should induce reliable protection against horizontal transmission within a short 

time, induce full protection against vertical transmission, protect against a broad range of viral 

variants, be innocuous and safe in vaccinated animals and other species, be easy to use, and 

acceptable in terms of consumer protection. In addition, the perfect vaccine should have 

marker properties, allowing differentiation of infected from vaccinated animals (DIVA), 

accompanied by a reliable test system for disease surveillance and confirmation. Finally, 

vaccine production should be easy and at low cost using a standardized protocol. So far, a 

vaccine meeting all these criteria does not exist. 

2.1.6.1 Conventional vaccines 

Conventional vaccines comprise live attenuated vaccines and inactivated vaccines. Whereas 

inactivated vaccines are barely in use, live attenuated vaccines present the “gold standard”, 

especially in terms of efficacy (van Oirschot, 2003b; Blome et al., 2006). 

In the early 20th century, a first generation of vaccines against CSF were developed, initially 

consisting of virus and porcine serum, followed by a crystal-violet vaccine in 1936 (Pehl, 

1954; Saulmon, 1973). Due to the low safety and efficacy of these primary vaccines, further 

investigations aimed at the development of live attenuated vaccines. Among commonly used 

strains are the Lapinized Philippines Coronel (LPC) strain, the Chinese vaccine strain (C-

strain) or so-called “Chinese hog cholera lapinized virus” (HCLV), the low-temperature-

adapted Japanese guinea-pig exaltation-negative (GPE-) strain, the French cell culture adapted 

Thiverval strain, and Mexican PAV strains (Dong and Chen, 2007). 

So far, the most frequently used vaccines derive from the C-strain. The origin of this strain is 

not exactly known (Xia et al., 2011). It is likely that a vast number of chinese strains are used 

for the production of commercial vaccines, and all of them are attenuated by extensive serial 

passages in rabbits before adaptation to cell culture (van Oirschot, 2003b; Greiser-Wilke and 
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Moennig, 2004a). For C-strain formulations used in Europe it was shown that reliable 

protection is provided as early as four days after a single vaccination (Terpstra et al., 1990; 

Dahle and Liess, 1995; Kaden and Lange, 2001). Furthermore, immunity has been proven to 

persist for at least six to eleven months, probably even lifelong (Terpstra et al., 1990; Ferrari, 

1992; Kaden and Lange, 2001; van Oirschot, 2003b). Transplacental infection with field virus 

is prevented (Kaden et al., 2008). Besides this remarkable efficacy, these vaccine strains are 

highly safe in both, target and non-target species (Kaden et al., 2010). Side effects are neither 

seen in pregnant sows nor immunosuppressed pigs (European Commission, 2003; van 

Oirschot, 2003b). In addition, production of these vaccines is facile and cost-saving, the 

vaccines do not require adjuvants and are suitable for oral vaccination of wild boar 

populations. Recently, several RT-PCR assays have been developed allowing genetic 

differentiation of C-strain vaccine and field virus strains (Zhao et al., 2008; Leifer et al., 

2009a; Zhang et al., 2011b). Serological differentiation between C-strain vaccinated and 

infected animals is not possible (Beer et al., 2007). 

Besides efforts to attenuate CSFV by passage through rabbits, other attempts aimed at 

attenuation of CSFV strains ALD and Alfort by serial cell culture passages under low 

temperature (29-30°C), resulting in the attenuated GPE- and Thiverval vaccine strains, 

respectively (Sasahara et al., 1969; Aynaud et al., 1971). Commercial vaccines derived from 

the above-mentioned strains show similar performance as C-strain vaccines, and likewise lack 

serological marker properties. 

The considerations set out above show that almost perfect vaccines against CSF are available, 

but all of them showing one serious drawback: they do not allow a serological DIVA strategy. 

In the case of emergency vaccination scenarios using conventional live attenuated vaccines, 

incising trade restrictions for vaccinated animals and their products would be applied 

(Greiser-Wilke and Moennig, 2004a). 
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2.1.6.2 E2 subunit marker vaccines 

Up to now, marker vaccines were successfully used in the control of Aujeszky’s disease 

(Greiser-Wilke and Moennig, 2004b) or bovine herpesvirus 1 infection (van Oirschot et al., 

1996). Generally, two types of marker concepts can be distinguished: positive and negative 

marker vaccines, whereas the latter is most commonly used. Here, the differentiation is based 

on the absence of one or more microbial proteins in the vaccine, in contrast to the presence in 

the wild-type pathogen. Consequently, while infected animals develop specific antibodies 

against that specific protein, no specific “marker” antibodies can be detected in solely 

vaccinated animals. Using a protein-specific antibody test, infected and vaccinated individuals 

can thus be distinguished. 

For CSFV, two E2 subunit vaccines have been licensed in Europe that represent the first 

generation of marker vaccines. They contain recombinant CSFV E2 expressed in a 

baculovirus sytem (Hulst et al., 1993). The marker concept is based on the fact that field-virus 

infected animals react positive in an Erns-specific antibody ELISA, while vaccinated animals 

only develop a CSFV E2-specific antibody response. 

Over the last years, a large number of studies were conducted to characterize these subunit 

vaccines (Bouma et al., 1999; Ahrens et al., 2000; Dewulf et al., 2000; Lipowski et al., 2000; 

Moormann et al., 2000; de Smit et al., 2000a; Depner et al., 2001; Uttenthal et al., 2001; de 

Smit et al., 2001a; Klinkenberg et al., 2002; Terzić et al., 2003; van Aarle, 2003; Dortmans et 

al., 2008). During these studies, safety of the E2 subunit vaccines was in general confirmed, 

but their efficacy was found not to be comparable with C-strain vaccines or other live 

attenuated vaccines, since results of vaccination-challenge and transmission studies were 

rather variable (van Oirschot, 2003b). Disadvantages compared to live attenuated vaccines 

can be seen in the late onset of immunity and incomplete protection against vertical 

transmission, both depending on the challenge strain used (European Commission, 2003). In 

order to obtain a reliable protection against horizontal and vertical transmission of CSFV, 

these vaccines require parenteral double vaccination campaigns (de Smit et al., 2000a; Ziegler 

and Kaden, 2002). Moreover, they are ineligible for oral administration, and thus not suitable 

for oral vaccination particularly of endemically infected wild boar populations during 

emergency vaccination campaigns. 

Nowadays, only one subunit vaccine is still available on the market, containing the E2 

glycoprotein of CSFV strain “Alfort/Tübingen”. 
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2.1.6.3 Novel marker vaccines 

Novel marker vaccines against CSF should in principle combine the outstanding efficacy of 

live attenuated vaccines with a reliable serological DIVA strategy. In order to achieve this 

goal, research activities mainly concentrated on the following strategies: immunogenic CSFV 

peptides, DNA vaccines, viral vector vaccines, trans-complemented deleted CSFV genomes 

(replicons), and chimeric pestiviruses (Beer et al., 2007). 

 

Immunogenic CSFV peptides 

For these vaccines, subunits are used instead of inactivated whole virus particles. The E2 

subunit vaccines mentioned above are therefore also assigned to this group. These vaccines 

are based on recombinant proteins or so-called immunogenic peptides. So far, all peptide 

vaccines against CSFV contain either one peptide (mono-peptide vaccines, mPV) or a mixture 

of different peptides (multi-peptide-vaccines, MPV) covering different parts of the antigenic 

domains of the CSFV glycoprotein E2, in particular of the domains BC or A (Dong et al., 

2002; Dong et al., 2005; Dong et al., 2006; Dong and Chen, 2006a; Liu et al., 2006a; Dong 

and Chen, 2006b; Liu et al., 2006b). The serological marker principle is based on the 

detection of Erns or NS3 specific antibodies, for instance while using different blocking 

ELISAs. For mono-peptide-vaccines, however, detection can even rely on E2 domains that 

are not present in the vaccine. Besides serological marker properties, the advantage of this 

vaccine strategy is that it poses no risk for pathogen replication. Nevertheless, peptide 

vaccines require parenteral administration, adjuvants and multiple vaccination schemes. Dong 

et al. (2005) showed that double vaccinations (each time 50 µg peptide per pig) with a multi-

peptide-vaccine provided complete protection against lethal challenge infection. 

Several vaccination-challenge studies have shown that in most cases synthetic peptides indeed 

elicite neutralizing antibodies, but fail to induce complete protection against clinical disease, 

viremia and virus shedding. One example is the approach to use dendrimeric peptide vaccine 

candidates which target different B-cell epitopes (Tarradas et al., 2011). None of the 

evaluated vaccine candidates were able to confer complete protection upon CSFV challenge 

infection. 

In recent years, several attempts were made to develop further E2 subunit vaccines by the use 

of various expression systems. To these candidates belongs the “E2his” vaccine produced in 

the mammary gland of goats after adenoviral transduction, which contains the extracellular 

domain of the glycoprotein E2 (Toledo et al., 2008). One major advantage of this expression 
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system might be the preservation or implementation of the complex tertiary structure of the 

E2 glycoprotein. This vaccine proved to induce an early, reliable, and long-lasting protection 

against CSFV challenge after a single application (Barrera et al., 2010). Further candidates, 

for instance in Picia pastoris expressed E2 also showed potential, as yeast-expressed yE2 

induced a reliable protection after double vaccination and allowed a DIVA diagnostic based 

on the detection of Erns specific antibodies (Lin et al., 2009). 

Besides E2 subunit vaccines, also other proteins were tested for their suitability. For 

recombinant NS3 protein, Voigt et al. (2007) demonstrated no protection against lethal 

challenge infection, though stimulation of a specific immune response could be shown. 

Therefore, CSFV peptide vaccines are in summary still in the experimental stage. 

 

DNA vaccines 

All DNA vaccine prototypes described so far are based on plasmid constructs that express the 

CSFV glycoprotein E2 (Andrew et al., 2000; Yu et al., 2001; Ganges et al., 2005; Wienhold et 

al., 2005; Andrew et al., 2006). The marker principle is based on the detection of Erns or NS3 

specific antibodies. Partially, co-expression of genes for cytokines (such as IL-3, IL-12, and 

IL-18) or regulatory cell surface molecules (CD154) was implemented in order to enhance 

their immunogenic potential (Wienhold et al., 2005; Andrew et al., 2006). To protect pigs 

against challenge infection with highly virulent CSFV, however, high dosages and multiple 

vaccinations were required. 
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Viral vector vaccines 

After intensive studies on development of viral vector vaccines, this strategy still encourages 

several research groups. Especially vaccinia virus and pseudorabies virus vectors were 

already described throughout the 1990s (Rümenapf et al., 1991; Rümenapf et al., 1991; König 

et al., 1995; Peeters et al., 1997). In most cases, the virus recombinants express CSFV E2. 

Thus, the DIVA principle is based on the detection of Erns or NS3 specific antibodies. 

Protection against lethal CSF could be shown for vaccinia virus recombinants expressing 

CSFV glycoprotein E2 and/or Erns, albeit high titers and intravenous administration were 

required (Rümenapf et al., 1991c; König et al., 1995). Concerns have been expressed 

regarding possible sporadic pathogenicity of the previously used vaccinia virus strain for non-

vaccinated humans. Modern, highly attenuated vaccinia virus vectors could solve this 

problem (Dong and Chen, 2007). 

Therefore, further viral vector system were tested or discussed to be feasible alternatives, 

including porcine adenoviral vectors (Hammond et al., 2000; Hammond et al., 2001b; 

Hammond et al., 2003; Hammond and Johnson, 2005), swinepox virus vectors (Hahn et al., 

2001a), parapox virus vectors (Hahn et al., 2001b) as well as fowlpox and canarypox viral 

vectors (Dong and Chen, 2007). The two latter Avipoxviruses have the great advantage that 

infection of vertebrates leads to an abortive infection, since productive replication is only seen 

in avian species. During investigations on adenoviral vector vaccines, Hammond et al. 

(2001a) discovered that a prime-boost vaccination using naked plasmid DNA and subsequent 

administration of recombinant porcine adenovirus, both expressing the CSFV E2 gene, was 

able to induce protective immunity in weaner pigs. However, only 75% of pre-weaned piglets 

were protected from disease. 

Summarizing, some of the vector vaccines mentioned above are able to completely protect 

vaccinated pigs from lethal challenge infection. Nevertheless, reliable data from vaccination 

trials are missing for several of the candidate vaccines, in particular regarding to immunity 

against the viral vector. Usage of certain vectors may be problematic due to possible 

interference with serological surveillance programs, including the application of pseudorabies 

virus vectors in countries free of Aujeszky’s disease. Up to now, vector vaccines remain 

prototypes, and licensing of a candidate is not yet in sight. 
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Trans-complemented deletion mutants (replicons) 

Another promising approach comprises the construction of trans-complemented deletion 

mutants. While replication-competent chimeric pestiviruses may in theory revert to virulent 

viruses, trans-complemented deletion mutants do not exhibit that risk (Beer et al., 2007). For 

CSFV vaccine development, trans-complemented CSFV Erns or E2 deletion mutants were 

constructed (Widjojoatmodjo et al., 2000; van Gennip et al., 2002; Maurer et al., 2005; Frey 

et al., 2006). While RNA transfection of CSFV deletion mutants into porcine kidney cells was 

shown to lead to autonomous replication without the production of virus progeny (replicons), 

trans-complementation was achieved by RNA transfection into Erns or E2 expressing 

recombinant cell lines. Complemented virions are replication-deficient during the second 

replication cycle and thus referred to as DISC (defective in second cycle). Immunization of 

pigs using trans-complemented DISC virions may induce protective immunity against lethal 

challenge infection. It was shown that the vaccination efficiency was dependent on the 

application route (van Gennip et al., 2002; Frey et al., 2006). In particular, intradermal 

injection of the replicon A187delErns elicited complete protection against lethal challenge, 

whereas oral application induced only partial protection (Frey et al., 2006). Similarly, van 

Gennip et al. (2002) observed full protection after intradermal inoculation of the Erns-

complemented virus strain Flc23, but the intramuscular and intranasal route only mediated 

partial and even no protection, respectively. As with subunit marker vaccines, vaccinated 

animals can be distinguished from wild-type virus infected pigs by the absence of specific 

antibodies against the deleted protein. Trans-complemented E2 deletion mutants were shown 

to be less potent (van Gennip et al., 2002; Maurer et al., 2005). 

Another, rather exotic approach is the use of Semliki Forest Virus replicons that serve as 

vector for a CSFV E2 DNA vaccine (pSFV1CS-E2). A high dose (three-time application of 

600 µg) could induce a reliable protection (Li et al., 2007a). Double vaccination with a lower 

dose (100 µg) protected against lethal CSFV, but could not prevent fever peaks and short 

periods of viremia (Li et al., 2007b). 

Recent studies aimed at the improvement of replicon-based vaccines. Therefore, IFN-α/β-

inducing replicons were developed and the effect of a co-expression of granulocyte 

macrophage colony-stimulating factor (GM-CSF) was examined (Suter et al., 2011). Based on 

these data, IFN-α/β-inducing replicons seem to have a positive effect on the B- and T-cell 

immune response and hence enhance the efficacy of vaccines. 
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Chimeric pestiviruses 

Among the most promising marker vaccines candidates against CSFV are chimeric 

pestiviruses based on infectious cDNA clones of CSFV or BVDV (Moormann et al., 1996; 

Ruggli et al., 1996; Meyers et al., 1996a; Meyers et al., 1996b; Vassilev et al., 1997b). 

Primarily developed for basic molecular research purposes, these cDNA clones even permit 

the construction of deletion mutants and replicons. 

Several chimeric pestiviruses have been described so far, and some of them have been 

extensively studied in the target species (Vassilev et al., 1997a; de Smit et al., 2001c; 

Reimann et al., 2004; Rasmussen et al., 2007). Among the best characterized chimeras, the 

strain CP7_E2alf is currently under investigation within the EU funded research project 

“Improve tools and strategies for the prevention and control of classical swine fever” 

(CSFV_goDIVA, KBBE-227003). Based on the cytopathogenic BVDV strain “CP7” 

expressing the E2 glycoprotein from CSFV “Alfort/187” instead of BVDV E2 (Reimann et 

al., 2004), this chimeric pestivirus was chosen after large comparative trials to be further 

characterized for licensing purposes (Blome et al., 2012a). In this context, the CP7_E2alf 

candidate marker vaccine proved to be comparable with the conventional C-strain vaccine in 

both domestic pigs and European wild boar (Koenig et al., 2007a; Koenig et al., 2007b; Leifer 

et al., 2009b; Tignon et al., 2010). Nevertheless, controversial discussions were raised, 

especially on a possible risks of a BVDV backbone. Reimann et al. (2004) describe an altered 

cell tropism of this chimera in favor of porcine kidney cells as compared to bovine cell lines. 

However, there is a lack of reliable data concerning host tropism and safety in non-target 

species. A discriminating serological test has to be a CSFV Erns antibody specific assay. For a 

genetic DIVA approach, two rRT-PCR assays have been developed by Leifer et al. (2009a) 

and Liu et al. (2009a). Efforts to develop chimeric viruses with modified epitope patterns, e.g. 

the vaccine candidate CP7_E1E2alf_TLA (Reimann et al., 2010), did not result in the 

intended improvement of DIVA diagnostic properties. The construct CP7_E1E2alf_TLA is 

likewise based on infectious cDNA of the BVDV strain “CP7” and contains the E1 and E2 

genome coding regions of CSFV “Alfort/187”. The replacement of both proteins allows 

optimal heterodimerization of E1 and E2, thus promoting virus assembly and growth. In order 

to establish an additional E2 based DIVA diagnostic, the CSFV specific TAVSPTTLR 

epitope (Lin et al., 2000; Liu et al., 2006a) was substituted by the corresponding antigenic 

epitope of BVDV strain “CP7”. As all in vitro tests revealed promising results, efficacy and 

marker properties of different vaccine titers were investigated in target species. While 
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protection against lethal challenge infection could be proven in principle, a reliable E2 DIVA 

diagnostic failed. 

 

Further approaches 

Ideally, an optimal marker vaccine may arise from an efficacious and safe vaccine strain by 

mutations in solely one antigenic domain (Kortekaas et al., 2010). Unfortunately, it was 

shown that logical efforts do not necessarily succeed. For instance, a chimeric CSFV “Riems” 

construct developed by Wehrle et al. (2007) which expresses E2 genes with a replaced 

domain A of the corresponding region of BDV strain “Gifhorn” could not show convincing 

results. More promising approaches arised from targeted mutations in the TAVSPTTLR 

epitope of the E2 protein (Risatti et al., 2006; Holinka et al., 2009), though initially not 

succeeding for the C-strain (Kortekaas et al., 2010). A non-chimeric C-strain mutant (vFlc-

ΔPTa1) with several targeted amino acid deletions in the TAVSPTTLR epitope established 

stability after adaptive mutations in cell culture and was shown to induce reliable protection 

against lethal challenge infection (Kortekaas et al., 2010; Kortekaas et al., 2011). 

Nevertheless, this strategy demands further investigations, particularly as several ELISAs 

proved to be unsuitable as accompanying DIVA test. 
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2.2 African Swine Fever 

2.2.1 Virus taxonomy, morphology and structure 

African swine fever virus (ASFV) is a large DNA virus classified as the only member in the 

genus Asfivirus within the Asfarviridae family (Dixon et al., 2005). Due to the ability to 

replicate in soft ticks of the genus Ornithodoros, and to be transmitted by these vectors, 

ASFV is the only arthropod-borne (ARBO) DNA virus. 

 

The complex virus particle consists of a core, surrounded by two lipid bilayers, an icosahedral 

capsid and an external envelope (Tulman et al., 2009). The virion core, about 80 nm in 

diameter, is composed of an electron-dense nucleoid, enclosed by a multi-protein layer, also 

termed core shell or matrix. The core is surrounded by two lipid bilayers, also called the inner 

membran, which is in turn covered by a capsid. The capsid is formed by 1892 to 2172 

hexagonal capsomeres (Breese and DeBoer, 1966; Carrascosa et al., 1984). The mature 

virions acquire an external membrane by virion budding through the cellular plasma 

membrane and have a final size of about 200 nm. 

 
Fig. 3: Morphology of African swine fever virions1. 

 

The linear double-stranded DNA genome with 170 to 190 kbp of length contains between 160 

and 175 ORFs located on both strands of the DNA (Tabares et al., 1980; Blasco et al., 1989; 

Yanez et al., 1995; Dixon et al., 2008), terminal hairpin loop structures (Gónzalez et al., 

1986), terminal inverted repeats (Sogo et al., 1984), and encodes six multigene families 

(Dixon et al., 2008). 

 
1 Source: ViralZone, http://www.expasy.org/viralzone, Swiss Institute of Bioinformatics. 



Literature review 

26 

The genome codes for a large number of proteins, including essential enzymes and factors 

required for replication and transcription (Dixon et al., 2004). Furthermore, over 50 structural 

proteins have been identified, some of them being highly antigenic and valuable tools for 

serological diagnostics. These include (1) the VP72 protein, the main component of the virus 

capsid (López-Otín et al., 1990), (2) the protein p12, which is localized on the external 

membrane and plays a major role in virus attachment (Alcamí et al., 1992), (3) the most 

important integral membrane protein p54 in the external envelope of the virion (Rodríguez et 

al., 1996), and (4) the phosphoprotein p30 (Afonso et al., 1992). 

 

2.2.2 Epidemiology, clinical signs, lesions and pathogenesis 

The natural vertebrate hosts of ASFV are African wild pigs. Albeit, domestic pigs and 

European wild boar are likewise susceptible to an ASFV infection (Wilkinson, 1984). In 

addition, ASFV has the ability to replicate in soft ticks of the genus Ornithodoros, including 

O. erraticus on the Iberian Peninsula, and ticks of the O. moubata complex, which are 

prevalent in Africa (Sánchez-Vizcaíno, 2006). These ticks are considered ASFV reservoirs 

and competent vectors. In addition, stable flies (Stomoxys spp.) were identified as mechanical 

vectors, maintaining ASFV for at least 48 hours (Mellor et al., 1987). This is probably also 

true for other insects, especially other blood-sucking ectoparasites. 

The outcome of ASF in a certain area is depending on the virulence of virus strains, host 

susceptibility, presence of tick vectors, and the possible interaction between suid hosts and 

vectors. Therefore, three different cycles or epidemiological scenarios can be distinguished in 

general: the “sylvatic cycle”, the “intermediate enzootic cycle”, and the “domestic cycle”. In 

addition, the “enzootic domestic cycle” and a “peculiar enzootic domestic cycle” have been 

described (EFSA, 2009). 

The “sylvatic cycle” is based on the interaction between wild pigs and Ornithodoros ticks. In 

the African wildlife, warthogs (Phacochoerus spp.) play a major role as reservoirs for ASFV. 

Bush pigs (Potamochoerus spp.) and the Giant Forest hog (Hylochoerus meinertzhangeni) are 

also susceptible hosts for ASFV, but their role in the epidemiology of the disease remains 

unclear (Jori and Bastos, 2009). These wildlife hosts, however, do not exhibit clinical signs 

and show low or even absent viremia. Moreover, horizontal and vertical transmission between 

these animals has not been described (Thomson et al., 1980; Penrith et al., 2011). Key players 

in the sylvatic cycle are young viremic warthogs and Ornithodoros ticks. Infection occurs in 

the burrow, where young warthogs spend the first weeks of their life. Transient viremia in 
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warthogs, which lasts for two to three weeks, is sufficient to infect ticks in turn (Thomson et 

al., 1980). The ticks may become persistently infected (Basto et al., 2006a). Sporadic 

outbreaks among domestic pigs may occur due to transmission through ASFV infected ticks 

(EFSA, 2009). This sylvatic cycle model has been described in most South and East African 

countries, but can not be deployed to the whole African continent (EFSA, 2009). 

The “intermediate enzootic cycle” involves domestic pigs and Ornithodoros ticks which act 

as vectors and reservoirs. It was shown that adult and nymph ticks can survive for at least 5 

years and thus pose a persistent source of infection. While transsexual, transstadial and 

transovarial transmission of ASFV occurs in O. moubata, the latter route has not been 

observed in O. erraticus (Arias and Sánchez-Vizcaíno, 2002). These facts may explain that 

ASFV can be maintained in areas without pigs, and can be reintroduced into previously 

diseased areas (EFSA, 2009). For instance, long-term maintenance of the virus in Spanish 

ticks was presumed by Oleaga-Perez et al. (1990) and proven in pig-pens in enzootic regions 

in Malawi (Haresnape and Wilkinson, 1989) and abandoned pig-pens in Madagascar 

(Ravaomanana et al., 2010). 

The “domestic cycle” is restricted to domestic pigs. The main transmission routes include 

direct contact between infected pigs, often due to uncontrolled movements, and indirect 

transmission through contaminated fomites or ingestion of infected pork products. This 

scenario leads to typical extensive outbreaks. 

Adaptation of the virus to domestic pigs and their free-ranging descendants, however, may 

lead to an “enzootic domestic cycle” of ASF, as chronic or asymptomatic carriers allow the 

maintenance of the disease. This scenario may explain enzootic ASF in West and South 

African countries (Mebus and Dardiri, 1980; Haresnape et al., 1987; Penrith et al., 2004; 

EFSA, 2009). As such outbreaks are not self-limiting they pose a constant risk for disease 

spread (Penrith and Vosloo, 2009). 

In some areas of Madagascar, an unusual enzootic cycle has been observed. As the role of 

vectors and virus adaptation remains unclear, this cycle was called “peculiar enzootic 

domestic cycle” (EFSA, 2009). 

In Europe, three distinct scenarios have been observed. First of all a “domestic-domestic 

scenario without ticks” which was seen in Portugal and Spain. The involvement of O. 

erraticus in Portugal and Spain engendered a “domestic-domestic scenario with ticks”. 

Thirdly, a complex “free-ranging with/without wild boar and/or vector scenario” has been 

assigned to be the prevailing scenario in Sardinia and the Caucasus (EFSA, 2009). 
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As with CSF, clinical signs of ASF in domestic pigs can vary considerably, depending on the 

virulence of the ASFV strain, the infection route, and dose. After an incubation period of 3 to 

15 days, peracute, acute, subacute or chronic courses of disease can occur (Kleiboeker, 2002). 

The peracute course is seen after infection with highly virulent strains. Pigs suddenly die 

without any previous clinical signs and develop only few or even no lesions (Kleiboeker, 

2002). 

The acute course is seen after infection with highly virulent strains and is initially 

characterized by high fever, accompanied by tachycardia and tachypnoe. Reddening of the 

skin, especially on ears, tail, distal extremities and ventral areas of chest and abdomen are 

frequently observed. Additionally, vomiting, (hemorrhagic) diarrhea and conjunctivitis can be 

present. Anorexia, apathia, cyanosis and incoordination are seen in the final stage of disease. 

In domestic pigs, the mortality rate is up to 100%, and death occurs within 6 to 13 days. In 

pregnant sows, abortion may occur. Dying pigs usually have little or no detectable antibodies. 

In the case of survival, animals are virus carriers for periods of 6 months or more. Lesions 

associated with acute ASF include hemorrhages in several organs, swollen and hemorrhagic 

lymph nodes, congestive splenomegaly, and effusion in all body cavities (Kleiboeker, 2002; 

Arias and Sánchez-Vizcaíno, 2002; EFSA, 2009). 

During the subacute course, induced by infection with moderately virulent viruses, clinical 

signs are less pronounced, and thus can be readily confused with other febrile swine diseases, 

particularly CSF. Pigs show irregular remittent fever, anorexia, a loss of condition and mild 

diarrhea. Upon agitation, coughing and dyspnea as well as death due to cardiac failure may be 

observed. Pregnant sows may abort. Transient lymphopenia and thrombocytopenia may 

occur. Animals may die within 15 to 45 days, or recover after 30 to 45 days of illness. The 

mortality rate varies between 30 to 70%, depending on the strain involved and the age of 

affected animals. Necropsy may reveal similar findings to those seen in acute ASF, but less 

severe. Despites regularly observed enlarged and hemorrhagic spleen and lymph nodes, 

frequent signs are pneumonia, serofibrinous pleuritis, and serofibrinous pericarditis 

(Kleiboeker, 2002; Arias and Sánchez-Vizcaíno, 2002; EFSA, 2009). 

The chronic form is caused by infection with low virulent viruses and is characterized by a 

variety of clinical and rather unspecific signs. Animals usually show a loss of body weight, 

runting, and growth retardation. Chronic skin ulcers or necrosis may appear. Fever peaks, 

respiratory signs, arthritis, abortions and secondary infections may mislead veterinarians to 

diagnose ASF. Clinical disease may last 2 to 5 months, and the mortality rate is less than 

30%. Lesions may be absent, or enlarged lymph nodes, interstitial pneumonia and fibrinous 
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pericarditis may be present. In addition, splenic enlargement, hemorrhages, or focal necrosis 

may occur (Kleiboeker, 2002; Arias and Sánchez-Vizcaíno, 2002; EFSA, 2009). 

Wild boar and feral pigs are susceptible to both natural and experimental infection and show 

similar clinical signs and mortality rates (McVicar et al., 1981). Initial descriptions from 

ASFV infected wild boar in Spain showed peracute and acute courses, whereas later findings 

included subacute, chronic and even inapparent disease (Wilkinson, 1984; Bech-Nielsen et 

al., 1995; Pérez et al., 1998). Gross lesions in European wild boar and feral pigs are equal to 

those seen in domestic pigs (Ruiz-Fons et al., 2008). Although wild boar shed virus in similar 

quantities as domestic pigs, their role in epidemiology remains unclear (Laddomada et al., 

1994; Beltran-Alcrudo et al., 2008; Mur et al., 2012). 

In general, specific antibodies are detectable from approximately six days post infection. 

Despite the fact that antibodies are detectable for a long time (at least 10 month), they do not 

neutralize the virus (Arias and Sánchez-Vizcaíno, 2002). 

 

ASFV enters the body via the tonsils or dorsal pharyngeal mucosa and gets to the mandibular 

or retropharyngeal lymph nodes, from where the virus spreads through viremia (EFSA, 2009). 

Main target cells for virus replication in the early stages of infection are cells of the 

monocyte/macrophage lineage. In addition, dendritic cells can be infected. In the later stages, 

a variety of cell types are involved in virus replication including endothelial cells, platelets 

and their precursors, neutrophils, and hepatocytes. Hemadsorbing ASFV isolates can be found 

associated with erythrocytes, but also with lymphocytes and neutrophils. Replication in 

macrophages and several virus encoded proteins help the virus to evade host defences. 

Through manipulation of macrophage functions, both the innate and acquired immune 

responses can be targeted (reviewed by Dixon et al., 2008). 

Especially the mechanisms involved in genesis of hemorrhagic lesions that occur after 

infection with highly virulent ASFV strains remain controversial. Nowadays it is generally 

accepted that the massive destruction of macrophages plays a major role in the impaired 

hemostasis due to the release of active substances including cytokines, complement factors 

and arachidonic acid metabolites (Anderson et al., 1987). Some studies also suggest that 

hemorrhagic lesions could be associated with viral replication in endothelial cells (Sierra et 

al., 1989), others dispute this hypothesis despite the fact that endothelial damage has been 

shown (Gómez et al., 1995; Carrasco et al., 1997). Release of cytokines by infected 

macrophages and disseminated intravascular coagulation (DIC) are also among the possible 

options (Anderson et al., 1987; Villeda et al., 1993; Gómez-Villamandos et al., 2003). 
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Thrombocytopenia is generally observed much later than with CSF in the final phase of acute 

forms. It has been attributed to consumption of platelets due to coagulopathy (Villeda et al., 

1993), to the direct effect of the virus on megakaryocytes (Gómez-Villamandos et al., 2003), 

and to various immune-mediated processes involving immune complexes of ASF antigens 

and antibodies that cause aggregation of platelets (Edwards et al., 1985a; Edwards et al., 

1985b). As with CSF, pigs infected with ASF generally suffer severe lymphopenia that could 

be attributed to apoptosis of lymphocytes. Production of pro-inflammatory cytokines by 

infected macrophages is strongly implicated in induction of apoptosis in lymphocyte 

populations (Oura et al., 1998; Salguero et al., 2002; Salguero et al., 2004; Salguero et al., 

2005). ASFV chronic disease may have an auto-immune component and lesions might result 

from the deposition of immune-complexes in tissues such as kidneys, lungs and skin with 

their subsequent binding to complement (Plowright et al., 1994). 
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2.2.3 History, global distribution and economic impact 

African swine fever is endemic in most sub-Saharan countries where it often involves a 

sylvatic transmission cycle. In domestic pigs it was first described in Kenya in 1921 

(Montgomery, 1921). Thereafter it was reported tin many countries of East and South Africa. 

Besides the endemic situation, epidemics and introductions into free areas occasionally occur. 

For example, ASF was introduced to Madagascar in 1998 and Mauritius in 2007 (Penrith, 

2009). 

The first cases of ASF outside Africa were reported in 1957 in Portugal. Although this first 

outbreak could be eradicated, a further outbreak occurred in 1960 which also affected Spain, 

and ASF remained endemic on the Iberian peninsula until the mid 1990s. Further outbreaks in 

Europe included Malta (1978), Italy (1967, 1980), France (1964, 1967, 1970), Belgium 

(1985), and The Netherlands (1986). The Caribbean and Brazil were affected in the 1980s. 

While the disease was successfully eradicated from most European countries, the Caribbean 

and Brazil, ASF remains endemic in Sardinia, and affects domestic as well as wild pigs 

(Costard et al., 2009). The worldwide distribution of ASF in the first half of 2011 is depicted 

in Figure 4. 

In June 2007, a further transcontinental spread was reported, as ASF was confirmed in the 

Republic of Georgia. It has been suggested that the virus was introduced by galley waste that 

was available to free-ranging pigs around the Black Sea port of Poti (Penrith, 2009). Sequence 

analysis of this isolate revealed a close relationship to isolates of genotype II, which were 

previously described from Mozambique, Madagascar and Zambia (Rowlands et al., 2008). In 

the following weeks, the disease spread on the whole territory of Georgia and to Abkhazia 

and South Ossetia. Subsequently, ASF was confirmed in neighboring countries, including 

Armenia (August 2007) and Azerbaijan (November 2007). In November 2007, infection of a 

wild boar was reported in the Russian Republic of Chechnya near the border with Georgia. At 

the end of 2007, ASF was widely spread in the Caucasus (Gulenkin et al., 2011). 

In 2008, Georgia, Armenia, and Azerbaijan declared that all outbreaks were resolved. In total, 

Georgia reported 58 outbreaks, and Armenia and Azerbaijan confirmed 13 and 2 outbreaks, 

respectively. However, another outbreak occurred in Armenian wild boar in 2010 (OIE, 

2012d). 

In 2008, the disease continued spreading, and was almost exclusively seen in the Southern 

territories of the Russian Federation, but with a clear tendency to move north- and eastwards. 

In total, 35 cases of ASF in domestic pigs and 19 cases in wild boar were reported in 2008 in 
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the Russian region (Gulenkin et al., 2011). The number of outbreaks expanded in 2010, as 77 

outbreaks were reported, of which 18 were among wild boar (OIE, 2012d). 

In addition to the general tendency to move north- and eastwards, spread over long distances 

was observed, e.g. when ASF was introduced into a private subsidiary holding in the 

Orenburgskaya oblast, close to the border with Kazakhstan (2008). Another outbreak 

occurred in the Leningradskaya oblast in 2009, which is located in a distance of 1500 km 

from the affected southern Caucasian region, close to the borders with Finland and Estonia. 

Two more outbreaks in the Saint Petersburg region occurred in 2010 and 2011. Further 

remote outbreaks were recorded in the Murmanskaya Oblast (March 2011), and recently in 

the Respublika Kareliya (January 2012), both close to the border with Finland (OIE, 2012d). 

Long distance spread was restricted to domestic pigs and probably caused by swill-feeding. 

Through implementation of strict quarantine measures and culling of affected pig holdings, 

the disease was eradicated in these cases. 

In the period from the first outbreak in 2007 to March 2012, a total number of 209 outbreaks 

has been confirmed in the Russian Federation (OIE, 2012d). The corresponding outbreak map 

is depicted in Figure 5. 

 

African swine fever has been shown to have a devastating impact on both, epidemic and 

endemic areas. Total economic losses, mainly composed of costs for eradication and 

surveillance, but also due to effects on pork production and trade restrictions, are most 

apparent in countries with industrialized pig production. 

This was seen in Spain, where the last five years of the Spanish eradication program were 

estimated to have cost US $92 million (Arias and Sánchez-Vizcaíno, 2002). The outbreak in 

Cuba in 1980 led to total direct costs of US $9.4 million (Costard et al., 2009). 

Besides the potential impact on the commercial pig sector, tremendous losses are also 

inflicted on poorer pig producers, especially in developing countries. This is seen in many 

African countries, where the restart of pig production is often hampered by insufficient 

financial resources of farmers (Costard et al., 2009). 
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Fig. 4: African swine fever distribution in wild and domestic pigs, reporting period January to 

June 2011(OIE, 2012b). 

 

 

 
Fig. 5: African swine fever outbreak map in Trans-Caucasian Countries and the Russian 

Federation in wild and domestic pigs, reporting period January 2007 to March 2012 (OIE, 

2012c). 



Literature review 

34 

2.2.4 Control strategies and laboratory diagnosis 

As no vaccine exists, only strict sanitary measures can be applied in cases of disease 

outbreaks. Early detection in the field, rapid reporting and laboratory diagnosis can limit the 

extent of disease spread and reduce outbreak size and duration. All countries with an 

industrialized pig production enforce a stamping out strategy that includes culling of infected 

and contact herds, establishment of restriction zones, movement restrictions, epidemiological 

investigations, and surveillance. Although competent tick vectors do not exist in all regions, 

epidemiological investigations have to assess abundance of soft ticks (Costard et al., 2009). 

Within the EU, these control measures are laid down in Council Directive 2002/60/EC 

(Anonymous, 2002b) and Commission Decision 2003/422/EC (Anonymous, 2003b). 

 

As ASF must be considered as differential diagnosis of any acute febrile hemorrhagic 

syndrome seen in pigs and drastic control measures are accompanied by serious economical 

consequences, laboratory examinations are essential for confirmation of the disease. Detailed 

laboratory procedures as well as a guide for sampling are elaborated in the EU Diagnostic 

Manual (Anonymous, 2003b), and the Manual of Diagnostic Tests and Vaccines for 

Terrestrial Animals (OIE, 2008a). 

Direct detection of the agent is recommended when introduction of the disease is suspected in 

countries free from ASF. 

Isolation of ASFV is possible on primary and permanent cell cultures. The traditional method 

for growing ASFV is based on peripheral blood mononuclear cell (PBMC) cultures. In these 

cultures, the presence of ASFV is detected after addition of homologous erythrocytes by 

hemadsorption, a phenomenon based on the capacity of pig erythrocytes to adhere to the 

surface of ASFV infected cells (Malmquist and Hay, 1960; OIE, 2008a). The hemadsorption 

test (HAT) represents a sensitive and specific method, but non-hemadsorbing isolates have 

been reported (Pini and Wagenaar, 1974; Gonzague et al., 2001). Apart from HAT, virus 

isolation can be performed either by inoculation of blood or tissue samples from suspected 

animals into primary leukocyte cultures derived from peripheral blood, bone marrow or lung 

washing, or in susceptible permanent cell cultures (Carrascosa et al., 2011). 

Immunofluorescence staining, also referred to as Fluorescent antibody test (FAT), allows fast 

detection of antigen on cryostat sections or impression smears, as well as the identification of 

non-hemadsorbing virus strains (Bool et al., 1969). Due to the fact that sensitivity 

significantly decreases due to the formation of antigen-antibody complexes in subacute or 
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chronic courses, the test is evidentiary only in the case of positive reactions (Sánchez-

Vizcaíno, 2006). 

Nowadays, PCR techniques are most valuable and widely used, as they are highly sensitive, 

specific, and fast. First described by Steiger et al. (1992), various assays have been developed, 

including gel-based protocols (Agüero et al., 2004; Basto et al., 2006b), advanced real-time 

PCRs (McGoldrick et al., 1998; King et al., 2003; Zsak et al., 2005; McKillen et al., 2007; 

McKillen et al., 2010; Tignon et al., 2011; Fernández-Pinero et al., 2012), and multiplexed 

assays for the simultaneous detection of different viral swine pathogens (Agüero et al., 2004; 

Giammarioli et al., 2008). A recently developed in-situ hybridization assay (Ballester et al., 

2010) and a LAMP assay (James et al., 2010) show potential for use in ASF diagnostics. 

Serological tests, however, are recommended in endemically infected areas or epidemics with 

low virulent strains. Enzyme-linked immunosorbent assays are commercially available and 

most commonly used for large-scale screening (Pastor et al., 1990; Sánchez-Vizcaíno, 2006). 

For ELISA-positive or inconclusive results, the OIE Manual (2012a) recommends 

confirmation by the use of alternative tests, such as the indirect fluorescent antibody test (Pan 

et al., 1974), immunoperoxidase staining or immunoblotting (Pastor et al., 1989). 

2.2.5 Vaccination 

All efforts to develop an effective vaccine against ASF failed so far (EFSA, 2009). Still, 

vaccination seems feasible as protection against virulent strains can be achieved through 

inoculation of pigs with closely related strains of low virulence (Leitão et al., 2001; Boinas et 

al., 2004). Recent efforts included development of different deletion mutants with one or 

more deleted genes, subunit vaccines based on recombinant proteins or DNA vaccines. So far, 

none of these vaccines conferred complete protection ( Sánchez-Vizcaíno et al., 2012). Under 

the threat posed by the outbreaks in Russia, research has been intensified, e.g. under the 7th 

Framework Programme of the EU.  
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3 OBJECTIVES 
 
Classical swine fever 
 
Optimization of conventional vaccination 

During CSF outbreaks and subsequent emergency vaccination campaigns among wild boar in 

Germany 2009, the use of highly sensitive real-time RT-PCR assays led to an increase in viral 

genome detections at regional level. In order to establish a rapid and reliable method to 

differentiate field virus from vaccine virus, a “genetic DIVA” approach based on a real-time 

multiplex RT-PCR was implemented and evaluated. 
 
Assessment of marker vaccine candidate CP7_E2alf 

To obtain market authorization for a CSFV marker vaccine candidate, several mandatory 

trials covering all aspects of immunogenicity and safety are required. In this context, marker 

vaccine candidate CP7_E2alf was evaluated. 

 Safety data on CP7_E2alf in target species had been scarce, and innocuousness in non-

target species had not been proven. Safety aspects in domestic pigs and wild boar were 

addressed in several vaccination and challenge experiments and summarized. Appropriate 

vaccination experiments in calves, goats, lambs, and rabbits were conducted. 

 As the duration of immunity after oral and intramuscular vaccination with CP7_E2alf 

was unknown, this aspect was investigated in an animal experiment in domestic pigs. 

 After vaccination with CP7_E2alf, protection against lethal challenge with highly 

virulent CSFV strains of genotype 1.1 was proven, whereas efficacy against recent CSFV 

strains of genotype 2.3 was not yet evaluated. Therefore, additional vaccination and 

challenge experiments in domestic pigs and wild boar were conducted using CSFV 

challenge strains of both genotypes. 
 
African swine fever 
 
Characterization of a recent Caucasian isolate in wild boar 

After the introduction and spread of ASF in several Trans-Caucasian Countries and Russia 

since 2007, disease dynamics of circulating isolates in wild boar was unknown. Caucasian 

ASFV isolates were characterized in animal experiments in European wild boar of different 

age classes. 
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4 RESULTS 

 

The publications are grouped according to their topic. 

 

The reference section of each manuscript is presented in the style of the respective journal and 

is not included at the end of this document. The numeration of figures and tables corresponds 

to the published form of each manuscript. 

 

The poster “Efficacy of CP7_E2alf pilot vaccine batches after intramuscular and oral 

vaccination” is depicted as presented at the 8th ESVV Pestivirus Symposium. The respective 

manuscript is in preparation. 
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Genetic differentiation of infected from vaccinated animals after implementation of an 

emergency vaccination strategy against classical swine fever in wild boar 

 

Abstract 

 

Oral emergency vaccination against classical swine fever is a powerful tool to control disease 

outbreaks among European wild boar and thus to safeguard domestic pigs in affected regions. 

In the past, when virus detection was mainly done using virus isolation in cell culture or 

antigen enzyme-linked immunosorbent assays, modified live vaccine strains like C-strain 

“Riems”, were barely detectable after oral vaccination campaigns. Nowadays, the use of 

highly sensitive molecular techniques has given rise to an increase in vaccine virus detections. 

This was also the case during the 2009 outbreak among German wild boar and the subsequent 

vaccination campaigns. To guarantee a rapid differentiation of truly infected from C-strain 

vaccinated animals, a combination of differentiating multiplex rRT-PCR assays with partial 

sequencing was implemented. Here, we report on the rational and use of this approach and the 

lessons learned during execution. It was shown that positive results in the recently developed 

vaccine strain (genotype) specific rRT-PCR assay can be taken as almost evidentiary whereas 

negative results should be confirmed by partial sequencing. Thus, combination of multiplex 

rRT-PCR assays as a first line differentiation with partial sequencing can be recommended for 

a genetic DIVA strategy in areas with oral vaccination against classical swine fever in wild 

boars. 

 

1. Introduction 

 

Classical swine fever (CSF) is among the most important diseases impairing pig production 

world wide. Clinical signs are mainly dependent on the age of the animal and the virulence of 

the virus strain. Infection can lead to a wide range of symptoms, from mild transient disease 

to a haemorrhagic syndrome with high lethality (Moennig et al., 2003). The disease is caused 

by a small enveloped RNA virus of the Genus Pestivirus within the Flaviviridae family 

(Fauquet and Fargette, 2005). Apart from domestic pigs, CSF virus (CSFV) affects European 

wild boar where the disease seems to run quite similar courses. Over the last decades, several 

European Union (EU) Member States including Germany, France, and Slovakia, were 

confronted with outbreaks among wild boar that had a clear tendency to establish endemicity 

(Anonym, 2009). Since it was shown that infected wild boar populations can be a major cause 
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for primary outbreaks in domestic pigs (Fritzemeier et al., 2000), strict control measures were 

implemented based on binding EU legislation (Anonym, 2001). Control measures often 

included oral vaccination of affected wild boar populations with a conventional modified live 

vaccine based on the C-strain of CSFV (von Rüden et al., 2008). Despite intensive efforts and 

obvious success of oral vaccination in terms of safeguarding domestic pigs, CSF kept 

reoccurring and/or persisting in some areas, especially where high population densities were 

present. One of the most recent outbreaks among wild boars occurred in Germany 2009, 

where CSF was detected in wild boar populations in the Federal States of Rhineland-

Palatinate and North-Rhine Westphalia (Leifer et al., 2010a). In accordance with EU 

legislation, restriction zones (infected area and surveillance zone) were declared and oral 

vaccination of wild boar was started almost immediately. The vaccination scheme comprised 

three double vaccination campaigns per year. Thereafter, all animals shot or found dead in the 

restriction zones were subjected to diagnostic investigations. Methods for both virus and 

antibody detection were employed. While during outbreaks in the 1990ies, pathogen detection 

was mainly done through virus isolation in cell culture and to a lesser extent using antigen 

enzyme-linked immunosorbent assays (ELISA), nowadays molecular methods such as real-

time reverse transcription polymerase chain reaction (rRT-PCR) were implemented in 

diagnostic routine. The use of these highly sensitive methods led to a phenomenon that was 

not observed to this extent during previous outbreaks: Following baiting campaigns, several 

samples were observed that gave positive results in CSFV specific rRT-PCR assays but were 

later on confirmed as vaccine virus detections through partial sequencing. In order to achieve 

a rapid decision whether field or vaccine virus was detected, a genetic DIVA strategy was 

implemented based on recently published multiplex rRT-PCR assays (Leifer et al., 2009, 

2010b). 

The presented short communication describes the components, use, and outcome of this 

approach in the framework of the above mentioned outbreak among German wild boar in 

2009 and discusses the implications for the optimal use in the future. 
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2. Materials and methods 

 

2.1. Data collection and analysis 

 

Data were collected and retrospectively analysed at the German National Reference 

Laboratory (NRL) for CSF during and after the 2009 outbreak among German wild boar. All 

samples described were part of the routine diagnostic work and had given a positive result in a 

CSFV-specific rRT-PCR assay (Hoffmann et al., 2005) at the regional level but were later on 

confirmed as vaccine virus detection. 

 

2.2. RNA extraction, RT-PCR and sequencing 

 

Total RNA was extracted from blood and organ samples using the RNeasy mini kit (Qiagen), 

and from serum using the QIAamp Viral RNA mini kit (Qiagen) following the manufacturer’s 

recommendations. 

Extracted RNAs were simultaneously subjected to partial sequencing and a multiplex rRT-

PCR assay for the detection and differentiation of CSFV and C-strain “Riems” (Leifer et al., 

2009). The assay combined the well established CSFV-specific duplex rRT-PCR published by 

Hoffmann et al. (2005) with a vaccine strain specific rRT-PCR targeting 77 nucleotides of the 

Erns encoding region. After detection of variant sequences in the primer-binding site of the 

forward primer of the C-strain “Riems” specific real-time RT-PCR, the amended assay 

published by Leifer et al. (2010b) was implemented instead of the above mentioned one. This 

amended assay detects not only C-strain “Riems” but all CSFV strains of genotype 1.1. 

Two regions of the CSFV genome were used for phylogenetic analyses after partial 

sequencing: (1) a 150 nt fragment of the 5' NTR; and (2) a 190 nt fragment of the E2 gene 

(Paton et al., 2000). DNA fragments obtained by standard one-step RT-PCR using the 

SuperScriptTM III One-Step RT-PCR System with Platinum® Taq (Invitrogen), were isolated 

from agarose gels with the QIAquick® Gel Extraction Kit (Qiagen). Sequencing was carried 

out using the BigDye® Terminator v1.1. Cycle Sequencing Kit (Applied Biosystems, Foster 

City, CA, USA). 

Nucleotide sequences were obtained with a 3130 Genetic Analyzer (Applied Biosystems). All 

reactions were carried out as published previously (Greiser-Wilke et al., 2006). 

Nucleotide sequences were edited and analysed using BioEdit 7.0.9 (Hall, 1999) and Genetics 

Computer Group (GCG) software version 11.1 (Accelrys Inc., San Diego, USA). 
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Subsequently, phylogenetic trees were calculated with the Neighbor-joining method as 

implemented in MEGA 4.0 (Tamura et al., 2007). 

 

3. Results 

 

Following the 2009 outbreaks of CSF in German wild boar, 89 samples were sent to the NRL 

for differentiation and confirmation after positive CSFV-specific rRT-PCR results at regional 

level. Out of these 89 samples, 30 were later on confirmed as vaccine virus detection by 

partial sequencing, and three additional samples were positive only in the multiplex rRT-PCR 

assay indicating vaccine virus detection that could not be confirmed by sequencing due to 

negative conventional RT-PCR (details for these samples are presented in Table 1). 

The original differentiating multiplex rRT-PCR assay detected 27 out of 33 samples (82%) 

correctly as C-strain positive. After amendment, an additional sample could be detected (28 

out of 33, 85%). Four samples were only positive in the CSFV-specific assay and were later 

confirmed as C-strain “Riems” detection by partial sequencing. In one case, only the C-strain 

specific assay was positive, and an additional sample was only detectable in the conventional 

RT-PCR assay and subsequent sequencing. 
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Table 1 

Diagnostic specimens with vaccine virus confirmation by partial sequencing that were sent to 

the National Reference Laboratory for CSF after positive results in a CSFV-specific rRT-PCR 

at regional level. Results of the differentiating multiplex rRT-PCR assay (Leifer et al., 2009) 

are presented as cycle threshold (ct) values. Discrepant results are presented with grey 

background. Values with asterisks were obtained with the amended multiplex assay (Leifer et 

al., 2010b). 
  Multiplex rRT-PCR  Sequencing 
NRL-No. Material C-strain CSFV  Genotype 
K22/09_1 Spleen 36 35  not available 
K24/09_1 Blood 37 no ct  not available 
K25/09_1 Blood no ct 33  1.1 C-strain 
K25/09_3 Blood 31 33  1.1 C-strain 
K26/09_1 Spleen 33 32  1.1 C-strain 
K26/09_2 Spleen 32 32  1.1 C-strain 
K27/09_1 Spleen 37 38  not available 
K27/09_2 Spleen 35 35  1.1 C-strain 
K28/09 Tonsil 30 27  1.1 C-strain 
K30/09 Blood 35 34  1.1 C-strain 
K35/09_2 Blood 32 35  1.1 C-strain 
K35/09_3 Spleen 31 34  1.1 C-strain 
K39/09 Spleen no ct 37  1.1 C-strain 
K43/09_1 Lymph node 37 32  1.1 C-strain 
K43/09_3 Tonsil 25 29  1.1 C-strain 
K49/09 Spleen no ct no ct  1.1 C-strain 
K60/09 Blood no ct 37  1.1 C-strain 
K66/09_1 Spleen 36 38  1.1 C-strain 
K66/09_2 Tonsil 21 23  1.1 C-strain 
K71/09_1+2 Blood 31 30  1.1 C-strain 
K71/09_3+4 Blood 29 28  1.1 C-strain 
K72/09 Blood 39 39  1.1 C-strain 
K76/09 Blood no ct/33* 39  1.1 C-strain 
K77/09 Blood 39/32* 36  1.1 C-strain 
K82/09 Spleen no ct 35  1.1 C-strain 
K07/10 Blood 37 39  1.1 C-strain 
K08/10 Blood 30 34  1.1 C-strain 
K14/10 Spleen 37 36  1.1 C-strain 
K15/10 Blood 32 36  1.1 C-strain 
K18/10 Blood 39 37  1.1 C-strain 
K19/10 Blood 35 35  1.1 C-strain 
K25/10_1 Spleen 36 38  1.1 C-strain 
K27/10 Blood 36 40  1.1 C-strain 
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4. Discussion 

 

Oral vaccination of CSF-infected wild boar populations has been used in the EU to control the 

disease and thus to markedly reduce the risk of introduction into domestic pigs (von Rüden et 

al., 2008). In the past, the vaccine strain C-strain “Riems” was barely detected after oral 

vaccination campaigns. However, nowadays the use of highly sensitive molecular techniques 

has given rise to an increase in vaccine virus detections. This was also the case during the 

2009 outbreaks among German wild boars and the subsequent vaccination campaigns. For a 

period of at least 14 days after baiting, vaccine strain detections occurred. Taking into account 

the huge number of tested wild boar, these findings present a minority, but nevertheless, 

discrimination from field virus detection is needed to circumvent unnecessary prolongation of 

control measures in this region. To this means, a genetic DIVA (differentiation of infected 

from vaccinated animals) strategy was implemented at the German NRL to rapidly rule out or 

confirm field virus detection after positive rRT-PCR results at regional level. The strategy 

combined both recently developed multiplex rRT-PCR assays for simultaneous detection of 

CSFV and the vaccine strain in special (Leifer et al., 2009, 2010b) and partial sequencing 

(Greiser-Wilke et al., 2006). As published recently (Leifer et al., 2010b), the multiplex rRT-

PCR assay had to be amended after detection of primer binding site escape variants in the 

vaccine formulation. This amended assay is less specific for C-strain “Riems” virus as it also 

detects other CSFV isolates of genotype 1.1. Fortunately, this reduced strain specificity is of 

lesser importance for Central Europe as only animals infected with field strains of genotype 2 

were identified during the last few decades. The loss of full specificity has also one 

unintended advantage. In areas with the same favourable epidemiological situation, the assay 

could now also be used with other vaccine strains of genotype 1.1. 

Retrospective analysis of 33 cases where vaccine virus detection could be confirmed in 

subsequent tests showed that 85% of vaccine strain positive samples could be detected based 

on the amended multiplex rRT-PCR assay. Three samples with low genome load were only 

positive in the rRT-PCR assay and could not be confirmed by sequencing. As these results 

were repeatable under different conditions, no indications exist that these are false positive 

results. Five samples were only detectable in the conventional RT-PCR followed by 

sequencing. This outcome is surprising as rRT-PCR is generally regarded as more sensitive. 

Nevertheless, also these results were repeatable. There is no confirmatory assay that could 

reliably rule out that these unconfirmed detections could have been contaminations. At least 

the epidemiological background strengthened the outcome. 
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Thus, a positive result in the vaccine strain (genotype) specific assay could be used for direct 

confirmation of vaccine strain detection. There is only a very limited risk that the animal 

could be positive for both vaccine and field strains. This case could not be detected using the 

multiplex rRT-PCR alone. As the respective sample would come from an infected area with 

strict measures anyway, and the animal in question would be removed from the population 

already, this risk might be acceptable. Negative results in the vaccine strain specific assay 

combined with a positive result in the CSFV-specific assay will be subjected to partial 

sequencing anyway as field virus is suspected in these cases. Therefore, it is recommended to 

use the rRT-PCR assay as a first line confirmation combined with partial sequencing for 

samples with negative results in the vaccine assay and positive result in the CSFV-specific 

assay. 

Beside the diagnostic approach, one could discuss adaptation of the hunting rest after baiting. 

As mentioned above, vaccine virus detections normally occurred in the first 14 days after 

baiting. In contrast, only five days hunting rest are implemented to guarantee undisturbed 

uptake of baits. After this period, baiting areas are checked and empty blisters as well as 

unused baits are collected. With three double vaccination campaigns a year, this can already 

mean an impact on hunting conventions, especially in autumn. As reliable discrimination of 

vaccine virus from field strains is possible, no adaptations towards a longer hunting rest were 

implemented in Germany. 

 

5. Conclusion 

 

Despite the experience of the past that C-strain “Riems” was barely detectable after oral 

vaccination campaigns, the use of highly sensitive molecular techniques has nowadays given 

rise to an increase in vaccine virus detections. To guarantee a rapid differentiation of truly 

infected from C-strain vaccinated animals, a combination of differentiating multiplex rRT-

PCR assays with partial sequencing is recommended. Positive results in the vaccine strain 

genotype specific rRT-PCR assay can be taken as almost evidentiary whereas negative results 

should be confirmed by partial sequencing. The genetic DIVA concept that was proven here 

for wild boar, could be furthermore transferred to C-strain vaccination programs in domestic 

pigs, e.g. during an emergency vaccination campaign. 
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Innocuousness and safety of classical swine fever marker vaccine candidate CP7_E2alf 

in non-target and target species 

 

Abstract 

 

Chimeric pestivirus CP7_E2alf is a promising live marker vaccine candidate against classical 

swine fever. Prior to a possible application in the field, several safety aspects have to be 

addressed. Due to the fact that CP7_E2alf is based on a bovine viral diarrhea virus backbone, 

its behavior in ruminants is of particular interest. In the framework of this study, its 

innocuousness in non-target species was addressed by inoculation of calves, young goats, 

lambs, and rabbits. To this means, high titres of CP7_E2alf were applied orally to three 

animals of each species. Additional animals were left as unvaccinated contact controls. 

During the study, all animals remained clinically healthy, and neither fever nor leukopenia 

were observed. Virus could not be isolated from purified white blood cells or from nasal or 

faecal excretions. Moreover, none of the animals (inoculated or contact control) 

seroconverted. In the target species, innocuousness, shedding and transmission of vaccine 

virus was addressed in different animal trials that were carried out primarily for the purpose 

of efficacy, potency or duration of immunity studies. In all experiments, CP7_E2alf proved to 

be completely safe for the vaccinees and unvaccinated contact controls. Furthermore, no 

shedding or transmission was detected in any of the experiments. Even after parental 

vaccination, vaccine virus genome was barely detectable in blood or organ samples of 

vaccinated animals. Thus, CP7_E2alf can be regarded as completely safe for both target and 

non-target species. 

 

1. Introduction 

 

Due to its relevance for animal health and pig industry, classical swine fever (CSF) is among 

the most important infectious diseases of pigs and notifiable to the World Organization for 

Animal Health (Office International des Epizooties, OIE) [1,2]. The causative agent, Classical 

swine fever virus (CSFV), is an enveloped RNA virus of the genus Pestivirus within the 

Flaviviridae family [3]. It is antigenically closely related to the other members of the genus 

Pestivirus, namely Bovine viral diarrhea virus and border disease virus [2]. 

While mandatory vaccination against CSF is carried out in several countries world wide, the 

European Union (EU) follows a strict stamping out strategy without prophylactic vaccination, 
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but foresees the possibility to use emergency vaccination of both domestic pigs and wild boar 

[4]. To make use of this provision with an acceptable strategy, efficacious and safe vaccines 

are needed that allow differentiation of infected from vaccinated animals (DIVA) [5]. 

Unfortunately, the available subunit vaccines show drawbacks in terms of application 

(double, parenteral), onset of immunity and protection from vertical transmission [6,7]. 

Several research groups seek to develop an optimized vaccine using different approaches. A 

promising candidate of the new generation of marker vaccines is the chimeric pestivirus 

CP7_E2alf [8]. This recombinant virus proved to be a safe and efficacious DIVA vaccine 

candidate for oral and intramuscular vaccination of domestic pigs and wild boar in several 

studies [5,8–10]. 

As the viral backbone of CP7_E2alf is a BVDV strain, which could have a much broader host 

range than CSFV itself, the virulence of CP7_E2alf in ruminant non-target species is most 

important to assess prior to any field trials. In this context, Dong and Chen [11] requested a 

full evaluation on the safety not only in pigs, but also in cattle and sheep. Here, we report on 

studies that were carried out in order to prove innocuousness and aspects of safety in target 

and non-target species. 

 

2. Materials and methods 

 

2.1. Vaccine virus, cell culture, and virus propagation 

 

The chimeric CP7_E2alf virus used for vaccination was described by Reimann et al. in 2004 

[8]. CP7_E2alf is based on bovine viral diarrhea virus (BVDV) strain “CP7” expressing the 

E2 glycoprotein of CSFV strain “Alfort 187”. Differentiation of CSFV field strain infection 

from CP7_E2alf vaccination would be possible by a commercial available CSFV specific Erns 

antibody ELISA. 

CP7_E2alf virus for both, inoculation and neutralization assays, as well as CSFV “Alfort 

187” were propagated on permanent porcine kidney cells (PK15 cells, obtained from the 

Collection of Cell Lines in Veterinary Medicine, FLI, Insel Riems, Germany). Viral titres 

were obtained through end point titrations as desribed previously [9]. 

Cells and viruses were grown in Dulbecco’s Modified Eagle Medium (DMEM) supplemented 

with 10% BVDVfree foetal bovine serum at 37 °C in a humidified atmosphere containing 5% 

CO2. 
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2.2. Innocuousness in non-target species 

 

Innocuousness in non-target species was addressed by a single, high-dose oral inoculation of 

calves, young goats, lambs, and rabbits. All animals were males at an age of 3–5 months. 

Upon inoculation, clinical signs, virus excretion, viraemia, and antibody status were closely 

monitored. The experiments were carried out in the high containment unit of the Friedrich–

Loeffler-Institut (FLI), Isle of Riems, Germany, taking into account all applicable animal 

welfare regulations and standards. 

In the ruminant species, three animals received 2 ml cell culture supernatant containing 2.66 × 

107 tissue culture infectious doses 50% (TCID50) CP7_E2alf each. Three rabbits received 1.5 

ml cell culture supernatant containing 1.99 × 107 TCID50 CP7_E2alf. All inocula were back-

titrated after application. In order to assess the possible transmission of CP7_E2alf, co-housed 

contact control animals were added. To this means, one calf, two young goats, two lambs, and 

two rabbits were placed in direct contact to the vaccinees and sampled likewise. 

Rectal body temperature and clinical signs were recorded daily for all animals over a period 

of 14 days post inoculation. Nasal swabs were collected daily from the ruminant species for a 

time period of 14 days post inoculation (dpi). Over the same period, rectal swabs were taken 

from the rabbits. Swabs were processed for virus isolation in cell culture as described 

previously [9]. Every second day from 0 to 14 dpi, EDTA blood samples were collected from 

all inoculated animals. Contact controls were sampled from 6 to 20 dpi. EDTA blood was 

used to obtain a full differential blood count using a CELL-DYN® 3700 hematology analyzer 

(Abbott). For virus isolation, leukocytes were prepared from EDTA blood samples after 

alkaline erythrocyte lysis as described previously [9]. Isolation of vaccine virus was 

performed by inoculation of 2–4 × 106 leukocytes or 100 µl nasal swab fluid on PK15 cells in 

quadruplicates on 48-well cell culture plates. After 6 days of blind passage, supernatants were 

transferred to a fresh subculture of PK15 cells. Indirect immunofluorescence staining was 

performed with the pestivirus NS3-specific monoclonal antibody BVD/C16 [12] and an Alexa 

Fluor®488 conjugated F(ab’)2 fragment of goat anti-mouse IgG (Molecular Probes®, 

Invitrogen). Standard immunofluorescence analysis was carried out using an Olympus IX51 

fluorescence microscope. 

Serum samples for serology were collected in weekly intervals and tested in neutralization 

assays against CP7_E2alf and different commercially available antibody enzyme-linked 

immunosorbent assays (ELISA). In detail, the following antibody ELISAs were used 

according to the manufacturer’s instructions: A BVDV NS3-blocking ELISA (Ceditest 
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BVDV, former Cedi-Diagnostics), a BVDV E2 ELISA (Barvac BVDV, Svanova), and two 

CSFV E2 blocking ELISAs (Chekit CSF-Sero, former Bommeli; Ceditest CSFV-Ab (2.0), 

former Cedi-Diagnostics). 

Neutralization assays were carried out according to the OIE manual of diagnostic tests and 

vaccines for terrestrial animals with slight modifications regarding incubation times. In brief, 

replicates of two-fold dilutions of heat-inactivated (30 min, 56 °C) serum samples (50 µl) 

were incubated with 100 TCID50/50 µl CP7 _E2alf in microtitration plates (2 h, 37 °C). After 

addition of 5 × 104 PK15 cells and incubation over 6 days, cultures were subjected to 

immunofluorescence as described above. Titres were expressed as log 2 of the reciprocal of 

dilutions that caused 50% neutralization (ND50). 

After completion of the study, all animals were slaughtered and subjected to post-mortem 

examinations. During necropsy, tonsil samples were collected. 

 

2.3. Innocuousness and safety aspects in target species 

 

In the target species, namely domestic pigs and wild boar, innocuousness, shedding and 

transmission of vaccine virus was addressed in different animal trials that were carried out 

primarily for the purpose of efficacy, potency or duration of immunity studies (4 trials with 

oral vaccination, two trials with intramuscular vaccination and one combined trial). In the 

framework of these studies, a total of 48 domestic pigs and 8 wild boar were orally vaccinated 

with CP7_E2alf, 35 domestic pigs were intramuscularly vaccinated, and 23 domestic pigs and 

3 wild boar acted as co-housed unvaccinated contact controls. Upon immunization, vaccine 

recipients and in-contacts were closely monitored for adverse effects (clinical signs and body 

temperature). Clinical signs were recorded according to the clinical score system proposed by 

Mittelholzer et al. in 2000 [13]. Nasal swabs and EDTA blood samples were collected and 

investigated in virus isolation and real-time reverse transcription polymerase chain reaction 

(RT-PCR) as described elsewhere [5]. Serological response was investigated using 

commercially available E2 and Erns antibody ELISAs (HerdChek CSFV Ab, IDEXX; 

PrioCheck® CSFV Erns, Prionics) according to the manufacturer’s instructions. Moreover, 

neutralization assays were performed using test virus CSFV “Alfort 187” as described above. 
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3. Results 

 

3.1. Back titration of the administered virus suspensions 

 

To prove infectivity of the inoculum, and to obtain the true titre, all virus suspensions were 

back titrated. For the suspension used in cattle, sheep, and goats, a mean virus titre of 107.37 

TCID50 per inoculation dose was determined. The inoculum used in rabbits had a virus titre of 

107.06 TCID50. 

 

3.2. Innocuousness in non-target species 

 

Following oral application of CP7_E2alf, all animals remained clinically healthy and showed 

no side effects. Neither elevation of body temperatures nor leukopenia (see Fig. 1 for 

leukocyte counts in calves) was observed throughout the observation period. By cultivation of 

purified white blood cells on susceptible cells, no CP7_E2alf viraemia was detected. Virus 

could not be re-isolated from nasal or faecal excretions. None of the animals seroconverted 

for CP7_E2alf by the end of the trial at 49 days post inoculation, and no ELISA reactivity for 

BVDV- or CSFV E2-specific antibodies was observed (data not shown). In addition, none of 

the unvaccinated contact animals seroconverted as demonstrated by neutralization assays and 

ELISA testing. 

 

3.3. Innocuousness and safety aspects in target species 

 

In none of the animal trials, clinical signs upon vaccination were observed in vaccine 

recipients. Moreover, neither shedding nor transmission of CP7_E2alf to contact controls was 

observed. All contact controls stayed negative in virological (virus isolation and real-time RT-

PCR from leukocyte preparations and swab samples) and serological tests (neutralization 

assays and antibody ELISA) prior to a possible challenge infection (where carried out in the 

framework of the trial). 

In rare cases (five animals), vaccine virus RNA could be detected at one sampling point (7 

days post oral vaccination) from leukocyte preparations in a CP7_E2alf specific real-time RT-

PCR assay [14] with very high cycle threshold values (>38), but never from swab samples. 

Vaccine recipients developed neutralizing antibody titres between 14 and 21 days post 

vaccination, but stayed negative in the accompanying DIVA ELISA. 



Innocuousness and safety of CSF marker vaccine candidate CP7_E2alf 

54 

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 21 28 35 42
Days post inoculation

Le
uk

oc
yt

es
 [G

/l]

r1 r2 (contact) r3 r4
 

Fig. 1. Leukocyte counts [G/l] for calves orally inoculated with CP7_E2alf (r1, r3, r4) and the 

contact control animal (r2). Values were obtained using the CELL-DYN® 3700 hematology 

analyzer (Abbott). Leukocyte counts below 5.5 G/l were regarded as leukopenia. 

 

4. Discussion 

Among the most promising marker vaccine candidates against CSF are chimeric pestiviruses 

[6]. Several approaches in this direction have been published and substantiate the above 

mentioned claim [8,12,15–17]. One of these candidates is CP7_E2alf [8]. It has already 

proven its potential in terms of immunogenicity both after oral and intramuscular vaccination 

[5,9,10] and is currently investigated in an EU funded research project (CSFV_goDIVA). Due 

to the fact that this candidate vaccine is based on a cytopathogenic BVDV strain, safety 

aspects are important to answer, especially for ruminant species [11]. 

In a vaccination scenario with CP7_E2alf, vaccine virus could theoretically be shed by 

vaccinated animals (especially free-ranging wild boar), which could lead to possible contact 

with ruminant species. Cattle as the natural hosts are highly susceptible to oral BVDV 

infection. In general, clinical signs upon BVDV infection include respiratory symptoms like 

coughing, fever, diarrhea or mucosal lesions. The most sensitive clinical parameter is 

leucopenia even in animals with subclinical infection. For the non-cytopathic variant of the 

parental CP7 it was shown that it leads to only mild leucopenia and a short transient viraemia 

(P. König, unpublished data). Thus, it can be assumed that the cytopathic CP7 is even more 

attenuated due to restricted distribution in the host. Interspecies infection of sheep, goats and 

pigs normally results in seroconversion, accompanied by minor or lacking clinical symptoms. 
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In the above mentioned setting, the most likely transmission scenario would be an oro-nasal 

contact with the vaccine virus by contact to an open vaccine bait. To mimic this situation as a 

‘worst case scenario’, our study included a direct high dose oral inoculation of cattle, sheep, 

and goats. Young animals were used to provide the highest possible susceptibility. As BVDV-

specific antibodies were also detected in free-ranging rabbits [18], this species was included, 

despite the fact that BVDV antigen was never detected in this species. 

It was shown that CP7_E2alf did not lead to viraemia or seroconversion in the investigated 

non-target species. Upon high-dose inoculation, no impairment of the health status or the 

differential blood cell counts was observed. Moreover, all contact controls remained negative 

in all virological and serological tests carried out. Infectivity of the inoculum could only be 

proven by back-titration of the administered virus suspension. 

In several independent laboratory trials with pigs, CP7_E2alf was never shed or transmitted 

by vaccinated animals. Detection of vaccine virus RNA in leukocyte preparations shows that 

CP7_E2alf is capable of a limited replication in the target species. 

Taking together the results obtained so far, both the likelihood of vaccine virus shedding and 

transmission as well as any effect in ruminants upon possible contact seems negligible. 

Finally, it has to be mentioned that the cytopathogenicity of the used BVDV backbone strain 

CP7 has to be judged as an additional safety factor since cytopathic BVDV strains are not 

able to induce a persistent infection and therefore cannot remain within a population. 

 

5. Conclusions 

 

In a pilot animal experiment, the BVDV/CSFV chimeric pestivirus CP7_E2alf was shown to 

be completely avirulent after oral application in calves, small ruminants, and rabbits. Neither 

viraemia nor virus excretion could be detected. No evidence for virus replication was found 

and no antibody response was observed at all. 

Innocuousness in the target species was proven in several animal trials both after oral and 

intramuscular vaccination. CP7_E2alf never led to clinical signs in the vaccinated animals 

and was never transmitted to unvaccinated contact controls as proven by the lack of 

seroconversion and antigen detection. 

In conclusion, interspecies transmission of vaccine virus from immunized pigs to ruminants 

or rabbits seems unlikely to occur under field conditions. 

These data substantiate that CP7_E2alf exhibits an altered cell tropism in vitro as well as an 

altered host tropism in vivo and is completely safe for both target and non-target species. 
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Towards licensing of CP7_E2alf as marker vaccine against classical swine fever–

Duration of immunity 

 

Abstract 

 

Classical swine fever (CSF) marker vaccine candidate CP7_E2alf was tested in a “duration of 

immunity” trial according to the World Organisation for Animal Heath (OIE) guidelines. To 

this means, 15 weaner pigs were either orally or intramuscularly vaccinated with a single dose 

of CP7_E2alf vaccine produced under Good Laboratory Practice (GLP) conditions. Ten 

additional pigs were included as controls. Six months later, all animals were oronasally 

challenged with highly virulent CSF virus (CSFV) strain “Koslov”. Upon vaccination, all but 

one orally and all intramuscularly vaccinated pigs developed rising and later on stable CSFV 

glycoprotein E2-specific antibodies. In contrast, no CSFV Erns-specific “marker” antibodies 

were detectable prior to challenge infection. None of the co-housed control animals 

seroconverted. Upon challenge infection, all seropositive animals were protected from lethal 

challenge, whereas all control animals and the non-responder developed severe signs of CSF. 

One control animal recovered, the others had to be euthanised due to animal welfare reasons 

between days 4 and 7 post challenge infection. All protected animals showed quickly rising 

neutralizing antibodies reaching high titres by the end of the trial. At the end of the trial, the 

marker ELISA was positive for most challenged animals that survived the CSFV infection (27 

out of 30). Using reverse transcription polymerase chain reaction, low level genome detection 

was seen in all vaccinated animals between days 4 and 10 post challenge infection, but no 

virus could be isolated from any samples of these animals. The OIE guidelines require 

seroconversion in at least 8 out of 10 vaccinated animals. This requirement was fulfilled. 

Moreover, only control animals should die. With this requirement, only the intramuscular 

vaccination fully complied as one orally vaccinated pig did not respond. Concluding, 

CP7_E2alf induced stable antibodies that led to protection from lethal challenge with highly 

virulent CSFV strain “Koslov” six months after vaccination, with the exception of one non-

responder after oral vaccination. 
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1. Introduction 

 

Classical swine fever (CSF) belongs to the most important viral diseases of domestic pigs that 

threaten industrialized pig production worldwide [1]. The notifiable disease can induce a wide 

range of clinical syndromes in both domestic pigs and wild boar ranging from almost 

inapparent infections to a haemorrhagic fever like illness [2]. It is caused by a small 

enveloped RNA virus of the genus Pestivirus within the Flaviviridae family [3]. 

To control CSF, several countries worldwide are implementing mandatory vaccination 

campaigns in combination with strict sanitary measures. Within the European Union (EU), 

this strategy was successfully followed until 1990 when prophylactic vaccination was banned 

and replaced by a stamping out policy to eradicate the disease [4,5]. Despite the ban of 

prophylactic vaccination, emergency vaccination could be used in case of an outbreak 

following an EU-approved emergency vaccination plan. Due to the immense economic 

consequences of CSF outbreaks, this provision is constantly under discussion among EU 

Member States. However, several obstacles, related to the available vaccines and the 

marketability of products from vaccinated animals, have led to the fact that the option of 

emergency vaccination, that is per se not limited to a certain vaccine type, was almost never 

implemented in domestic pigs. 

As for the vaccines, two types are available on the European market: (a) modified live 

vaccines that have proven both efficacy and safety, and (b) an E2 subunit vaccine that allows 

differentiation of infected from vaccinated animals (DIVA) but lacks some properties that live 

vaccines exhibit, e.g. fast and robust protection after single application, complete block of 

transplacental infection or the possibility of oral immunization [6]. In terms of international 

trade, only DIVA vaccines are a feasible option as products from animals that were 

vaccinated with conventional live attenuated vaccines suffer severe trade restrictions. 

In order to make the option of emergency vaccination acceptable for trade partners and 

consumers, new generations of potent vaccines are required that allow for a reliable DIVA 

approach [7]. As wild boar populations require oral vaccination, only live vaccines are 

suitable for all possible applications [5]. 

In order to overcome the above-mentioned impediments, several research groups worked on 

the development of an optimized vaccine using different approaches [7,8]. A promising 

candidate of this new generation of marker vaccines is the chimeric Pestivirus “CP7_E2alf”, 

which is based on the cytopathogenic bovine viral diarrhoea virus (BVDV) strain “CP7” 

expressing the E2 glycoprotein of CSFV strain “Alfort/187” [9]. This recombinant virus 
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proved to be a safe and efficacious DIVA vaccine candidate for oral and intramuscular 

vaccination of domestic pigs and wild boar [10–14], and was chosen after large comparative 

trials [24] as candidate for further development within the EU funded research project 

“Improve tools and strategies for the prevention and control of classical swine fever” 

(CSFV_goDIVA, KBBE-227003). 

For CSF vaccines, detailed requirements are laid down in the European Pharmacopoeia and 

the World Organisation for Animal Health (OIE) manual of diagnostic tests and vaccines for 

terrestrial animals. Therefore, several studies on immunogenicity, safety, and efficacy are 

needed with vaccine batches produced under Good Laboratory Practice (GLP) conditions. 

Among the required studies is the assessment of duration of immunity. Here we report on the 

outcome of this trial after oral and intramuscular vaccination of domestic pigs with GLP-

produced CP7_E2alf vaccine batches. 

 

2. Materials and methods 

 

2.1. Experimental settings 

 

According to the OIE manual of diagnostic tests and vaccines for terrestrial animals, a test for 

duration of immunity must comprise at least 10 pigs inoculated with one dose of the 

respective vaccine, and two other animals kept as unvaccinated controls. Six months later, 

serum samples are tested for antibodies against CSF virus (CSFV). Subsequently, all pigs 

must be challenged with at least 105 PID50 of a virulent strain of CSFV, and observed for 

three weeks. The vaccine passes the test if at least eight pigs seroconvert and only controls die 

upon challenge infection. 

To ensure data quality for in detail analyses, an approach was chosen with 15 orally 

vaccinated, 15 intramuscularly vaccinated, and 10 unvaccinated contact animals. To this 

means, 40 crossbred weaner pigs of approximately eight weeks of age (10–17 kg) were 

bought from a commercial pig farm and brought to the animal facilities of the Friedrich-

Loeffler-Institut (FLI). Upon arrival, animals were allocated into three treatment groups using 

a generalized randomized block design blocking on body weight and pen location. Animals 

were kept litterless under appropriate high-containment conditions. All pigs were handled 

taking into account animal welfare regulations and standards according to EU Directive 

2010/63/EU and institutional guidelines. They were fed a commercial feed for pigs of their 

age class combined with hay cobs, and had access to water ad libitum. After an 
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acclimatization phase of six days, sera were collected in order to evaluate the serological 

status of animals (freedom from pestivirus antibodies). Afterwards, 30 animals were 

vaccinated according to their assigned treatment group and all piglets were carefully observed 

for 60 min for any systemic reactions associated with vaccine administration. Four days after 

vaccination all treatment groups were co-mingled according to the randomisation plan. 

Following vaccination, sera were collected for serology in monthly intervals. Six months after 

vaccination, all animals were challenged with CSFV strain “Koslov”, and serum and EDTA 

blood samples were collected at days 0, 4, 7, 10, 14, and 22 post challenge infection (dpc). 

Rectal body temperature was measured on a daily basis. Fever was defined as a body 

temperature ≥40.0 °C for at least two consecutive days. Elevated body temperatures ≥40.0 °C 

for just one day were reported as such. 

Clinical signs were recorded daily from 3 days prior to vaccination to 7 days post vaccination, 

and from 3 days before up to 21 days after challenge infection according to the protocol 

published by Mittelholzer et al. [15] with slight modifications regarding the evaluation of feed 

intake (assessment of interest in food upon supply). 

Euthanasia of moribund animals and all remaining animals at the end of the trial was 

conducted by electro-stunning and exsanguination, followed by post-mortem examinations. 

 

2.2. Vaccine and challenge viruses 

 

Two different CP7_E2alf pilot vaccine batches for oral and intramuscular application, 

respectively, were produced under GLP conditions by Pfizer Olot S.L.U. (Spain). Vaccines 

were diluted in sterile diluent solution provided by Pfizer Olot S.L.U. (Spain) prior to 

administration based on pre-existing potency data (unpublished results). In detail, the liquid 

CP7_E2alf vaccine batch 081010 with stabilizer L2 intended for oral vaccination was thawed, 

mixed by pulse-vortexing and diluted 1:3 in sterile diluent solution to a calculated titre of 1 × 

105.5 tissue culture infectious doses 50% (TCID50) per ml. For oral immunization, 1.6 ml (the 

content of a standard blister for oral vaccination of wild boar) of the solution was 

administered to each animal orally using a 2 ml syringe without needle. For intramuscular 

vaccination, the lyophilized and L2 stabilized CP7_E2alf vaccine batch 191010 was 

reconstituted and diluted tenfold with sterile diluent solution to a calculated titre of 1 × 104.0 

TCID50/ml. Each animal of the intramuscularly vaccinated group received 1 ml of the latter 

by intramuscular injection in the right neck (deep into the muscles behind the ear using a 2 ml 

syringe and a 20 G needle). Due to bleeding at the injection site that was probably 
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accompanied by flow out of vaccine solution, one animal (#12) received an additional vaccine 

dose. 

Challenge infection was carried out using CSFV strain “Koslov” which was obtained from the 

German National Reference Laboratory for CSF (FLI, Insel Riems, Germany). This strain 

belongs to genotype 1.1 and is highly virulent for all age classes of animals. Due to its severe 

and reproducible clinical course (accompanied by almost 100% mortality within 7–10 days), 

this strain has been used in several challenge trials with different vaccines including 

CP7_E2alf [11,12]. Severe unspecific and central nervous signs predominate upon “Koslov” 

infection. The “Koslov” virus used in this study originated from an animal experiment at the 

FLI where whole blood from a viraemic animal was collected. This material was subsequently 

defibrinated, aliquoted, and titrated at least three times. For challenge infection, the blood was 

diluted in PBS to a theoretical titre of 1 × 105.5 TCID50/ml, and 2 ml were applied to each 

animal by oronasal inoculation using a 2 ml syringe without needle. 

Vaccine and challenge virus dilutions were back-titrated at FLI in at least three independent 

virus titrations in order to obtain the true titres administered. 

 

2.3. Cells and viruses 

 

Cells and viruses were grown in Dulbecco’s Modified Eagle Medium (DMEM) supplemented 

with 10% foetal bovine serum free of pestiviruses and anti-pestivirus antibodies at 37 °C in a 

humidified atmosphere containing 5% CO2. Porcine kidney cell line 15 (PK15/5; CCLV-

RIE0005), Madin–Darby bovine kidney cells (MDBK; CCLV-RIE261), and sheep fetal 

thymus-R cells (SFT-R; CCLV-RIE0043) were obtained from the Collection of Cell Lines in 

Veterinary Medicine (CCLV, FLI Insel Riems, Germany). 

CSFV strain “Alfort/187”, BVDV strain “NADL” and Border disease virus (BDV) strain 

“Moredun” were obtained from the German National Reference Laboratory for CSF (FLI 

Insel Riems, Germany) for use in neutralization tests. 
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2.4. Laboratory investigations 

 

2.4.1. Processing of samples 

EDTA blood as well as serum samples, which were obtained from native blood by 

centrifugation at 2031 × g at 20 °C for 20 min, were aliquoted and stored at −70 °C. Tissue 

samples of tonsil, spleen, and salivary gland were collected at necropsy and stored at −70 °C 

until further use. For real-time reverse transcription polymerase chain reaction (RT-qPCR) 

and virus isolation, tissue samples were homogenized in 1 ml DMEM using a TissueLyser II 

(QIAGEN GmbH, Hilden, Germany). 

 

2.4.2. Virus detection 

In order to assess the administered titres of vaccine and challenge viruses, virus titrations 

were performed by end point dilution on PK15 cells. The titres expressed as TCID50/ml were 

obtained by indirect immuno-peroxidase staining of heat-fixated cells which was performed 

72 h post inoculation using a mouse-anti-CSFV-E2 monoclonal antibody mix and a 

polyclonal goat anti-mouse horseradish peroxidase conjugated secondary antibody (Thermo 

Fisher Scientific, Waltham, USA). 

Extraction of viral RNA from sera and EDTA blood samples was performed using the 

QIAamp® Viral RNA Mini Kit (QIAGEN GmbH, Hilden, Germany) according to 

manufacturer’s recommendations. Homogenized tissue samples were processed using the 

automated MagAttract® Virus Mini M48 Kit in combination with the BioSprint 96 

workstation (QIAGEN GmbH, Hilden, Germany). In both extraction methods, an internal 

control RNA (IC2) was added as described previously [16]. 

Viral genome was detected by RT-qPCR using the real-time PCR-cycler MX3005PTM 

(Stratagene, La Jolla, USA). To determine the absence of pestiviral infections in the animals 

prior to vaccination, all sera were tested in a pestivirus specific RT-qPCR as published 

previously [16]. For EDTA blood, tonsil, and spleen samples, a CSFV specific RT-qPCR 

protocol was used [17]. In addition, RT-qPCR of salivary gland samples was performed using 

the commercial Virotype® CSFV real-time RT-PCR test kit (Labor Diagnostik GmbH 

Leipzig, Leipzig, Germany) which is based on the protocol published by Leifer et al. [18]. 

Results were recorded as quantification cycle (cq) values. Amplified viral RNA was 

quantified using an in vitro transcribed RNA dilution series (encompassing parts of the 5´-

non-translated region and the NS5A genome regions of CSFV) with defined copy numbers. 
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Virus isolation was carried out on all RT-qPCR positive blood samples and on all tissue 

samples according to the standard protocols laid down in the Technical Annex of European 

Commission Decision 2002/106/EC (EU Diagnostic Manual for CSF). Results were assessed 

after one virus passage using indirect immuno-peroxidase staining as described above. 

Moreover, antigen detection was carried out on all sera collected after challenge infection 

using the HerdChek® CSFV Ag/Serum ELISA (IDEXX Laboratories, Hoofddorp, The 

Netherlands) following the standard protocol provided by the manufacturer. 

 

2.4.3. Antibody detection 

All sera were tested in neutralization peroxidase-linked antibody assays (NPLA) according to 

the EU Diagnostic Manual and the Technical Annex accompanying it. Neutralizing antibody 

titres against CSFV “Alfort/187” were determined on PK15 cells, those directed against 

BVDV “NADL” on MDBK cells, and against BDV “Moredun” on SFT-R cells. Indirect 

immuno-peroxidase staining was performed as mentioned above. Titres were calculated as 

neutralization doses 50% (ND50). Titres exceeding 10240 ND50 were recorded as 10241 ND50. 

Furthermore, sera were tested for the presence of CSFV E2-specific antibodies with the 

HerdChek® CSFV Ab ELISA (IDEXX Laboratories, Hoofddorp, The Netherlands) and for 

the detection of CSFV Erns-specific antibodies using the PrioCHECK® Erns ELISA (Prionics 

Lelystad BV, Lelystad, The Netherlands) according to the manufacturer’s instructions. 

 

2.5. Data and statistical analysis 

 

All data were recorded using Microsoft Excel 2010 (Microsoft Deutschland GmbH, 

Unterschleißheim, Germany). Box plots were created using SigmaPlot for Windows version 

11.0 (Systat Software Inc., Chicago, USA). 
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3. Results 

 

3.1. Back titration of vaccine and challenge viruses 

 

In order to assess the titres administered, back titrations of vaccine and challenge viruses were 

conducted. The diluted CP7_E2alf pilot vaccine batch 081010 for oral use showed a mean 

titre of 105.54 TCID50/ml, whereas the pilot vaccine batch 191010 preparation for 

intramuscular use had a mean titre of 104.49 TCID50/ml. Back titration of “Koslov” challenge 

virus resulted in a mean virus titre of 105.24 TCID50/ml. 

 

3.2. Observations before challenge infection 

 

3.2.1. Clinical observations 

Upon vaccination, neither local nor systemic adverse effects could be observed in vaccinated 

animals. Despite a sporadic occurrence of fever in three orally vaccinated animals and one 

unvaccinated animal which was not accompanied by any clinical signs, body temperatures of 

vaccinated and unvaccinated animals stayed within the physiological range. 

 

3.2.2. Virus detection 

Prior to vaccination, all animals were tested negative in the pestivirus specific RT-qPCR of 

serum samples, and EDTA blood samples collected before challenge infection were negative 

in the CSFV specific RT-qPCR. Furthermore, all sera were negative in virus isolation and 

antigen ELISA prior to challenge infection. 

 

3.2.3. Antibody detection 

Prior to vaccination, all animals were tested negative for neutralizing antibodies against 

CSFV, BVDV and BDV. 

In neutralization assays of sera collected from orally vaccinated animals, antibodies against 

CSFV “Alfort” were first detected in 14 out of 15 animals 1 month post vaccination with 

titres ranging between 5 and 160 ND50 (see Fig. 1). Titres of these animals rose in the course 

of the experiment and were between 60 and 1920 ND50 prior to challenge infection 6 months 

post vaccination. One orally vaccinated animal (#4) showed no measurable antibodies in 

neutralization assays against CSFV “Alfort” until challenge infection (non-responder). Upon 

intramuscular vaccination, first measurable neutralizing antibodies against CSFV “Alfort” 
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were detected 1 month post vaccination with titres ranging from 10 to 120 ND50. As in orally 

vaccinated animals, antibody titres rose in the course of time and final neutralizing antibody 

titres against CSFV “Alfort” ranged between 40 and 2560 ND50 prior to challenge infection. 

CSFV E2-specific antibodies could be detected by the commercial antibody ELISA in all 

intramuscularly vaccinated animals and all but one orally vaccinated animals prior to 

challenge infection. In detail, 12 out of 15 orally vaccinated animals became positive in the 

CSFV E2-specific antibody ELISA at 1 month after vaccination, whereas one animal showed 

a doubtful result and two animals stayed negative by this time. From 2 months post 

vaccination, all but one (#4) orally vaccinated animals were positive showing increasing 

percentage of inhibition values which were stable and comparable until at least 6 months post 

vaccination. All intramuscularly vaccinated animals scored positive in the CSFV E2-specific 

ELISA at 1 month post vaccination showing increasing or stable percentage of inhibition 

values till challenge infection (Fig. 1). 

None of the sera collected prior to challenge infection reacted positive in the CSFV Erns-

specific marker antibody ELISA. 

All unvaccinated animals stayed negative in all serological examinations prior to challenge 

infection (Fig. 1). 
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Fig. 1. Antibody response of orally vaccinated (A), intramuscularly vaccinated (B) and 

unvaccinated (C) domestic pigs upon vaccination with CP7_E2alf and after challenge 

infection using highly virulent CSFV strain “Koslov” six months later. Results of the 

neutralization tests using CSFV strain “Alfort/187” (A1–C1) are shown as group reactivity. 

Box plots are based on antibody titres represented as log10 ND50. Results of the CSFV E2-

specific antibody ELISA (A2–C2) and CSFV Erns-specific antibody ELISA (A3–C3) are 

shown as group reactivity in percentage of inhibition and given as box plots. The dashed line 

represents the ELISA cut-off; red arrows mark the challenge infection time point. 

mpv: months post vaccination; dpc: days post challenge infection. As complete non-

responder, animal #4 was excluded. The boundaries of the boxes indicate the 25th and 75th 

percentiles, the line within the box marks the median and errors bars above and below the 

boxes indicate the 90th and 10th percentiles. Outlying points are graphed as dots. 
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3.3. Observations after challenge infection 

 

3.3.1. Clinical observations 

Upon challenge infection, four orally vaccinated animals showed fever up to 40.9 °C at 4 and 

5 dpc. Additionally, three animals of this group had an elevated body temperature for one day 

(4, 6, 16, and 19 dpc). Animal #4, which did not seroconvert after oral vaccination, showed 

fever and typical signs of CSF starting 3 dpc and was euthanised in a moribund state with 

severe neurological signs including convulsions (maximum CS 9) at 7 dpc. Apart from this 

animal, none of the orally vaccinated animals showed clinical signs indicative for CSF after 

challenge infection. 

In the intramuscularly vaccinated group, four animals had fever between 40.1 °C and 40.5 °C 

for two consecutive days (4 and 5 dpc for three animals, and 15 and 16 dpc for one animal), 

and two animals had an elevated body temperature at 4 dpc. None of these six animals 

showed other clinical signs. Another animal of this group showed fever up to 41.2 °C on three 

consecutive days (4–6 dpc), accompanied by slight depression at 4 and 5 dpc (CS 1–2). This 

animal showed an additional day of elevated body temperature after one day with a 

physiological body temperature. Furthermore, one animal showed recurrent fever up to 41.0 

°C which was accompanied by a reduced liveliness and feed intake at 5 dpc (CS 2) and a 

persistent lameness caused by a lesion of one dew claw (CS 1). 

Nine out of 10 unvaccinated animals had fever starting between 3 and 4 dpc and showed 

severe CSF specific signs including severe depression (lethargy, anorexia, shivering, 

reluctance to stand) and neurological signs (staggering gait, torticollis) with a maximum 

clinical scores ranging from 2 to 8. These animals were euthanised due to animal welfare 

reasons at 4 dpc (n = 4), 6 dpc (n = 4), and 7 dpc (n = 1). The remaining control animal 

showed fever from 3 to 16 dpc and clinical signs like reduced liveliness, moderate catarrhal 

conjunctivitis, and a slight staggering gait for a period of seven days (CS 1–3). The animal 

recovered until the end of the experiment showing a pronounced loss of body weight. 

 

3.3.2. Virus detection 

RT-qPCR of EDTA blood samples from orally vaccinated animals (excluding animal #4) 

showed weak positive results for 10 animals from 4 dpc (cq values >34, corresponding to less 

than 2.6 × 102 genome copies per µl) to last weak positive results at 10 dpc. Only the diseased 

animal #4 showed much higher and increasing genome loads in EDTA blood samples from 4 



Towards licensing of CP7_E2alf as marker vaccine against CSF – Duration of immunity 

70 

dpc till the day of euthanasia (cq values 28–16, corresponding to app. 7.5 × 103 to 5 × 107 

genome copies per µl). An overview is given in Table 1. 

Similarly, low copy numbers of viral RNA were detected in 12 out of 15 EDTA blood 

samples taken from intramuscularly vaccinated animals at 4 dpc. Quantification cycle values 

(values >31, corresponding to less than 1.4 × 103 genome copies per µl) were mostly 

decreasing over time (negative for all animals 14 dpc). 

EDTA blood samples collected from unvaccinated control animals after challenge infection 

were positive in the CSFV specific RT-qPCR showing increasing genome loads (lowest cq 

values <17, corresponding to >3.5 × 107 genome copies per µl) until euthanasia of the 

animals. 

In the CSFV specific RT-qPCR, tonsil samples of all vaccinated animals (excluding animal 

#4) were positive with cq values between 28 and 36, corresponding to 7.7 × 103 and 2.5 × 101 

genome copies per µl, respectively. The non-responder, animal #4, showed a cq value of 26 

(3.7 × 104 genome copies per µl). In the orally vaccinated group, viral RNA could be detected 

in more than a third of spleen samples (n = 6) and in a large number of salivary gland samples 

(n = 11) (cq values mostly >30; <7.8 × 102 genome copies per µl, except for animal #4). 

Eleven spleen and 13 salivary gland samples of intramuscularly vaccinated animals were 

positive in the CSFV specific RT-qPCR. Much higher CSFV genome loads were detected in 

tissue samples of the nine control animals which were euthanised due to severe suffering from 

CSF (1.4 × 103 to 5.1 × 105 genome copies per µl) while the surviving control animal #29 

showed results comparable to the vaccinated animals. 

Apart from animal #4, positive results in RT-qPCR of EDTA blood and tissue samples of 

vaccinated animals were not accompanied by any positive results in virus isolation. In 

contrast, sera from unvaccinated controls were always positive in virus isolation, except for 

serum samples taken from the surviving animal #29 starting 10 dpc. In addition, virus 

isolation was positive for all tissue samples of the unvaccinated controls except for the organ 

samples of animal #29. Detailed results of RT-qPCR and virus isolation on tissue samples are 

given in Table 2. 

Beside animal #4, all vaccinated animals stayed clearly negative in antigen ELISA after 

challenge infection. For the unvaccinated group, all animals yielded positive results in antigen 

ELISA at least at the day of euthanasia, except for animal #32 (data not shown). 
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Table 1 

RT-qPCR results of blood samples and results of virus isolation (VI) from serum samples 

after challenge infection 6 months post vaccination. −, not detected in RT-qPCR/negative in 

virus isolation; +, positive in virus isolation; , animal was already euthanised by this time 

point; nd, not done. Positive RT-qPCR results are presented as copies per µl. 
Pig #  Day post challenge infection 

 0  4  7a  10  14  22 
 RT-qPCR VI  RT-qPCR VI  RT-qPCR VI  RT-qPCR VI  RT-qPCR VI  RT-qPCR VI 

Oral vaccination                
  1  – –  4.7 × 101 –  – nd  – nd  – nd  – nd 
  4  – –  7.5 × 103 +  5.0 × 107 +          

  5  – –  3.2 × 101 –  2.5 × 102 –  1.1 × 101 –  – nd  – nd 
  6  – –  4.8 × 101 –  8.3 × 101 –  1.8 × 101 –  – nd  – nd 
10  – –  – nd  – nd  – nd  – nd  – nd 
11  – –  4.7 × 101 –  8.5 × 101 –  1.0 × 101 –  – nd  – nd 
14  – –  2.6 × 100 –  – nd  – nd  – nd  – nd 
15  – –  1.4 × 100 –  4.0 × 100 –  – nd  – nd  – nd 
16  – –  4.5 × 101 –  – nd  – nd  – nd  –b nd 
18  – –  5.5 × 101 –  1.4 × 101 –  4.3 × 100 –  – nd  – nd 
23  – –  – nd  – nd  – nd  – nd  –b nd 
34  – –  – nd  5.3 × 100 –  – nd  – nd  – nd 
35  – –  2.2 × 101 –  – nd  – nd  – nd  – nd 
37  – –  2.5 × 102 –  5.1 × 101 –  4.8 × 100 –  – nd  – nd 
40  – –  - nd  – nd  – nd  – nd  – nd 
Intramuscular vaccination                
  2  – –  2.1 × 102 –  4.7 × 101 –  4.9 × 100 –  – nd  – nd 
  3  – –  2.0 × 101 –  - nd  – nd  – nd  – nd 
  7  – –  3.6 × 101 –  5.4 × 101 –  2.6 × 101 –  – nd  – nd 
12  – –  1.9 × 102 –  - nd  1.2 × 101 –  – nd  – nd 
13  – –  4.8 × 102 –  1.3 × 103 –  8.3 × 101 –  – nd  –b nd 
17  – –  – nd  1.4 × 101 –  – nd  – nd  – nd 
19  – –  – nd  – nd  – nd  – nd  – nd 
24  – –  1.1 × 101 –  – nd  – nd  – nd  –b nd 
27  – –  2.5 × 100 –  – nd  – nd  – nd  – nd 
28  – –  1.6 × 101 –  – nd  – nd  – nd  – nd 
30  – –  2.7 × 101 –  4.5 × 100 –  – nd  – nd  –b nd 
31  – –  1.8 × 101 –  4.5 × 101 –  2.1 × 100 –  – nd  – nd 
33  – –  – nd  6.1 × 100 –  – nd  – nd  – nd 
38  – –  7.4 × 101 –  1.4 × 101 –  – nd  – nd  – nd 
39  – –  1.0 × 103 –  1.1 × 103 –  2.9 × 101 –  – nd  – nd 
Unvaccinated                
  8  – –  5.8 × 103 +  1.3 × 107 +          

  9  – –  1.2 × 105 +             

20  – –  3.5 × 104 +  3.6 × 107 +          

21  – –  2.9 × 104 +  9.5 × 106 +          

22  – –  2.8 × 103 +  2.1 × 104 +          

25  – –  6.1 × 104 +             

26  – –  5.7 × 103 +  1.5 × 107 +          

29  – –  7.8 × 103 +  4.0 × 106 +  2.4 × 106 –  3.3 × 105 –  3.2 × 103 – 
32  – –  1.9 × 104 +             

36  – –  1.2 × 105 +             
a Six days post challenge infection for samples from animals 8, 20, 21, and 22. 
b Serum samples instead of blood samples. 
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Table 2 

Detection of virus and viral RNA in tissue samples after oral and intramuscular vaccination 

with CP7_E2alf, and challenge infection 6 months post vaccination. VI, virus isolation; −, not 

detected in RT-qPCR/negative in virus isolation; +, positive in virus isolation; dpc, day post 

challenge infection. Positive RT-qPCR results are presented as copies per µl. 
Pig #  Day of euthanasia (dpc)  Tonsil  Spleen  Salivary gland 

  RT-qPCR VI  RT-qPCR VI  RT-qPCR VI
Oral vaccination          
  1  22  1.5 × 103 –  – –  7.5 × 10-1 – 
  4    7  3.7 × 104 +  1.9 × 106 +  2.2 × 105 + 
  5  22  1.6 × 102 –  4.3 × 100 –  4.5 × 100 – 
  6  25  1.3 × 102 –  – –  – – 
10  25  9.4 × 102 –  – –  – – 
11  22  3.1 × 102 –  7.7 × 102 –  8.1 × 100 – 
14  22  9.4 × 101 –  1.8 × 101 –  - – 
15  25  3.2 × 102 –  – –  5.4 × 101 – 
16  22  9.6 × 102 –  – –  2.2 × 101 – 
18  25  3.9 × 102 –  – –  – – 
23  22  6.0 × 102 –  9.6 × 100 –  5.9 × 100 – 
34  25  7.7 × 103 –  – –  9.1 × 101 – 
35  25  4.8 × 102 –  – –  1.2 × 101 – 
37  25  4.6 × 103 –  1.5 × 101 –  3.4 × 101 – 
40  22  3.2 × 102 –  – –  4.4 × 101 – 
Intramuscular vaccination          
  2  22  6.3 × 102 –  1.4 × 102 –  2.5 × 100 – 
  3  22  1.7 × 102 –  1.2 × 102 –  – – 
  7  25  1.5 × 103 –  1.7 × 101 –  2.4 × 102 – 
12  22  2.1 × 103 –  6.4 × 102 –  1.9 × 101 – 
13  22  6.7 × 103 –  7.0 × 101 –  1.6 × 102 – 
17  25  2.5 × 101 –  7.9 × 100 –  2.7 × 100 – 
19  25  1.3 × 103 –  1.9 × 101 –  1.1 × 100 – 
24  22  7.4 × 103 –  – –  2.2 × 101 – 
27  25  2.5 × 103 –  3.5 × 101 –  6.7 × 101 – 
28  22  4.6 × 102 –  – –  4.1 × 101 – 
30  22  1.7 × 102 –  3.0 × 100 –  1.9 × 102 – 
31  22  5.7 × 102 –  – –  – – 
33  22  1.4 × 102 –  – –  3.7 × 100 – 
38  25  5.1 × 102 –  7.0 × 100 –  5.1 × 101 – 
39  25  1.9 × 103 –  2.5 × 102 –  2.2 × 101 – 
Unvaccinated          
  8    6  1.1 × 105 +  3.8 × 105 +  3.3 × 104 + 
  9    4  1.5 × 104 +  1.1 × 105 +  2.9 × 103 + 
20    6  1.6 × 104 +  1.1 × 105 +  8.8 × 104 + 
21    6  1.1 × 105 +  6.2 × 104 +  3.6 × 104 + 
22    6  1.6 × 104 +  4.2 × 104 +  4.9 × 104 + 
25    4  4.5 × 105 +  1.1 × 105 +  1.6 × 103 + 
26    7  5.6 × 104 +  5.1 × 105 +  1.7 × 104 + 
29  25  8.3 × 101 –  8.5 × 100 –  5.2 × 102 – 
32    4  7.6 × 104 +  9.9 × 103 +  1.4 × 103 + 
36    4  1.2 × 104 +  6.1 × 103 +  9.4 × 103 + 
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3.3.3. Antibody detection 

Upon challenge infection, neutralizing antibody titres against CSFV “Alfort” rose quickly in 

14 out of 15 orally and all intramuscularly vaccinated animals, resulting in high antibody 

titres exceeding 10240 ND50 at 10 dpc. Furthermore, these animals remained strong positive 

in the CSFV E2-specific antibody ELISA after challenge (inhibition values >93% starting 

from 7 dpc), while the remaining animal #4 that suffered from CSF infection did not develop 

CSFV specific antibodies until euthanasia (7 dpc) (Fig. 1). 

Marker Erns antibodies could be detected as early as 7 dpc in five animals of the orally 

vaccinated group. Three days later, 10 orally vaccinated animals were positive in the CSFV 

Erns-specific antibody ELISA, and 12 out of 14 orally vaccinated animals were clearly 

positive for Erns antibodies at 22 dpc (Fig. 1). 

As in the orally vaccinated group, Erns-specific antibodies were first detectable at 7 dpc in the 

intramuscularly vaccinated group, but in contrast, more animals (n = 9) were tested positive in 

the CSFV Erns-specific antibody ELISA. At the end of the trial (22 dpc), 14 out of 15 

intramuscularly vaccinated animals were positive for Erns antibodies (Fig. 1). 

Nine out of 10 unvaccinated control animals stayed negative in all serological tests until 

euthanasia, whereas the unvaccinated animal #29 which recovered until the end of the 

experiment showed first doubtful results in the CSFV E2-specific ELISA and first positive 

results in the CSFV Erns-specific antibody ELISA at 10 dpc. Neutralizing antibody titres 

against CSFV “Alfort” of this animal rose from 60 ND50 at 10 dpc to 800 ND50 at 22 dpc. 

 

3.3.4. Post mortem examinations 

In all but one unvaccinated control animal including the recovering animal #29, typical 

lesions for CSF were detected during post mortem examinations, for instance necrotizing and 

purulent tonsillitis, enlarged and haemorrhagic lymph nodes, spleen infarctions, and ascites. 

However, one unvaccinated animal that was euthanised in a moribund state at 4 dpc just 

showed an unspecific serous pericardial effusion. 

Moreover, animal #4 that did not respond serologically to oral vaccination showed 

haemorrhages in the renal cortex and gall bladder wall, beside all CSF specific lesions 

mentioned above. 

No CSF specific pathological signs were observed during necropsy in any of the remaining 

vaccinated pigs. 

Apart from follicular hyperplasia seen in the majority of vaccinated as well as unvaccinated 

animals, typical signs for a previous infection with Haemophilus parasuis (Glässer’s disease) 



Towards licensing of CP7_E2alf as marker vaccine against CSF – Duration of immunity 

74 

like adhesive pleurisy and pericarditis as well as fibrinous perihepatitis were observed 

frequently during post mortem examinations. 

 

4. Discussion 

Classical swine fever is among the most important diseases of domestic pigs worldwide and 

can cause tremendous economic losses. Thus, it is understandable that the development of 

potent vaccines was and is of paramount importance. Different vaccination scenarios exist 

and may require different vaccine characteristics [5]. While vaccination in endemically 

infected areas is used to prevent economic losses or as a first step towards eradication, 

emergency vaccination in case of outbreaks is intended to limit spread of the disease (freeze 

the outbreak situation). Especially the latter requires DIVA vaccines inducing an early onset 

of immunity. A special emergency vaccination scenario is the oral immunization of wild boar. 

Here, the measure aims at preventing introduction into the domestic pig population. 

The perfect vaccine that would be suitable for all scenarios must therefore provide fast and 

solid protection against horizontal and vertical transmission, must be safe in target and non-

target animals, and must be acceptable for consumers. Moreover, it should be easily 

applicable, also orally, and allow a DIVA principle. The DIVA vaccine has to be 

accompanied by a reliable diagnostic test system [7]. So far, such an optimal vaccine does not 

exist. 

Over the last decades, intensive research activities have led to several most promising vaccine 

candidates, but so far, none of them came close to market authorization. In order to establish 

modern concepts for animal disease control, and CSF control in particular, licensing of 

promising candidates is necessary, even more than the continued search for the optimal 

vaccine. The here reported duration of immunity after single shot vaccination in accordance 

with the OIE manual of diagnostic tests and vaccines for terrestrial animals is one of the 

experiments of the CSFV_goDIVA project providing the necessary data required for 

licensing. 

In the experimental setup, 15 animals were either orally or intramuscularly vaccinated with 

CP7_E2alf. In order to ensure and standardize oral vaccine uptake, the content of one blister 

was administered using a syringe. This deviates from the intended use in baits but guarantees 

both comparability of data among vaccinated animals in this study, and also with similar 

studies using other live attenuated vaccines, for example the C-strain “Riems” vaccine in the 

same manner [19,20]. The latter is the routine bait vaccine currently in use for CSF infected 

wild boar populations within the EU. For the C-strain “Riems” vaccine it was shown that the 
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onset of immunity was influenced by the mode of oral vaccination, but no effect was seen on 

the duration of immunity [21]. Bait vaccination always has a high degree of uncertainty 

regarding uptake in general and the ingested vaccine dose in special. Thus, it can only be 

viewed on population base. 

Due to bleeding at the injection site, one animal (#12) received two vaccine doses (max. 2 × 

104.49 TCID50 in total) to account for the possible leakage. As this animal did not react 

differently in laboratory tests upon vaccination or challenge, this fact was later on disregarded 

for data analysis. Six months later, these animals were challenged together with 10 

unvaccinated controls using highly virulent CSFV strain “Koslov”. 

Upon oral or intramuscular vaccination with CP7_E2alf, neither local nor systemic adverse 

effects were observed. Sporadic fever occurred without link to any other clinical signs. As 

several animals showed signs of an overcome infection with H. parasuis in necropsy, these 

reactions upon vaccination might be explained by this factor. 

As all control animals stayed clearly negative in all serological tests (E2 and Erns antibodies) 

prior to challenge infection, there is no evidence of vaccine virus transmission to contact 

animals. It has to be kept in mind that animals were only co-mingled from four days after 

vaccination. For this reason, it is impossible to judge on the early phase post vaccination. The 

issue of vaccine virus transmission was also addressed by König et al. [14]. In this context, it 

could be shown that vaccine virus transmission does not occur, even in the early phase post 

vaccination. 

From one month after vaccination onwards, monthly serological tests were carried out to 

assess seroconversion of vaccinated animals. CSFV neutralizing antibodies were detected by 

neutralization assays in all intramuscularly and all but one orally vaccinated animals. These 

results were in general comparable with results from studies with shorter duration [12]. Orally 

vaccinated animal #4 remained negative throughout the vaccination phase of the experiment 

in all serological tests. This animal has to be regarded as a true non-responder. Explanations 

why this animal did not respond are rather speculative. Inactivation of vaccine virus by saliva 

enzymes and insufficient delivery are among these explanations. In general, oral 

immunization is much more error prone than intramuscular vaccination and non-responders 

have been observed in a few C-strain vaccination trials as well (Lange, personal 

communication). All other vaccinated animals showed rising and later on stable antibody 

responses both in the highly sensitive neutralization test and in the routine CSFV E2-specific 

antibody ELISA. By the day of challenge infection, 6 months post vaccination, antibody titres 

of both, intramuscularly and orally vaccinated animals (apart from animal #4) were moderate 
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to high. These results are comparable with those of C-strain “Riems” vaccination [21]. During 

the course of the vaccination part of the study, all animals (vaccinated and controls) remained 

negative for Erns antibodies. 

Thus, the requirement for at least eight out of 10 (80%) animals to seroconvert upon 

vaccination was met and the marker concept proved to work. In contrast to control animals 

that developed CSF specific lesion and were tested positive in all pathogen detection methods, 

all CP7_E2alf vaccinated animals that had seroconverted (all but animal #4) survived without 

noteworthy clinical signs, and virus isolations from all materials originating from these 

animals remained negative. Likewise, antigen ELISA results were negative throughout the 

challenge part of the trial. During necropsy, none of these animals showed signs indicative for 

CSF infection. 

Nevertheless, a short fever peak was observed in several vaccinated animals (mainly at 4 

dpc). These temperature peaks were in general not accompanied by other signs. Despite 

clinical protection and negative virus and antigen detections, viral genome was detectable in 

low quantities over a period of up to 7 days (4–10 dpc) in the majority of EDTA blood 

samples from vaccinated animals. Moderate genome loads were found in some organ 

samples, especially tonsils. This is in accordance with previous studies where limited 

replication of challenge virus was also observed [12]. Especially the high antibody titres in 

vaccinated animals seem to prevent shedding and isolation of live virus. Virus neutralization 

through antibodies also explains why tissue samples with moderate genome loads that were 

comparable or even higher than those of virus positive control animals were not detectable in 

virus isolation. This phenomenon is not only seen with CP7_E2alf vaccination but also with 

other live vaccines, even with the “gold standard” C-strain [24]. Inability to isolate virus 

despite positive RT-PCR results in the presence of antibodies is also known for experimental 

infections [22]. This limited replication may also explain the quickly rising neutralizing 

antibody titres that indicate a strong boost of immunity. In general, limited replication is also 

necessary for a clear response in the CSFV Erns-specific marker antibody ELISA that is 

necessary for reliable investigations in the framework of an emergency vaccination scenario. 

In this study, a total of 27 out of 30 animals that survived challenge infection were positive in 

the Erns ELISA by the end of the trial at 22 dpc (26 vaccinated, one unvaccinated but 

recovered). In addition, two non-reacting animals showed rising inhibition percentage values 

(32 and 29%, respectively). Based on these data, the inclusion of a doubtful range could 

probably increase the sensitivity of the marker test system under field conditions. The animals 

that stayed negative showed only low genome loads in RT-qPCR and thus almost no 
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challenge virus replication, but there was no obvious difference to other vaccinated animals 

that did react. So far, there is no indication that real-time RT-PCR positive animals with high 

antibody titres pose a risk in terms of transmission related to trade or use of products from 

such animals. The discrepancy between RT-PCR and virus isolation in general has been 

addressed in the context of CSFV after observation of quite similar phenomena in the field 

and after E2-subunit vaccination [23]. One reason for the discrepancy is the amplification of 

non-infectious viral RNA fragments by RT-PCR. Nevertheless, this point should be followed 

up in subsequent studies with the vaccine candidate. 

According to the OIE manual of diagnostic tests and vaccines for terrestrial animals, only 

unvaccinated control animals should die upon challenge infection. Taken together with the 

requirement of 80% seroconversion in vaccinated animals (see above), this request seems 

somewhat contradictory. Probably, this requirement tried to take into account that it was 

shown for live attenuated vaccines that animals without measurable antibodies were protected 

upon early challenge. However, for duration of immunity, it can be assumed that an animal 

that did not respond after six months will not be protected. This was seen with the non-

responder of this trial (animal #4). As the vaccine guidelines are mainly intended for 

intramuscularly applicable vaccines, discussion is needed regarding oral vaccines. 

In conclusion, CP7_E2alf fulfills the requirements for duration of immunity for the part of 

intramuscular vaccination. Excluding the non-responder, duration of immunity was also 

shown for oral vaccination with CP7_E2alf. 

 

5. Conclusions 

 

Within the framework of this study it was confirmed that CP7_E2alf presents a safe and 

efficacious marker vaccine against CSF. Antibody titres elicited by one shot intramuscular or 

oral vaccination were stable for at least six months and provided protection against lethal 

challenge with a highly virulent CSFV strain. Despite short fever reactions upon challenge 

accompanied by detection of small quantities of viral genome, virus could never be isolated 

from vaccinated animals (which responded with detectable antibodies). High antibody titres 

seem to lead to full virus neutralization. 

Not unexpectedly, oral vaccination proved to be more error prone than intramuscular 

vaccination. Especially for assessment of oral vaccination, OIE requirements are challenging 

and should be discussed in the future. 
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Based on OIE guidelines, intramuscular vaccination with CP7_E2alf passes the test for 

duration of immunity. Oral vaccination showed similar performance if the non-responder is 

excluded. 

Towards licensing of CP7_E2alf, further studies are needed and will be conducted, especially 

on vaccine safety. 
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Characterization of African swine fever virus Caucasus isolate in European wild boars 

 

Abstract 

 

Since 2007, African swine fever has spread from the Caucasus region. To learn more about 

the dynamics of the disease in wild boars (Sus scrofa), we conducted experiments by using 

European wild boars. We found high virulence of Caucasus isolates limited potential for 

establishment of endemicity. 

 

Introduction 

 

African swine fever (ASF) is one of the most serious diseases affecting pigs (1). The 

causative agent, African swine fever virus (ASFV), is a complex DNA virus of the genus 

Asfivirus within the Asfarviridae family. Because of its ability to replicate in Ornithodorus 

ticks, ASFV can be classified as arthropod-borne virus (2). In domestic pigs, ASFV can cause 

a wide range of clinical signs, including hemorrhagic syndromes with high lethality. Little is 

known about ASF in European wild boars, although indications exist that the animals are 

highly susceptible (3). 

In 2007, ASF affecting domestic pigs and wild boars was reported in the Caucasus region. 

The virus strain involved was related to isolates of genotype II, which are circulating in 

Mozambique, Madagascar, and Zambia (4). Especially in Russia, ASF recurs and shows a 

clear tendency to move northward (5). This unresolved situation increases the risk of 

introducing the virus into virus-free areas, and the involvement of wild boars raises special 

concerns. As seen with classical swine fever, the growing population of wild boars is 

problematic for animal disease control, particularly if the infection reaches endemicity (6). 

Therefore, knowledge about disease dynamics is vital for risk assessment and strategy design, 

particularly because no vaccine against ASF is available. 

Therefore, animal experiments were carried out at the Friedrich-Loeffler-Institut (Greifswald–

Insel Riems, Germany), and the National Research Institute for Veterinary Virology and 

Microbiology (NRIVVaMR, Pokrov, Russia). The aim was to define clinical signs, disease 

dynamics, and postmortem lesions in wild boars after intramuscular and oral infection with 

ASFV Caucasus isolates. 
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The Study 

 

The study comprised 2 experimental parts: 1) oral infection conducted at the Friedrich-

Loeffler-Institut and 2) intramuscular infection at NRIVVaMR. For oral infection, we used a 

2008 isolate from Armenia. The experiment was conducted by using 6 wild boar piglets 9 

weeks of age. Three domestic pigs were used as contact controls and were handled in the 

same manner as the wild boar piglets. The animals were kept under high-containment 

conditions. After acclimatization, the wild boars were infected orally with 2 mL of a spleen 

suspension containing 106 median tissue culture infectious dose ASFV/mL. Two days after 

infection, 3 domestic weaner pigs were added to the pen with the wild boar piglets. Starting 

from the day of infection, rectal temperature and clinical signs were recorded. Oral and fecal 

swabs were collected from the wild boars at 0, 1, 2, 3, 5, 6, and 7 days postinfection (dpi). In 

addition, blood samples were taken at 0, 2, 5, 6, and 7 dpi. Blood from the domestic pigs was 

sampled at 0, 6, 9, and 13 dpi. Necropsy was performed on all animals. 

For real-time quantitative PCR (qPCR), viral DNA was extracted by using manual and 

automated extraction methods according to manufacturer instructions. Subsequently, qPCR 

was performed according to the protocol published by King et al. (7) with slight modifications 

by using an Mx3005P PCR Cycler (Stratagene, La Jolla, CA, USA). 

For intramuscular infection, 4 wild boars 9 months of age were brought to the containment 

stables of the NRIVVaMR. One animal was inoculated intramuscularly with 1,000 

hemadsorbing units 50% of a 2009 virus isolate from the Chechen Republic, which is 

identical to the isolate used in the oral trial in all genome fragments routinely sequenced. The 

remaining animals were housed together with the infected animal as contact controls. 

Clinical signs of infection were recorded every day. Samples of visceral organs, skin, and hair 

were taken during necropsy and subjected to qPCR. Isolation of viral DNA was performed by 

using an in-house kit based on the modified method published by Boom et al. (8). The qPCR 

for ASFV detection was carried out according to the protocol published by King et al. (7) 

with a Rotorgene 6000 instrument (Corbett Research, Sydney, Queensland, Australia). 

After oral infection, an acute fatal course of the disease developed in all wild boar piglets, and 

they died within 7 days. Apart from severe depression, slight diarrhea, and reduced feed 

intake, only high fever was observed starting 3–4 dpi. During postmortem examinations, 

enlarged and hemorrhagic lymph nodes (Figure 1) and hemorrhagic gastritis (Figure 2) were 

observed. Acute fatal ASF developed in 2 of the domestic pigs 11–12 dpi of the wild boars. 

These animals died 1 week later showing severe but unspecific symptoms. One domestic pig 
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became infected later. It only showed fever at 20 dpi and was euthanized on day 25. Infection 

of this animal was clearly linked to contact with blood from a moribund pen mate. 

 

 
Figure 1. Ventral view of the head showing pathologic signs in a wild boar piglet after oral 

inoculation with 106 median tissue culture infectious dose of an African swine fever virus 

isolate from Armenia (experiment at the Friedrich-Loeffler-Institut). Note edematously 

enlarged and hemorrhagic mandibular lymph nodes. The animal died on day 7 postinfection. 

 

 
Figure 2. View of the mucosal surface of the dissected stomach showing representative gross 

lesions after oral inoculation of a wild boar with 106 median tissue culture infectious dose of 

an African swine fever virus isolate from Armenia (experiment at the Friedrich-Loeffler-

Institut). The image illustrates acute gastritis; note diffuse mucosal hemorrhages affecting a 

large part of the mucosa. The animal died on day 7 postinfection. 
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During the clinical phase of the disease, qPCR was positive for all blood samples with first 

positive results 2 dpi. Oropharyngeal and fecal swabs were positive mainly on days 6 and 7. 

An overview of the qPCR results is presented in Table 1. 

 

Table 1. Real-time PCR results of blood and swab samples after oral infection in study of 

African swine fever virus in European wild boars* 
 Days post infection of wild boar 
Animal, sample source 0 1 2 3 5 6 7 9 13 17 20 
Wild boar 1 

 

Blood No Ct ND No Ct ND 23       
Oropharyngeal swab No Ct No Ct No Ct No Ct No Ct       
Fecal swab No Ct No Ct No Ct No Ct No Ct       

Wild boar 2 

 

Blood No Ct ND No Ct ND 22 20 24     
Oropharyngeal swab No Ct No Ct No Ct No Ct 37 37 37     
Fecal swab No Ct No Ct No Ct No Ct No Ct 38 No Ct     

Wild boar 3 

 

Blood No Ct ND No Ct ND 28 22 23     
Oropharyngeal swab No Ct No Ct No Ct No Ct No Ct 38 34     
Fecal swab No Ct No Ct No Ct No Ct 37 34 33     

Wild boar 4 

 

Blood No Ct ND No Ct ND 25 26 26     
Oropharyngeal swab No Ct No Ct No Ct 37 No Ct 34 37     
Fecal swab No Ct No Ct No Ct No Ct 30 29 33     

Wild boar 5 

 

Blood No Ct ND 39 ND 25 23      
Oropharyngeal swab No Ct No Ct No Ct No Ct 39 35      
Fecal swab No Ct No Ct No Ct No Ct No Ct 29      

Wild boar 6 

 

Blood No Ct ND No Ct ND 23 24      
Oropharyngeal swab No Ct No Ct No Ct 37 No Ct 34      
Fecal swab No Ct No Ct No Ct No Ct 35 32      

Domestic pig 1, blood No Ct ND ND ND ND 39 ND No Ct 21 20  
Domestic pig 2, blood No Ct ND ND ND ND No Ct ND No Ct 23 ND  
Domestic pig 3, blood No Ct ND ND ND ND No Ct ND No Ct No Ct ND 29† 

*Ct, cycle threshold; ND, not done because of missing samples. Numbers indicate Ct values. 

†Serum sample instead of whole blood sample was used. 

 

On the third day after intramuscular inoculation, the infected wild boar showed depression, 

inappetence, and increased respiratory frequency. It died at 5 dpi showing hemorrhagic nasal 

discharge. The 3 contact animals showed similar symptoms at 8 dpi of the intramuscularly 

infected wild boar and died 2 days later. Postmortem examinations showed hemorrhages in 

multiple edematously enlarged lymph nodes, most prominent pulmonary hyperemia and 

alveolar edema, hyperplasia of the mesenteric lymph nodes, and acute gastritis with 

hemorrhages. Skin lesions were not present. 
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ASF genome was detected in the samples of visceral organs and lymph nodes of all animals. 

In samples of skin and kidneys, viral DNA was detected only in the infected animal. Results 

of qPCR are presented in the Table 2. 

 

Table 2. Real-time PCR results of organ samples taken after intramuscular infection in a 

study of African swine fever virus in European wild boars* 
Wild boar Lung Heart Spleen Lymph nodes 
1 19 19 18 19 
2 20 20 19 20 
3 21 21 20 20 
4 20 21 19 20 

*Cycle threshold values indicated. 

 

Conclusions 

 

Knowledge about disease dynamics in domestic pigs and wild boars is a prerequisite for risk 

assessment and prevention strategy design. Unfortunately, wild boar data are scarce. To 

contribute to this information, animal trials were conducted for an experimental 

characterization of recent Caucasian ASFV isolates in wild boars. 

We concluded that the Caucasian isolates are highly virulent in wild boars. Both oral and 

intramuscular infection resulted in 100% lethality. 

PCR results showed that the ASFV genome is easily detected in blood and organ samples of 

diseased animals. Swab samples were positive in the clinical phase of infection but showed 

much lower genome loads. Shedding of ASFV through nasal discharge or feces, and thus 

overall contagiousness, seems to be limited. 

Transmission to domestic pigs was delayed in comparison to transmission to wild boars. The 

most likely reason for this difference seems to be contact with blood. Although this factor 

could be observed most certainly for the contact wild boars, domestic pigs had only limited 

contact with blood. 

On the basis of these data, it seems unlikely the Caucasian isolates have the potential to 

become endemic in European wild boar populations without a distinct change in virulence. So 

far no indications exist that the virulence of ASFV is changing in affected regions in Russia. 

A risk factor for disease control could be the involvement of tick vectors. Until now, no 

indications exist that ticks are involved in ASFV outbreaks in the Caucasus region and 

Russia. Moreover, it has to be kept in mind that the wild boar’s way of life does not facilitate 
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contact with soft ticks. Nevertheless, this possibility was not examined during this study and 

needs further investigation. 
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To the Editor: 

 

African swine fever (ASF) is a serious disease that is currently affecting domestic pigs and 

wild boars in the Russian Federation. The disease is caused by African swine fever virus 

(ASFV; family Asfarviridae), and its continuing spread imposes a growing risk for 

introduction to disease-free areas with a high density of pigs and/or wild boars. We recently 

reported on the experimental characterization of ASFV Caucasus isolates in European wild 

boar piglets and juveniles (1), age classes that were deemed to be the most susceptible to 

ASFV. The extreme virulence of the virus strain led to an almost peracute disease and 100% 

mortality. On the basis of these data, a scenario of endemicity driven by chronically diseased 

animals or ASFV carriers seems unlikely. Nevertheless, ASF continues to occur in wild boars. 

The clinical course of some infectious diseases is age dependent; thus, we supplemented our 

previous study (1) with a limited study among adult wild boars to help clarify their role in the 

epidemiology of ASFV. To achieve this goal, we orally inoculated 1 boar (10 years of age), 2 

sows (4 and 5 years, respectively), and 1 boar piglet with a 3 × 106 50% tissue culture 

infectious dose of the ASFV Caucasus isolate. 

Severe, unspecific clinical signs (fever, depression, anorexia, dyspnea, ataxia) developed in 

all animals. Infection was confirmed by PCR of blood samples and fecal and oral swab 

samples obtained 6 days after inoculation. All animals died or were euthanized in a moribund 

state 8–9 days after inoculation, confirming that ASFV causes severe, acute disease and is 

fatal for 100% of infected adult European wild boars. No antibodies were detected in serum 

samples throughout the experiment. 

The available data show no indication of chronic ASF disease or ASFV carrier states among 

adult wild boars, conditions that could potentially contribute to long-term persistence of 

disease in an affected region. In terms of risk assessment, the most likely routes for the 

introduction of ASFV into wild boar populations are spillover from domestic pigs, exposure 

to ASFV-contaminated carcasses under climate conditions favoring the persistence of 

infectious virus, contact with fomites, and consumption of ASFV-contaminated animal feed. 
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5 DISCUSSION 

5.1 Classical Swine Fever control 

5.1.1 Optimization of conventional vaccination 

Vaccination is an important tool to control the spread and intensity of CSF infection among 

wild boar (Anonymous, 2010). Over the last decades several EU Member States, including 

Germany, successfully implemented oral bait vaccination using the conventional modified 

live C-strain vaccine (Kaden et al., 2000a; Kaden et al., 2003; von Rüden et al., 2008; Rossi et 

al., 2010). As C-strain vaccinated animals cannot be differentiated serologically from infected 

animals, virological monitoring during and after vaccination programs is required. In infected 

areas, all wild boar shot or found dead have to be inspected by an official veterinarian and 

examined for CSF in accordance with the EU Diagnostic Manual (Anonymous, 2002a; 

Anonymous, 2010). Up to now, virus isolation and antigen ELISA have been routinely 

implemented for these investigations in combination with antibody ELISA to monitor 

seroprevalence. In the framework of emergency vaccination campaigns among European wild 

boar in two German Federal States in 2009, routine pathogen detection at regional level had 

shifted to modern, highly sensitive PCR applications. Using a CSFV specific rRT-PCR 

several vaccine virus detections occurred. This can be explained by the fact that vaccination 

using any live vaccine is accompanied by limited replication of the vaccine strain in the host, 

that is usually not detectable by virus isolation or antigen ELISA. In contrast, highly sensitive 

molecular techniques are able to detect viral nucleic acid for a limited period of time in blood 

and organ samples from replication sites (Koenig et al., 2007a). To ensure that restrictions 

and measures implemented after a CSF outbreak among wild boar with subsequent 

emergency vaccination are not unnecessarily prolonged, rapid differentiation of virus 

detections is required. Therefore, a genetic DIVA strategy was implemented at the German 

National Reference Laboratory for CSF based on a recently published multiplex rRT-PCR 

allowing differentiation of field virus infected from C-strain vaccinated animals (Leifer et al., 

2009a).  

This approach presents a first proof of principle for the implementation of a “genetic DIVA” 

strategy in the field, a concept first described by Beer et al. (2007). In fact, more than one 

third of samples coming from the affected region could be confirmed as vaccine virus 

detections (Blome et al., 2011). 



Discussion 

94 

So far, a genetic DIVA concept was only used for scenarios with wild boar immunization, but 

in general, it could be employed also in the framework of (emergency) vaccination campaigns 

in domestic pigs. Here, the approach could be part of a strategy to release animals from the 

restriction zones for slaughter after testing their freedom from CSFV by rRT-PCR. These 

strategies are currently under discussion among EU Member States and trade partners. 

However, combining a highly efficacious modified live vaccine with a genetic DIVA concept 

seems to be the limit of optimization for conventional vaccines. As the use of these vaccines 

does not permit serological DIVA, the effect of vaccination can hardly be evaluated and the 

detection and differentiation of field virus induced antibodies is impossible. Thus, new 

generations of live marker vaccines are of paramount importance for long-term disease 

control. In this context, the chimeric pestivirus “CP7_E2alf” proved to be a most promising 

candidate for vaccination of domestic pigs and wild boar (Reimann et al., 2004; Koenig et al., 

2007b), and was chosen for further evaluation towards licensing. 
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5.1.2 Assessment of marker vaccine candidate CP7_E2alf 

During the last decades, a vast number of CSF marker vaccine candidates have been 

developed, and research activities mainly focused on new innovative ideas and their 

realization (Dong and Chen, 2007; Beer et al., 2007). The ultimate goal, however, must be 

licensing of these candidates, making them an available tool for control. Therefore, an 

approach started in the framework of the EU funded FP7 project “Improve tools and strategies 

for the prevention and control of classical swine fever” (CSFV_goDIVA, KBBE-227003). 

After extensive comparative trials with two promising candidates in comparison with the 

“gold standard” C-strain (Blome et al., 2012a), chimeric pestivirus CP7_E2alf was chosen as 

candidate for authorization. Trials required by the European Pharmacopoeia (monograph 

07/2008:0065) and the OIE Manual (OIE, 2008b) were distributed among the project partners. 

Our studies comprised innocuousness for target and non-target species and different aspects 

of efficacy including duration of immunity (König et al., 2011; Gabriel et al., 2012). 

Innocuousness in ruminant species, especially cattle, is a prerequisite to embed a chimeric 

vaccine based on a BVDV backbone into a CSF control strategy especially in a country with 

mandatory BVDV control. In several EU Member States including Germany, vaccine virus 

transmission would have a high impact. Studies on the cell tropism of the engineered chimeric 

virus already showed an almost complete shift towards porcine cell lines (Reimann et al., 

2004). In the presented study we demonstrated that oral inoculation with high titers of 

CP7_E2alf did not lead to virus detection or even seroconversion in cattle, goats, sheep, and 

rabbits (König et al., 2011). The latter were included as seroconversion had been reported in 

free-ranging German rabbits (Frölich and Streich, 1998). Apart from innocuousness in non-

target species, no adverse effects were seen in target animals after both oral and intramuscular 

vaccination (domestic pigs and wild boar). Moreover, no indications exist that vaccine virus 

shedding occurred (König et al., 2011). As the vaccine is intended also for oral immunization 

of wild boar, baits will be distributed in the field. It is known from C-strain vaccination that 

despite covered distribution bait uptake by non-target species, especially badgers, mustelids, 

foxes, and raven, is quite frequently observed (Sophie Rossi, ONCSF, France, unpublished 

data). Thus, contact with vaccine virus cannot be excluded for other wildlife species. In 

general, it can be assumed that the reaction of wild ruminant species should be comparable to 

domestic ruminants and for this reason, the risk of replication and perpetuation of vaccine 

virus seems negligible. As neither BVDV nor CSFV replicates in species other than cloven-
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hoofed animals, carnivores, birds, and other wild animals should not play a role. Nevertheless, 

additional studies could complement our data. 

Besides studies on innocuousness and safety, several animal trials were carried out to assess 

the efficacy of the CP7_E2alf vaccine candidate. As both European Pharmacopoeia and OIE 

guidelines request challenge infection with a highly virulent CSFV strain, the well 

characterized strain “Koslov” was used as a standard. Like the “Alfort” strain, donor of the E2 

of CP7_E2alf, “Koslov” belongs to genotype 1.1. The challenge model proved to be suitable 

in several trials in different laboratories. Moreover, it was valid for all age classes of domestic 

pigs as well as European wild boar. This approach has the disadvantage that genotype 1.1 

does not present the current field situation in Europe, where moderate virulent strains of 

genotype 2 prevail. For this reason, a collaborative study was undertaken with the EU 

Reference Laboratory for CSF in Hannover using the recent 2.3 “Rösrath” strain from 

Germany (Leifer et al., 2010b) for challenge infection in intramuscularly vaccinated domestic 

pigs and orally vaccinated wild boar (poster presentation at the 8th ESVV Pestivirus 

Symposium in Hannover, 2011), and a 2.1 isolate from Israel (CSF1047) in intramuscularly 

vaccinated domestic pigs (unpublished data, manuscript in preparation). Efficacy was 

confirmed for all tested genotypes. Thus, not only protection against highly virulent challenge 

but also field suitability was proven. 

Supplementing these studies, we conducted a study on the duration of immunity according to 

the OIE Manual, which requires a duration of immunity of at least 6 months (Gabriel et al., 

2012). In detail, eight out of ten pigs vaccinated once with one vaccine dose should 

seroconvert, and only the two unvaccinated controls should die upon highly virulent 

challenge. These requirements were fulfilled for intramuscular vaccination. Due to the fact 

that one out of fifteen animals did not respond to oral vaccine application, the criterion that 

only unvaccinated animals should die was not met by oral vaccination. In fact, a non-

responder has to be regarded as unvaccinated. Given the fact that all animals that 

seroconverted showed stable antibody titers and full protection against challenge with a CSFV 

strain of exceptionally high virulence, our data suggest that CP7_E2alf is comparable to C-

strain vaccine (Kaden and Lange, 2001) or E2 subunit marker vaccine (de Smit et al., 2001b) 

in terms of duration of immunity. 

If the criteria for a perfect marker vaccine as postulated by Dong and Chen (2007) would be 

used to assess CP7_E2alf, almost all demands are met. 

First, it is postulated that a perfect marker vaccine should be safe and innocuous in target and 

non-target animals. Important data have already been compiled (König et al., 2011), and 
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further safety studies in pregnant animals are currently under execution (Berta Alberca, Pfizer 

Animal Health, Spain, personal communication). So far, no negative effects on gestation were 

reported. In order to generate data for regulatory submission at the European Medicines 

Agency (EMA), safety regarding local and systemic reactions upon vaccination is currently 

assessed under field-like conditions in a trial according to Good Clinical Practice (GCP) 

guidelines using a pilot vaccine batch produced under Good Laboratory Practice (GLP) 

conditions. 

Furthermore, a marker vaccine that could be used in all possible scenarios must induce 

reliable protection against horizontal transmission within a short time. This criterion is met by 

vaccine candidate CP7_E2alf as was seen in previous studies (Leifer et al., 2009b; Blome et 

al., 2012a) and the studies presented here (Gabriel et al., 2012). Full protection also includes 

the block of transmission to susceptible animals. Previously, the “gold standard” C-strain was 

reported to induce sterile immunity (Dahle and Liess, 1995; van Oirschot, 2003b). However, 

this hypothesis needs to be revised. As seen in the framework of routine diagnostics of wild 

boar samples from areas with C-strain emergency vaccination, the implementation of highly 

sensitive molecular techniques enables detection of limited virus replication, which 

previously could not be observed by the use of virus isolation or antigen ELISA. Likewise to 

the detection of C-strain vaccine virus in the scenario mentioned above, rRT-PCR assays were 

able to detect a limited challenge virus replication even in C-strain vaccinated animals (Blome 

et al., 2012a). The same is true for other live modified vaccines including CP7_E2alf. In 

vaccinated and challenged animals, detection of viral nucleic acid was not accompanied by 

detection of infectious virus or shedding and for this reason does not present a risk (Gabriel et 

al., 2012). The strong antibody response suggests that challenge virus is rapidly neutralized. 

Another demand is protection against a broad range of viral variants. As discussed above, 

CP7_E2alf confers protection against recent field strains of genotypes 2.1 and 2.3 as well as a 

highly virulent strain of genotype 1.1. Moreover, an important parameter is induction of 

protection against vertical transmission. For CP7_E2alf, preliminary studies suggest that 

vaccination completely prevents vertical challenge virus transmission (Gábor Kulcsár, CAO-

DVMP, Hungary, personal communication). Throughout the studies, safety and easiness of 

application could be shown. 

Discussions are necessary in terms of consumer protection. CP7_E2alf was recently 

downgraded to S1 status (no risk for the environment, animals and humans) by the German 

central committee for biological safety (ZKBS) based on all available data. Nevertheless, 
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acceptance of a genetically engineered organism is still controversially discussed and the 

authorization process will require additional data. 

A crucial criterion is reliable differentiation of infected from vaccinated animals (DIVA), 

accompanied by a reliable test system for disease surveillance and confirmation. The test 

system used in this framework is a commercially available competitive Erns ELISA (de Smit, 

2000) which was initially developed as discriminatory test for E2 subunit vaccines 

(PrioCHECK® Erns ELISA, formerly Ceditest Marker®). During evaluation of this test system, 

reduced sensitivity and specifity compared to conventional E2-based antibody ELISAs was 

reported (Floegel-Niesmann, 2001). So far, the test system was optimized and evaluated in the 

framework of the presented duration of immunity study. Here, non of the sera collected before 

challenge infection scored false positive, and 90% of the surviving animals became positive 

on day 22 post challenge, albeit a wide range of inhibition values was observed (Gabriel et al., 

2012). However, it must be stated that the CSFV Erns glycoprotein is less immunogenic than 

the major immunogen E2 glycoprotein. Based on our rRT-PCR data, it can be suggested that 

the negative results may be due to a very low Erns antibody response linked to almost no 

challenge virus replication (Gabriel et al., 2012). Therefore, negative results may be 

interpreted incorrectly as “false negative”. Concluding, the current discriminatory marker 

ELISA is suitable for a diagnosis on a herd basis. Attempts for further enhancement are 

ongoing (Gerard van de Wetering, Prionics Leylystad, personal communication), and 

additional test systems are under development. 

Based on the available data, CP7_E2alf presents a vaccine candidate with outstanding 

efficacy and safety that is comparable to the “gold standard” C-strain. Nevertheless, for 

successful implementation, the CP7_E2alf vaccine needs to be embedded in a suitable control 

strategy. 
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5.2 African Swine Fever 

5.2.1 Characterization of a recent Caucasian isolate in wild boar 

Since 2007, ASF, a so far rather exotic disease with a CSF-like clinical picture, poses a threat 

to the EU and other free areas. After the introduction into Georgia and other Trans-Caucasian 

Countries, the disease is constantly spreading on the territory of the Russian Federation and 

affects both domestic pigs and wild boar. In northwestern direction, it already reached the 

regions of Murmansk, Saint Petersburg, and Karelia. Moreover, it also moved southward, 

reaching Iran in 2008, where it concerned the wild boar population (Rahimi et al., 2010). 

Especially the involvement of wild boar raises concern. As was seen with CSF, infected wild 

boar populations can seriously hamper disease control and act as source of infection for 

domestic pigs (Fritzemeier, 1998; Anonymous, 2010). Taking into account the high wild boar 

density in several EU Member States, especially Germany (the official hunting bag 2010/11 

was 585.244 animals (Anonymous, 2012)), it is understandable that an ASF introduction 

would mean a worst case scenario for disease control. Without the option of vaccination, 

eradication could be almost unachievable. Although the involvement of tick vectors is 

unlikely for many regions, it could add to the complexity of the problem where it occurs. 

Course and outcome of the infection would depend amongst other factors on the virulence of 

the ASFV strain involved and the clinical course seen in affected animals. In the past, 

European wild boar were involved in ASF outbreaks on the Iberian Peninsula and Sardinia, 

and a wide range of clinical courses of disease was observed. However, no data were 

available on disease dynamics in European wild boar caused by the recent Caucasian ASFV 

isolates. 

Regarding the clinical course, we found an acute disease linked with 100% mortality (Gabriel 

et al., 2011). An age dependence, as it is often seen for CSF and several other infectious 

diseases of wild boar, could not be observed (Blome et al., 2012b). A field report from Iran 

confirmed these first findings (Rahimi et al., 2010). Based on these data, it seems unlikely 

that chronic infections or carrier states appear which could contribute to long-term persistence 

in affected populations. However, it is an acknowledged fact that monitoring and 

understanding a disease in an open ecosystem is rather a complex exercise. This is due to the 

high number of parameters that influence the system e.g. the population structure and 

dynamics, the population size, and their unknown immunological status (Anonymous, 2010). 
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Despite our findings and assumptions, outbreaks among wild boar keep occurring in the 

Russian Federation. This contrasts past experiences with CSF outbreaks in Europe in the 

1960s where highly virulent CSFV strains in a wild boar population with lower density 

showed a self-limiting dynamic (Hone et al., 1992). However, in recent decades also CSF 

epidemics often turned into endemics. Here, CSFV isolates were of moderate virulence, and 

confronted an increasing density and population size of wild boar. Interaction of viral and 

host factors led to persistence in the European wild boar population (Lange et al., 2012). 

Similar findings are reported from ASF outbreaks on the Iberian Peninsula and Sardinia, 

where epidemics also turned to endemic situations (Pérez et al., 1998; Jori and Bastos, 2009; 

Giammarioli et al., 2011; Mur et al., 2012). However, the factors contributing to the change in 

behavior remain unclear. Factors could be the evolution of strains with altered sequence or 

virulence characteristics, but so far, the Caucasian ASFV proved to be stable both in terms of 

virulence and genome sequence (Alexander Malogolovkin, NRIVVaMR, Russia, personal 

communication). Other factors could be human interventions such as swill feeding, disposal 

of dead pigs in wild boar habitats and semi-wild pig rearing. In-detail evaluation of the 

current situation and its key players is needed for reliable risk assessment. 
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5.3 Conclusions and outlook 

Implementation of a genetic DIVA strategy accompanying oral immunization campaigns of 

wild boar in Germany proved that the concept is both practicable and reliable. The concept 

can be easily transferred to emergency vaccination scenarios in domestic pigs. A similar 

approach could be developed for other live attenuated vaccines including conventional 

vaccine strains and new generation marker vaccines such as CP7_E2alf. For the latter, 

molecular techniques are already described and were used under laboratory conditions (Leifer 

et al., 2009a). 

In several laboratory trials, CP7_E2alf was comparable to the “gold standard” C-strain. It 

combines its outstanding efficacy and safety with a reliable serological marker system that 

ensures feasibility for emergency vaccination campaigns not only in wild boar but also in 

domestic pigs. Council Directive 2001/89/EC includes the provision that products from 

marker vaccinated animals could be exempted from trade restriction. Thus, emergency 

vaccination becomes a true option in case of CSF outbreaks in countries with industrialized 

pig production. To obtain market authorization, further studies under laboratory and field 

conditions are still needed. Nevertheless, it seems feasible that CP7_E2alf will soon be 

commercially available. 

African swine fever has become a serious threat to European pig farming and the wild boar 

population. Introduction through illegal import of pork products, transport vehicles that did 

not undergo proper disinfection, and contact to infected swill can occur at any time. 

Especially the lack of a vaccine would implicate disastrous consequences especially for 

affected wild boar populations. Although our studies confirmed very high virulence of the 

Caucasian ASFV isolate for European wild boar, the outcome of such an introduction depends 

on a vast number of interacting factors. In conclusion, research towards a vaccine against 

ASF, preferably also applicable for oral vaccination, is of paramount importance. 
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6 SUMMARY 

Classical and African swine fever are highly contagious, notifiable viral diseases affecting 

different members of the Suidae family, both showing tremendous impact on animal health 

and pig production. 

Optimization of CSF control strategies comprised two different approaches. In a first step, the 

current strategy of oral immunization of wild boar using a conventional C-strain vaccine was 

supplemented with the implementation of genetic DIVA using a recently developed multiplex 

rRT-PCR assay. This approach facilitates a rapid and reliable differentiation of field virus 

infected from C-strain vaccinated wild boar, and thus presents a promising tool also for 

emergency vaccination scenarios in domestic pigs. However, the use of conventional 

modified live vaccines like the C-strain does not allow serological differentiation of infected 

from vaccinated animals which is a prerequisite for modern disease control. 

Therefore, the second part comprised the evaluation of the new generation marker vaccine 

CP7_E2alf to generate data for the authorization process. In the framework of the presented 

studies, innocuousness in calves, goats, lambs, and rabbits as well as safety in domestic pigs 

and wild boar was proven. Moreover, protection against lethal CSF challenge infection after 

oral and intramuscular vaccination of domestic pigs was investigated, and confirmed for a 

duration of at least 6 months. Furthermore, CP7_E2alf proved outstanding efficacy against 

challenge infection of domestic pigs and wild boar with a highly virulent CSFV strain of 

genotype 1.1 and an isolate of genotype 2.3 representing strains currently prevalent in Europe. 

Candidate CP7_E2alf showed all virtues of a safe and efficacious marker vaccine against CSF 

that would be suitable for intramuscular vaccination of domestic pigs and oral vaccination of 

wild boar. For this reason, licensing of CP7_E2alf will be beneficial for future CSF control. 

African swine fever, one of the most important differential diagnoses of CSF, is currently 

affecting domestic pigs and wild boar on the territory of the Russian Federation. So far, the 

outbreak situation could not be resolved and the disease constantly spreads towards the EU. 

Disease dynamics, especially regarding wild boar, are almost unknown. For this reason, 

circulating ASFV isolates were characterized for the first time in animal experiments in 

European wild boar of different age classes. As an exceptionally high virulence was observed 

in all age classes of animals, endemic situations driven by chronically infected animals or 

carriers seem unlikely. 
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7 ZUSAMMENFASSUNG 

Sowohl die Klassische als auch die Afrikanische Schweinepest sind hoch ansteckende, 
anzeigepflichtige virale Erkrankungen der Suidae. Ausbrüche dieser Erkrankungen sind mit 
immensen Auswirkungen auf die Tiergesundheit und Schweineproduktion verbunden. 
Die Optimierung der Kontrollstrategien gegen die KSP umfasste zwei verschiedene 
Herangehensweisen. In einem ersten Schritt wurde die gegenwärtige Strategie der oralen 
Immunisierung von Wildschweinen mit einer C-Stamm basierten Vakzine durch die Nutzung 
einer unlängst entwickelten multiplex rRT-PCR ergänzt. Dieser Ansatz ermöglicht eine 
schnelle und verlässliche Differenzierung zwischen Feldvirus-infizierten und C-Stamm 
geimpften Wildschweinen und stellt damit auch ein vielversprechendes Instrument für die 
Notimpfung von Hausschweinebeständen dar. Nichtsdestotrotz erlaubt der Einsatz 
konventioneller Lebendvakzinen wie des C-Stammes keine serologische Differenzierung 
infizierter und geimpfter Tiere, was eine Grundvoraussetzung moderner Impfkonzepte 
darstellt. 
Aus diesem Grund wurde im zweiten Teil der Markerimpfstoff CP7_E2alf evaluiert, um 
Daten für den Lizensierungsprozess zu erheben. Im Rahmen der präsentierten Studien wurde 
sowohl die Unbedenklichkeit für Kälber, Ziegen, Schaflämmer und Kaninchen als auch die 
Sicherheit für Haus- und Wildschweine gezeigt. Es konnte zudem bestätigt werden, dass nach 
oraler und intramuskulärer Impfung von Hauschweinen ein mindestens 6-monatiger Schutz 
gegenüber einer letalen Belastungsinfektion besteht. Die hervorragende Schutzwirkung 
konnte sowohl für eine Belastungsinfektion mit einem hochvirulenten KSPV-Stamm vom 
Genotyp 1.1 als auch für eine Belastungsinfektion mit einem Isolat des Genotyps 2.3 gezeigt 
werden. Virusstämme dieses Genotyps sind zur Zeit in Europa vorherrschend und 
repräsentieren somit die Feldsituation. Der Impfstoffkandidat CP7_E2alf zeigte alle Vorzüge 
eines sicheren und effizienten KSP-Impfstoffes für die intramuskuläre Impfung von Haus- 
und die orale Impfung von Wildschweinen. Aus diesem Grunde wird die Lizensierung von 
CP7_E2alf für die zukünftige Kontrolle der KSP vorteilhaft sein. 
Die ASP gehört zu den wichtigsten Differentialdiagnosen der KSP. Gegenwärtig sind von 
dieser Erkrankung sowohl Haus- als auch Wildschweine auf dem Gebiet der Russischen 
Föderation betroffen. Bisher ist es nicht gelungen, die Ausbrüche zu kontrollieren, und die 
Seuche breitet sich konstant aus und droht die EU zu erreichen. Die Dynamik der Erkrankung 
ist vor allem in der Schwarzwildpopulation weitgehend unbekannt. Daher wurden erstmalig 
die aktuellen ASPV-Isolate in Tierversuchen mit Europäischen Wildschweinen 
unterschiedlicher Altersklassen charakterisiert. Die außerordentlich hohe, vom Alter der Tiere 
unabhängige Virulenz, die im Rahmen dieser Untersuchungen gezeigt wurde, macht eine 
durch chronisch erkrankte bzw. persistierend infizierte Tiere entstehende Endemiesituation 
unwahrscheinlich. 
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9 ABBREVIATIONS 

ASF  African swine fever 

ASFV  African swine fever virus 

BDV  Border disease virus 

BVBV  Bovine viral diarrhea virus 

cDNA  Complementary deoxyribonucleic acid 

C-strain Chinese vaccine strain 

CSF  Classical swine fever 

CSFV  Classical swine fever virus 

DIC  Disseminated intravascular coagulation 

DISC  Defective in second cycle 

DIVA  Differentiation of infected from vaccinated animals 

DNA  Deoxyribonucleic acid 

EFSA  European Food Safety Authority 

ELISA  Enzyme-linked immunosorbent assay 

EMA  European Medicines Agency 

EU  European Union 

FAT  Fluorescent antibody test 

GCP  Good Clinical Practice 

GLP  Good Laboratory Practice 

GM-CSF Granulocyte macrophage colony-stimulating factor 

GPE-  Japanese guinea-pig exaltation-negative strain 

HAT  Hemadsorption test 

HCLV  Chinese hog cholera lapinized virus 

IFT  Immunofluorescence test 

IL  Interleukin 

IPT  Immunoperoxidase test 

LAMP  Loop-mediated isothermal amplification 

LPC  Lapinized Philippines Coronel strain 

mpV  Mono-peptide vaccine 

mPV  Multi-peptide vaccine 

NS  Non-structural protein 
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NT  Neutralization test 

NTR  Non-translated region 

OIE  Office International des Épizooties, World Organisation for Animal Health 

ORF  Open reading frame 

PAF  Platelet-activating factor 

PBMC  Peripheral blood mononuclear cell 

PriProET Primer-probe energy transfer 

RNA  Ribonucleic acid 

rRT-PCR Real-time reverse transcription polymerase chain reaction 

RT-LAMP Reverse transcription loop-mediated isothermal amplification 

RT-PCR Reverse transcription polymerase chain reaction 

spp.  Species pluralis, several species 

TNF-α  Tumor necrosis factor-alpha 

USA  United States of America 

VP  Virion protein 

ZKBS  Zentrale Kommission für die biologische Sicherheit, German central 

committee for biological safety 
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