Laboratory and Field Text in INVERTEBRATE ZOOLOGY

S. F. LIGHT

ASSOCIATED STUDENTS STORE UNIVERSITY OF CALIFORNIA

INTRODUCTION

No picture of organisms which ignores their physical and organic environment can be even approximately complete. Studies of dead animals or their parts or even of living animals in the laboratory, valuable and indispensable as they are, give but partial pictures. In the studies here contemplated we seek a firsthand knowledge of living invertebrate animals in their natural setting, their behavior and interrelations, their distribution within the habitat, the influence of physical conditions on this distribution and the correlation between their structures and their behavior patterns on the one hand and the places they occupy in the environment on the other.

Field trips are naturally of prime importance in such studies. The more time spent in actual study of animals in the field the better. Under most circumstances these periods must each be confined to a part of a day. Experience has amply proved, however, that continuous studies over a period of days increases the values received out of all proportion to the time spent. Appendix A gives specific information with regard to field trips and the schedules of such trips during the spring and summer courses at Berkeley.

Such a field study might be thought to require previous courses designed to give the student a knowledge of the animals which make up the faunas to be studied. Certainly the animals must be recognized and known by name if their behavior and ecologic distribution is to be studied. In practice it is usually necessary and perhaps more advantageous to combine this type of study with the field study.

This portion of the work involves the laboratory. It falls naturally into four phases (1) the study of those external characters of the various animal types which are used for their classification and identification, (2) preliminary practice in the use of keys for the identification of some member of each group, (3) a study of demonstration sets previous to field trips to give a preliminary knowledge of the important animals to be expected in the particular fauna, and (4) the identification of animals collected on the field trips.

THE IDENTIFICATION OF INVERTEBRATE ANIMALS

A necessary preliminary to the study of any animal is the determination of its scientific name or authentic common name. This is necessary if only to make possible the satisfactory designation of the animal in conversation or in class exercises. A correct determination is especially important, of course, if the animal is to be made the subject of a scientific investigation, since in no other way can the facts be made available to others.

Few students of zoology realize the difficulties involved in identifying with certainty most species of animals, particularly the species of many of the numerous groups known collectively as invertebrates. A relatively few species are readily recognized because of distinctive color, pattern, or structure. Such an animal, for example, is the striped shore crab, *Pachygrapsus crassipes*, which is abundant in rocky crevices above low-tide mark along the Pacific Coast. In many other cases, however, identification can only be approximated by the beginner, and in still others even the specialist will find difficulty in making identification. These difficulties are aggravated on the Pacific Coast by the fact that the study of many groups of invertebrates has been greatly neglected. During the period when systematic work was the vogue in zoology, there were very few zoologists on this coast. With the change in emphasis in zoology these have largely abandoned this field and few others have entered it. For a few groups such as the Amphipoda, and the littoral copepods, the fauna of the Pacific Coast is largely unknown. In other groups a considerable amount of work has been done, but much remains to be done.

Some groups, such as the decapod Crustacea, the marine Mollusca and the echinoderms, are fairly well known to systematists. Even here there remains much need for complete and careful systematic revision and monographing. But when all this has been done there will be necessary still another step if this information is to be available to students of zoology or biology not specialists in the particular groups, and also to the intelligent laymen. This is the production of manuals of faunas, containing brief diagnostic descriptions and keys to the species, illustrated, if possible, and accompanied by careful definitions of terms.

Familiar works of this type are the floras of various regions and in the various mammals for the identification of birds. <u>A Manual of the</u> <u>Common Invertebrate Animals</u>, by H. S. Pratt (Blakiston), is an attempt at such a manual for the identification of the invertebrate animals of the United States. Because of the imperfect knowledge of the local fauna, the first edition was of very little value for identification of the invertebrates of the Pacific Coast. The new edition (Blakiston) is better, but still reflects the difficulties arising from the scope of such an attempt and the lack of available information with regard to the invertebrates of the Pacific Coast.

<u>Freshwater Biology</u>, by Ward and Whipple, represents a more satisfactory attempt in this direction for the animals of the United States which inhabit fresh water. Since many of these tend to be widely distributed, the Pacific Coast species are better covered. In addition, this work includes valuable discussions of the biology of the different groups, as well as directions for their collection and study. Here again, however, there is great need for revisions of the various groups and a new edition is to be hoped for. Every student or teacher of zoology should own this book when the new edition is available.

<u>Seashore Animals of the Pacific Coast</u>, by Johnson and Snook, represents the only attempt at a comprehensive treatment of our local marine invertebrates. It is a valuable contribution and it also should be in the library of every student or teacher of zoology or biology located on the Pacific Coast. Its excellent illustrations make possible the definite identification of certain common forms, but the absence of keys or any comprehensive treatment of the various groups makes it impossible to use it as a manual. Indeed, the lack of completeness of our knowledge makes it impossible to produce such a general manual at the present time, and if the knowledge were available it could not be compressed within the limits of a single volume.

<u>Between Pacific Tides</u>, by Ricketts and Calvin, published by the Stanford University Press, will be of great value to students of the

INTRODUCTION

invertebrates of the Pacific Coast and its reading is required of all students in this course. While it will not serve as a manual for the identification of animals it will give a valuable picture of faunas characteristic of the major environments of the seashore in this area, and its excellent illustrations in conjunction with references to classification lists will make possible the identification of many common animals.

Fortunately we have a slowly increasing number of well-illustrated, authentic monographs on separate groups of California invertebrates. Such are: Schmitt, <u>The Marine Decapod Crustacea of California</u> (1921, University of California Publications); Coe, <u>Revision of the Nemertean Fauna of the Pacific Coasts of North, Central, and Northern South America</u> (1940, University of Southern California Press); Fraser, <u>Hydroids</u> <u>of the Pacific Coast</u> (1937, The University of Toronto Press), and others. Some of these are in need of revision and others are too technical to be available to the student involved in such a study as this.

As mentioned in the preface, the <u>Illustrated Key to West American</u> <u>Pelecypod Genera</u>, by Keen and Frizzell (1939, Stanford University Press), is an excellent example of what can and should be done in this field. Students are encouraged to obtain and use this valuable work. Unfortunately it stands practically alone and even it leaves the species undetermined.

It will be seen, therefore, that if the invertebrate fauna of a given area of the Pacific Coast is to be used for field studies, it becomes necessary, as a temporary measure, at least, to develop keys to aid in the identification of the species concerned. Such is the purpose of the keys here given, which are tentative, in many cases requiring to be corrected and amplified as our knowledge increases. It will be noted that in numerous instances the determinations are only to genus, and in some cases even only to the family. This may be because there is only one species concerned in the area, and the burden of scientific names to be learned may be thus reduced, or because either the knowledge is lacking to carry the identifications further, or the identifications are too difficult for any except the specialist.

It cannot be too strongly emphasized that keys are short-cuts and often very misleading; that their function is merely to clear the way to an approximation, and that identifications made by them, if to be of scientific value, must be reinforced by comparisons with descriptions and illustrations in monographs, if such exist, or by comparisons with authentic named specimens, or by submission to a specialist.

The first two methods are available in a course such as the one for which these keys are designed. Comparison with named specimens should be considered as a last resort, however, since such named collections are rarely available and the gaining of experience in the use of keys and works of reference is one of the important opportunities offered by the course.

A list of the publications and manuscripts most available for verification or identifications of species of Pacific Coast invertebrates will be found at the end of this volume.

THE USE OF SCIENTIFIC NAMES

A scientific name consists of the name of the genus (capitalized) followed by the name of the species (rarely capitalized by zoologists and then because it is derived from a proper noun) followed by the name of the original describer. The name of the author is properly placed in parentheses if the generic name used is not that used at the time of the original description, thus *Hemigrapsus nudus* (Dana). This usage is under discussion at present and it has not been followed for all groups discussed in this text. For the sake of convenience, the name of the describer may be omitted in our use of scientific names but should always appear on properly labeled specimens.

The genus name may be used alone, the specific name never, unless it has already been used with the generic name on the same page. Both generic and specific names should be underlined. This indicates italics to the printer and is of value in picking out the scientific names in manuscript.

Great pains should be taken to spell scientific names correctly. The correlation between careless, unscientific work, and careless use of scientific names is very high.

THE USE OF COMMON OR VERNACULAR NAMES

Common or vernacular names are convenient but have many disadvantages. The rule of priority fixes the correct scientific name, which is universal. Common names are local since there are no rules to determine which of many such names is the correct name, and the same name may be applied to very different species or types in different regions, or by different persons in the same region. Vernacular names of American birds and certain other groups of vertebrates are relatively uniform owing to the united action of the workers in these fields, but no such authentic common names exist for invertebrates.

It is necessary to make a sharp distinction between these two types of names and to use the vernacular name only after having connected it with the scientific name. Thus *Hemigrapsus nudus* will be known to or identifiable by all zoologists, but the purple shore crab would have no meaning or a different meaning in areas in which *H. nudus* is not found or even in certain parts of the range of that particular species.

LABORATORY STUDIES

In this section materials are presented for the study, classification, and identification of the invertebrate animals generally encountered in the progress of the course. This material is arranged under the headings of the various phyla of invertebrates considered. In general, the consideration of each group includes (1) a laboratory exercise acquainting the student with the general characters of the animals and explaining terms used in the identification keys, (2) a key or keys for the identification of specimens, and (3) a list of genera and species which have been encountered in the localities visited in the course, giving for each the full scientific name if it has been definitely determined.

A careful study of the external anatomy of many types in each group as well as of the internal anatomy would be an ideal preparation for the use of keys in the identification of animals. Time does not permit such an approach within the limits of this course. Some knowledge of those characters, chiefly external, which are of taxonomic significance and are commonly used in keys and descriptions is, however, an absolutely necessary prerequisite to any successful attempt at identification such as will be necessary in the faunal surveys and ecological studies to be initiated later in the course.

The rapid studies of various groups outlined below are designed to furnish this knowledge of characters of taxonomic importance in so far as the very brief time available makes possible and must be entered upon with this purpose in mind. They must by no means be considered as an attempt at any complete study of the external anatomy. A copy of some text dealing with the group concerned will be a valuable adjunct to such studies. Some such texts are (1) <u>Invertebrata</u>, by Borradaile and Potts; (2) <u>A Text Book of Zoology</u>, Parker and Haswell, Vol. 1; (3) <u>College</u> <u>Zoology</u>, by Hegner.

Each such study should be followed by the use of keys and the consultation of specific descriptions in the publications listed at the end.

THE TAXONOMY OF THE INVERTEBRATES

The invertebrates include a large number of diverse types of animals including all but one of the phyla of the animal kingdom and even some of the branches of that one phylum (Chordata). The classification of this assemblage is therefore of cardinal importance in the study of the invertebrates. It is, however, also a matter of considerable controversy. The student must be prepared to find that different writers use different systems of classification. These differences are chiefly of two sorts: first, the using of different names for the same group, and second, the placing of the same group in different systematic categories, as, for example, the designation of a group as a class by one writer, but as an order by another. Discrepancies of the second sort are so abundant that in some cases it is advisable not to have a fixed concept of the taxonomic rank of s certain group, but rather to remem-

LABORATORY AND FIELD TEXT IN INVERTEBRATE ZOOLOGY

ber only that it is a part of a certain superior group and can be divided into a number of subordinate groups. Thus it is not so important that one decides whether the Crustaceae is a subphylum or a class as it is that one knows that it is a major division of the Arthropoda and that it includes the Malacostraca, Copepoda, etc. Appendix B gives a synopsis of the classification used in this course. This agrees most closely with that used by Borradaile and Potts, <u>Invertebrata</u>, and in most features with that of Hyman, <u>Invertebrates</u>.

DIRECTIONS FOR THE STUDY OF THE VARIOUS GROUPS OF INVERTEBRATES

PHYLUM PORIFERA (THE SPONGES)

References: de Laubenfels, 1932; Hyman, 1940

<u>Terminology and Instructions for Study</u>.—The sponges are structurally primitive animals, very ancient as a group and only distantly

Fig. 1.—Surface of portion of encrusting sponge showing oscula (after Guberlet).

related to the animals of other groups. They are multicellular but have attained relatively little histological differentiation either as regards cell types or their integration in layer and organs. Organs can hardly be said to exist, and whole tissues characteristic of higher animals are lacking, such as nervous and muscular tissues. Specialized gland cells also are few or lacking. Indeed the body consists (fig. 2,A) of a rather loose mesenchyme, which produces the skeletal elements, covered by external and internal layers of cells so loosely organized as to be called epithelium only by courtesy.

The sponges are in contrast to all higher animals also in that they lack a true mouth, the body being pierced by numerous minute incurrent pores connecting with canals and cavities through which water flows to reach the outside by larger openings (figs. 1, 2) known as oscula (singular osculum). These features, as well as the characteristic digestive cells, the choanocytes, are well seen in a schematic diagram of the simplest type of sponge (fig.

2,A) such as is exemplified by *Leucosolenia* in this region. In the complicated sponges which constitute the vast majority of those encountered at the seashore and all those of fresh water, the choanocytes occur in small, scattered, spherical chambers (fig. 2,D).

Sponges are attached, non-locomotor, nearly always colonial, and typically irregular in form, conforming to the surfaces on which they grow (fig. 1). In all save the simplest sponges the colony is so closely integrated that it is difficult or impossible to designate the individuals constituting it or at least to determine the limits of the individuals (fig. 1).

Except for a very few parasitic species all sponges are plankton

PORIFERA

7

feeders, the minute organisms and organic particles in the water currents being seized and taken in by the individual choanocytes. The skeletal system of calcareous or silicious spicules serves as a protection against predators and the unpleasant odor characteristic of a

Fig. 2.—Diagrams of types of sponge structure (after Hyman, 1940). A. Diagrammatic vertical section of simplest type of sponge (ascanoid type seen in <u>Leucosolenia</u>), showing cellular elements. B-D, sections of one wall; B, ascanoid; C, primitive syconoid; D, developed syconoid such as is seen in <u>Grantia</u>; E, leuconoid, that of all local encrusting sponges. Choanocyte layer shown in heavy black. Arrows indicate course of water.

number of sponges would seem to indicate the presence of distasteful chemical secretions. They lack, however, devices to protect against intertidal exposure and hence they are confined to protected situations at, near, or below low-tide level. There they compete with other plankton feeders such as the Bryozoa and tunicates as also with the micropredators such as the hydroids and corals.

Until recently the identification of California marine sponges has not been possible. De Laubenfels' treatise (1932) makes this possible, but it requires study of spicule types and other internal characters and is not usually feasible for the average student. A key to the more common littoral species of central California, based on de Laubenfels' descriptions, is given below.

See demonstration specimens of the calcareous sponges, Leucosolenia (asconoid type, fig. 2,A,B) and Grantia (syconoid type, fig. 2, C,D) and understand the arrangements of parts characteristic of such sponges. Study pieces of a local encrusting sponge. Note its consistency. Is it hard and stony, soft and fragile, or leathery and spongy? What is the nature of the surface? Note the shape, size, and distribution of the oscula and the pores. The oscula are the larger, excurrent openings (figs. 1, 2,A); the pores or ostia are the very small incurrent openings. Remove a small but characteristic portion, mount on a slide in a drop of water. Tease apart sufficiently to make a clear mount.

Examine under the microscope to make out the types of spicules. Spicules with a single point are termed <u>monactinal</u> (fig. 3,A,C,I), those with two, <u>diactinal</u> (fig. 3,H,J). <u>Monaxon</u> spicules are straight rods, needles, clubs, etc. <u>Triaxons</u> have three projecting points; if all are approximately equal they are <u>triradiate</u> or <u>triaenes</u> (fig. 3, E). <u>Tetraxons</u> may be quadriradiates or consist of three short rays radiating from a long axis. <u>Hexactinal</u> spicules have six (or five) rays radiating from a common center.

Fig. 3.—Types of sponge spicules (after de Laubenfels, 1932). A, C, subtylostyles; B, spiny-headed tylote; D, chelas; E, triaene; F, toxa; G, sigma; H, acanthostyle; I, spiny subtylostyle; J, oxea.

Siliceous spicules, found in all save the simple sponges, include, usually, two very different types, larger <u>megascleres</u> which make up the true skeleton, and the smaller <u>microscleres</u> in the softer tissues (cf. fig. 3,A,B with D,F, and G). The megasclera may be <u>poly-, di-</u>, or <u>monactinal</u>, called respectively <u>triaenes</u> (fig. 3,E), <u>tylostyles</u>, <u>subtylostyles</u> (fig. 3,A,B,I). <u>Oxeas</u> (fig. 3,J) are straight or somewhat curved, more or less fusiform and gradually pointed at the ends. <u>Subtylostyles</u> or <u>monactinals</u> have one of the ends rounded (fig. 3,A). These principal spicules may be sparsely spiny as in *Lissodendoryx* (fig. 4) or extensively spined <u>acanthostyles</u> (fig. 3,H). Tylotes are diactinals with both heads rounded as in *Plocamia* (fig. 3,B).

Microscleres may be <u>sigmas</u> (S- or C-shaped, fig. 3,G) as in *Lisso*dendoryx (fig. 4); <u>chelas</u> (dumbbell-shaped, figs. 3,D and 4); <u>toxas</u> (broad V-shaped, fig. 3,F).

PORIFERA

Using the characters so far determined for your specimen, attempt to run it down, using the key below. Verify your identification by the description in de Laubenfels and by comparing with the labeled mount of that species.

A KEY TO THE PORIFERA OF MOSS BEACH

(Page references are to de Laubenfels, 1932)

Through the kindness of Dr. de Laubenfels it has been possible to construct a key, based on field and histological characters, which should enable the recognition of at least fourteen of our common species. It would be preferable to use color and gross external characters only; unfortunately, this is not possible. For at least five of the red species, spicules must be examined to verify identification. This is done readily by teasing apart a bit of the matrix, mounting in water on a slide and observing under low or medium magnification.

1. 1.	Spicules calcareous (this may be determined by noting reaction to dilute acid; CaCO ₃ releases CO ₂) (CALCAREA)2 Spicules siliceous (DEMOSPONGIAE)4
2.	Colonies of branching, anastomosing white tubes
2.	Unbranched; cup-like
3.	Cups slender, vasiform; superficially smooth
3.	Like an inverted pear (distorted when crowded); surface spiny
4.	Strongly radiating in cross section (TETRAXONIDA)
4.	Not radiating in cross section (MONAXONIDA)
5. 5.	Red in life
6.	With subtylostyles (fig. 3,A) and chelas (fig. 3,D) only. Color in life light brownish-red; stiff, brittle; usually small thin patches encrusting rocks Esperiopsis originalis (p. 70)
6.	With subtylostyles (fig. 3,A) and toxas (fig. 3,F) only. Scarlet in life; pores minute, abundant . Ophlitaspongia pennata (p. 103)
ь.	Spicules of more than two kinds
7.	consistency firm, woody; emitting great quantities of slime when injured
7.	Chief spicules acanthostyles (fig. 3,H). Brilliant vermillion in life; usually encrusting; brittle, gritty; oscules rare
8. 8.	Brilliant yellow in life, smooth, rubbery Ficulina Not brilliant yellow, nor rubbery

10 LABORATORY AND FIELD TEXT IN INVERTEBRATE ZOOLOGY 9. Usually with small craters projecting above matrix 10 10. Lavender in life; extensively encrusting surfaces at low-tide levels; height and size of craters variable; principal spicules usually forming definite triangular patterns; oxeas only (fig. 3,J) Haliclona permollis (p. 120) 11. Principal spicules tylotes and styles (fig. 4). (With a strong sulphurous odor) Lissodendoryx noxiosa (p. 76) Fig. 4.-The spicules of Lissodendoryx noxiosa. From above downward: tylotes, styles of three types (smooth, sparsely spiny, and very slender), arcuate chelas (left), and contort sigmas (after de Laubenfels). 11. Principal spicules oxeas (fig. 3,J). Orange to green in life; usually massive; resembling crumb of bread when broken; spiculation very irregular; "the bread sponge" Halichondria panicea (p. 56) 11. Principal spicules subtylostyles (fig. 3,A,C). Closely and densely surrounding objects so as to appear massive; usually giving off burnt-umber color in alcohol; tough; solid; finegrained Prosuberites sisyrnus (p. 54) LIST OF SPONGES IN KEY Phylum PORIFERA Class CALCAREA M1 Leuconia

B M Leucosolenia eleanor Urban D *M Rhabdodermella nuttingi Urban 'In this and other lists of species throughout this section, the lowing symbols are used (placed before the names of species): D, nd at Dillon Beach, Marin County or vicinity; TB, found in upper

following symbols are used (placed before the names of species): D, found at Dillon Beach, Marin County or vicinity; TB, found in upper end of Tomales Bay near Dillon Beach (since the Tomales Bay region is relatively new territory many more species will be found than are indicated in our list as occurring there); M, found at Moss Beach, San Mateo County, or other ocean beaches of the vicinity; B, found in San Francisco Bay; F, found in fresh water; T, terrestrial. For further information concerning the location of species in the San Francisco Bay Region, consult the check lists for the various localities.

The symbol * indicates that the species is relatively abundant at the location indicated. It must be understood that these marks of abundance cannot always be relied upon, owing to faulty or incomplete information, or to changes in the relative abundance of species from year to year or from locality to locality.

COELENTERATA

Class	DEMOSPONG	IAE
	M D *M D *B *M D 8 *M TB B M D M D *M D *M D *M	Esperiopsis originalis de Laubenfels Ficulina Halichondria panicea Pallas Haliclona permollis Bowerbank Haliclona spp. Isociona lithophoenix de Laubenfels Lissodendoryx noxiosa de Laubenfels Ophlitaspongia pennata Lambe Plocamia karykina de Laubenfels Prosuberites sisyrnus de Laubenfels Stelletta clarella de Laubenfels

PHYLUM COELENTERATA

References: Hyman, <u>Invertebrates</u>, I Fraser, <u>Hydroids of the Pacific Coast</u> Mayer, <u>Medusae of the World</u>

The coelenterates resemble the sponges in that they are an ancient group, relatively simple in structural organization, wholly aquatic in habit, with their greatest development in the oceans, where they are to be found from shore line to abyssal depths. At the seashore they are confined, with few exceptions, to low tide level or below, as are the sponges, Bryozoa and tunicates, because, like these groups, they are not adapted to withstand intertidal exposure. In contrast to these

Fig. 5.—Part of a colony of <u>Allopora porphyra</u> Fisher, a purple encrusting hydrocoral. x2. (After Fisher, 1938.) groups, which are all plankton feeders, all coelenterates are predators, although many of them are stationary. Their continued success seems to be explained by two devices for food getting and defense, tentacles and nematocysts, combined with effective means of distribution, by ciliated larvae (blastulae or gastrulae known as planulae) and, in addition, in many groups (Scyphozoa, Hydrozoa), a free-swimming sexual medusa stage.

Representatives of three major types of coelenterates occur regularly in the littoral fauna of California: (1) hydroids of several species and their medusae (figs. 7-9) and a species of hydrocoral (fig. 5), (2) a coral, and (3) several species of sea anemones. In addition a scyphomedusan jellyfish, Aurellia, is occasionally washed in and its asexual generation (scyphistoma) occurs at several points along the coast. Another scyphomedusan occasionally encountered is Pelagia. Velella (fig. 6), a purple

siphonophore (Class Hydrozoa), occasionally washes up on the beaches in great numbers.

Fig. 6.—Diagrammatic representation of part of colony of <u>Velella</u>, a purple siphonophore. (After Buchsbaum, 1938.)

As we have but one species of coral, Balanophyllia elegans, easily recognized by its orange to red color, and of course by its calcareous skeleton (see demonstration specimens), no attempt will be made to study the diagnostic characters of that group. In the case of the anemones also, the characters used by us for their identification are simple (see key on page 19). The hydroids, however, require more detailed treatment.

Study or review Obelia. Make certain of your ability to use the rather numerous technical terms, defined below, which occur in the keys and descriptions of specimens of the animals of this group, and which unfortunately are used with different meanings by different authors. Observe them on the mounts of Obelia, Gonothyraea, Syncoryne, and the demonstrations of various other types.

Certain terms are widely used with regard to the parts of the hydroid colony. Unfortunately, however, they by no means always have the same meaning nor are they always consistently applied. We shall use these terms in the sense in which they are used by C. McLean Fraser in <u>Hydroids of the Pacific Coast</u>. In Pratt, for example, you will find a different usage and again in other works. It will be necessary to know these different usages. Figure 7 illustrates them as used in the key.

The hydroid colony consists essentially of a continuous cellular tubular portion, the <u>coenosarc</u> (fig. 7). The coenosarc consists of a layer of <u>ectoderm</u> (or <u>epidermis</u>), separated by a thin layer of noncellular <u>mesoglea</u>, from an inner layer of <u>endoderm</u> (<u>gastrodermis</u>) surrounding the continuous central cavity, the <u>coelenteron</u> or <u>gastrovascular</u> <u>cavity</u>. Surrounding the coenosarc more or less completely is a thin, chitinous, non-cellular layer, the <u>perisarc</u> (or <u>periderm</u>) secreted by the epidermis. The colony arises by budding of new individuals from an original zooid which developed from a zygote. It consists, therefore, of a number of individuals known in general as zooids. Actually no definite

Fig. 7.—Diagrammatic representation of part of a colony and a medusa of a thecate hydroid (Obelia), with complete metagenetic cycle. One of the blastostyles and one hydranth are shown longitudinally sectioned. (After Buchsbaum, 1938.)

limits can be set to the individuals and much of the colony is made up of connecting and rooting branches.

There is always a certain amount of polymorphism and the zooids may be of several different types, named on the basis of the function for which they are specialized, nutritive, generative, defensive, or sensory zooids. The term <u>hydranth</u> is used to designate the terminal portion of a nutritive (vegetative) zooid but does not include any associated perisarcal structures such as the <u>hydrotheca</u>. The hydranth therefore is entirely coenosarcal, consisting of the <u>body</u>, <u>hypostome</u>, and <u>tentacles</u>. The term trophosome is used to include all the nongenerative zooids, typically nutritive zooids, of the colony together with any perisarcal structures associated with them.

The term gonosome is used to include all the specialized generative zooids of the colony, with the perisarcal structures associated with them, and is thus in contrast to the term trophosome which refers to the rest of the colony. In thecate hydroids (fig. 7) the gonosome would include those asexual generative zooids, the blastostyles, which are specialized to produce the sexual zooids by budding, together with the coverings of the blastostyles, known as gonangia (Fraser) or gonothecae, and the sexual zooids to which the blastostyles give rise by budding (fig. 7). Fraser uses the term gonosome in this sense, while Pratt restricts it to the medusoid stage (sexual generative zooids). The sexual zooids are termed gonophores by some (I prefer this usage) or referred to in general as the medusoid stage in contrast to the hydroid stage. By others the term gonophore is confined to certain reduced sexual zooids which remain sessile. More commonly (e.g., Fraser) the term is used synonymously with blastostyle including often the budding sexual zooids and protective coverings. Others would term this a gonangium, a term which Fraser uses as synonymous with gonotheca. Such an element of a colony (blastostyle with buds and protective covering, if any) is often spoken of as a "fruiting body."

The sexual zooids, spoken of in general as the medusoid generation in contrast to the hydroid generation, produce gametes from which by . fertilization arise the zygotes which develop into the initial zooids from which new colonies arise by budding. All the zooids of a given colony are derived from a single zygote, and hence the sexual zooids of a colony are all of the same sex and we speak of the colony as being male or female (somewhat incorrectly of course).

Typical or highly developed sexual zooids are free-swimming <u>medusae</u>. All intermediate conditions are found between medusae with a long free life on the one hand and sessile, completely reduced; sexual zooids which have lost all remnants of medusa structure on the other. The latter have the appearance of being gonads of the asexual generative zooids (blastostyles) on which they arise. These extremely reduced sexual zooids are spoken of as <u>sporosacs</u>, or, as noted above, as gonophores. We shall see them in *Clava* among athecate hydroids (fig. 8,A) and in thecate hydroids in *Campanularia*. Intermediate types, sessile but still showing vestiges of medusa structure, are termed <u>medusoids</u>. Such are seen in *Gonothyraea* (fig. 8,C) in contrast to the fully developed medusae of *Obelia* or the sporosacs of *Campanularia* or *Clava*. In *Gonothyraea* the ripe sexual zooids (medusoids) are extruded from the gonothecal aperture by continued growth of the blastostyle.

The term <u>gonophore</u> is used therefore, with the most diverse meanings and we must be certain to know with which of these meanings it is used in each case. I prefer to use it for any sexual individual, whether a free medusa, a sessile medusoid on a sporosac (thus used by Hyman). Pratt defines it as any sessile reproductive individual (whether medusoid or sporosac, thus not including medusae under it; but in his keys he seems to use it in the broad sense since on p. 116 we find, "The gonophores are medusae"). We shall use it here as does Fraser for any

asexual generative zooid together with the sexual individuals budding from it and its protective coverings, that is, for what I would term a gonangium, consisting of a <u>blastostyle</u> bearing budding sexual zooids and enclosed in a gonangium (gonotheca), the whole also spoken of as a fruiting body.

Fig. 8.—Hydroid types (after Fraser, 1937, except D). A, single hydranth of <u>Clava</u> <u>leptostyla</u> showing filiform tentacles, developing sporosacs, and absence of perisarc. B, hydranth of <u>Syncoryne mirabilis</u> showing scattered capitate tentacles and young medusa buds. C, <u>Gonothyraea clarkii</u>. Two gonophores (gonangia): left, mature with protruding meduscids; right, immature. D, <u>Plumularia</u>. Portion of a branch (hydrocladium) enlarged to show hydranths and nematophores (after Allman). E-G, <u>Aglaophenia</u> <u>struthionides</u>. E, colony, 3/4 natural size; note six scattered corbulae. F, a corbula much enlarged. G, portion of a hydrocladium, enlarged. H, <u>Sertularia furcata</u>. I, same, 3/4 natural size.

In certain genera of thecate hydroids the fruiting body is made even more complex by complicated protective structures derived from other elements of the colony. Such is the <u>corbula</u> in Aglaophenia (fig. 8,F). These would be included in the gonosome but would be in addition to the gonophores as defined by Fraser.

This necessity of using terms whose meanings differ with the author, while annoying for the moment, affords very excellent intellectual experience.

The tentacles of the hydranth may form a single whorl as in Obelia (fig. 7), or two whorls as in *Tubularia*, or may be scattered over the hypostome, the elevation which bears the mouth, as in *Syncoryne* (fig. 8.B). They may be filiform (slender) as in *Clava* and *Obelia* or capitate (knobbed) as in Syncoryne. In one large group of thecate hydroids, the plumularian hydroids (Family Plumulariidae), there are present in addition to the typical hydranths numerous small individuals which function entirely for offense and are known as <u>nematophores</u> (fig. 8,D). The small branches which bear the hydranths and nematophores are known as <u>hydrocladia</u>.

The hydrotheca may be stalked (Obelia, fig. 7) or sessile (Sertularia, fig. 8,H; Abietinaria, fig. 9; Plumularia, fig. 8,D; Aglaophenia, fig. 8,F). They may be uniserial (Plumulariidae, fig. 8,D,F) or biserial (Sertulariidae, figs. 8,H, 9). When biserial they may be opposite (Sertularia, fig. 8,H) or alternate (Abietinaria, fig. 9; Sertularella).

Study mounts of various types of hydroids and, using the key below, identify several of them. See also keys in Fraser.

Be able to recognize the following genera commonly encountered in the local fauna; Syncoryne, Clava, Eudendrium, Tubularia, Obelia, Gonothyraea, Campanularia, Plumularia, Aglaophenia, Sertularia, Polyorchis (medusa only), Abietinaria, and Sertularella. Be able to make sketches of each, bringing out diagnostic characters.

KEY TO THE HYDROZOA

1. 1.	Fresh-water; solitary, or in small imperfect colonies 2 Marine; colonial
2.	With tentacles; without distinct sexual stage but the polyps bearing gonads which probably represent vestiges of such a
2.	(For species see Hyman, <u>Amer. Micros. Soc. Trans</u> ., 48, 49, 50) Without tentacles; with well-developed medusae
3.	Colony floating; in our common form blue in color. Order SIPHON-
3. 3.	OPHORA
4. 4.	Medusae relatively large, up to an inch in diameter; hydroid stage undetermined Polyorchis Medusae very small or not formed as such; known by the hydroid stage
5. 5.	Hydranths athecate. Suborder GYMNOBLASTEA OR ANTHOMEDUSAE6 Hydranths thecate. Suborder CALYPTOBLASTEA OR LEPTOMEDUSAE14
6. 6. 6.	Hydranth with a single basal whorl of filiform tentacles
7. 7.	Stalks of hydranths without perisarc, unbranched, rising from a spiny calcareous crust

COELENTERATA

8.	Hydranth with trumpet-shaped hypostome; perisarc stiff, brown, closely and sharply annulated
8.	Hydranth with a conical hypostome; perisarc usually not sharply annulated, or if so only on the smaller branches 9
9.	Colony very small, stems not at all or very slightly branched
9.	Colony larger (up to several centimeters in length); stems branched
10. 10.	Hydranths relatively large, orange-colored, conspicuous Garveia Hydranths smaller, not orange-colored
11. 11.	Hydranths very small; colony finely branched; annulations of perisarc almost entirely lacking Bougainvillia Hydranths larger, colony with few branches; annulations distinct at base of hydranths
12. 12.	Tentacles capitate (enlarged at tip); colony small, very slightly branched; medusae arising among tentacles (fig. 8,B)
10	tentacles
13.	hydranths, large, unbranched, arising from a filiform hydro- rhiza; sexual zooids are sporosacs and colored, pink in male, purple in female; no perisarc (fig. 8,A)
13.	Hydranths small, colony very slightly branched; with free medu- sae; perisarc present
14. 14.	Hydrothecae stalked
15. 15.	Hydrothecae tubular; colony extremely small Calycella Hydrothecae bell-shaped; colony larger
16. 16.	Sexual zooids sporosacs; blastostyle not projectingCampanularia Sexual zooids medusiform but sessile; blastostyle and mature medusoids projecting from gonotheca (fig. 8,C) Gonothyraea
17.	Medusae globular with 4 tentacles at time of liberation; colony
17.	Medusae flatter with 16 or more tentacles; colony usually more branched Obelia
18.	Hydrothecae on one side of branches; nematophores present (fig_{B}, B, P, G)
18.	Hydrothecae in two rows on opposite sides of branches; no nematophores (figs. 8,H, 9)
19.	Colony slender and flexible, colorless; hydrothecae at consid- erable intervals, margins of hydrothecae not toothed or sculptured (fig. 8.D)
19.	Colony large, stiff, brown or greenish-brown; branches of col- ony resemble feathers (fig. 8,E); hydrothecae close-set with toothed and sculptured margins (fig. 8,F); "the ostrich plume"

LABORATORY AND FIELD TEXT IN INVERTEBRATE ZOOLOGY

18

- 20. Hydrothecae exactly opposite each other: operculum of two pieces; colony small, delicate, without branches (fig. 8,H,I)
- 20. Hydrothecae alternate or subalternate 21
- 21. Hydrotheca with smooth margin; operculum of one piece; colony larger, plume-like, with numerous side branches in one plane (fig. 9) Abietinaria

Fig. 9 .- Abietinaria filicula Ellis and Solander. Enlarged (from Guberlet).

21. Hydrotheca with toothed margin; operculum of 3-4 pieces; colony

> LIST OF SPECIES OF HYDROIDS MOST LIKELY TO BE FOUND INTERTIDALLY IN THE SAN FRANCISCO REGION

(There are many other species which have been taken from shallow water in this region, so that definite identification can be made only by careful reference to Fraser, 1937. None of the species has been marked abundant, because of insufficient information.)

Athecates (Gymnoblastea or Anthomedusae)

- B Bimeria franciscana Torrey
- B Bougainvillia mertensi Agassiz
- B Clava leptostyla Agassiz
- TB D B M Eudendrium californicum Torrey D B M Garveia annulata Nutting

 - TB M Hydractinia milleri Torrey B Perigonimus repens Wright D B M Syncoryne mirabilis Agassiz B M Tubularia crocea Agassiz M Tubularia marina Torrey
 - - - B Turritopsis nutricula McCrady

Thecates (Calyptoblastea or Leptomedusae)

- D B M Abietinaria anguina Trask
- D B M Abietinaria greenei Murray

COELENTERATA

19

- D B M Aglaopenia struthionides Murray
- D B M Calycella syringa Linnaeus
 - D M Campanularia fusiformis Clark B Campanularia gelatinosa Pallas
- D B M Campanularia urceolata Clark
 - D M Campanularia volubilisLinnaeus B Clytia edwardsi Nutting
 - B M Gonothyraea clarki Marktanner-Turneretscher B Obelia commissuralis McCrady
- TB B M Obelia dichotoma Linnaeus B Obelia longissima Pallas B Obelia plicata Hincks
 - M Plumularia goodei Nutting
 - B M Plumularia lagenifera Allman
- D B M Plumularia setacea Ellis
- D B M Sertularella turgida Trask
- D B M Sertularia furcata Trask

OTHER HYDROZOA (See key)

Order <u>Calyptoblastea</u>

Polyorchis penicillata Eschecholtz, common Pacific Coast medusa

Order <u>Hydroida</u> F Hydra

пушти

Order <u>Hydrocorallina</u> <u>M D Allopora porphyra</u> Fisher

Order Siphonophora

Velella lata Chamisso and Eysenhardt (often washed on shore)

Class SCYPHOZOA

Aurellia aurita Linnaeus Pelagia

Class <u>ANTHOZOA</u> KEY TO THE SEA ANEMONES

(Modified from MS keys by A. S. Harrison and N. E. Kemp. Nomenclature adapted to that of Carlgren, as reported on p. 263 of Ricketts and Calvin. This group is very much in need of study in the Pacific Area.)

 Base attached to rock, wood, or other firm substrate 2
Base unattached—true burrowing anemones Group Athenaria (Genera and species unidentified)

20

LABORATORY AND FIELD TEXT IN INVERTEBRATE ZOOLOGY

2.	Margin of disc circular and not frilled when extended; tentacles fewer, leaving a larger area free around mouth
3.	Column thickly covered with papillae (sticky tubercles capable
3.	Column smooth or, if with papillae, these arranged in a few vertical rows and very small 8
4.	With relatively small papillae, probably suckers, extending over the upper two-thirds of the column in longitudinal rows; living completely covered in sand (but attached to rock) unidentified "sand anemone"
4.	With papillae practically covering the entire column 5
5. 5.	Column embedded in mud: found along bay shore where mud and rocks occur together "The Mud Anemone" (unidentified) Column never embedded in mud 6
6.	Column dark red, often with brown patches; tentacles blunt, sometimes with the middle half of the tentacle rose-tinted
6.	Column green to yellowish-white
7.	Papillae irregular, branching, not conspicuously in longitu- dinal rows; tentacles uniform in color, not tipped with pink; solitary; large
7.	Papillae round, arranged in longitudinal rows; tentacles usually tipped with pink; color of column very variable; usually in close-set aggregations
8.	Lateral buds or young anemones attached in a circlet around the
8.	column near the base <i>Epiactis prolifera</i> No lateral buds or young anemones attached to the column 9
9. 9.	Found on underside of ledges on rocky ocean coast; column dark red; tentacles white and capitate
10.	Tentacles opposite each end of mouth-slit differently marked from others by having a yellow base in contrast to the dark reddish-brown base of the other tentacles; main portion of the tentacles yellowish or banded with alternate yellowish and brown bands; faint radiating lines from the mouth all yellow; found on pilings at Fruitvale Bridge
10.	Tentacles opposite ends of mouth-slit not differently colored from others
11.	Column dark olive green, often with vertical orange stripes; small (extended column may reach 14 mm.); found all along East Bay shore
11.	"The Urange-striped Anemone," Diadumene (= Sagartia luciae) Same as D. luciae (may be a variety) except that every specimen has longitudinal double rows of white lines on the column; found on pilings at Fruitvale Bridge "Double-striped Anemone" (unidentified)

CTENOPHORA

11. Column never dark olive green 12 12. Column bright orange-red; inner base of each tentacle with white spot; oral opening surrounded by flaky white ring with white lines radiating out to tentacles; on ocean coast 12. Column and tentacles salmon to flesh color; column long and slender when extended; surface of column with vertical lines; on wood at Lake Merritt and Fruitvale Bridge CHECK LIST OF ANTHOZOA Alcyonaria Unidentified, rare Sea Anemones TB D *M Anthopleura xanthogrammica Brandt (= Cribrina or Bunodactis xanthogrammica) D *M Bunodactis elegantissima Brandt (= Cribrina elegantissima) Corynactis М Diadumene luciae Verrill *в (= Sagartia luciae) D *M Epiactis prolifera Verrill *B Metridium dianthus Ellis M Sagartia (?) stimpsonii Fewkes B Sagartia leucolena Verrill M Urticina (Tealia) crassicornis Ehrenberg *в "Mud Anemone" unidentified "Yellow-striped Anemone" unidentified "Double-striped Anemone" unidentified В В *M "Sand Anemone" unidentified М Unidentified burrowing anemones Corals

D *M Balanophyllia elegans Verrill

PHYLUM CTENOPHORA

The subspherical transparent jelly-like animals of this small pelagic phylum which occasionally wash up on our shores (see figure in text), belonging usually to the species *Pleurobrachia bachei*, are variously known as cat's-eyes (by fishermen), sea gooseberries, or sea walnuts. They are micropredators, capturing their prey by means of the lasso cells of the long paired tentacles. LABORATORY AND FIELD TEXT IN ELEMENTARY ZOOLOGY

A ctenophore

PHYLUM PLATYHELMINTHES

The phylum Platyhelminthes is the lowest of the truly bilaterally symmetrical phyla (the Bilateria). Two of the three classes, the Trematoda and the Cestoda, are parasitic and are not studied in this course. The third class, the Turbellaria, is composed of slow-moving but freeliving forms, all of which are predators.

The class Turbellaria contains four groups: (1) the Acoela, minute marine forms without an intestine, not ordinarily encountered in the local fauna; (2) the rhabdocoeles (Rhabdocoela), small, typically narrow forms in which the intestine is a single straight tube; (3) the triclads (Tricladida), in which the intestine has three main trunks, one forward from the pharynx and two backward (in marine species, mouth in hinder part of body, intestine little branched); (4) the polyclads (Polycladida), a large group of marine species of considerable size with thin, leaf-like body and with numerous branches of the intestine.

The Turbellaria of the Pacific Coast are very poorly known. The only important paper is that of Heath and McGregor (1912), <u>New Polyclads from Monterey Bay, California</u>. Previous to that time but three species of polyclads had been reported from the 7000 miles between Panama and Asia. They report 18 species, all new, belonging to 9 genera, three of them new.

NEMERTEA

The common species in Central California seems to be Leptoplana acticola (Ricketts and Calvin, p. 26) but the larger Planocera (Ricketts and Calvin, p. 16) also occurs. Any who desire to carry further their studies of the species of this very difficult group should consult Lang, <u>Die Polycladien des Golfes von Neapel</u>, and various works referred to in Pratt.

The well-known triclad flatworms of the genus *Planaria* (properly *Dugesia*, according to Hyman) are frequently found in fresh water in this region (especially in Golden Gate Park). Terrestrial flatworms of two genera (*Bipalium kewense* Moseley and *Geoplana mexicana* Hyman), also of the Tricladida, are found on the Berkeley campus where they may most easily be found feeding on earthworms killed during the spring rains.

Ricketts and Calvin mention three genera of rhabdocoeles, p. 265. Of these, *Syndesmis* is very abundant in the intestine of the sea urchins. The other two have not been identified from the areas here considered.

PHYLUM NEMERTEA (NEMERTINEA)

References: Coe, W. R., 1940, <u>Revision of the Nemertean</u> <u>Fauna of the Pacific Coast</u> Coe, W. R., 1905, <u>Nemerteans of the West and</u> <u>Northwest Coasts of America</u> Coe, W. R., 1904, <u>Nemertinea</u>, <u>Harriman Alaska</u> <u>Expedition</u>

Nemertean worms are readily recognizable by their relatively elongated and narrow, highly contractile, more or less flattened, unsegmented bodies as also, of course, by their long, slender, eversible <u>proboscis</u>. This <u>proboscis</u> may be caused to evert by adding alcohol, a few drops at a time, to a small amount of sea water containing the worms or by putting them into fresh water. Like the polyclads they are predators with a wide range of prey.

They are handled with difficulty because of their extreme contractility and the slimy mucus which they secrete in large quantities, and should, therefore, be kept separated from other animals. For scientific purposes they should be preserved in formalin.

Using the key below, identify your specimen. Check your identification with Coe's description. Identify as many species as time permits.

KEY TO THE MORE COMMON NEMERTEANS

(For other species see plates of Coe: 1940, 1901, 1904, 1905. Figure numbers refer to Coe, 1940.)

1.	Entire body or dorsal su	irface	so]	lid	ł	:01	lor	,	no	1i	ne	s	or	ri	ine	ζS	•	•	2
1.	With longitudinal lines	or tra	nsv	7e)	rse	e r	in	gs	0	fc	:01	or	CC	ont	tre	asi	t –		~
	ing with ground color	• • •	•	•	•	•	٠	٠	•	•••	•	•	٠	٠	•	٠	٠	•	8
2.	Of same shade above and	below	•	•	•		•	•		• •	•	•	•		•		•	•	3
2.	Dark above, light below	• • •	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	5

LABORATORY AND FIELD TEXT IN INVERTEBRATE ZOOLOGY

3. Minute, very slender; whitish, somewhat transparent; living in delicate parchment tubes under stones or among algae 3. Large free-living species with distinctive colorations (red, 4. Bright red; very soft-bodied; living in or on rocks Carinella rubra) 4. Dark red to brown; firm bodied; living in mud or sand Cerebratulus californiensis (Coe, 7) 5. Color of head not noticeably different from rest of body ... 7 5. Head darker (Lineus) or lighter (Amphiporus) 6 6. Broad fleshy species; head light, with two large, conspicuous, dark brown to black spots; oval to triangular in shape (see figure in text); dorsal body color deep brownish-orange Amphiporus bimaculatus Two Common Nemerteans (after Coe). A, Micrura verrilli Coe. Its distinctive white caudal cirrus or tail has been lost as is often the case. B, Amphiporus bimaculatus Coe. 6. Very slender species; head darker than rest of body; body light olive green to brown; a line of 2-8 ocelli on either side of anterolateral region of head; often with fine circular and longitudinal lines (see elsewhere in key) Lineus vegetus (Coe, 13) 7. Very slender; uniform green above, whitish below 7. Stouter; uniform brown, orange brown, or purple brown on dorsal . surface and sides Paranemertes peregrina 10 9. Extremely slender, as much as one hundred times as long as wide; a single row of 2-8 ocelli on each anterolateral margin of head; usually with fine circular and longitudinal lines (see elsewhere in key for those without) . . Lineus vegetus (Coe, 13) 9. Slender but less so than above; dorsal surface with two narrow longitudinal dark lines on light background; two large ocelli on each side Nemertopsis gracilis 10. General body color deep brown; five or six very slender, often broken, longitudinal white lines; numerous narrow white rings spaced at fairly regular intervals

ROTIFERA

10. General body color ivory white, with a series of rectangular dorsal areas of deep purple or wine color, separated by narrow white bands (see figure in text); posterior end with narrow colorless "tail," caudal cirrus (not shown in figure)

. . . . Micru: a verrilli

LIST OF COMMON NEMERTEA

- D B *M Amphiporus bimaculatus Coe
- TB D M Tubulanus polymorphus Renier (= Carinella rubra Griffin) D *M Tubulanus sexlineatus Griffin (= Carinella sexlineatus Griffin)
 - M Tubulanus pellucidus Coe (= Carinella pellucida Coe)
- TB D M Cerebratulus californiensis Coe
 - *B *M Euplectonema gracile Johnston
 - *M Micrura verrilli Coe
 - M Nemertopsis gracilis Coe

PHYLUM ROTIFERA

These minute animals chiefly plankton feeders are almost always present in freshwater cultures. Isolate a rotifer on a slide and anesthetize it for study or find one immobilized on a mount from a rich culture. Study it under low and high power, making out the various structures referring to figure 10. Figure 11 shows another type of rotifer (Brachionus) very commonly encountered. Attempt to identify your specimen, using the key below.

Fig. 10 .- Diagrammatic hemisection of a typical rotifer (after Shipley and MacBride).

LABORATORY AND FIELD TEXT IN INVERTEBRATE ZOOLOGY

Make yourself familiar with the chapter on rotifers in Ward and Whipple and with the monograph of Hudson and Gosse (2 vols., 1889).

A KEY TO THE ROTIFERA OF LONE TREE POND By A. B. Burch

1. 1.	Colonial Megalotrocha alboflavicans Solitary
2. 2.	Lorica pronounced
3. 3. 3.	Lorica laterally compressed
4. 4.	Lorica with three dorsal furrows, toothed before and behind; foot with two toes
5. 5.	Lorica with distinct longitudinal furrows 6 Lorica without distinct longitudinal furrows 8
6.	Lorica with one median dorsal furrow, teeth absent, one eye
6.	Lorica with one median dorsal furrow, teeth absent, eye absent
8. 8.	Lorica toothed anteriorly and posteriorly
9. 9.	Lorica very convex dorsally Brachionus bakeri Lorica very flat
10. 10.	With foot and two toes Noteus quadricornus Without foot
11.	Lorica toothed anteriorly, with a median notch posteriorly; foot short, two medium-sized toes, each with an oblique bristle at the base
11.	Lorica toothed anteriorly, no notch posteriorly; foot long, with one toe
12. 12.	Foot absent; body round
13. 13.	Body highly contractile, telescopic
14.	With three fine toes on very long, contractile foot, two spurs midway of length of foot
14.	With two toes Philodina roseola
15.	Body more or less triangular in general outline; two antero-
15.	Not so

GASTROTRICHA

LIST OF ROTIFERA (ALL FRESHWATER)

(Some may, however, be found in Lake Merritt when that water has little salt.)

Names as in key and in Ward and Whipple:

Anuraea aculeata Anuraea cochlearis Gosse Colurus Brachionus bakeri Brachionus punctatus Hempel Diplax Diplois Euchlanis macrura Ehrenberg Megalotrocha alboflavicans Ehrenberg Noteus quadricornis Ehrenberg Philodina roseola Ehrenberg Pterodina patina Hermann Rotifer neptunius Ehrenberg Salpina spinigera Ehrenberg Synchaeta stylata Wierzejski Triphylus lacrustris Ehrenberg Names as in Harring, H. K., 1913. "Synopsis of the Rotatoria," <u>Bull. U.S. Nat. Mus.</u>, 81

Keratella guadrata Müller Keratella cochlearis Colurella B. capsuliflorus Pallas B. budapestinensis Daday Mytilina sp. Diplois Euchlanis macrura Ehrenberg Sinantherina socialis Linnaeus Platyias quadricornis Philodina roseola Ehrenberg Testudinella patina Mytilina mucronato spinigera Synchaeta stylata Wierzejski Synchaeta stylata Wierzejski Enteroplea lacustris Ehrenberg

THE GASTROTRICHA

These microscopic creatures, often grouped with the rotifers but structurally very distinct (fig. 12), are commonly encountered in ponds and in freshwater cultures and should be recognized.

Fig. 12.--A gastrotrich, <u>Chaetonotus maximum</u> Ehrenberg (from Wessenberg-Lund after Zelinka).

PHYLUM ANNELIDA

The annelids or segmented worms can be divided into the following classes: (1) Archiannelida, a small, poorly known group with distinct segmentation in our representatives, parapodia often poorly developed, often lacking setae and with the two ends of the body often developed for rapid locomotion through sand. When more completely known they may be found to represent modified forms of widely separated, already known families. (2) Polychaeta (fig. 13.A), which have many setae (hence the name) and parapodia; they are almost entirely marine and are very numerous. (3) Oligochaeta (fig. 13, B, C), with a few setae and no parapodia; they are predominantly freshwater or terrestrial. These last two classes are often combined to form the single class Chaetopoda, but there is evidence that the two are not so closely related to each other as each is to other groups in the phylum. (4) Hirudinea or leeches (fig. 13,D), with no setae or parapodia and with important internal anatomical differences from the other classes; they are mostly inhabitants of fresh water. (5) Echiuroidea, consisting of a few marine species, of which Urechis caupo (fig. 13,F) is our local representative (burrowing in mud). They have a few annelid characters, but are unsegmented externally. (6) The Sipunculoidea (fig. 13,E), of very doubtful affinities with the annelids. Like the echiurids, they are unsegmented and they are likewise marine. The last two classes are probably more properly considered as separate phyla.

Class POLYCHAETA

The names and characters of the major divisions of the polychaetes are very much in dispute. One useful but perhaps not scientifically justifiable division is into the Sedentaria or sedentary polychaetes, chiefly tube dwellers, and the Errantia or free-living families. More useful is the designation of family types (fig. 17), such as nereid, polynoid, serpulid, syllid, sabellid, cirratulid, spionid, etc.

On your specimen (Nereis) make out the paired locomotor parapodia (sing. parapodium) each (fig. 14) composed of an upper lobe, the <u>noto-podium</u>, and a lower, <u>neuropodium</u>. Remove and mount a parapodium to make out the structures noted below. Each lobe typically contains a bundle of slender chitinous rods or spines, the setae (sing. seta) which project from the parapodium, and buried in it a larger dark spine known as the <u>aciculum</u> (pl. acicula) which functions as a fulcrum for moving the parapodia and the setae. The shape, size, number, and position of the setae are of importance in classification. Arising from the base of the notopodium above and the neuropodium below there are often present slender flexible outgrowths (fig. 14), the <u>dorsal cirrus</u> (pl. cirri) and <u>ventral</u> <u>cirrus</u> respectively. The notopodium consists of a dorsal lobe and a middle lobe between which the setae and aciculum project (fig. 14); the neuropodium consists of a neuro-acicular lobe provided with setae and an aciculum, and a ventral lobe.

The setae are of widely varying form and furnish very precise characters for the determination of species. The use of such characters has been avoided where possible in the key but has been found necessary in some cases. The common types and their names should be

LABORATORY AND FIELD TEXT IN INVERTEBRATE ZOOLOGY

recognized. Plate I (after Fauvel, 1922) gives some idea of the wide variety of types. First we may distinguish simple setae (Plate I, nos. 1-19) from composite or jointed setae (nos. 21-28). Long slender simple setae are spoken of as capillary setae (no. 6). The tips of setae whether simple or composite may be entire or bifid (no. 8) or trifid. If bent like a cycle they are termed falcate.

Some simple setae have bent, usually bifid ends. These are spoken of as hooks or crotchets (Plate I, nos. 29-32). These are usually relatively stout setae and graduate into broadened types known as uncini (nos. 33-42), which are especially characteristic of the Sedentaria.

Fig. 14.--A parapodium of a nereid polychaete. Fig. 15.—Head of <u>Nereis</u> with everted proboscis: A, dorsal view; B, ventral view. (1) prostomium; (2) palpi; (3) prostomial tentacles; (4) eyes; (5) peristomium; (6) peristomial or tentacular cirri; (7) jaws. I-VIII, areas of proboscis; V-VIII, on oral ring; I-IV, on maxillary ring.

Composite setae may be articulated as in the long bristles of the Flabelligeridae (Plate I, no. 20), but are characteristically twojointed, composed of a shaft and a blade (nos. 22-28). This blade in turn may have various shapes and may itself be a crotchet (no. 28). The blade rests in a notch in the end of the shaft. If the two sides of the notch are equal, it is spoken of as homogomph (no. 27); if somewhat unequal, as hemigomph; and if distinctly so, as heterogomph (no. 26). Finally setae, either simple or compound, may be embedded distally within a clear matrix and these are spoken of as "hooded." Thus we may have simple hooded crotchets (no. 29) or composite crotchets (no. 28).

Identify the following structures of the head; a pre-oral prostomium (fig. 15,A), provided at its anterior border with a pair of <u>anten-</u><u>nae</u>, and at the sides with paired, fleshy, biarticulated <u>palpi</u>. Two pairs of <u>eves</u>, more or less in rectangular arrangement are to be found on the dorsal side of the prostomium, the more posterior pair sometimes concealed by the peristomial ring. The <u>peristomium</u> is the first complete

5

Ţ

٢

4

¥۶-

Y

ring or segment. It may, however, represent two coalesced segments as in Nereis. There are four pairs of slender, tentacular cirri (peristomial cirri) on short stalks at the antero-lateral margin of the peristomium. Note that the first parapodia are found on segment two (considering the peristomium as one), and that the first two pairs of parapodia are uniramous, that is, each contains a single aciculum and setal fascicle, and that all succeeding parapodia are biramous.

Make a ventral longitudinal incision starting from the mouth and extend the cut posteriorly through about twenty segments. Pin back the flaps and identify the parts of the proboscis. The following parts (fig. 15) are to be found. (In the retracted proboscis the position of oral and maxillary rings is in reverse order): (1) an oral ring which is just external to the mouth (internal when proboscis is everted) and bounded by the mouth on one end and the maxillary ring on the other, divisible into six areas, numbered from V to VIII; and (2) beyond this a second ring, the maxillary ring, bounded on one end by the oral ring, provided with stout, horny jaws at its other end and divisible into six areas numbered from I to IV. Area V lies on the median dorsal line of the oral ring and in Nereis is usually without the dark chitinous denticles termed paragnaths; areas VI are paired, lying on either side of V, and normally are provided with a circular mount of tiny paragnaths. Area VII lies on the mid-ventral line of the oral ring and areas VIII are paired patches at the sides of VII. In Nereis areas VII and VIII usually have a continuous band of chitinous paragnaths. The areas of the maxillary ring occupy positions similar to those of the oral ring. Area I lies in line with V, II with VI, III with VII, and IV with VIII. Even numbered areas are always paired, odd numbered areas lie in the median dorsal and ventral lines.

Identify your specimen to the group, using the key on page 34. Study living individuals of the serpulid Mercierella under the dissecting microscope. Remove from tubes and identify: (1) a feathery

Fig. 16.-Mercierella enigmatica Fauvel, the Lake Merritt tubeworm, removed from its tube; somewhat enlarged.

tentacular crown (fig. 16), consisting of modified peristomial cirri and often called branchiae, one branch of which is specially modified to form the operculum (fig. 16). The prostomium is greatly reduced and made out with difficulty. The mouth marks the ventral side, and lies on the side opposite the operculum. Arising from the posterior border of the peristomium is a broad, thin membranous <u>collar</u>, open dorsally, and richly supplied with blood vessels and nerves. Its function is thought to be respiratory. The collar is

continued posteriorly as the

thoracic membrane along the posterior border of the thorax thus sharply setting off the thorax from a posterior region of the body, called the abdomen.

POLYCHAETA

Fig. 17.—Types of polychastes: A, <u>Arabella</u>, a lumbrinerid; B, <u>Halosydna</u>, a polynoid; C, <u>Myxicola</u>, a sabellid; D, <u>Syllis</u>, a syllid; E, <u>Eulalia</u>, a phyllodocid; F, <u>Glycera</u>, a glycerid; G, <u>Terebella</u>, a terebellid; H, <u>Cirratulus</u>, a cirratulid; I, <u>Serpula</u>, a serpulid; J, <u>Boccardia</u>, a spionid.

LABORATORY AND FIELD TEXT IN INVERTEBRATE ZOOLOGY

KEY TO THE POLYCHAETA

1.	Dorsal surface more or less completely covered by overlapping
	scales (elytra) (fig. 17,8; Plate 11, no. 2), paleae (modified
	flattened setae, fig. 188), or overlain by a thick felty
	layer (Plate II, no. 1) (APHRODITIDAE, POLYNOIDAE, POLYODONTI-
	DAE. SIGALIONIDAE. CHRYSOPETALIDAE)
1.	Dorsal surface not covered with elytra, paleae, or felt 14
2.	Dorsal surface more or less concealed by a felty layer that
	covers the elytra. APHRODITIDAE Aphrodita (Plate II, no. 1)
2.	Dorsal surface more or less concealed by elytra (fig. 17,B;
	Plate I, no. 2)
2.	Dorsal surface more or less concealed by paleae (fig. 18,B)

Fig. 18.—A, head of <u>Sthenelais fusca</u>; B, parapodium of a chrysopetalid; C, elytrum of <u>Arctonoë fragilis</u>; D, neuropodial seta of same; E, neuropodial seta of <u>Halo-</u> <u>sydna brevisetosa</u>.

	T 33 (11				o			
	greer	nisł	1.	• • •		• • •	•••	•••	• •	•••	• • •	• Paleo	notus
3.	Paleae	of	two	kinds	s; col	or in	ı life	, gli	steni	ng v	white of	or	
	• • •	•							• •	• •		Chrysope	talum
з.	Paleae	of	one	kind;	colo	r in	life,	pale	rust	to	yetto	vish	

- 4. Elytra and dorsal cirri alternate in anterior segments, but in the posterior segments elytra are present on all segments and entirely replace the cirri. SIGALIONIDAE. Median prostomial antenna (fig. 18,A) with broad base and lateral wings; elongate; dusky brown; among roots of eel grass . . Sthenelais fusca

Polychaete types (after McIntosh): 1, <u>Aphrodita aculeata</u> (Linn.) (Aphroditidae); 2, <u>Harmothoe imbricata</u> (Linn.) (Polynoidae); 3, <u>Megalomma</u> vesiculatum (Montagu) (Sabellidae).
ľ

5. 5. 5. 5.	With 12 pairs of elytraLepidonotus caelorusWith 15 pairs of elytra10With 18 pairs of elytraHalosydna 6With more than 18 pairs of elytra7
6.	Elytra more or less firmly attached; neuropodial setae entire at end (fig. 18,E); common in mussel beds, or commensal with Thelepus
6.	Elytra easily shed; neuropodial setae bifid at end; free-liv- ing, under stones
7.	Elytra more or less completely covering the dorsum in the ante- rior region; dorsal cirri and antennae club or pear-shaped; neuropodial setae strongly falcate (sickle-shaped, fig. 18.D), the sides smooth Arctonoë 8
7.	Elytra reduced in size throughout, those in the posterior half not noticeably smaller than those in the anterior half; dorsal cirri and antennae cirriform; neuropodial setae ser- rated
8.	Elytra strongly frilled at external margins (fig. 18,C); in
8.	Elytral margin smooth externally; a broad, transverse dark band across anterior segments; in branchial grooves of mol-
8.	Elytra slightly undulate at margins; commensal with holo- thurians
9. 9.	Elytra in pairs throughout length of body; notopodia without setae; commensal often with tube-building worms . Lepidasthenia Some elytra in posterior region not paired; some anterior noto-
10	podia have setae; commensal
10.	Notopodial and neuropodial setae each of two kinds, a stout and a slender form Hesperonoë 11
11.	Elytral surface smooth or with very few minute, low papil- lae; commensal with Urechis Hesperonoë adventor
11.	Callianassa
12. 12.	Neuropodial setae entire at distal end
13.	Neuropodial setae long, slender, the distal ends hairlike.
13.	Neuropodial setae with distal ends thicker, not hairlike Eunoë
14.	Anterior end completely concealed by feathery tentacles. SABELLIDAE (fig. 17 C. Plete II no. 3) SERPULIDAE (fig. 16), 15
14.	Anterior end completely concealed by chitinous spines forming an operculum. SABELLARIIDAE (fig. 19,A), PECTINARIIDAE 31
14.	Anterior end with long, strong, spinous setae, not forming an operculum, but projecting forward and concealing the prosto- mium (fig. 18,B and Plate III, no. 1). FIABELLIGERIDAE 33
	[See opposite page.]

14. Anterior end more or less completely covered by many long, filamentous outgrowths concentrated on anterior region (fig. 17,G); body usually with two distinct regions. AMPHARETIDAE, (Plate III, no. 2) TEREBELLIDAE (fig. 17,G; Plate III, no.3) . 34 14. Anterior end more or less completely covered by many long, filamentous outgrowths as in category above, but also with similar outgrowths continued along sides of body (fig. 17,H) (except Dodecaceria); body not divided into two distinct re-14. Anterior end otherwise: prostomium generally not concealed . . 44 Fig. 19.-A, Phragmatopoma, Family Sabellariidae; B, a flabelligerid. 15. Thoracic membrane well developed (figs. 16, 17, I); operculum usually present; in calcareous tubes. SERPULIDAE 16 15. Thoracic membrane little developed or absent; no operculum; in sandy chitinized tubes. SABELLIDAE (fig. 17,C and Plate II, Serpulidae (see 14 and 15)* 16. Minute; in small neatly coiled tubes. Spirorbis 16. Small to larger: tubes straight or twisted, but not coiled . . 17 17. Without operculum; tentacles few; forming small fragile tube 18. Operculum bladder-like with smooth stalk; tubes usually solitary, fragile, sometimes longitudinally ribbed . . Vermiliopsis 19. Stalk of operculum smooth; tubes solitary, fairly large, cylindrical to somewhat twisted Serpula 19. Stalk of operculum with lateral wings; tubes strongly ridged 19. Operculum with spines but without lateral wings on stalk . . . 20 20. Spines of operculum produced from a single terminal plaque (fig. 16); estuarine (Lake Merritt) . . . Mercierella enigmatica 21. Distal series of spines with lateral projections . . . Hydroides 21. Distal series of spines with smooth sides Eupomatus Figures thus given refer to the categories in the key through which the particular family has been arrived at and permit of a quick review of the characters stressed.

Sabellidae (see 14 and 15)

22. Without a thoracic collar; tentacles without eye-spots; large, to 10 inches long or more; white or pale yellow in life; in sand or muddy sand. Myxicola (fig. 17,C) 22. With a thoracic collar (fig. 20,A,B,C) (rarely absent); with

(fig. 20,E) or without tentacular eye-spots 23

Fig. 20.—Sabellidae: A, <u>Pseudopotamilla</u> <u>occellata</u>. (1) Tentacular membrane with a dorsal lobe or flap. B, <u>P. intermedia</u>. (1) Dorsal edge of tentacular membrane straight; (2) collar with two dorsal lobes; and (3) two lateral lobes. C, Sabella. D, long-stemmed uncinus from thoracic neuropodium of Fabricia. E, tentacular radiole of Sabella crassicornis showing paired eye-spots.

23.	Tentacular filaments divided several times Schizobranchia
23.	Tentacular filaments not divided
24.	Composite eyes at distal end of some radioles Megalomma
24.	Without composite eyes in such position
25. 25.	With tentacular eye-spots
26.	Tentacular filaments united for most of their length by a pal- mate membrane (fig. 17,C); thoracic collar conspicuous form- ing a smooth, entire membrane, open in mid-line; thoracic crotchets with a long stem (fig. 20,D)

27.	Tentacular eye-spots disposed in pairs (fig. 20,E); tentacular bases not arranged in a spiral
27.	Tentacular eye-spots not in pairs; tentacular bases in a spi- ral (<i>Eudistylia</i>) or not (<i>Pseudopotamilla</i>)
28.	Base of tentacular membrane conspicuously spiraled (Eudistylia)
28.	Base of tentacular membrane not spiraled (<i>Pseudopotamilla</i>) 30
29.	Dorsal edge of tentacular membrane deeply cleft, the two lobes thus formed overlapping; tentacles deep marcon except for a pale band distally; in rocky crevices especially on reefs. Eudistylia polymorpha
29.	Dorsal edge of tentacular membrane with rectangular flaps; ten- tacular crown crossed with numerous bands of marcon and pale color; ventral lobes of collar produced; in sand or mud flats
30.	Dorsal tentacular membrane with notched flaps, dorsal collar lobes short; tentacular eye-spots conspicuous
30.	Dorsal tentacular membrane a narrow rectangular flap; dorsal collar lobes long P. intermedia (fig. 20,B)
31.	Thorax with two pairs of pectinate (comblike) branchiae; caudal appendage (tail) annulated and with setae; operculum formed of a single series of a few large spines; constructs soli- tary, conical tubes (fig. 35,A), open at both ends. PECTI- NARIIDAE (see 14)
31.	Thorax without pectinate branchiae; with many filiform bran- chiae in longitudinal rows above the oral aperture; caudal appendage smooth, slender; operculum formed of three whorls of numerous closely-spaced spines; constructs masses of tubes more or less firmly cemented together. SABELLARIIDAE (fig. 19,A) (see 14)
32.	Opercular spines form a neat, black cone (fig. 19,A)
32.	Opercular spines form an open pattern, amber-colored Sabellaria
	Flabelligeridae (see 14)
33.	With only simple setae; inhabits U-shaped burrows in shales Stularioides (Plate III, no. 1)
33.	With some composite (jointed) setae; inhabits gelatinous or chitinized tubes, or among the spines of Strongylocentrotus.
34.	Tentacles retractile into mouth, leaving branchiae exposed and extending over the anterior end; prostomium often clearly visible. AMPHARETIDAE (Plate III, no. 2) (see 14)
34.	Tentacles not retractile into the mouth; prostomium and bran- chiae usually not visible except by lifting tentacles away; branchiae dorsal. TEREBELLIDAE (fig. 17,G and Plate III, no. 3) (see 14)

40

- 35. Without branchiae; dorsal peristomial lip large, broad. *Polycirrus* 35. With branchiae on the dorsal side, posterior to the tentacles . 36
- 36. Branchial filaments simple, cirriform; thoracic setigerous segments more than 20; color in life, salmon with bright red branchiae; in coarsely constructed tubes on under sides of stones; often with Halosydna brevisetosa. Thelepus (fig. 21)
 36. Branchial filaments branched; thoracic setigerous segments 17

Fig. 21.-Thelepus (after Guberlet)

37.	First few segments have broad, lateral flaps; branchiae elon- gate, dendritic, greenish; constructs tubes in rock crev- ices, the distal end of the tube with an open, reticulated, sponge-like mass through which the tentacles are extended.
37.	Not so
38.	With about 25 thoracic setigerous segments; branchiae three pairs, much-branched, the first pair the largest
38.	With 17 thoracic setigerous segments
39.	Chocolate-brown in life; tentacles white, crowded; branchiae red; constructs soft mud tubes Amphitrite (Plate III, no. 3)
39.	Greenish; tentacles light tan; branchiae deep reddish-brown; in sandy tubes
	Cirratulidae (Plate IV, no. 1); (See 14)
40.	Body with few pairs of long, tentacular cirri; constructing calcareous rock masses; dark to black in life Dodecaceria
40.	Body with more numerous tentacular cirri (fig. 17,H), not constructing calcareous masses; reddish- to greenish-brown in life
41.	Anterior end with a pair of stouter, grooved palpi (fig. 22,B) in addition to the tentacles
41.	Anterior end without palpal structures (fig. 22,A) 42

Polychaete types (after McIntosh): 1, <u>Cirriformia tentaculata</u> (Montagu) (Cirratulidae); 2, <u>Sternaspis scutata</u> Rietsch (Sternaspididae); 3, <u>Owenia fusiformis</u> Delle Chiaje (in tube) (Oweniidae); 4, <u>Arenicola marina</u> (L.) (Arenicolidae).

- 42. Tentacles extending as far anteriorly as setae (fig. 17,H), prostomium with eye-spots on either side . . Cirratulus cirratus
 42. Tentacles first present on the third to fifth setigerous seg
 - ment Cirriformia (fig. 22,A) 43
- 43. Posterior segments with few, stout, thick, dark spines (fig. 23,B); inhabits burrows or crevices in rocks . . . Cirriformia luxuriosa
- 43. Posterior segments with more numerous, finer, pale spines (fig. 23,A); inhabits sand among rocks . . . C. spirabrancha

Fig. 22.—Cirratulidae: A, anterior end of <u>Cirriformia</u>; B, anterior end of <u>Tharyx</u>.

Fig. 23.--Setae of posterior segments of <u>Cirriformia</u>: A, <u>C. spira</u>brancha; B, <u>C. luxuriosa</u>.

- 44. Prostomium without tentacles, although occasionally with a lobed, flaring membrane (STERNASPIDAE, OPHELIIDAE, ORBINIIDAE, CAPITELLIDAE, MALDANIDAE, ARENICOLIDAE, OWENIIDAE, LUMBRI-45 44. Prostomium with minute tentacles, which are usually inconspicuous unless rendered conspicuous because of reduced size of head (fig. 17,F); prostomium usually reduced in size, or, if large, partly concealed by the first few segments of body: no palpi. NEPHTYIDAE, GLYCERIDAE, GONIADIDAE, AMPHI-. . . 62 44. Prostomium with tentacles more or less conspicuous, these accompanied by a pair of thick, fleshy palpi (except in Phyllodocidae). SYLLIDAE (fig. 17,D), NEREIDAE (fig. 15,A), EUNICIDAE, ONUPHIDAE, STAURONEREIDAE, PHYLLODOCIDAE 73 44. Prostomium with a pair of long, prehensile, tentacular palpi, sometimes accompanied by a pair of minute anterior antennae.
- - no. 4); purple to brown in life; in ambulacral grooves of asteroids or under rocks Podarke pugettensis

Fig. 24.—A, <u>Clymenella</u>. B, <u>Owenia</u>. C, head expansion of <u>Owenia</u>. D, hooded crotchet of <u>Lumbrineris</u>. E, mandible of <u>Arabella</u>. F, maxillary apparatus of <u>Arabella</u>.

- 47. Proboscis without chitinous jaw pieces; form variable 52
- 47. Proboscis provided with dark chitinous jaw pieces (figs. 24,E,F); smooth, elongate, cylindrical, resembling an earthworm; parapodia weakly developed or, at most, simple lobes; dorsal and ventral cirri often tiny
 ... LUMBRINERIDAE (Plate V, no. 1)(see 14, 44, 45, and 46)
- 48. Parapodia with some hooded crotchets (fig. 24,D); prostomium without eye-spots Lumbrineris 49
 48. Parapodia without hooded crotchets; prostomium with or with-

Polychaete types (after McIntosh): 1, <u>Arabella iricolor</u> Mont. (Lumbrineridae); 2, <u>Scoloplos armiger</u> (O. F. Müller) (Orbiniidae); 3, <u>Ophelia limacina</u> (H. Rathke) (Opheliidae); 4, <u>Podarke pallida</u> Claperède (Hesionidae).

49. Parapodial lobes elongate, erect in posterior parapodia
49. Parapodial lobes short throughout
50. Anterior parapodia with some composite hooded crotchets in addition to pointed setae; prostomial lobe spatulate
50. Anterior parapodia without composite setae; prostomial lobe bluntly conical
51. Parapodia with a stout acicular seta projecting from the lobe. Drilonereis
51. Parapodia without stout projecting acicular setae $\dots \dots \dots$
52. Body consisting of 3 regions, an anterior and a posterior with- out branchiae, and a median region with conspicuous bran- chiae; parapodia with uncini (hooks) sometimes of great size (up to 50 cm.). ARENICOLIDAE (see 14, 44, 45, 47) Arenicola (Plate IV, no. 4)
52. Body consisting of 2 regions which are not always easily distinguishable from each other (Plate IX, no. 3)
52. Body uniform; dorsum sometimes more or less completely con- cealed by interlacing, cirriform branchiae (fig. 25), no uncini in parapodia. ORBINIIDAE (= ARICIIDAE) (see 14, 44,
45, 46, 47) (Plate V, no. 2)
$\alpha N \alpha \alpha$
ANN A
dellab 1

Fig. 25.—Orbiniidae: A, <u>Nainereis;</u> B, <u>Scoloplos</u>.

53. Prostomium terminating in a broad, spatulate lobe (fig. 25,A)
53. Prostomium terminating in a pointed cone (fig. 25.B)
\ldots Scoloplos (Plate V, no. 2)
54. No uncini: branchiae not restricted to posterior region: body
often broad OPHELIIDAE (fig. 26 and Plate V, no. 3) 57
54. Parapodia with tori bearing uncini; body slender; branchiae,
if present, only on a posterior portion. CAPITELLIDAE (see
14, 44, 45, 46, 47, 52) (Plate IX, no. 3)

55.	Larger; with divided branchiae in posterior region . Dasybranchus
55.	Smaller; without divided branchiae
56.	Thorax consists of 9 setigerous segments, the first 7 with capillary setae, the last two with uncini; constructs tubes in mud flats
56.	Thorax consists of 17 or 18 segments Eunotomastus
	Opheliidae (see 14, 44, 45, 46, 47, 52, 54)
57. 57.	Without lateral branchiae; with dark eye-spots at sides be- tween the parapodia; resembling a nematode <i>Polyophthalmus</i> With lateral branchiae; lateral eye-spots present or absent 58
58. 58.	Ventral side with a well-marked groove (fig. 26) 59 Ventral side without a longitudinal groove; resembling a maggot
59.	Ventral groove posteriorly only; color in life, bronze to pur-
59.	Ventral groove throughout length; color in life, otherwise 61
60. 60.	Branchiae simple Ophelia (fig. 26 and Plate V, no. 3) Branchiae branched Pectinophelia
	THEFT E E E E E E E E E E E E E E E E E E
	Fig. 26.—Ophelia.
61.	Fig. 26Ophelia. With lateral eye-spots between some successive parapodia
61. 61.	Fig. 26.—Ophelia. With lateral eye-spots between some successive parapodia Without lateral eye-spots; ventral funnel greatly elongate
61. 61. 62. 62.	Fig. 26.—Ophelia. With lateral eye-spots between some successive parapodia
61. 61. 62. 62.	Fig. 26.—Ophelia. With lateral eye-spots between some successive parapodia
61. 61. 62. 62. 63.	Fig. 26.—Ophelia. With lateral eye-spots between some successive parapodia

67. 67.	Parapodia uniramous with a single aciculum (fig. 27,D); setae composite
68.	Parapodial lobes broadest subdistally; segmental retractile branchiae emerge from the posterior faces of the parapodia.
6 8.	Without retractile branchiae; parapodial lobes otherwise 69
69. 69.	Parapodia with two presetal and two postsetal lobes 70 Parapodia with two presetal and one postsetal lobe . <i>G. capitata</i>
70. 70.	Parapodial rami long, with a blister-like branchiae on the dorsal surface (fig. 27,E)
71. 71.	The two posterior lobes of parapodium unequal, the dorsal the longer
	Goniadidae (see 14, 44, 62, 66)
72.	Parapodia change abruptly from uniramous in anterior region to biramous in posterior region; proboscis with chevron at base
72.	(consists of 10 or more V-shaped pieces (Plate VI, ino. 4) Goniada Parapodia change gradually; proboscis without chevron at base
73. 73. 73.	With fleshy, usually biarticulated palpi (figs. 15,A; 17,D) 78 Palpi relatively slender, tentacle-like (fig. 28,A); one pair of annulated prostomial tentacles
	(Many of the genera are represented by several spe- cies; for keys to these reference must be made to Hartman's papers)
74. 74.	With two pairs of peristomial cirri (fig. 28,C) Eteone With four pairs of cirri at the anterior end (on several seg- ments) (fig. 28,B)
75.	Segments 1 and 2 at least partially fused; color in life red- dish-vellow or rust-colored
75.	Segments 1 and 2 free from one another (fig. 17, E), although sometimes reduced
76.	The first three segments form complete rings; prostomium with a median antenna
76.	The first three segments dorsally reduced; prostomium with median antenna: proboscis smooth
76.	The first three segments dorsally reduced; prostomium without median antenna but often with a nuchal papilla (fig. 28,B), proboscis papillated

81.	Paragnaths absent from one or the other of the proboscideal rings (fig. 15)
81.	Paragnaths present on both rings
82.	Paragnaths present only on oral ring
82.	Paragnaths present only on maxillary ring
83.	Posterior notopodia with a few homogomph falcigerous setae
83.	(fig. 29,B)
84.	Posterior parapodial dorsal lobes greatly elongate, strap- like Nereis vexillosa (Plate VIII, no. 6)
84.	Posterior parapodial lobes not greatly elongate
85.	Dorsum with a broken transverse pattern; small, usually less than 30 mm. long N. latescans (Plate VIII, no. 7) Dorsum without broken transverse pattern; usually larger
86	Dorsel edge of posterior notonodial lobes conver. area VI of
86.	proboscis with four large cones
87. 87.	All paragnaths minute though dark . N. procera (Plate VIII, no. 8) Paragnaths not minute, some larger than others
88,	Area VI of proboscis (fig. 15) with four or five large cones disposed more or less in a diamond
88.	Area VI of proboscis with an oval mass of 6 or 7 small cones
89.	Cones more numerous and larger; posterior parapodia with dor-
	sal and ventral sides of dorsal lobes approximately paral- lel N. mediator (Plate VIII, no. 10)
89.	Area VII (fig. 15) without mass of smaller cones; posterior dorsal lobe with dorsal edge shorter than ventral edge
~~	N. pelagica (Plate VIII, no. 11)
90.	Area VI with transverse paragnaths
90.	Area VI with only conical paragnaths Neanthes 91
91.	Marine; posterior parapodial lobes broad, foliaceous (fig.
91.	In brackish water:
	a) Posterior parapodial lobes elongate (fig. 29,E); Lake Merritt and upper San Francisco Bay N. succinea
	b) Posterior parapodial lobes short (Plate VIII, no. 13);
	in coastal streams and lagoons
	Syllidae (see 14, 44, 73, 78)
92. 92.	Without ventral cirri

1997 B. M. Stores, Sto

vil:24

Fig. 32.—Eunicidae (after Hartman): A, anterior end of <u>Eunice</u>; B, right parapodium of <u>Eunice</u> <u>longi</u><u>cirrata</u> Webster; C, anterior end of <u>Marphysa</u>.

Fig. 33.—Stauronereidae: A, anterior end of <u>Stauro-</u> <u>nereis moniloceros</u> Moore; B, right median parapodium of <u>Stauronereis articulatus</u> Hartman.

101.	Without tentacular cirri on first segment dorsally; subinter-
	tidal
101.	With tentacular cirri on first segment dorsally (fig. 28,A). 102
102.	Branchial filaments spiraled on the main stalk Diopatra
102.	Branchial filaments pinnately arranged on the main stalk Onuphis
102.	Branchial filaments simple, cirriform Nothria (fig. 28,A)

Eunicidae (= Leodicidae) (see 14, 44, 73, 100)

103.	Second segment without dorsal tentacular cirri 105
103.	Second segment with dorsal tentacular cirri (fig. 32,A)
	Eunice 104
104.	Heavy acicular setae tridentate at free end; branchiae with
	30 or more pinnae Eunice hawaiensis
104.	Heavy acicular setae bidentate at end, branchiae with about 10
	pinnae; acicula yellow

105. Branchial filaments not present before about the 100th seg-Palola 105. Branchial filaments present from about the 10th segment; acicula black . . Marphysa (fig. 32,C, and Plate IX, no. 1) 106 106. Branchiae simple, cirriform throughout . Marphysa stylobranchiata 106. Branchiae with four to seven filaments where best developed M. californica Stauronereidae (see 14, 44, 73, 100) 107. Larger, brilliantly banded with coral and cream; prostomial antennae thick, blunt (fig. 33,A) . . . Stauronereis moniloceras 107. Small (length 17 mm. or less), pale or colorless; prostomial antennae long, slender, articulated Stauronereis spp. 108. Body clearly divisible into two or more clearly defined re-108. Body not divisible into regions, although sometimes a single anterior segment is specially modified. SPIONIDAE (see 14, 109. Sixth segment (fifth setigerous) modified (fig. 17,J) pro-110. Branchiae present anterior to modified segment (fig. 17.J); prostomium with sooty pigmentation; inhabiting narrow crevices and soft shales Boccardia 111 110. Branchia first present posterior to modified segment Polydora (Plate IX, no. 2) 112 111. Branchiae on posterior fifth of body; 20-40 mm. long Boccardia proboscidea (= B. natrix) 111. No branchiae on posterior fifth of body; 8-20 mm. long 112. Posterior segments without large stout hooks; constructs soft tubes: estuarine Polydora ligni 112. Posterior segments with large stout hooks, burrowing in cor-113. Anterior end with two pairs of large tentacular structures (fig. 34,A); other branchial structures absent; estuarine 113. Anterior end without such structures; branchiae present more posteriorly . . Fig. 34.-A, Streblospio lutincola Hartman; B, hooded hook of Nerine.

Polychaete types (after McIntosh): 1, <u>Marphysa Belli</u> (Aud. and Edw.) (Eunicidae); 2, <u>Polydora ciliata</u> (Johnson) (Spionidae); 3, <u>Capitella capitata</u> (O. Fabricius) (Capitellidae).

115. Hooded hooks (fig. 34,B) in notopodia and neuropodia . . Nerine 115. Hooded hooks in neuropodia only Laonice

Magelonidae (see 14, 44, 108)

116. Prostomial palpi greatly elongated, heavily papillated; body consists of an anterior region of about eight segments, separated from a longer posterior region by a ninth segment which is quite different. MAGELONIDAE Magelona
116. Palpi not greatly elongated, without such papillations; body

consists of two or more regions, each markedly different from the others (fig. 35,B). CHAETOPTERIDAE (see 14, 44, 108). . 117

Fig. 35.—A, <u>Lagis Kareni</u>, family Pectinariidae, excavating in sand (after MacIntosh); B, <u>Chaetopterus variopedatus</u> Rénier et Claparède in tube (after MacGinitie).

- 117. Inhabiting large, coarse, chitinous, U-shaped tubes, both ends of which are exposed; on sandy beaches
- 117. Inhabiting large, coarse, somewhat curved, but not U-shaped tubes; in eel-grass beds Mesochaetopterus

A LIST OF COMMONLY ENCOUNTERED POLYCHAETA (Alphabetically arranged by families)

Ampharetidae	
D M	Schistocomus hiltoni Chamberlin
Amphinomidae	
DM	Pareurythoë californica (Johnson)
Aphroditidae	
M	Aphrodita spp. (typically subintertidal, occasionally
	washed in)
Arenicolidae	
TBBM	Arenicola pusilla Quatrefages
\mathbb{TB}	Arenicola marina (Linnaeus)
Capitellidae	
	Capitella capitata (Fabricius)
TB M	Dasybranchus giganteus Moore
u Martina Trina	Notomastus angulatus Chamberlin
TB B M	Notomastus tenuis Moore
Chaetopteridae	
ТВ М	Chaetopterus variopedatus Renier
TB M	Mesochaetopterus taylori Potts
	Phyllochaetopterus prolifica Potts
Chrysopetaliaae	
	Chrysopetalum occidentale Johnson Paleonotus chrysolopis Schwards
Cirratulidae	rdieonotas enrgsolepts beimarda
DTRBM	Cirratulus cirratus Miller
DB*M	Cirriformia luxuriosa (Moore)
D TB B *M	Cirriformia spirabrancha (Moore)
	Dodecaceria pacifica (fewkes) Thank parkus Berkeley
M	Cauleriella pacifica (Berkeley)
Eunicidae	
D	Eunice antennata (Savigny)
DM	Eunice biannulata Moore
U M	Eunice hawaiensis Treadwell Eunice longiciprata Webster
_ M	Marphysa californica Moore
* <u>M</u>	Marphysa stylobranchiata Moore
D M D M	Eunice (Palola) pallida Hartman
Tunhrosinidae	Memoronerers anticorners Delimatua
шыры vətittude П М	Bunhnoging ann (Municelly below the intentidel, esse
שע ע	sionally washed in)
Flabelligeridae	
Ŭ M	Flabelligera affinis (Sars)

Flabelligeridae D*M D	(Continued) Stylarioides eruca (Claparède) Stylarioides plumosa (O. F. Müller)		
Glyceridae	Gluceridae		
TBB*M TB TBB*M TBM TBDBM	Glycera americana (Leidy) Glycera convoluta Keferstein Glycera nana Johnson Glycera robusta Ehlers Glycera tesselata Grube Hemipodia borealis Johnson		
Goniadidae			
D M D M	Goniada brunnea Treadwell Glycinde armigera Moore		
Hesionidae			
DM	Podarke pugettensis Johnson		
Lumbrineridae			
TBB [*] M TBM TBM TB TBDM	Arabella iricolor (Montagu) Arabella semimaculata Moore Drilonereis falcata Moore Drilonereis nuda Moore Lumbrineris zonata Johnson		
M TRDM	Lumbrineris erecta Moore Lumbrineris ignonica Marenzeller		
Waaalanidaa			
TB M	Magelona longicornis Johnson		
Maldanidae			
TB M	Clymenella rubrocincta Johnson		
Nephtyidae TB*BM TBBM	Nephtys caecoides Hartman Nephtys californiensis Hartman		
D M	Ceratonereis paucidentata (Moore)		
D TBM TBM TBDM D TBB D*M D TBDM TB*B*M D M TBDM D M TBDM D M TBDM	Ceratonereis tunicatae Hartman Cheilonereis cyclurus (Harrington) Eunereis longipes Hartman Neanthes brandti Malmgren Neanthes lighti Hartman Neanthes succinea (Frey & Leuckart) Nereis callaona Grube Nereis latescens Chamberlin Nereis mediator Chamberlin Nereis pelagica Linnaeus Nereis procera Ehlers Nereis vexillosa Grube Nereis zonata Malmgren Perinereis monterea (Chamberlin) Platynereis agassizi (Ehlers)		
Unuphidae	Distator emata Moore		

TB M Dioptatra ornata Moore

Onuphidae (Continued) TB Diopatra splendidissima Kinberg M Hyalinoecia (subintertidal; rarely washed in) TB Nothria elegans (Johnson) *M Nothria geophiliformis Moore D D M Onuphis eremita (Audouin and Malne-Edwards) Opheliidae D TB M Ammotrypane aulogaster Rathke Armandia bioculata Hartman D Armandia brevis Moore M D M Ophelia limacina (Rathke) D Pectinophelia dillonensis Hartman Pectinophelia williamsi Hartman Ð DM Polyophthalmus pictus (Dujardin) Thoracophelia mucronata (Treadwell) D D M Travisia pupa Moore Orbiniidae (= Ariciidae) TBDBM Nainereis laevigata Grube TB D M Scoloplos ameceps Chamberlin Oweniidae (= Ammocharidae) D M Owenia fusiformis della Chiaje Pectinariidae TB M Cistenides brevicoma Johnson Phyllodocidae DM Anaitides mediapapillata Moore Anaitides mucosa (OErsted) D Anaitides williamsi Hartman TB TB M Eteone dilatae Hartman B TB Eteone lighti Hartman B TB Eteone longa Fabricius B TB Eteone longa Fasting TB M Eteone pacifica Hartman Eulalia aviculiseta Hartman Eulalia viridis (Linnaeus) Eumida sanguinea (OErsted) DM TBDM Genetyllis castanea (Marenzeller) Hypoeulalia bilineata (Johnston) DM D Phyllodoce ferruginea Moore DM Polynoidae DM Arctonoë fragilis (Baird) Arctonoë pulchra (Johnson) Arctonoë vittata (Grube) DM DM ЪM Eunoë senta (Moore) TB D $*B^{-}*M$ Halosydna brevisetosa Kinberg Halosydna johnsoni (Darboux) Harmothoë hirsuta Johnson M M Harmothoë imbricata (Linnaeus) Hesperonoë adventor (Skogsberg) Hesperonoë complanata (Johnson) Lepidametria gigas (Johnson) TBBM TB M TB B

M TB B M Lepidonotus caelorus Moore

Polyodontidae

D M Peisidice aspera Johnson

Sabellariidae

- D M Phragmatopoma californica (Fewkes)
- D B M Sabellaria cementarium Moore

Sabellidae

- TB M Chone infundibuliformis Krøyer D*M Eudistylia polymorpha (Johnson) TB M Eudistylia vancouveri (Kinberg) D M Fabricia sabella Ehrenberg D M Megalomma roulei (Gravier)
- TB M Myxicola infundibulum (Montagu)
- D M Pseudopotamilla intermedia Moore
- D M Pseudopotamilla occelata Moore D M Sabella crassicornis Sars Sabella media (Bush)
 - D M Schizobranchia insignis Bush

Serpulidae

- D M Eupomatus gracilis Bush D M Hydroides uncinatus (Philippi) *B Mercierella enigmatica Fauvel

- D *M Salmacina dysteri (Huxley)
 D B *M Serpula vermicularis Linn.
 D M Spirabranchus spinosus Moore
 D B *M Spirorbis spirillum Linn., and other species. M Vermiliopsis sp.

Sigalionidae

D M Sthenelais fusca Johnson

Spionidae

- D B *M Boccardia proboscidea Hartman
 - TB M Laonice cirrata Sars
 - TB B Polydora ligni Webster
 - D M Polydora armata Langerhans
 - M Pygospio californica Hartman
 - M Rhynchospio arenincola Hartman
 - M Spio filicornis Muller
 - B Streblospio benedicti Webster

Stauronereidae

- D M Stauronereis articulatus Hartman
- D M Stauronereis moniloceras Moore
- D M Stauronereis minor Hartman

Sternaspididae

D M Sternaspis scutata (Ranzani) (subintertidal; rarely washed in)

Syllidae

- D B M Autolytus varius Treadwell
- TB_M Ehlersia cornuta Rathke
- DB*M Exogone spp.
- D TB M Haplosyllis spongicola (Grube)

Syllidae (Continued) D M Hesperalia californiensis Chamberlin D M Odontosullis phosphoros Moort D M Hesperalia callforniensis chamberli
 D M Odontosyllis phosphorea Moore
 D M Pionosyllis gigantea Moore
 D B *M Syllis alternata Moore
 D M Syllis elongata (Johnson)
 TB B *M Trypanosyllis adamanteus Treadwell
 TB Trypanosyllis genmipara Johnson
 D M Trypanosyllis genmiparis (Willer) D M TB B * M D M Typosyllis armillaris (Müller) D Typosyllis hyalina (Grube) Terebellidae D M Amphitrite robusta Johnson

TB M Eupolymnia heterobranchia (Johnson) D M Pista elongata Moore D *M Polycirrus californica Moore D M Terebella californica Moore D TB *M Thelepus setosus (Quatrefages)

Class OLIGOCHAETA

The oligochaetes which are likely to be found in this course are (1) the earthworms (fig. 13,C) and (2) the usually much smaller freshwater worms (fig. 13,B). A key for the earthworms is given below. See also Altman, 1936, Oligochaeta of Washington. For identification of freshwater oligochaetes refer to Altman (1936).

KEY TO THE TERRESTRIAL OLIGOCHAETES (EARTHWORMS) FOUND IN BERKELEY

By Marjorie E. Olney

1.	Clitellum beginning (anterior edge) anterior to somite 15 MEGASCOLICIDAE 7
1.	Clitellum beginning posterior to somite 20 LUMBRICIDAE 2
2.	Prostomium completely divides peristomium, extending back to boundary with second somite
2.	Peristomium continuous behind prostomium
3. 3.	Clitellum from somites 27-32 Lumbrious rubellus Clitellum from somites 32-37 Lumbricus terrestris
4.	Spermaducal pores (fig. 13.C) on somite 13
4.	Spermaducal pores on somite 15
5. 5.	Clitellum begins on or anterior to somite 26 Eisenia foetidus Clitellum begins on or posterior to somite 27 6
6. 6.	Clitellum somites 29-37 Allolobophora chloroticus Clitellum somites 27-34 Allolobophora caliginosus
7. 7.	Clitellum encircling body Diplocardia singularis Clitellum saddle-shaped, not extending to ventral side

SIPUNCULOIDEA

Class HIRUDINEA

From Lone Tree Pond and other fresh water: *Glossiphonia stagnalis* a predaceous leech. Blood-sucking leeches are less common.

Class ECHIUROIDEA

See bibliographic list for references to *Urechis caupo* Fisher and MacGinitie (fig. 17,F) found in tidal mud flats. This is the only species of this group occurring in this region.

Class SIPUNCULOIDEA

Study externally a sipunculid (fig. 13,E). Note the absence of any segmentation or true setae. The anterior portion is called the introvert, as it can be retracted into the rest of the body. Preserved specimens usually have the introvert retracted. At the anterior end of a specimen with extended introvert note the mouth surrounded by tentacles. The anus is not posterior, but is situated on the dorsal side of the body near the base of the introvert. This is one of the reasons for doubting the relationship of the sipunculids to the annelids.

Sipunculids are abundant at Moss Beach and vicinity, mostly living in holes and crevices in the soft sandstone rock and occur in great numbers in mussel beds on Tomales Point. One undetermined species is found at Point Richmond in San Francisco Bay. The following identifications and distinguishing characters are due to Dr. H. E. Brown.

KEY TO THE SIPUNCULIDS OF MOSS BEACH

- tacles larger, fewer, branched, surrounding mouth 2
- 2. Dark-brown hooks on the anterior part of the introvert; tentacle groups four, alike, each with a single base and with many branches Dendrostoma petraeum (fig. 13,F)
 2. No hooks on introvert; tentacles of two sets, an inner (nearer
- 2. No hooks on introvert; tentacles of two sets, an inner (nearer mouth) of longer tentacles, an outer of shorter tentacles
 Phascolosoma procerum (?)

LIST OF SIPUNCULOIDEA

- B? M D Physcosoma agassizi (Keferstein)
 - M Dendrostoma petraeum Fisher
 - M Phascolosoma procerum (?) Moebius

PHYLUM ARTHROPODA

We shall consider four of the classes of Arthropoda: (1) the Crustacea, (2) the Myriapoda, (3) the Insecta, and (4) the Arachnida. Of these the first three are much more closely related to each other than they are to the Arachnida, which differ in the possession of very different head appendages. The Crustacea have two pairs of antennae, the Myriapoda and Insecta one, while the Arachnida have no antennae, nor have they mandibles as do the others or appendages corresponding to the two pairs of maxillae found in the other three subphyla.

SUBPHYLUM CRUSTACEA

The Subphylum Crustacea is distinguished in a general way from the other arthropods on the basis of habitat in that the crustaceans are almost entirely aquatic, while the other arthropods are predominantly terrestrial. One obvious morphological distinction of the crustaceans is their possession of two pairs of antennae, other arthropods having one pair or none. Two major divisions of the Crustacea were formerly recognized, the Malacostraca and the Entomostraca. The latter, although it may still be used as a convenient term, is generally considered to be without taxonomic validity, since it comprises at least four groups, each of equal rank with the Malacostraca. Following is a key to the divisions of the Crustacea considered in this course.

KEY TO THE MAJOR GROUPS OF CRUSTACEA

1.	Firmly attached, either to a solid substrate (Plate X, no. 3) or rarely as a parasite which is partly internal (no. 2).
	Class CIRRIPEDIA
1.	Free living, or, if parasitic, generally external 3
2.	Non-parasitic; protected by a calcareous shell of several valves Barnacles (Plate X, nos, 1, 3)
2.	Parasites of an extremely simplified morphologic nature; usually found on decapods (<i>Peltogaster</i> on hermit crabs; <i>Sacculina</i> on true crabs, Plate X, no. 2) Order <u>Rhizocephala</u>
3.	Body appendages leaf-like (Plate X, no. 4) and numerous (except in Cladocera)
3.	Body appendages not leaf-like, generally differentiated into two or more types, relatively few in number
4. 4.	Without a carapace (brine shrimp). Order <u>Anostraca</u> (Plate X, no. 4) With a carapace
5. 5.	Carapace broad, shield-like Order <u>Notostraca</u> (Plate X, nos. 5,6) Carapace conspicuously folded; body laterally compressed 6
6.	Carapace two-valved, hinged dorsally, enveloping the entire body and head; appendages very numerous
	Order <u>Conchostraca</u> (Plate A, nos. 7, 7, A)
6.	Carapace apparently two-valved, actually not hinged; head uncovered by carapace; appendages few Order Cladocera (Plate X, no. 8)

ARTHROPODA

7.	With a bivalve carapace enveloping body and head, externally re- sembling the Conchostraca, but differing in smaller size (not more than 2 or 3 mm. in length) and in small number of append- ages in the transformed of the state
7.	Carapace absent, or present but covering at most the thoracic region
8.	Flattened fish parasites with compound eyes, suctorial mouth and limbless abdomen; often placed with next class
8.	With a median simple eye; consisting of very small swimming forms and of parasites which may be somewhat larger; abdominal region without appenderes
8.	With paired compound eyes; swimming or crawling forms generally much larger than in Copepoda; abdomen in swimmers almost al- ways with swimming appendages
9.	Body not abruptly narrowed behind; first antennae (antennules) short, rarely of more than 8 or 9 segments (both prehensile in male); largely bottom living
9.	Body abruptly narrowed behind; antennules long (fig. 43,A and B), usually with numerous segments
10.	Antennules very long, usually with more than 20 segments; anten- nae (second) biramous; a single, ventrally located egg sac Order Celencide (fig. 43 B C)
10.	Antennules moderately long, with 8-20 segments; two laterally or dorso-laterally located egg sacs Order <u>Cyclopoida</u> (Plate XI, no. 2; and fig. 43,A)
11.	Carapace, if present, does not fuse with more than 4 thoracic segments; cöstegites present (plates on ventral side of body of female which form a brood pouch for the hatching of the eggs and the carrying of the young, figs. 52, 53)
11.	Carapace fusing with all the thoracic segments (fig. 78); no oöstegites Subclass <u>Eucarida</u> (including Order Decapoda)
12.	Eyes stalked; thoracic limbs biramous Order <u>Mysidacea</u> (Plate XI, no. 3)
12.	Eyes not stalked; thoracic limbs uniramous 13
13.	Body usually depressed (flattened dorso-ventrally); abdominal appendages generally all alike, leaf-like, functioning mainly for respiration Order Isonoda (Plate XI no. 4)
13.	Body usually compressed laterally; abdominal appendages usually of two sorts, the three anterior leaf-life, used for swimming and respiration, the three posterior bent backward, used as a leaping organ. The aberrant <u>caprellids</u> (Plate XI, no. 5) do not fit this description, but are distinguished by the re- duction of the abdomen to a small stump.
	(Tube AI, 10. C)

Class BRANCHIOPODA

Of the four orders of the Branchiopoda listed above, only one, the Cladocera, will be frequently encountered during the course. The others, chiefly to be found in seasonal ponds, may be briefly discussed as follows. The Anostraca are represented by the brine shrimp, Artemia salina (Plate XI, no. 4), found in this region in the highly concentrated sea water of pools for the commercial production of salt by evaporation. The brine shrimp is much used as food for small fish in aquaria. Other genera, commonly known as fairy shrimps (fig. 36), occur in enormous

Fig. 36.-Male of Branchinecta gigas Lynch (after Lynch).

numbers at times in seasonal freshwater ponds. Living specimens of *Artemia* will be seen in the laboratory. The Notostraca are represented by *Lepidurus*, and *Apus* (Plate X, nos. 5, 6) also occurring in seasonal freshwater ponds and will probably not be encountered in the coastal area. A member of the Conchostraca, *Estheria* (nos. 7, 7a), is also widely found in seasonal freshwater ponds and is often mistaken for a small bivalved mollusk which its external appearance strongly suggests.

Order <u>Cladocera</u>

On a specimen anaesthetized with nicotine and on mounted stained specimens make out (see fig. 37) <u>head</u>, <u>carapace</u> (not truly bivalved), <u>compound eye</u>, and the large <u>antennae</u> (second antennae). The head ends in a depressed <u>rostrum</u> near which are the vestigial <u>first antennae</u> or <u>antennules</u>. Above the origin of the antennae is a ridge known as the <u>fornix</u> (see *Pleuroxus*, fig. 39). A notch or transverse groove, the <u>cervical sinus</u> (fig. 37), marks the dorsal junction of head and body in some species. A black spot, closely associated with the brain in some species, usually below and behind the compound eye, is the single eye or <u>ocellus</u>.

The head may be in line with the body or depressed. The posterior end of the shell or carapace may bear a spine as in Daphnia (Plate X, no. 8). The spine may lie at the postero-dorsal angle or at the postero-ventral (= infero-posteal) angle, when the posterior end of shell is truncated. The postero-ventral angle may be acute, rounded, smooth, or toothed. The nature of the shell surface is often of diagnostic importance. The number of setae on the various joints of the two branches of the antennae beginning at the proximal end is made into a formula of systematic value. The formula for Daphnia is 0-0-1-3. Make it out for your specimen.

Fig. 37.-Simocephalus sima (after Shipley and MacBride).

Identify a specimen by means of the key in Ward and Whipple. If this is not immediately available use the key below but identify at least one species using Ward and Whipple.

A KEY TO THE COMMON GENERA OF FRESHWATER CLADOCERA

1.	Antennules (fig. 37) of female very small (save in Moina, where
	large, freely movable, and inserted near or behind middle of ven-
	tral surface of head, fig. 38) Daphniidae 2
1.	Antennules of female long, immovable, inserted near anterior end of
	ventral surface of head and recurved forming a beak (fig. 39.A).
	Bosminidae Bosming (fig. 39.A)
1.	Antennules of female long, freely movable, inserted at anterior
	surface of head (fig. 39.D)
1.	Antennules of female inserted on ventral surface of head, partly
	covered by fornices which form a beak with the rostrum ex-
	tending downward in front of antennules (fig. 39.B). Chydori-
	dae
	la. Rostrum long and slender, often upcurved at tip: poste-
	rior margin short, often toothed . Pleuroxus (fig. 39, B)
2	Correctional ginug progent (fig 37)
2	Carrical sinus present (IIg. 07) Danbnig (Plete Y no 8)

- 3. Antennules large, freely movable; head large, extended, thick in front; without a rostrum; valves small, not covering body; long ciliated spines from dorsal side of postabdomen

4

Fig. 38.-Moina (after Baird).

- 4. Head moderately depressed; valves more or less quadrate 5
- 4. Head greatly depressed; eye almost directly below bases of antennae; valves oval or round Ceriodaphnia

Fig. 39.-Types of Cladocera (after Birge).

- 5. Large; valves subquadrate with rounded angles; body large and heavy; yellow to yellow-brown . . . Simocephalus (figs. 37, 39,C)
 5. Smaller; valves almost rectangular, posteroventral angle of each
- produced into a spine; color variable Soapholeberis

OSTRACODA

LIST OF COMMON GENERA OF BRANCHIOPODA (All except Artemic in fresh water)

Anostraca

<u>Cladocera</u>

Bosmina

Artemia salina (in highly concentrated salt water) Branchinecta

Notostraca

Apus Lepidurus

<u>Conchostraca</u>

Estheria

Ceriodaphnia Daphnia Macrothrix Moina Pleuroxus Scapholeberis Simocephalus

Class OSTRACODA

Examine whole mounts and living specimens. Note the truly bivalved shell (Plate XI, no. 1), which entirely encloses the head and body, and the absence of segmentation or of leaf-like appendages (fig. 40 and Plate XI, no. 1a). These characters differentiate the ostracods from other entomostraca.

Remove one value to identify such structures as time allows. Refer to figure 40 of Asterope.

Fig. 40.—An ostracod (<u>Asterope</u>) with left valve removed (after Sars).

Be able to recognize ostracods when encountered. We shall not attempt to identify them to genus or species.

Class COPEPODA

<u>Laboratory Exercise</u>.—Anaesthetize your specimen with a drop of dilute nicotine solution. Note the enlarged anterior portion of the

body in front of the movable articulation, known as the <u>metasome</u>, and the smaller posterior <u>urosome</u> (fig. 41). These terms are safer than thorax and abdomen, about the limits of which opinions differ. The last or anal segment bears a pair of <u>caudal</u> or <u>furcal rami</u> (or <u>furcae</u>). See the large uniramous <u>first antennae</u> (<u>antennules</u>) and the smaller, often biramous, <u>second antennae</u>. How many pairs of thoracic legs (swimming legs) do you find (refer to fig. 41)? These legs, particularly the last (fig. 44), are often of very great systematic importance.

Fig. 41.-Diagrammatic figure of female calanoid copepod (after Giesbrecht and Schmeil).

Study stained mounts of appendages of a large freshwater species (genus *Diaptomus*). Using both low and high power of the compound microscope see the antennules of male and female. Note the special features of the right (clasping) antennule of the male, especially the process on the antepenultimate segment (fig. 44,D,E) and the heavy spines on segments 10, 11, and 13. On a swimming leg make out <u>basipodite</u> and two distal branches, the <u>exopodite</u> and <u>endopodite</u>. How many segments in each of these?

Study the fifth legs of the female (fig. 44,B) noting that they are greatly modified but symmetrical. Note the great asymmetry of the

male fifth leg (fig. 44,A). The position of the spine on the outer side of the second segment of the right exopodite is important in classification as also the nature of the medial apical process of the terminal segment of the left exopodite (fig. 44,A).

Figure 42 illustrates the functions in copulation of the peculiarly modified right antennule of the male, the male fifth legs, and the usually asymmetrical urosome of the male.

Fig. 42.—Copulation in <u>Diaptomus</u> (after Wesenberg-Lund): A, function of clasping antennule of male; B, function of urosome and fifth legs of male.

See examples and learn the general distinguishing characters of the three subclasses, the Calanoida (figs. 41, 43, B, C), Cyclopoida (fig. 43, A), and Harpacticoida (fig. 43, D, E). The calanoids are usually larger (figures in 43 entirely out of scale), the antennules very long (with 25 segments), the urosome sharply distinct from the metasome, which is considerably longer and broader than the urosome (furcal rami included in measurement, but not setae); the cyclopoids (fig. 43, A) are smaller, the antennules shorter, usually with less than 17 segments, the urosome and metasome distinct and of about the same length; the harpacticoids (fig. 43, D, E) are very small, the antennules very short with few segments and the urosome is not conspicuously different from the metasome.

A key to the orders of Copepoda is included in the key on p. 69, but is repeated below, together with the identification of some local genera and species.

A KEY TO THE MOST COMMON COPEPODA OF THE SAN FRANCISCO BAY REGION

 Body not abruptly narrow behind; urosome nearly as wide as metasome (fig. 43,D,E); first antennae short, rarely of more than 8 or 9 segments (both prehensile in male); largely bottom-living.

Fig. 43.—Types of copepods (variously magnified): A, <u>Cyclops strenuus</u> Fischer (after Wesenberg-Lund); B, <u>Diaptomus Wierzejskii</u> Richard (after Wesenberg-Lund); C, <u>Diaptomus gracilis</u> Sars (after Gurney); D, E, <u>Atthyella illinoisensis</u> Forbes (after Coker).

.

Е

1.	Body abruptly narrowed behind, urosome narrow; antennules long (fig. 43 A-C), usually with numerous segments: chiefly free-
	swimming
2.	Fresh water Canthocamptus (Atthyella) (fig. 43, D, E)
2.	Marine; orange red; present in high tide pools
	••••• Tigriopus californicus
з.	Antennules very long, usually with more than 20 segments (figs.
	41, 43, B, C); a single, ventrally located egg sac.
з.	Antennules moderately long, with from 8-20 segments, usually
	from 10-16: two laterally or dorsolaterally located egg sacs
	(fig. 43,A) Order Cyclopoida 4

4. Freshwater; free-living; with relatively narrow body. 4. Marine, on surface of Callianassa; red; female broad (figs. 45, 46);

male much smaller (fig. 45) Clausidium (figs. 45, 46)

Fig. 46.-<u>Clausidium vancouverense</u> Haddon: A, female Fig. 45.-Clausidium vancouverense Haddon, dorsal view of in ventral view; B, first thoracic leg, magnified to show modifications; C, a portion of this more highly clasping pair. magnified to show nature of suckers.

- 5. Urosome of female 4-segmented (fig. 41); metasome showing five distinct somites behind head; left fifth leg of male enlarged;
- somites behind head; exopod of right fifth leg of male tipped with long, curved claw (fig. 44,A,C); fresh water . . Diaptomus 6
- 6. Spine of right fifth leg of male nearly straight, located near distal end of second segment of exopodite (fig. 44,A); medial process of left exopodite of male fifth leg a slender curving, flat spine (fig. 44,A); third segment of exopod of female

COPEPODA

6.	Spine of right fifth leg of male curved, much nearer middle of segment (fig. 44,C); medial apical process of left exopod digitiform; third segment of exopod of female fifth leg ves- tigial, represented only by seta and spine
7.	Antennules with setae more numerous than usual, two each on segments 13-19, and four on segment 2 D coducus (fig. 44.A)
7.	Antennules with but one sets on segments 13-19 and three on segment 2
8.	Larger; process on antepenultimate segment of right male anten- nule much longer than penultimate segment, slender distally; right fifth leg of male with a prominent rugose swelling on
8.	median margin of second basal segment D. eiseni Smaller; process on antepenultimate segment of right male an- tennule rarely as long as penultimate segment, thicker distally; no such swelling on right fifth foot of male D. franciscanus
9.	Antepenultimate segment of right male antennule without hyaline lamella but with a short process abruptly outcurved near tip (fig. 44,E); fifth leg of male with prominent hyaline lamella on distomedial margin of basal segment of right exopod (fig. 44.C); this segment nearly twice as long as wide . D. siciloides
9.	Antepenultimate segment of right male antennule with both hya- line lamella and a process; process with gentle distal curva- ture (fig. 44,D); basal segment of right exopodite of male fifth leg wider than long, without hyaline lamella. D. novamexicanus
	LIST OF COMMON LOCAL COPEPODA

Order <u>Harpacticoida</u>

- F Atthyella
- M Tigriopus californicus (Baker) (= T. triangulus Campbell) Many other unidentified genera and species, freshwater and marine. For marine species see Monk, Trans. American Micros. Soc., 1941, p. 75.

Order <u>Calanoida</u>

- M Calanus finmarchicus Gunner
- M Calanus spp.
- Other marine species
- F Diaptomus caducus Light
- F Diaptomus eiseni Lilljeborg
- F Diaptomus franciscanus Lilljeborg F Diaptomus novamexicanus Herrick (= D. washingtonensis)
- F Diaptomus siciloides Lilljeborg

Order Cyclopoida

- M Clausidium vancouverense Haddon
- F Cyclops spp.
 - Many other freshwater genera and species

Class BRANCHIURA or ARGULOIDEA

These animals (fig. 47) are ectoparasites of fish, freshwater and marine. Two species are commonly encountered in this region, Argulus japonicus Thiele (fig. 47) common on goldfish, and the much larger A. pugettensis Dana common on the various types of marine perch.

The family Argulidae has been recently reviewed by Meehean (1940, <u>Proc. U.S. National Museum</u>). The group is variously considered to represent an order or subclass of the Copepoda or a separate class.

See the demonstration specimens and be able to recognize the two common local species.

Fig. 47.-<u>Argulus</u>, the fish louse, Class Branchiura (after Meehean).

Class CIRRIPEDIA

Order Thoracica, Barnacles

(Refer to <u>Cirripedia of Puget Sound</u>, by Dora Henry, 1940.)

On a goose barnacle (*Lepas*, fig. 48,A) make out the five plates making up the armor, a pair of large <u>scuta</u> (sing. <u>scutum</u>) at the stalk end, a pair of smaller <u>terga</u> (sing. <u>tergum</u>) at the free end, and a single narrow median <u>carina</u> at the hinge side. The homologues of these five plates are present in the sessile barnacles as well as several other plates. In *Mitella*, the leaf barnacle, many accessory platelets are found, some of which may be homologous with the extra plates in the sessile barnacles.

On the sessile or acorn barnacle, Balanus glandula (figs. 48, B, C,

Fig. 48.--Types of barnacles and terms used in their description (C-E after Henry): A, <u>Lepas</u>, a goose barnacle; B, <u>Balanus glandula puzettensis</u> Henry; C, <u>Balanus glandula</u>; D, scutum of <u>Balanus nubilus</u>, inner view; E, tergum of same inner view.

Plate X, no. 1), make out three calcareous regions: (1) the <u>basis</u> by which it is attached, (2) the parapet or <u>wall</u>, and (3) the movable portion, the <u>valves</u>, shutting the aperture at the free end of the wall.

The wall of a sessile barnacle consists primitively of 8 plates, each known as a <u>compartment</u>. The one farthest from the head (dorsal or posterodorsal) is the <u>carina</u> (figs. 48,B,C), homologous with that in *Lepas*; that at the opposite end is the <u>rostrum</u>. Those on either side of the carina are the <u>carino-laterals</u>, and the pair next the rostrum the <u>rostro-laterals</u>, while the middle compartments are known as laterals. Various combinations and eliminations of these primitive 8

plates have occurred in different genera. In the genus Balanus (fig. 49,B) the rostro-laterals are fused with the rostrum. In Chthamalus (fig. 49,A) the carino-laterals are lacking and in Tetraclita there are only four plates, the rostro-laterals being fused with the rostrum and the carino-laterals absent. The exposed median triangle of each compartment (fig. 48,B) is known as a <u>paries</u> (pl. <u>parietes</u>.) The edges of a compartment which overlap another compartment are known as <u>radii</u>

Fig. 49.—Schematic cross sections to show arrangement of plates in <u>Chthamalus</u> (A) and <u>Balanus</u> (B).

(sing. radius) if the lines of growth are different from the paries, otherwise they receive no special designation. The edges of a compartment which are overlapped are known as <u>alae</u> (sing. <u>ala</u>). The rostrum and carina are symmetrical, typically each with two <u>alae</u>. The lateral compartments are symmetrical each with a radius on the posterior (carinal) side and an ala on its anterior (rostral) side. In Chthamalus the rostrum is normal with two alae (fig. 49,A). In Balanus (fig. 49, B) and Tetraclita, however, it seemingly has two radii, but these are really the radii of the rostro-laterals which are joined with it. The carina has two alae in all cases since, while the carino-laterals are lacking in some genera (Chthamalus and Tetraclita), they are never fused with the carina as are the rostro-laterals with the rostrum (Balanus and Tetraclita). The movable upper portion consists of two pairs of plates, two longer anterior <u>souta</u> (figs. 48,D and 49), and two shorter posterior terga. Numerous characters important in the classification are found on the inner bases of these plates (see fig. 48,D,E).

Identify your specimen using the key below. At some future time attempt to identify other species by means of Henry's key (1940) or using Pilsbry, <u>U.S. Nat. Mus. Bull. 93</u>. Our local barnacles are not well known and species may be found which are not in the key.

KEY TO THE BARNACLES

1.	talked (goose barnacles)
2.	ith many plates and thickly scaly peduncle; attached to rocks
2.	ith but five plates and smooth slender peduncle, attached to
~•	seaweed or floating wood (fig. 48,A)

CIRRIPEDIA

3.	Plates thin and papery; carina ending below in flat disc
з.	Plates thicker; carina forked below Lepas fascicularis
4.	Very small, less than 1/4 inch long, without vertical ridges; front and hind plates (rostrum and carina) overlapped on both sides by lateral plates (fig. 49,A)
4.	Larger; with vertical ridges; anterior plate (rostrum) overlap- ping lateral plates (fig. 49,B)
5.	Wall red, finely ridged, consisting of but 4 compartments, the divisions between which are hardly discernible externally.
5.	Wall grayish or white, variously ridged, consisting of 6 com- partments, the margins of which may not be discernible ex- ternally
6.	Outside of wall with numerous fine ridges (see figure below); suture between scuta strongly sinuate
6.	Outside of wall without or with few ridges, these relatively heavy; suture between scuta feebly or minutely sinuate 7
7.	Small to medium size, usually about 1/2 inch in diameter or
7.	Usually much larger; at low tide mark
8.	Commonly with distinct ridges on wall; common high intertidal
8.	Wall smooth; rare lower intertidal species Balanus glandula (See Henry 1940 and the special report of C D Micharon for

(See Henry, 1940, and the special report of C. D. Michener for more technical differences between species of Balanus)

LIST OF CIRRIPEDIA

Order Rhizocephala

Unidentified parasitic forms (Sacculina, Peltogaster or other Rhizocephala) on crabs, especially on hermit crabs.

Order Thoracica

Balanus cariosus Pallas Balanus crenatus Brugiere Balanus glandula Darwin Balanus nubilis Darwin Chthamalus fissus Darwin Lepas hilli Leach Lepas fascicularis Ellis and Solander Mitella polymerus Sowerby Tetraclita squamosa rubescens Darwin

The Thatched Barnacle, <u>Balanus</u> cariosus Pallas (from Guberlet)

Class MALACOSTRACA

Three subclasses of the Malacostraca, the Leptostraca, the Hoplocarida, and the Syncarida, will not be encountered. The other two, Peracarida and Eucarida, include many important elements of the faunas studied.

Subclass Peracarida

Two orders, Mysidacea (Plate XI, no. 3) and Cumacea (fig. 50), include minute forms not important in such studies, although representatives of each may be encountered. A third order of many authors, the Tanaioidea (fig. 51), is included in this syllabus with the Order Isopoda as the Suborder Chelifera.

Fig. 50.-Diastylis, a cumacean (after Sars).

Order Isopoda

You will be given specimens of the five free-living suborders, Chelifera, Flabellifera, Valvifera, Oniscoidea, and Asellota. Distinguish them by means of the key below adapted from M. A. Miller (1940) and Richardson (1905).

Fig. 51.—<u>Tanais</u>, Suborder Chelifera (= Order Tanaicidea) (after Richardson): A, dorsal view; B, chela enlarged.

1.	First	pair of	legs chelate	(fig. 51); 1	ropods terminal	
	• •	• • • •			Chelifera	(Tanaioidea)
1.	First	pair of	legs without	chelae; uroj	pods terminal or	lateral . 2

ISOPODA

85

Fig. 52.—<u>Asellus communis</u> Say, Suborder Asellota (after Van Name).

4. Aquatic forms; pleopods branchial; abdominal appendages usually covered by larger opercular plates formed by an anterior pair of pleopods; abdominal segments fused
4. Terrestrial forms; pleopods uncovered, adapted for air breathing; sometimes provided with tracheal trees; abdomen with 6 well-defined segments (the last fused with telson)
5. Oniscoidea (fig. 53)

In your specimens note the characters of the order, the depressed bodies, the long thorax with seven pairs of legs (peraeopods or periopods), in addition to the one pair of maxillipeds (figs. 52, 53), and the short abdomen. The last abdominal segment is united with the telson and other reductions in visible numbers of abdominal segments will be encountered (e.g., fig. 54). See the flat leaf-like pleopods functioning for respiration and for swimming (figs. 53, 54).

Fig. 53.—<u>Porcellio scaber</u> Latreille, Suborder Oniscoidea (after Van Name).

On a female make out the <u>oöstegites</u> (figs. 52, 53), or marsupial plates, arising from the inner bases of the thoracic appendages. These form the marsupium in which the eggs develop.

Study the mounts of the head appendages of *Sphaeroma*. Make out <u>antennules</u>, <u>antennae</u>, <u>mandibles</u>, <u>maxillules</u> or <u>first maxillae</u>. <u>maxil-</u> <u>lae</u> or <u>second maxillae</u>. The <u>maxillipeds</u> are the first thoracic appendages.

Make yourself familiar with the following valuable works of reference listed in the terminal bibliography: Richardson (1905), Monograph of Isopods of North America (naturally far from complete); Miller, M.A. (1938), Comparative Ecological Studies on the Terrestrial Isopods of the San Francisco Bay region (includes a key to species); Van Name (1936), Monograph of Land and Freshwater Isopods.

ISOPODA

A KEY TO THE COMMON LOCAL ISOPODS

1.	Legs of first pair cheliform (fig. 51), uropods terminal; pleopods,	
	when distinctly developed, exclusively natatory. Chelifera (often	
	considered a separate order, Tanaioidea)	
1.	First pair of legs not cheliform	

Suborder Chelifera

2.	Two pairs of pleopods; abdomen of 3 segments; uropods of 2 arti- cles
2.	Three pairs of pleopods; abdomen of 5-6 segments; uropods of 3-7 articles
3. 3.	Abdomen of 6 segments Anatanais Abdomen of 5 segments
4. 4.	Uropods lateral (fig. 58) or ventral (fig. 54)
5.	Uropods forming with terminal segment of abdomen a caudal fan (fig. 58); most pleopods natatory (Cymothoidea or Flabellif-
5.	era
	which are largely branchial (Idotheoidea or Valvifera) 6

Suborder Valvifera

r wer het bester ander Australie bestelle bestelle der Kallen ander

Fig. 55.—A, mandibular palp of <u>Pentidotea wosne-</u> <u>senskii</u> showing five articles; B, same of <u>Idothea</u> <u>rectilinia</u> showing four articles.

- 8. Telson more nearly rectangular, postero-lateral angles fairly distinct, a distinct median tooth at posterior end 9

Fig. 56.—<u>Idotheoidea</u> (after Richardson): A, B, <u>Pentidotea</u> wosnesenskii Brandt; C, <u>P. resecata</u> Stimpson; D, <u>Idothea</u> reculinia Lockington.

- diameter of eyes five times short diameter . Pentidotea stenops

Suborder Flabellifera

Fig. 57.-<u>Cyathura carinata</u> Krøyer, Anthuridae (after Richardson).

- 19. Surface of abdomen with tubercles; all thoracic segments but first marked with four conspicuous brown spots and with two spots on first abdominal segment . . . Exosphaeroma octoncum
 19. Surface of abdomen without tubercles; body ovate, twice as long as wide; head three times as wide as long

90

Fig. 59.-<u>Munna krøveri</u> Goodsir (after Richardson).

Suborder Asellota

 21. Mite-like in appearance; last three thor constricted	acic segments short, <i>Munna</i> (fig. 59) nts not constricted 22
22. Second pair of antennae long, with multi 22. Second antennae short; flagellum reduced	articulate flagellum . 23 (figs. 60,B,C) Jaeropsis
23. Uropods tiny; first pair of antennae ver second pair without a scale	y tiny (fig. 60,A);
23. Uropods and first antennae well develope antennae with a scale	d (fig. 60,D,E); second Janiropsis
Suborder <u>Oniscoide</u>	<u>8</u>
24. Living just above water on the shore of 24. Truly terrestrial or near fresh water .	ocean or bay 25
25. Slow-moving; under rocks or debris; not water; antennae and uropods short	actually entering
25. Rapidly moving; living more in the open times; antennae and uropods long	and entering water at

29. Abdomen abruptly narrower than thorax; brown or reddish; surface slightly granulated; usually under decaying vegetation 30. Body very convex, capable of being rolled into a ball; uropods not extending beyond tip of abdomen. "The Pill Bug" 30. Body more or less depressed, not capable of rolling into a ball; uropods extending beyond tip of abdomen. "The Sow Bugs" 31. Body roughly granulate or tuberculate . Porcellio scaber (fig. 53) 32. Body very smooth and shiny; posterolateral margin of first four thoracic somites straight; terminal process of abdomen (telson) pointed at tip, with a deep longitudinal dorsal 32. Body smooth or slightly granular; posterolateral margins of first four thoracic somites produced posteriorly; telson rounded at tip and with but a faint dorsal groove LIST OF ISOPODS Suborder Chelifera (or regarded by some authorities as a separate order, Tanaioidea) M Pancolus californiensis Richardson M Anatanais M Tanais Suborder Valvifera (Idotheoidea) *D M Idothea rectilinea Lockington D D Pentidotea resecata Stimpson D *M Pentidotea stenops Benedict D M Pentidotea whitei Stimpson *D *M Pentidotea wosnesenskii Brandt Suborder Flabellifera (Cymothoidea) M Anthuridae B *D *M Cirolana harfordi Lockington M Cirolana linguifrons Richardson M Dynamene dilatata Richardson M Dynamenella glabra Richardson M Exosphaeroma amplicauda Stimpson M Exosphaeroma octoncum Richardson B *M Exosphaeroma oregonensis Dana M Exosphaeroma rhomburum Richardson *B Limnoria lignorum Rathke D M Livoneca (clinging to gills of fish; not in key) *B Sphaeroma pentodon Richardson

AMPHIPODA

Suborder Asellota

- M Jaera
- M Jaeropsis lobata Richardson
- *M Janiropsis californica Richardson
- M Munna

Suborder Oniscoidea

(NOTE: -Ligia and Alloniscus are almost as truly terrestrial as the others of this suborder, but live very near the sea, just above the high tide marks, often descending into the intertidal when the tide is out.)

- TB M Alloniscus perconvexus Dana
- *T Armadillidium vulgare Latreille
- *B D *M Ligia occidentalis Dana
 - *M Ligia pallasii Brandt

 - T Ligidium gracile Dana *T Porcellio formosus Stuxberg *T Porcellio laevis Latreille *T Porcellio scaber Latreille

 - T Porcellionides (Metoponorthus) pruinosus Brandt

Order Amphipoda

The Amphipoda are divided into three suborders: Gammaridea (Plate XI, no. 6), Hyperiidea (fig. 62), and Caprellidea (Plate XI, no. 5); the first two with seven free thoracic segments, the third with six. The

Caprellidea are further distinguished by a very narrow body and a rudimentary abdomen. The Hyperiidea which are commonly parasitic and will not be seen by us are further characterized by a very large head (fig. 62) and large eyes. The Gammaridea are represented by the familiar "sand flea" of the seashore and a large number of species living on seaweed, under rocks, etc. We shall confine our study to the Gammaridea, but the student should be able to recognize caprellids.

Using the dissecting microscope or low powers of the compound microscope study fixed specimens of Gammarus and whole mounts of Gammarus and Hyallela. Make out (fig. 63) antennules and antennae, known also as first and second antennae. The elongate basal joints constitute the <u>peduncle</u>, the small distal joints the <u>flagellum</u>. Note that there is a small secondary flagellum on the antennule of some genera (fig. 71).

The mouth-parts will be studied later using mounts of the separated appendages of Allorchestes. On the whole mounts see the subchelate first and second legs (2d and 3d thoracic appendages) known as first and second gnathopods, the five simple walking legs known as periopods, the three biramous <u>pleopods</u> with slender, multiarticulate rami, and the three pairs of biramous leg-like <u>uropods</u> ("springing feet").

The first two legs, called the first and second gnathopods (fig. 63),

Fig. 62.-Platycelus, Suborder

Hyperiidea, Order Amphipoda.

commonly terminate in expanded hands, and in one or both or neither the terminal segment (seventh segment or <u>dactylus</u>) closes on

Fig. 63.—<u>Talitrus sylvaticus</u> Haswell, a gammarid amphipod labeled to show characteristic structures: Pleopods 1-3, the appendages of the first three abdominal segments are omitted (after Shoemaker). Segments of thorax and abdomen are numbered; Gl, G2 = first and second gnathopods; pl-p5 = the walking legs or periopods; Ul-U3 = the three posterior abdominal appendages termed uropods; a-b = the side plates or coxal plates of the thoracic appendages.

the expanded <u>pelm</u> (<u>propodus</u> or sixth segment) as a <u>clasping finger</u>. Such appendages are termed <u>subchelate</u> (fig. 64,B). The finger may form with the sixth joint a forceps-like pinching claw, in which case the appendage is <u>chelate</u> (fig. 64,A). Finally the finger may not close, but remain stationary like a claw, as in the other legs, when the gnathopod is said to be <u>simple</u>.

Note the flat extensions of the chitinous bases of the thoracic appendages which are known as <u>side plates</u> or <u>coxal plates</u> (fig. 63).

Study mounts of the mouth-parts of Allorchestes. The most posterior appendages are the <u>maxillipeds</u> (fig. 64,C) united by their two basal segments. Each extends distally as a palp and bears internally two endites or lobes known respectively as the outer and inner plate. More anteriorly are two very small appendages, the paired <u>second</u> and <u>first maxillae</u> (figs. 64,E,F). In Allorchestes (in contrast to the condition in Gammarus, fig. 64,E,F) the second maxilla is largest and bears a tiny palp, while the first is small and without a palp. The mandibles are heavily chitinized structures lacking a palp in Allorchestes (fig. 64,D) but having one in Gammarus (fig. 64,G). In front of and behind the mandible are the fleshy upper and lower lips (fig. 64,H).

Sex dimorphism is frequently marked and it is often necessary to recognize the sex in order to identify. This may often be done on the basis of the size of the gnathopods which are usually larger in the male. In sexually mature females the egg mass on the ventral surface of the abdomen enclosed in the marsupial plates (= oöstegites) is a distinguishing character.

Fig. 64.—Mouth parts of various amphipods: A, first gnathopod of <u>Allorchestes</u> with segments numbered, showing chelate condition; B, second gnathopod of same, subchelate; C, maxilliped of <u>Gammarus</u>; D, mandible of <u>Allorchestes</u> (lacking palp); E-G, second maxilla, 1st maxilla, and mandible of <u>Gammarus</u> (mandible with palp); H, lower lip of <u>Ampithos</u>, showing notched front lobes.

Using the key, identify the specimen given you and such others as time allows. This will require a certain amount of dissection. Do this with needles under the higher powers of the dissecting binocular. Mount dissected parts under coverslips and study by means of the compound microscope.

KEY TO THE AMPHIPODS (Suborder Gammaridea)

1. 1.	Side plates 2-4 united, forming a large lateral shield . Metopa sp. Side plates 2-4 not united (fig. 63)
2.	Uropod 3 (most posterior) vestigial, seemingly absent; species living in sponge Podocerus spongicolus (fig. 65)
2.	Uropod 3 of at least moderate size, functional
3.	Rostrum conspicuous, at least 1/3 as long as first joint of antennule
3.	Rostrum inconspicuous, less than 1/3 as long as first joint of antennule

- 4. Antennule with long accessory flagellum (fig. 66,A); legs with many bristles, adapted for burrowing
- 4. Antennule without accessory flagellum; legs not adapted for burrowing

Fig. 65.—<u>Podocerus spongicolus</u> Alderman (after Alderman): A-B, first and second gnathopods of male; C-D, same of female.

Fig. 66.—<u>Pontharpina</u> <u>obtusi</u>-<u>dens</u> Alderman (after Alderman): A, antennule; B, third periopod.

 5. Integument indurated, bearing processes; mouth-parts prolonged, as if for piercing Acanthonotozomatidae (fig. 67)
 5. Integument and mouth-parts not especially indurated 6

Fig. 67.-<u>Panoplea</u>, family Acanthonotozomatidae (after Shoemaker).

6.	Antenna longer than antennule; telson cleft to base; abdominal	
	segments 5 and 6 fused Nototropis tridens (fig. 68)
6.	Antennule longer than antenna; telson undivided; abdominal seg-	•
	ments 5 and 6 not fused	

AMPHIPODA

Fig. 68.-<u>Nototropis tridens</u> Alderman (after Alderman): A, side view; B, first gnathopod; C, second joint of fifth periopod.

A DE LANS

ŝ,

Fig. 69.—<u>Pleustes depressus</u> Alderman (after Alderman): A, side view; B, second gnathopod.

AMPHIPODA

 18. Antennule short, little more than half the length of antenna 19 18. Antennule longer, generally much more than half length of antenna
19. Color black and gray with sometimes transverse white stripes; size fairly large; found in San Francisco Bay
19. Color pink or pale; size small
20. Color pink; found with red algae on ocean coast Hyale rubra 20. Color pale whitish; San Francisco Bay shore . Allorchestes angusta
 21. Antenna with dense tufts of bristles, bristles being at least as long as width of flagellum; bay shore Allorchestes plumulosus 21. Antennal bristles much fewer and shorter
22. Joints 4 and 6 of male gnathopod 2 in contact (fig. 72,B)
22. Joints 5 of male gnathopod 2 produced between joints 4 and 6 (fig. 64,B) Allorchestes sp. (Character 22 is decisive in distinguishing between the genera Hyale and Allorchestes but it is often difficult to observe and consequently has not been used above where other distinctions are possible.)
Fig. 72A,B, <u>Hyale</u> sp.; C,D, <u>Aoroides californica</u> Alderman; E, <u>Orches-</u> <u>tia traskiana</u> Stimpson, side plate 4.
 23. Gnathopod 1 much longer than 2, very long in male Acroides californica (figs. 72,C,D) (Acroides columbiae reported common on rocky coast [see Ricketts and Calvin]) 23. Gnathopod 1 not larger than 2

24. 24.	Uropod 3 with prominent upward-turning hooks at the end of the outer ramus
25. 25.	Antennule shorter than antenna; one hook to each uropod 26 Antennule usually longer than antenna; two hooks to each uropod
26. 26.	Hind margin of joint 6 of male gnathopod 2 produced into strong tooth; female gnathopod 2 much larger than 1 . Jassa sp. Male gnathopod 2 without posterior teeth; female gnathopod 2 little larger than 1 Ischyrocerus sp.
27. 27.	Palm of male gnathopod 2 transverse; flagellum of antennule with 35 or more joints
28. 28.	Joint of 5 of male gnathopod 2 small; flagellum of antennule with about 50 joints Ampithoë valida Joint of 5 of male gnathopod 2 longer than joint 6; flagellum with about 35 joints Ampithoë humeralis (Plate XI, no. 6)
29. 29.	Flagellum of antennule twice as long as peduncle; a prominent tooth defines palm of male gnathopod 2 Ampithoë vaillantii Flagellum of antennule usually less than twice as long as pe-
29.	duncle; a very small tooth defines palm Ampithoe rubricata Flagellum of antennule little longer than peduncle; a large blunt tooth defines palm Ampithoë simulans
30. 30.	Antennule longer than antenna and possessing an accessory fla- gellum
31. 31.	Rami of uropod 3 very unequal, outer ramus much longer, or at least, much larger
32.	Outer ramus of uropod 3 several times as long as the inner ramus; eye round or irregular, but usually not bean-shaped
32.	Outer ramus of uropod 3 not more than 3 times as long as inner ramus in our species, but the inner ramus is very much more slender; eye bean-shaped
33.	Inner ramus of uropod 3 at least 2/3 length of outer ramus
33.	Inner ramus of uropod 3 less than 1/2 length of outer ramus
34.	Accessory flagellum of antennule 2-jointed; regular flagellum longer than peduncle <i>Elasmopus</i> (fig. 74)
34.	Accessory flagellum 7-10 jointed; flagellum shorter than pedun- cle Maera inaequipes

Fig. 73.-<u>Melita californica</u> Alderman (after Alderman): A, side view; B, first gnathopod; C, second gnathopod.

Fig. 75.--A, <u>Kinonema</u>, telson and uropod; B, second gnathopod of same with side plate and obstegite; C, emarginate telson of <u>Pontogenia</u>.

- 38. Telson deeply cleft (fig. 75,C); side plate 4 deeply excavate

Fig. 76.—<u>Oligochinus</u>: A, telson; B, second periopod with side plate; C, first gnathopod.

39. Rami of uropod 3 about equal Eurystheus tenuicornis 39. Inner ramus of uropod 3 much smaller than outer 40

Fig. 77.—<u>Photis conchicola</u> Alderman: A, side plate 3 and second segment of first periopod; B, side plate 4; C, side plate 5 and third periopod.

В

40. Male has side plates 1 and 2 much shallower than others; female has side plate 4 broader than front lobe of 5

40. Male has side plates 1 and 2 not much shallower than others; female has side plate 4 narrower than front lobe of 5

LIST OF AMPHIPODS

Suborder Gammaridea

M Acanthonotozomatidae

- B Allorchestes angustus Dana
- *B Allorchestes plumulosus Stimpson
- M Allorchestes sp.
- M Ampithoë humeralis Stimpson

AMPHIPODA

Suborder <u>Gemmaridea</u> (Continued)		
M	Ampithoë rubricata Montagu	
М	Ampithoe simulans Alderman	
M	Ampithoë vaillantii Lucas	
в*м	Ampithoë valida Smith	
M	Aoroides californica Alderman	
M	Aoroides columbias Walker	
*в	Corophium bonellii Milne-Edwards	
В	Corophium insidiosum Crawford	
FM	Corophium spp.	
М	Elasmopus brasiliensis Dana	
ТМ	Elasmopus rapax Coste	
≁M	Ericthonius sp.	
M.	Eurystheus tenuicornis Holmes	
TB	Gammarus confervicolus Stimpson	
B	Gammarus pribilofensis Pearse	
тм *	Hyale sp.	
. М ж.р	Hyale rubra Inompson	
*⊞ *⊞	Hydle pugettensis Dana	
E. F.	Hyalella Knickerbockeri bate	
M	Ischyrocerus sp.	
<u>께</u> ***	Jassa sp.	
M. M	Athone incomuince Coste	
*u	Malita aglifamping Aldermen	
M	Melita palmatu Montegu	
*B	Melita gr	
в М	Netona sp.	
С <u></u> "М	Micronrotonus	
M	Neonleustes brevicornis Sars	
B	Neonleystes nugettensis Dana	
M	Nototropis tridens Alderman	
* <u>M</u>	Oligochinus	
*B * <u>M</u>	Orchestia traskiana Stimpson	
М	Orchestoidea californiana Brandt	
*M	Orchestoidea corniculata Stout	
М	Photis reinhardi Krøyer	
М	Pleustes depressus Alderman	
М	Podocerus spongicolus Alderman	
M	Polycheria antarctica Stebbing	
M	Polycheria osborni Calman	
М	Pontharpinia obtusidens Alderman	
М	Pontogenia inermis Kroyer	

Suborder Caprellidea

- *B Caprella aequilibra Say *M Caprella kennerlyi Stimpson M Caprella acutifrons Latreille *M Caprella scaura Templeton

Subclass Eucarida

This subclass includes two orders, a small group of small pelagic shrimps, Order Euphausiacea, and the larger Order Decapoda including the true shrimps, crabs, and other higher crustacea. We shall confine our consideration to the Decapoda and to three suborders under it: the shrimps, Suborder Caridea; the crabs, Suborder Brachyura; and the hermit crabs and relatives, Suborder Anomura.

Order <u>Decapoda</u>

The caridoid fascies or macrurous type, best exemplified by a shrimp or prawn (fig. 78) best represents the basic plan of structure of the decapods. It should be familiar from earlier studies of the crayfish or lobster. Review it if not. This type of body structure is termed macrurous in contrast to the brachyurous type of the true crab and the anomurous type of the hermit crabs.

Make yourself familiar with the brachyuran type of structure by identifying on a crab all the appendages and all other structures and regions labeled in figures 80-82.

Key out your specimen, using Schmitt, also the key below.

The typical anomurous body plan is that of the hermit crabs in which the abdomen is reduced asymmetrically and many of its appendages are vestigial or lacking. Among the species which other characters show to belong to the Suborder Anomura, however, are some which are very crablike in appearance (fig. 94) and which may be termed brachyurous anomurans, and others again (figs. 95 and 96) which have large symmetrical abdomens and may be termed macrurous anomurans.

Using the keys in Schmitt's Decapod Crustacea of California, identify further (1) a shrimp, (2) a hermit crab, and (3) a brachyurous anomuran.

Be ready for a fifteen-minute test on terminology at the end of the laboratory period.

KEY TO THE DECAPODA

1.	Abdomen used for swimming, with well-developed tail-fan, and pleopods; abdomen in our species with sharp bend; shrimps	_
2	(fig. 78)	2
1.	pods more or less reduced, except the Callianassidae (37) which	
	bent abdomen and their burrowing habits	9
2.	Rostrum very short, dorsally flattened; eyes free; hands sub- chelate (fig. 83)	3
2.	Rostrum very small or wanting; eyes covered by carapace; hands chelate, one or both powerfully developed	4
2.	Rostrum distinct, usually well developed and spinose (fig. 87); eyes free: hands weakly chelate	5

DECAPODA

6. Rostrum elongate (figs. 85, 87,A), reaching beyond middle of antennal scale.
6. Rostrum short (figs. 86, 87,B), not reaching middle of anten-

8

7

Fig. 86.-Spirontocaris brevirostris Dana (from Guberlet).

7. Rostrum not reaching as far as cornea of eye

- uniform green; common in eelgrass and on mud flats

Fig. 87.—Rostra of common species of <u>Spirontocaris</u> (after Schmitt): A, <u>S</u>. <u>carinata</u> Holmes; B, <u>S</u>. <u>brevirostris</u> Dana; C, <u>S</u>. <u>picta</u> Stimpson; D, <u>S</u>. <u>paludicola</u> Holmes.

- Antennae situated internal to eye, with short flagellum (figs. 80, 90); abdomen always small, folded under thorax, with uropods lacking; last pair of legs generally about the same as others Brachyura 10
 Antennae situated external to the eye, with long flagellum
 - (fig. 88); abdomen variable, often asymmetrical (fig. 98) or much reduced, but generally with uropods present (exceptions under 29); last pair of legs usually much different from others, often smaller Anomura 27

Fig. 88 .- Head of Pagurus californiensis (after Schmitt).

10.	Carapace generally elongated, drawn out anteriorly between	
	the eyes as a rostrum (figs. 89, 91). Spider Crabs	1
10.	Carapace square or transversely oval, with very short rostrum	
	if any	.5

Fig. 89.-Loxorhynchus crispatus Stimpson (after Rathbun).

11.	Carapace roughly triangular in shape, broadest behind; very hairy, with much foreign matter attached to hairs; rare above the low tide mark. The Masked Crab
11.	Carapace not triangular; generally not as hairy as above; found also intertidally
12.	Carapace about as broad as long (fig. 90)
12.	Carapace longer than broad

Fig. 90.-Mimulus foliatus Stimpson (after Schmitt).

Fig. 91.-Pugettia (after Schmitt): A, P. gracilis Dana; B, P. richii Dana.

-

14.	tooth broad, anteriorly directed (fig. 91,A)
14.	Larger; carapace distinctly broader posteriorly; antero- lateral tooth narrow, laterally directed (fig. 91,B)
15.	Commensals with mollusks, annelids, etc.; eyes reduced, carapace often poorly calcified. Pinnotherid Crabs 16
15.	free-living; eyes and carapace normal
16. 16.	Carapace much wider than long
17.	Carapace with two longitudinal grooves leading back from
17.	Carapace without such grooves Pinnotheres
18.	Body square, sides nearly parallel, anterior edge nearly transverse; palp of external maxilliped does not articulate near the inner angle of the merus (segment basal to palp) 25
18.	Body usually round or transversely oval, with sides not paral- lel and anterior edge of carapace rounded; palp of external (third) maxilliped articulates at or near inner angle of merus
19.	Carapace much broader than long, with front (between eyes)
19	narrow, cut into five teeth (fig. 81)
TA •	teeth

DECAPODA

2	.05	Front produced, with five nearly equal teeth; fingers with dark color. The Red Crab
2	.05	Front not produced, with five unequal teeth
2	21.	Hairy; with red spots on ventral surface; antennae as long as width of front. The Rock Crab
2	21.	Not very hairy; not spotted below; antennae very short 22
2	22.	Very large, widest at tenth tooth lateral to eye, which is the largest tooth. The Edible Crab Cancer magister
22	22.	Small, widest at ninth tooth; teeth alternately longer and shorter
-2	23.	Fingers of same color as rest of chela (introduced from the Atlantic; now in San Francisco Bay and Lake Merritt)
2	23.	Fingers much darker than rest of chela; found on ocean coast . 24
2	24.	Hand of cheliped with a tooth on inner side of upper margin
2	24.	Hand without tooth Lophopanopeus heathi (fig. 92)

Fig. 92.-Lophopanopeus bellus Stimpson (from Guberlet).

25.	Surface of carapace with numerous transverse lines. The Lined Shore Crab Pachuarapsus crassipes
25.	Carapace without transverse lines
26.	Color generally dark red or purple; spots on chelae; no hair on legs. The Purple Shore Crab Hemigrapsus nuclus
26.	Color generally greenish; no spots on chelae; legs hairy. The Mud Crab Hemigrapsus oregonensis
27.27.	Abdomen short, crablike, reflexed under thorax
28. 28.	First pair of legs chelate; carapace crablike (fig. 94) 29 First pair of legs simple, carapace subcylindrical with wings which cover legs; second to fourth legs with last joint curved and flattened. The Sand Crab Emerita analoga
29.	Fifth legs very small, folded under carapace, seemingly absent; uropods lacking
29.	Fifth legs reduced but held over the back; uropods present 32

30.	Carapace wider than long, covering legs; abdomen small, flattened
30.	Carapace as long as, or longer than, broad; abdomen thick and fleshy
31. 31.	Legs and carapace hairy; carapace as long as broad . Hapalogaster Legs and carapace rough; carapace longer than broad
32.	Body and chelae thick; chelae unequal, tuberculate; legs hairy
32.	Body and chelae thin (fig. 94); chelae equal and smooth; legs nude
33.	Chelipeds granulated and tuberculate above; telson of 5 large plates (fig. 93.A)
33.	Chelipeds not tuberculate, granules hidden by short, thick pubescence which fills gap between fingers and extends almost to end of fingers; telson with 5 large and 2 very small plates (fig. 93,B) Pachycheles pubescens

Fig. 93.—<u>Pachycheles</u>: A, telson of <u>P</u>. <u>rudis</u>; B, telson of <u>P</u>. <u>pubescens</u> (after Schmitt).

A

В

34.	Carpus of chelipeds about once and a half as long as wide; sides converging toward distal end; palp of third maxilliped
34.	orange
35.	Carpus rough; cheliped a solid color on upper surface; proxi- mal inner base of finger of cheliped blue

Fig. 94.-Petrolisthes eriomerus Stimpson (from Guberlet).

DECAPODA

Fig. 95.-Upogebia (from Guberlet).

37. First pair of legs subequal (fig. 95), subchelate, others simple. The Mud Shrimp Upogebia pugettensis
37. First pair of legs very unequal (fig. 96), chelate; second pair small, chelate; fifth pair subchelate. The Ghost Shrimp Callianassa californiensis

Fig. 96.-Callianassa (from Guberlet).

38.	Dactyls of walking legs with longitudinal stripes (in life the stripes are red, the ground color of the dactyl deep blue; in
	preserved specimens the stripes are dark on a light orange background)
38.	Dactyls of walking legs without longitudinal stripes; color not blue in life

- 39. Antennae red in life; distal end of propodi of walking legs with blue band; distal margin of telson with three subequal indentations, the lateral ones with minute, closely packed
- ones small and without minute teeth; median indentation Ushaped Pagurus hirsutiusculus (fig. 97)

Fig. 97 .- Pagurus hirsutiusculus Dana (from Guberlet).

- 40. Dactyls of walking legs of same color throughout; anterior margin of carapace obscured by heavy growth of long hairs: median (rostral) projection short, blunt or broadly rounded (fig.
- 40. Distal third of dactyls white; anterior margin of carapace not obscured by hairs, its rostral projection prominent and acute (fig. 98,B) Pagurus hemphilli

LIST OF DECAPODA

Caridea

- M Betaeus harfordi (Kingsley)
- B M Crago nigricauda (Stimpson)
- Crago nigromaculata (Lockington) M Crangon dentipes (Guerin)
- M Crangon californiensis (Holmes) Pandalus danae Stimpson Spirontocaris brevirostris Dana
- M Spirontocaris palpator (Owen)
- B D M Spirontocaris paludicola (Holmes) B*M Spirontocaris picta (Stimpson)
 - B M Spirontocaris taylori (Stimpson)

Fig. 98.-A, Pagurus granosimanus Stimpson; B, Pagurus hemphilli Benediot

Anomura

*B TB M	Callianassa californiensis Dana
DM	Cryptolithodes sitchensis Brandt
D *M	Emerita analoga (Stimpson)
М	Hapalogaster cavicauda Stimpson
М	Oedignathus inermis (Stimpson)
М	Pachycheles pubescens Holmes
*D *M	Pachycheles rudis Stimpson
*BTBDM	Pagurus hirsutiusculus (Dana)
*M	Pagurus granosimanus (Stimpson)

- *M Pagurus hemphilli (Benedict)
- *M Pagurus samuelis (Stimpson)
- D *M Petrolisthes cinctipes (Randall)
- D *M Petrolisthes eriomeris Stimpson
- *M Petrolisthes manimaculatus Glassell
- TB M Upogebia pugettensis (Dana)

<u>Brachyura</u>

- *B D M Cancer antennarius Stimpson
- M Cancer jordani Rathbun
- B TB D M Cancer productus Randall
 - *B M Cancer magister Dana
 - TB M Fabia subquadrata (Dana)
 - B D *M Hemigrapsus nudus (Dana)
- *B TB M Hemigrapsus oregonensis (Dana)
 - D_M_Lophopanopeus bellus (Stimpson)
 - *M Lophopnaopeus heathii Rathbun
 - M Loxorhynchus crispatus Stimpson
 - D M Mimulus foliatus Stimpson
 - TB M Pinnixa faba (Dana) and other spp. M Pinnotheres concharum (Rathbun)
 - D_M Pugettia gracilis Dana
 - *M Pugettia richii Dana
- TB D *M Pugettia (Epialtus) producta (Randall)
 - *L Rhithropanopeus harrisii (Gould)

THE TERRESTRIAL ARTHROPODS

Most of the arthropods except the Crustacea are adapted to terrestrial life. although some of them have returned to aquatic habits.

It is customary to group these under three subphyla (or classes) the Myriapoda, the Insecta, and the Arachnida, although the first group, the Myriapoda, is almost certainly polyphyletic. In addition the groups Pycnogonida and Tardigrada, while placed by some in the Arachnida, are better considered as of doubtful taxonomic relationships.

This enormous assemblage of animals can have but brief and fragmentary consideration here since our emphasis in these studies is largely on the aquatic habitats. Our excursions into the terrestrial domain are usually confined to one field trip to a near-by canyon

MYRIAPODA

where varied environmental types including stream bed, stream banks (riparian), tangled thickets, open forested hillsides, and grassy hilltop furnish a rich and varied fauna largely of mollusks and arthropods.

The student should recognize all of the types of terrestrial arthropods encountered and place them in the food cycles of the communities studied. No attempt will be made to identify them further except that the insects should be placed at least to the order.

Groups commonly encountered are the garden centipedes (Class Symphyla), the true centipedes (Class Chilopoda), and the millipedes (Class Diplopoda) (all of the subphylum Myriapoda), the insects (Subphylum Insecta), and of the Subphylum Arachnida, the Scorpions (Class Scorpionida), and the spiders (Class Araneida), the mites and ticks (Class Acarina), the harvestment (Class Phalangida), and occasionally the book scorpions (Class Pseudoscorpionida).

The food habits of the terrestrial arthropods are extremely varied. Certain groups, however, have relatively uniform habits. Thus the Symphyla and Diplopoda are plant feeders, while the Chilopoda and practically all Arachnida are predators.

The Insecta run the gamut as to food habits. Many are predatory carnivors, others are parasites, while a vast number are plant feeders and serve as key industry animals in important food chains. Such, for example, are the aphids.

SUBPHYLUM MYRIAPODA

Class SYMPHYLA, The Garden Centipedes

See mounts of *Scutigerella*. These are progoneate as are the Diplopoda but differ from them in many important features. They possess many structural indications of relationship to the primitive stock from which the insects have arisen. Note that there are only 12 leg-bearing somites. See the peculiar coxal sacs at the bases of the legs below. There is but one pair of tracheae opening at the bases of the antennae.

These tiny white wormlike creatures will be found in loam and among decaying leaves. They feed on vegetation and cause damage of considerable importance to some crops.

Class DIPLOPODA, The Millipedes

Note the rounded body of many segments (except in Polydesmidae). The first few segments bear a single pair of appendages each, others bear two and each is really two fused segments. The appendages of the seventh free segment of the male are modified for copulation, the reproductive ducts opening near the anterior end.

The types commonly encountered are the relatively large dark-brown cylindrical millipedes of the genus *Tylobolus* and the flattened species of the family Polydesmidae. See special paper by Ellsworth for more definite identification.

Class CHILOPODA, The Centipedes

Note the depressed body of many segments, varying in size, each bearing a pair of appendages. Appendages of first postcephalic segment

118

modified as poison jaws (maxillipeds). Those of last pair are tactile. Reproductive apertures (not easily made out) open on last true segment.

Most commonly encountered is a stout, flattened, reddish species, Otocryptops sexspinosus Say, an inhabitant of decaying wood, characterized by having 23 leg-bearing segments, and two prominent spines on the first segment of the anal legs. For other species see special paper by Gressitt.

SUBPHYLUM INSECTA

Time does not permit any adequate study of this enormous group, many of whose species are among the most important in terrestrial communities. An elementary knowledge is assumed. The student should know at least the orders and where possible abundant species should be identified. For those who wish to attempt identification by means of keys, Lutz's <u>Handbook of American Insects</u> is the most available, although its examples are largely Eastern species. For specific Western species, Essig, <u>Insects of Western North America</u>, is recommended, although the absence of keys, inevitable in such a work, makes identification more difficult.

For aquatic insects reference may be had to <u>A Guide to the Study</u> of <u>Fresh-Water Biology</u>, by Needham and Needham (Comstock Co., 1930) and to various other works listed under that heading in the bibliography.

SUBPHYLUM ARACHNIDA

Class SCORPIONIDA

See the segmented body made up of (1) the prosoma, covered by a <u>carapace</u> and bearing the six pairs of appendages characteristic of arachnida, the <u>chelicerae</u>, <u>pedipalpi</u> and four pairs of <u>legs</u>; (2) the mesosoma, consisting of seven broad somites, the first of which bears the reproductive organs covered by the genital operculum (seen between bases of last two pairs of legs), the second the <u>pectines</u>, and the next four <u>stigmata</u> opening into book-lungs; (3) the <u>metasoma</u>, consisting of five segments, and the telson modified as a caudal sting. Mesosoma and metasoma together constitute the <u>opisthosoma</u>.

Class <u>ARANEIDA</u>, The Spiders

The body consists of cephalothorax and unsegmented abdomen. See the eight simple eyes. Identify the eight pairs of appendages. The <u>chelicerae</u> are <u>poison</u> jaws. See the modified terminal segment of the <u>male pedipalp</u> serving to transfer sperm. Locate the openings to the book-lungs and (just posterior) the genital aperture. Near the tip of the abdomen below see the three pairs of <u>spinnerets</u>.

For a general treatment see Comstock, <u>The Spider Book</u>. For a key to the local genera see special paper by Machler.

Class ACARINA. Mites and Ticks

See the fused body without segmentation or subdivision. Make out the appendages characteristic of the arachnids.

PYCNOGONIDA

Mites are the only arachnids occurring also in marine and freshwater habitats.

Class PHAIANGIDA. The Harvestmen or Daddy Longlegs

These are spider-like, but differ from the spiders in their segmented abdomen, chelate chelicerae, and number of eyes (2). One species is frequently seen under pieces of wood or under leaves in the Berkeley Hills. Because of lack of information concerning our local species, no list is given here.

The PYCNOGONIDA

The pycnogonids are a group of arthropods usually placed in the Arachnida, but of decidedly doubtful relationship to that group. Several species are common in the intertidal zone of ocean and bay. For the morphology of this class see Borradaile and Potts, Parker and Haswell, or another advanced text.

A KEY TO THE PYCNOGONIDS OF THE PACIFIC COAST OF NORTH AMERICA (ESPECIALLY OF CENTRAL CALIFORNIA*)

By Joel W. Hedgpeth

This key is based on obvious characters without reference to their value in indicating systematic relationships and is intended as an aid to identification of pycnogonids in the field. The distribution of many species is imperfectly known.

The characters used in this key should be visible under the medium power of a dissecting microscope, although for many of the smaller species it is difficult to make out details because of the debris adhering to the surface of the animal. This is particularly true of the spiny forms, and in some cases it will be necessary to brush the animal off with a camel's hair brush, perhaps even to pick at it with a dissecting needle. Specimens are best killed for study purposes by placing them in fresh water for a few minutes, which causes them to die in an extended condition. They are strongly thigmotropic, and should be kept separately to prevent them from becoming inextricably tangled.

For terms used in the key see figure 99.

..... **B**urydyce spinosa Hilton

*For a complete key, including the species described in Hilton's preliminary papers, see Hedgpeth, J. W., "A Key to the Pycnogonids of the Pacific Coast of North America," <u>Trans. San Diego Soc. Nat. Hist</u>., March, 1941.

Fig. 99.-Nymphon sp. Labeled to illustrate characters used in the key.

Fig. 100.-Pycnogonum stearnsi Ives.

PYCNOGONIDA

 2. Chelifores or palpi (fig. 99), or both, present
3. Chelifores or palpi present, the other lacking 18 3. Both chelifores and palpi present 4
4. Chelifores rudimentary or achelate in adult 6 4. Chelifores chelate in adult 5
 5. Scape of chelifore shorter than proboscis; small; body compact; male 5 mm. long, female 11.8 mm. long. Central California coast
 6. Body compact, disciform; segmentation indistinct (fig. 102); legs short. stout
 Proboscis broad, clavate or bulbous, long as body, sometimes directed ventrally and apparently shorter from above 10 Proboscis tapered to a point or considerably shorter than body; small compact circular forms
 8. Proboscis tapered to a point
9. Light-brown knobby form with white articulations; 4-6 mm. long. Usually on Abietinaria, Marin County to Southern California Hilton (fig. 102)
*This is the common central California coast species which has been confused with <u>T. intermedium</u> . It is a little larger, with stouter legs, than <u>T. intermedium</u> . See Hedgpeth (1940) for more detailed distribution, under <u>T. intermedium</u> .

122 LABORATORY AND FIELD TEXT IN INVERTEBRATE ZOOLOGY 9. Delicate pale form with sharp spinelike protuberances on lateral processes; female more rounded. On Obelia San Diego to Carmel T. intermedium Cole Fig. 102.-<u>Tanystylum</u> <u>californicum</u> Hilton. Fig. 101.-Lecythorhynchus marginatus Cole. 10. Body or legs spiny (fig. 103) or with conspicuous spiny tubercles 11 - - - - -ଞ Fig. 103 .- Nymphopsis spinosus Hall. 11. Without tall spiny tubercles on body 12 11. Three tall spiny tubercles on body; two rows of spiny tubercles on tibial joints; coxae smooth; 10 mm. long. Sub-

PYCNOGONIDA

tidal, Laguna Beach to Tomales Point Nymphopsis spinosissimus (Hall) (fig. 103) 12. Chelifores and abdomen knobby; legs spiny; body compact; chelifores two-jointed; 16.mm. long. Bering Sea, Monterey Bay 12. Chelifores and abdomen not knobby; lateral processes separated; spines or slender tubercles on trunk; chelifores threejointed: 10 mm. long. San Diego to Marin County Ammothella spinifera Cole 13. Chelifores less than half as long as the proboscis 15 14. Tubercles on dorsal posterior margins of first two or three trunk segments; proboscis broad as body; chelifores threejointed; 6-9 mm. long. In holdfasts and on sheltered rocks, Marin County to Laguna Beach Ammothella tuberculata Cole (fig. 104,A) 14. Without such tubercles; proboscis narrower than body; chelifores two-jointed; 18-20 mm. long. Hydroids, Puget Sound Ammothea discoidea Exline С Fig. 104.-A, Ammothella tuberculata Cole; B, Ammothea nudiuscula Hall; C, Ammothea gracilipes Cole; D. Halosoma viridintestinalis Cole 15. Proboscis elliptical or tapered at tip (figs. 104, B, C) . . . 16 15. Proboscis blunt or truncate; 30 mm. long. Pribiloff Island Ammothea pribilofensis Cole 16. Protuberance on dorsum of first coxal joint half as long as 16. Protuberance less than half as long as first coxal joint; proboscis broadly elliptical; 7 mm. long. San Francisco Bay Ammothea nudiuscula Hall (fig. 104,B) 17. Protuberance half as long as coxal joint; body 13 mm. long. 17. Protuberance three-fourths as long as coxal joint; proboscis narrowly elliptical; 8 mm. long. San Francisco, Marin County, Vancouver, B.C. . . . A. gracilipes Cole (fig. 104,C)

18. Chelifores present, chelate (fig. 105), usually overreaching 18. Chelifores lacking; palpi present; elongate; distinctly segmented; proboscis large, dilated; eye tubercle tall; 50 mm. long. Offshore water, Southern California Colossendeis californica Hedgpeth 19. Chelae and proboscis not extended forward on a neck; chelae 19. Chelae strong, heavy, flanking the rather blunt proboscis at the end of a well-developed neck Callipallene a. Body rather compact; segmentation of last two trunk segments indistinct; 9-10 mm. long. Littoral, Laguna Beach C. californiensis Hall b. Body extended; lateral processes separated; body distinctly segmented. Offshore waters, Southern California C. pacifica Hedgpeth 20. First trunk segment not conspicuously overhanging proboscis (fig. 105) . . . Fig. 105 .- Phoxicilidium femoratum Rathke. 20. First trunk segment overhanging forward so that proboscis appears ventral in origin Anoplodactylus a. Lateral processes separate at base; eyes present; 8-9 mm. long. Littoral, Monterey to San Diego, also offshore waters A. erectus Cole b. Lateral processes contiguous at base; eyes lacking; 15-16 mm. long. Littoral, Laguna Beach A. californiensis Hall 21. Body extended, lateral processes separated: 8-10 mm. long. Alaska to Laguna Beach; circumpolar Phoxichilidium femoratum (Rathke) (fig. 105) 21. Body compact; small delicate form with vivid green intestine; 7.5 mm. long. Marin County to Laguna Beach

MOLIUSCA

PHYLUM MOLLUSCA

This great phylum includes many of the important animals of the littoral marine and the freshwater and terrestrial faunas to be studied. In the intertidal zone it ranks with the arthropods as a dominant structural type.

Five classes, each with a very distinctive structure, constitute the phylum:

- 1. Class Amphineura, the chitons
- 2. Class Gastropoda, the snails, whelks, limpets, slugs, nudibranchs, etc.
- 3. Class Scaphopoda, the tooth shells
- 4. Class Pelecypoda, the clams, mussels, oysters, pectens, etc.
- 5. Class Cephalopoda, the squids, octopi, and nautili.

We shall confine our attention to the animals of three of these classes, the chitons, the gastropods, and the pelecypods. The tooth shells are not found in our region. Of the cephalopods, the squid are pelagic and only one species of octopus, *Paroctopus appolyon* (= *Polypus hongkongensis*) is encountered along the central and northern California coast and that only occasionally. For an interesting account of its behavior and breeding habits see Ricketts and Calvin (p. 96-99).

The evolution of the various molluscan types has concerned chiefly three plastic regions, the head, the foot, and the mantle (figs. 114, 115). The mantle is the body wall over the visceral region. This grows out as a mantle fold (figs. 113,B and 114) enclosing a mantle cavity or mantle chamber within which lie the gills, the anal opening and the openings of reproductive and excretory ducts.

The mantle secretes the shell and that typical molluscan structure varies with the shape, size, position, and habit of growth of the mantle. The mantle cavity, primitively posterior, has taken on various positions in the various molluscan types.

The characteristic feeding organ of the mollusk, known as the radula, is a band of chitinous teeth (fig. 106) produced in the ventral cavity of the pharynx from which it is extended by muscular action and used to scrape away the food. It may be seen in use by watching freshwater snails feeding on the walls of an aquarium. The radula, which is found in all classes of Mollusca except the Pelecypoda, is most commonly used in feeding on large leafy plants or large algae (thus in some chitons and many Gastropoda) or for scraping off encrusting layers of minute unicellular organisms (many chitons, the limpets, some snails). In the Cephalopoda and some snails it has been adapted to predatory habits.

The Pelecypoda are plankton feeders sifting the tiny organisms from the water currents caused to flow through the large mantle chambers by the action of cilia on the large, complicated gills. The radula, having no function in such a habit of life, has been lost in the Pelecypoda along with the sense organs of the head, and, indeed, the head itself since, covered by the mantle folds and the shell, it has no direct contact with the environment.

Class AMPHINEURA

The Aplacophora, shell-less forms, often considered to belong to the Class Amphineura, are largely deep sea in distribution and will not be encountered by us. The chitons, Order Polyplacophora, are important and interesting members of the intertidal faunas and we should be familiar with all the known species. Unknown species should be preserved for study by the specialist. They may be killed in extended form by allowing them first to flatten out on glass slides to which they may be tightly tied before fixation.

Fig. 106.-Small portions of the radulae of various Mollusca (from various sources).

 \tilde{c}

The characters used in the identification of chitons have chiefly to do with the 8-valved shell (figs. 107-111) the width and ornamentation of the muscular integumental area between the shell and the margin, known as the <u>girdle</u> (fig. 107), and with the proportions of the body.

Each valve consists typically of two layers, a basal and more extensive <u>articulomentum</u> which extends under the other plates anteriorly and is more or less covered by the girdle laterally, and the upper <u>teg-</u><u>mentum</u>, covering only the exposed portion of the valve. In *Crypotochiton* the valves are entirely covered by the girdle and the tegmentum is lacking. The valves overlap posteriorly and the portion of a valve underlying the one in front is often also designated the <u>articulomentum</u> and that portion covered by the girdle, the <u>insertion</u> plate.

Examine the girdle. Note its width in proportion to the width of the exposed portions of the valves (cf. figs. 110 and 111). Note also its ornamentation (fig. 107). Is it smooth, rough and leathery, covered with granules, or with scales, or with fine hairs, or spines, or long stiff hairs?

Note the proportion of width to length. Is it half as wide as long, etc.?

AMPHINEURA

Dissect out the valves of your specimen. Place one of them under the microscope to see the tiny pits which form patterns on the surface of the tegmentum. In these pits lie characteristic sense organs known as <u>esthetes</u>. Examine the posterior margin of the last valve. The slit or notch in it is known as a <u>sinus</u>.

払

â

4

Fig. 107.-Diagrammatic figure of a chiton illustrating some of the various types of girdle ornamentation.

Using the key below identify your specimen. When Pratt is available identify another species to the family. See the figures in Tryon and Pillsbry, <u>A Manual of Conchology</u>.

KEY TO THE CHITONS

1.	Girdle completely covering valves, thick, red, gritty; large (6-8 inches) "The Giant Chiton," <i>Cruptochiton stelleri</i>
1.	Girdle two to three times as wide as exposed portion of valves; girdle smooth and black . "The Black Chiton." Katharina tunicata
1.	Exposed portion of valves at least as wide as girdle 2
2.	Valves marked with conspicuous zigzag lines of color "The Lined Chiton." Lepidochitona (Tonicella) lineata
2.	No such lines
3.	Girdle (Observe <u>under the lens</u> !) covered with hairs (figs.
3.	Girdle covered with scales like a coat of mail (figs. 107, 109)
з.	Girdle with minute granules (fig. 107), minute scales or minute papillae
4. 4.	Hairs coarse and stiff
5.	Oval in shape; girdle coarsely mossy, narrowed at ends; valves often corroded, with dorsal ridge, ornamented with nodules in lines
5.	Nearly circular; girdle much elongated in front, with scattering hairs; valves short and broad, without nodules

6. Girdle conspicuously cleft posteriorly (fig. 107); valves sculptured in concentric lines (often covered with red deposit); hairs slender, very pale, easily lost . . . "The Hairy Chiton," Mopalia ciliata
6. Girdle not conspicuously cleft; valves smooth, gray, green, or blue, with brown lines slanting from apex of valves; hairs thick at base, slender and incurved distally, each rising in

a light spot Mopalia lignosa (fig. 108)

Fig. 108.-Mopalia lignosa

Fig. 109.-Ischnochiton: A, I. mertensii (Middendorf); B, I. cooperi Carpenter. x 1 1/2.

- 8. Red to dull brown; nodules and ribs of valves and scales of girdle conspicuous
 - "The Red Chiton," Ischnochiton mertensii (fig. 109,A)
- 8. Gray; nodules, ribs, and scales less conspicuous
 - Ischnochiton cooperi (fig. 109,B) (These are probably varieties of the same species.)

AMPHINEURA

129

 Body elongated, considerably more than twice as long as wide; valves obscurely sculptured; light gray in color "The Gray Chiton," Ischnochiton magdalenensis Body about twice as long as wide; valves apparently smooth; with an intricate pattern of white spots on a mottled blue- green background Ischnochiton regularis
10. Girdle with scale-like hairs (figs. 107, 110); girdle broad; valves nearly as long as wide Nuttalling californica (fig. 110)
10. Girdle narrow, ornamented otherwise; valves short and broad (fig. 111)
Fig. 110Nuttalling californics (Reeve).
11. Broad oval, low; dull olive green; girdle covered with close- set granules; valves covered with fine granulations and larger (.04 mm.) wart-like granules on lateral areas
11. Narrower; darker, some almost black; usually small in size (1/4 to 1/2 inch); girdle leathery, minutely papillose; valves covered with very fine granulations and slightly beaked
LIST OF CHITONS

Class AMPHINEURA

4

ų,

Order Polyplacophora

- D *M Cryptochiton stelleri (Middendorff) M Ischnochiton cooperi (Carpenter) D *M Ischnochiton magdalenensis (Hinds) M Ischnochiton mertensii (Middendorff) M Ischnochiton regularis (Carpenter) D *M Katharina tunicata (Wood) *M Lepidochitona hartwegii (Carpenter) D *M Lepidochitona (Tonicella) lineata (Wood)

M Lepidochitona raymondi Pilsbry D B *M Mopalia ciliata (Sowerby) M Mopalia lignosa (Gould) D B *M Mopalia muscosa (Gould) D *M Nuttalina californica (Reeve) D M Placiphorella velata Carpenter

Class GASTROPODA

These animals are the dominant and conspicuous animals over much of the area which we are to study, and the number of common genera and species which we must be able to recognize in the field is large. They present themselves, naturally, therefore, as a group for careful study of methods of identification. Although revisions are badly needed the gastropods of the Pacific Coast have been extensively studied and numerous valuable works of references are available. Unfortunately none of these gives keys which are available for the fauna of this

Fig. 112.-- A marine snail, the whelk (Buccinum) (after Buchsbaum).

coast, and we shall have to depend for identification upon the key given below. Identification may be checked with the excellent illustrations in (1) Oldroyd, (2) <u>Manual of Conchology</u> by Tryon and Pilsbry, and (3) Packard. When still in doubt as to the correctness of your identifications, reference may be made to authentic named collections in charge of the teaching assistant.

There are five main groups or types of gastropods which are given various names and are variously grouped by different authors. They are (1) the Aspidobranchia (often called Scutibranchia or Diotocardia) including the limpets of various kinds, the abalones, and a number of typical snail-like forms of which Calliostoma is our best example; (2) the Pectinibranchia (often called Ctenobranchia and Monotocardia) including the vast majority of marine shelled gastropods; (3) the Tectibranchia, including the sea hares (no common Moss Beach examples); (4) the Nudibranchia, the nudibranchs; and (5) the Pulmonata, including most land and fresh-water snails, and slugs, but with only two local marine representatives, Gadinia and Arctonchis.

On the basis of the twisted condition of the nervous system the first two of the groups above are often placed together in an order

GASTROPODA

(or subclass), the *Streptoneura* or *Prosobranchia*, and commonly spoken of as prosobranchs or streptoneurous gastropods. The remaining three groups are also often included in a single order (or subclass), the *Euthyneura*, and spoken of as euthyneurous gastropods, those whose nervous system is symmetrical. The tectibranchs and nudibranchs are often included in the single order. Opisthobranchia, as in Hegner.

Fig. 113.—<u>Helix</u>, a terrestrial pulmonate (after Selenka): A, with shell in place; B, shell removed; mantle chamber ("lung") opened by cutting mantle fold anteriorly and turning it back.

On the specimen given you, *Helix aspersa*, a pulmonate (fig. 113), identify the <u>foot</u>, the <u>head</u>, bearing the <u>tentacles</u>, the fold of bodywall known as the <u>mentle</u>, and the <u>mentle cavity</u>, the marginal thickening of the mantle called the <u>collar</u> which in some species (*Hyanassa*) is drawn out to form the <u>siphon</u>, lying, in life, in the <u>siphonal canal</u>, an extension of the shell. By means of forceps introduced through the

Fig. 114.—<u>Calliostoma</u>, a soutibranch (after Eales). Fig. 115.—A pectinebranch (after Eales).

mouth pull out the characteristic feeding organ of the Mollusca, the <u>radula</u>. Examine it under the microscope. See demonstration mount of radula of a limpet.

The shell of a typical pectinibranch consists of the body whorl (fig. 115), which opens by the aperture, and the whorls of the spire ending in the apex. The groove between two successive whorls is known as the suture. The axis of the shell around which the shell is coiled is known as the <u>columella</u> (see sectioned shell); the hollow center sometimes present in the columella is the <u>umbilicus</u> (fig. 122) and a thickening partially or completely filling the opening of the umbilicus below as the <u>callus</u>.

Fig. 116 .- A dextrally coiled gastropod shell, Buccinum baeri morchianum Fisher (after Oldroyd).

Here as in the bivalves identification depends upon characters of the shell. To gain familiarity with certain important characters and at the same time learn the names of certain species to be encountered later, make out the following characters on the demonstration specimens:

Canal: (1) lacking (Tegula), (2) open (Thais), (3) closed (Purpura). Aperture: (1) smooth (Littorina), (2) crenulate (Tritonalia). Inner lip: (1) toothed (Thais lamellosa), (2) corrugated (Searlesia), (3) smooth (Littorina).

Sutures distinct: (Calliostoma costatum)

Shell: (1) low-spired (Homalopoma), (2) moderately high-spired (Calliostoma), (3) acute spire (Epitonium or Bittium), (4) with spiral ridges (Calliostoma), (5) with radiating ridges (Epitonium), (6) with slits (Haliotis), (7) with under-shelf (Crepidula).

Using the key below, identify as many specimens as time allows. Check some at least of your identifications with Mrs. Oldroyd's work, or if Acmaea, with Mrs. Grant's paper. Learn the names of as many as possible of the genera found at Moss Beach.

GASTROPODA

KEY TO THE MARINE SHELLED GASTROPODS (See also Vokes, 1934, for small species)

А. В.	Shell with more or less elevated, coiled spire
	or only slightly so and with a row of perforations near left margin
ç.	Shell without a coiled spire, cap-shaped (plates XII-XV) 25
D.	Irregularly twisted tube masses Vermetidae
1.	Aperture rounded, entire; no indication of a canal (figs. 121,
1.	Aperture produced, forming a canal or rudiment thereof (fig.
	116)
2.	Canal rudimentary; spire greatly elevated; 5-7 flat spiral
2.	threads on each whort

Fig. 117.--A, Bittium eschrichtii (Middendorf); B, Nassarius (= Alectrion)

3.	Canal short, distal end of canal marked by a decided notch (fig. 117,B)
3.	Canal elongated, with or without notch
4.	Notch conspicuous; a deep spiral furrow in body whorl to left of canal (fig. 117,B) Nassarius (= Alectrion)
4.	Notch inconspicuous; without deep furrow 5
5.	Shell with smooth, polished, evenly convex surface; body whorl making up more than 3/4 of shell; aperture greatly elongated,
	with a broad, conspicuous white callus on the columella and a broad shallow notch at base of aperture (canal)
-	broad shallow notch at base of aperture (canal)
5.	with a broad, conspicuous white callus on the columella and a broad shallow notch at base of aperture (canal)

- Sculpturing of conspicuous, uniform, spiral ridges separated by narrow, deep furrows (fig. 118); body whorl with about 10 spirals; upper end of aperture near middle of shell
- 7. Sculpturing (often obsolete or obscure) of low, unequal, spiral, rounded ribs, nodulated by growth lines, separated by wide, shallow depressions; upper end of aperture well above middle of shell Thais emarginata (fig. 119,A)

Fig. 118.-Thais canaliculata (Duclos)

8. Shell with inconspicuous longitudinal grooves; faint (obsolete) furrow on body whorl; color dark; mud-flat dweller . Ilyanassa

Fig. 119.—A, <u>Thais emarginata</u> Deshays; B, <u>T. lima</u> (Martyn); perhaps only a variety of <u>T. emarginata</u>; C, <u>Amphissa</u> columbiana Dall. (All from Guberlet.)

 Shell with smooth polished surface; spire approximately half as long as body whorl; shell with 7 whorls; upper end of aperture more or less clearly angular . *Mitrella (= Columbella)* Shell with three heavy flanges extending entire length of shell: canal usually closed Purpura

9.	No such	flanges; canal usually open .				•		10
10.	Edge of	outer lip bearing a prominent	spine	•	• •	•	•	Acanthina
10.	No such	spine						

GASTROPODA

135

11.	Sculpturing of numerous, small, obliquely longitudinal ridges; lip distinctly thickened near canal Amphissa (fig. 119,C)
11.	Sculpturing absent, or, if present, of less numerous, larger, and not oblique ridges
12.	Inner margin of outer lip corrugated transversely along its
	whole length (fig. 120, A)
12.	Inner margin of outer lip smooth, or sculptured with a few
	discrete teeth
13.	Corrugations of lip extend far into aperture: shell large
13.	Corrugations only suggested; shell sculptured with faint, spiral
	threads undulated by prominent, radiating ridges; shell
	smaller "The Oyster Borer," Urosalpinx

Fig. 120.—A, <u>Searlesia</u> <u>dira</u> (Reeve); B, <u>Thais</u> <u>lamellos</u>a (Gmelin). (Both from Guberlet.)

14.	Shell large; outer lip variable in thickness; sculpturing of conspicuous, radiating lamellations, fluted by widely sepa- rated spiral ribs (sculpture often obsolete); aperture flar- ing at top, pinched at bottom; spire about equal to body whorl
14.	Shell small; outer lip usually thin, spire greatly elevated; sculpturing of conspicuous, close-set spiral ribs, either without radiating sculpture, or with rounded radially arranged swellings— <i>Tritonalia</i> (a difficult group of several species); for species see
15.	Spire greatly elevated; sculpture of 12-14 sharp-cut, radiating ridges
15.	Spire relatively low le

<pre>16. With pearly luster or white inside</pre>
 17. Callus broad and flattened; umbilicus closed
Fig. 121.— <u>Epitonium</u> . Fig. 122.— <u>Lacuna</u> . Much Fig. 123.— <u>Tegula funebralis</u> enlarged, showing open Adams. umbilicus.
18. Larger; shell of three whorls; broad band of white cutting diagonally across the face of the lip to its edge
18. Smaller; higher in proportion to width, with four whorls in shell; no white band on lip
19. With small nodes or teeth on the columellar callus (fig. 123)
19. Aperture smooth, without teeth or nodes on the callus 22
20. Color black; outer lip overlapping the whorl above (fig. 123)
20. Color brown, tan or gray; outer lip merely touching the whorl above, not overlapping it
21. Umbilicus alosed; base rounded; whorls convex; shell turban-
21. Umbilicus open; base flat; whorls flat; body whorl angular; shell pyramidal
22. Umbilicus closed
22a.Very large; whitish Polynices lewisii (fig. 124) 22a.Small; reddish Margarites spp.
 23. Shell ivory to reddish-brown; large, over 3/8 of an inch in diameter; ribs spiral, heavy, well-marked; spire moderately high, acute

Γ

GASTROPODA

137 24. Body whorl rounded; base convex; sutures more or less distinct; color reddish, with blue tinges at apex Calliostoma costatum (fig. 125.A.B) 24. Body whorl acutely angular; base flat; sutures indistinct; color old ivory; shape pyramidal Calliostoma canaliculatum (fig. 125,C) B Α Fig. 124.—<u>Polinices lewisii</u> (Gould) (from Guberlet): A, shell, considerably reduced; B, sand collar containing eggs. 25. Shell not perforated at apex 26 25. Shell perforated at apex (keyhole limpets) 44 1. . B A C Fig. 125. - Calliostoma (after Oldroyd): A and B, C. costatum (Martyn); C, C. canaliculatum (Martyn). 26. With a shelf on under side 27 26. Without such a shelf 28 27. Shell black or dark brown, peaked; apex recurves; common on 27. Shell white; peak reduced or absent; under stones and in crevices; variable in shape and proportions . Crepidula nummaria

r

28. 28.	Shell thick and very irregular; typically subcircular <i>Hipponix</i> Shell thin and more or less regular
29.	With no distinct external or internal color markings (Plate
29.	XIII, no. 8)
30. 30.	Usually over 3/8 of an inch long; apex at or near center 33 Less than 1/4 of an inch long
31. 31.	Usually on <i>Tegula</i>
32.	Black; broad oval; sides convex; on Tegula funebralis
32.	Light in color, usually covered by coralline; sides parallel; rare; on Tegula brunnea (occasionally on coralline-covered rocks). Acmaea triangularis (Plate XII, no. 7; Plate XIV, no. 4)
33. 33.	White inside and out
34.	Outer surface radially ribbed; shell flat; outline circular
34.	Outer surface not ribbed; shell high; outline nearly circular
35.	Apex less than one-third of length from nearest (anterior) end
35.	Apex at least one-third of length from end
36.	Anterior (short) surface concave (Plate XIV, no. 17) unless
36.	Anterior surface straight or convex
37.	Ribs broad and undulating, branching; margin crenate; interior generally dark, with lighter owl-shaped apical marking; very large and heavy; lower; apex very near anterior end
37.	Ribs rounded, unbranched, prominent to obsolete (Plate XIV, nos. 11-19); margin ruffled; inner surface with elongated, solid, dark-brown area on white background; border dark (Plate XIII, nos. 21, 22); higher; apex seemingly at least farther from anterior end
	(See Plate XIV, nos. 23-27, for hybrids with pelta)
38.	Heavily ribbed, with projecting marginal points (Plate XII, no.8); inner surface with irregular dark markings on porcelanous ground (Plate XIII, nos. 7, 11-13); ribs often spinulescent (Plate XII, no. 24)
38.	Acmaea scabra (Plates XII, XIII, Plate XIV, nos. 20-22) Ribs fine, thread-like (Plate XII, no. 9); posterior surface markedly arched convexly (Plate XV, nos. 18, 19); interior milk-white, with plain, broad, dark border, and apical spot (Plate XIII, no. 23) Acmaea persona

Shells of various species of Acmaea in dorsal view. Natural size. Listed alphabetically by species:

1,	A .	asmi

- 11,12,25,28,31,
 A. limatula
 5, A. rosacea

 10,
 A. mitra
 8,16,24,
 A. scabra

 19,
 A. ochracea
 21,22,29,
 A. scutum

 6,
 A. paleacea
 16,
 A. triangularis

 1, <u>A. asmi</u> 20,30, <u>A. cona</u> 23,32, <u>A. digitalis</u> 13,15, <u>A. fenestrata cribraria</u> 2. <u>A. inessa</u> 19, <u>A. ochracea</u> 6, <u>A. paleacea</u> 3,26, <u>A. pelta</u> 4,9,17. <u>A. persona</u>

39. Height at apex less than one-third of width (Plate XV, nos. 10, 16)
39. Height at apex at least one-third of width
 40. Width distinctly more than three-fourths of the length of shell (Plate XII, nos. 29, 31); shell very low
41. Shell with thread-like ribs (Plate XII, no. 14), with interspaces wider than ribs (ribs often obsolete); external coloration plain dark, or dark and white in varying patterns (Plate XII, nos. 21, 22, 29); internal color bluish-white with brown markings (Plate XIII, nos. 17, 18); large; common
 41. Shell with imbricated ribs alternating with 2-4 riblets (Plate XII, nos. 25, 31); margin finely serrate (Plate XV, nos. 14, 15); rare Acmaea limatula (Plate XIII, nos. 9, 10, 14, 15)
 42. Sides compressed, making elliptical outline (Plate XII, no. 18); bottom rocker-like; external surface grooved; color brown, often marked by white spot at apex; inner surface white with pale brown spot at apex, and narrow brown border; rare; on Laminaria Andersonii Acmaea instabilis (Plate XII, no. 18; Plate XIII, no. 28) 42. Sides not compressed (except in young of A. pelta on seaweed);
 43. Outer surface with large, rough ribs, unless corroded; dense white within; usually with narrow, scalloped, brown border; often with brown blotch behind apex; large; common; very variable Acmaea pelta (Plate XII, no. 26; Plate XIII, nos. 20, 27, 29-31; Plate XV, nos. 1-6) (See Plate XIV, nos. 23-27 for hybrids with digitalis) 43. Outer surface corroded and satiny, or very finely striate; inner surface suffused with brown, and highly nacreous; rare Acmaea fenestrata (Plate XII, nos. 13, 15;)
 44. Perforation one-third as long as shell, with a lateral projection of the shell modifying otherwise perfectly oval slit; shell less than 2 cm. long, low, narrow; in life, shell nearly hidden by mantle protruding from perforation; mantle surface at least 4 times as great as shell surface 44. Perforation less than one-twelfth as long as shell: meture
shell more than 25 mm. long; apex elevated

Inside view of shells of various species of <u>Acmaea</u>. Natural size. Listed alphabetically by species:

26, <u>A. asmi</u> 3, <u>A. cona</u> 21,22,24, <u>A. digitalis</u> 4,6, <u>A. fenestrata</u> 19, <u>A. insessa</u> 28, <u>A. instabilis</u> 9,10,14,15, <u>A. limatula</u> 8, <u>A. mitra</u> 1,2, <u>A. ochracea</u> 20,27,29-31, <u>A. pelta</u>

23, <u>A. persona</u> 25, <u>A. rosacea</u> 7,11-13, <u>A. scabra</u> 16-18, <u>A. scutum</u>

Shells of various species and one hybrid of the genus <u>Acmaea</u> seen in lateral view. Natural size. Listed alphabetically by species:

1, <u>A. asmi</u> 5,6, <u>A. cona</u> 3,10-14,16-19, <u>A. digitalis</u> 7,8, <u>A. mitra</u> 28,29, <u>A. ochracea</u> 9, <u>A. paleacea</u> 23-27, <u>A. pelta x A. digitalis</u> 2, <u>A. rosacea</u> 15,20-22, <u>A. scabra</u> 4, <u>A. triangularis</u>

45. 45.	Perforation below apex, extending down anterior slope of shell, wide anteriorly, narrowed posteriorly; shell white, heavily ribbed, with ribs projecting beyond margin <i>Puncturella</i> spp. Perforation at apex, eliminating peak, subcircular in shape, truncated posteriorly; shell gray or white, with darker gray radiating color streaks, margin crenulate Diadora
46. 46.	External color red Haliotis rufescens External color black Haliotis cracherodii
47.	Height of spire equal to or greater than height of body whorl
47.	Height of spire distinctly less than that of body whorl 49
4 8.	Sculpturing of spiral ribs crossed by longitudinal ribs of equal size and prominence, producing effect of basket weave
48.	Sculpturing of flattened spiral ribs without prominent longi- tudinal cross ribs Tritonalia gracillima
49.	Sculpturing of regular, flattened, spiral ribs not markedly interrupted by longitudinal growth lines; grooves shallow; shell regular in outline
49.	Sculpturing of elevated, rounded, spiral ribs, undulated by prominent, rounded, revolving longitudinal swellings; grooves deep and sharp cut; outline irregular
	••••••••••••••••••••••••••••••••••••••

141.27

e.

ź

KEY TO THE MORE COMMON NUDIBRANCHS

1. With a circlet of branchiae on posterior dorsal surface	(fig.
126,A)	$\begin{array}{c} \cdot \cdot \cdot \cdot 2 \\ \cdot \cdot \cdot \cdot 12 \end{array}$
 Branchial plumes retractile into cavity	· · · · 3
3. Dorsal surface tuberculate, with scattered dark spots . 3. Dorsal surface tuberculate, without scattered dark spots 3. Dorsal surface velvety, with dark rings (fig. 126,A)	andiegensis
 4. Color bright orange, with scattered dark spots and patch 4. Color bright orange, with scattered dark spots and patch 4. Anisodoris nobilis (ntereyensis les (fig. 126,B)
5. Small red or reddish brown species	· · · · · 6 · · · · 7
 6. Two conspicuous black spots, one in front of branchia, a behind sense organs	nd one a sanguinea 1 papil-
	aga paron a

NUDIBRANCHS

- 7. Yellow with white-tipped, scattered papillae; rhinophores dark; branchiae whitish yellow
- 7. Pale with numerous tubercles each tipped with lemon-yellow; a band of lemon-yellow outlining foot and mantle (fig. 126,C)

..... Cadlina marginata

Fig. 126. — Common nudibranchs (from Guberlet): A, <u>Dialula sandiegensis</u> (Cooper); B, <u>Anisodoris nobilis</u> (MacFarland); C, <u>Cadlina marginata</u> MacFarland; D, <u>Hermissenda</u> <u>orassicornis</u> (Eschscholtz).

8.	Body striped longitudinally Polycera atra
0.	body not striped
9.	Body brown with many small bluish-white spots dorsally
9.	Body pink or white
10	Body entirely nink Honkinsia rosacea
10	Crown color white
10.	Ground coror white
11.	Papillae long, club-like, red-tipped Laila cockerelli
11	Papillae short red
12.	Without cerata or dorsal gills; mantle dark red with fine white
	longitudinal lines Pleurophyllidia californica
12.	With gills or cerata (fig. 126.D)
13.	Without cerata; with plume-like gills on ridges along either
	side of back Tritonia festiva
13.	With cerata (fig. 126.D)
14.	Cerata brilliantly colored; body with brilliantly colored
	areas Hermissenda crassicornis (fig. 126,D)
14.	Cerata and body without brilliant coloring 15

10

A KEY TO THE COMMON GENERA OF FRESHWATER SNALLS

1. 1.	Shell dextral
2. 2.	Shell spired
3. 3.	Large; operculate
4. 4.	Spired; spire acute or depressed; aperture contracted above, rounded below
	KEY TO THE SHELLED LAND PULMONATES (For figures see paper by Nicholson)
A.	Shell minute:
	1. Elongate:
	lt Jongth 2 ¹ mm, dank brown to black, dull
	I. Dength S2 mit., dark brown to brack, durt
	2'. Length 6 mm.; yellowish-brown; glossy Cochlicopa lubrica
	 1. Length S₂ mm., dark brown to black, ddif 2'. Length 6 mm.; yellowish-brown; glossy Cochlicopa lubrica 1. Depressed:
	 1. length 22 mm., dark brown to black, ddif 2'. Length 6 mm.; yellowish-brown; glossy Cochlicopa lubrica 1. Depressed: Widely umbilicated; 3 whorls; diameter 1.5 mm.; ash-gray to white in color Striatura milium 2'. Moderately umbilicated; 4 whorls; diameter 2 mm.; dark brown (horn) in color
в.	 1. hength z₂ mm., dark brown to black, ddif 2'. Length 6 mm.; yellowish-brown; glossy Cochlicopa lubrica 1. Depressed: Widely umbilicated; 3 whorls; diameter 1.5 mm.; ash-gray to white in color Striatura milium 2'. Moderately umbilicated; 4 whorls; diameter 2 mm.; dark brown (horn) in color Punctum conspectum 3'. Slightly umbilicated; 4¹/₄ whorls; diameter 2 mm.; light horn to white in color Pristiloma nicholsoni Shell 6-8 mm. in diameter; depressed; moderately, but deeply, umbilicated; 5 whorls; light to dark brown in color; oblique
в. с.	 1. hength z₂ mm., dark brown to black, ddif 2'. Length 6 mm.; yellowish-brown; glossy Cochlicopa lubrica 1. Depressed: Widely umbilicated; 3 whorls; diameter 1.5 mm.; ash-gray to white in color Striatura milium 2'. Moderately umbilicated; 4 whorls; diameter 2 mm.; dark brown (horn) in color Punctum conspectum 3'. Slightly umbilicated; 4¹/₄ whorls; diameter 2 mm.; light horn to white in color Pristiloma nicholsoni Shell 6-8 mm. in diameter; depressed; moderately, but deeply, umbilicated; 5 whorls; light to dark brown in color; oblique

PULMONATA

Ε.	Shell	25-40	mm.	in	diameter;	depressed.
----	-------	-------	-----	----	-----------	------------

- 1. Imperforate (no umbilicus); 4 whorls; globose; yellowish to russet; banded; diameter 25-40 mm.
- Helix aspersa
 Minutely umbilicated; 5 whorls; pale horn color to ash-yellow; superior chestnut nerrow hand: diameter 25-40 mm.
- - 1'.6½ whorls; brown on top, black beneath; body whorl
 angulated; 35-38 mm. Helminthoglypta infumata
 2'. 7 whorls; light brown to yellowish in color with superior chestnut band; body whorl rounded; often dark
 brown; 34-40 mm. Helminthoglypta arrosa

FIELD KEY TO THE LOCAL LAND SLUGS (For figures see paper by Waste, 1938)

1.	Respiratory orifice anterior to middle of mantle
1.	Respiratory orifice posterior to middle of mantle 2
2. 2.	Tip of tail excavated, with a mucus pit Ariolimax columbianus Tip of tail conical, not excavated
3. 3.	Central oval area on mantle marked by a groove Milax gagetes Mantle without demarcated central area, but ornamented with closely concentric grooves over whole surface 4
4. 4.	Conspicuous irregular stripes on body Limax maximus Body at most spotted, never striped 5
5.	Color pattern a mosaic of black, gray, or buff-colored areas
5.	Body coloration and reticulation of the integument not in correspondence; slime not yellow
6.	Larger, adults about 40 mm. long; secreting abundant milky slime when touched; color of back variable usually gray, or ocherous buff with dark gray patches shading rarely to almost uniform black
6.	Smaller; hardly reaching a length of 30 mm., secreting very little milky slime; color uniform Agriolimax campestris
	LIST OF SPECIES OF LOCAL GASTROPODA EXCLUSIVE OF THE PULMONATES
	Order <u>Streptoneura</u> (<u>Prosobranchiata</u>)
	Suborder <u>Aspidobranchiata</u> (<u>Diotocardia</u>)
	D *M Acmaea asmi Middendorf D *B *M Acmaea digitalia Esebachalta
	TBDBM Acmaea fenestrata (Reeve)
	D M Acmaea insessa (Hinds)

Suborder Aspidobranchiata (Diotocardia) (Continued)

М	Acmaea instabilis (Gould)
M	Acmaea limatula Carpenter
D *M	Acmaea mitra Eschscholtz
М	Acmaea ochracea Dall
D M	Acmaea paleacea (Gould)
D*B*M	Acmaea pelta Eschscholtz
В * М	Acmaea persona Eschscholtz
D * B * M	Acmaea scabra (Gould)
D B *M	Acmaea scutum Eschscholtz
M	Acmaea triangularis Carpenter
M	Astraea inaequalis (Martyn)
D_M	Calliostoma canaliculatum (Martyn)
D [▲] M	Calliostoma costatum (Martyn)
М	Calliostoma tricolor Gabb
DM	Diodora aspera (Eschscholtz)
DM	Haliotis cracherodii Leach
D_M	Haliotis rufescens Swainson
D_M	Homalopoma carpenteri (Pilsbry)
D_M	Lottia gigantea Sowerby
* <u>M</u>	Margarites lirulatus (Carpenter)
TM.	Margarites pupillus (Gould)
M	Margarites salmoneus (Carpenter)
M	Margarites succincta (Carpenter)
M	Megatebennus bimaculatus (Dall)
D TM	Tegula brunnea Philippi
D TM	Tegula funebralis Adams
M	Tegula ligulata (Menke)
M	Tegula montereyi Kiener
M	Tegula pulligo (Martyn)
Suborder	<u>Pectinibranchiata (Monotocardia</u>)
D *M	Acanthina spirata Blainville
М	Aletes sougmingerus (Carpenter)
M	Alvania hartmanae Vokes
DM	Amphissa bicolor Dall
M	Amphissa columbiana Dall
M	Amphissa versicolor Dall
DM	Barleeia haliotiphila Carpenter
- <u>-</u> M	Barleeia oldroudi Bartsch
D *M	Bittium eschrichtii (Middendorff)
M	Bivonia compacta Carpenter
TB M	Cerithidea californica (Haldeman)
М	Cinqula californica Tryon
M	Cinquia montereyensis Bartsch
M	Clathrodrillia incisa (Carnenter)
M	Conus californicus Hinds
D*M	Crepidula adunca Sowerby

- B M Crepidula convexa glauca Say
 M Crepidula lingulata Gould
 D *M Crepidula nummaria Gould

GASTROPODA

Suborder Pectinibranchiata (Monotocardia) (Continued) D M Cypraeolina pyriformis (Carpenter) M Diala acuta Carpenter D M Epitonium indianorum (Carpenter) *M Épitonium tinctum (Carpenter) M Epitonium wroblewskii (Morch) D *M Hipponix antiquatus (Linnaeus) D Hipponix tumens Carpenter *B Ilyanassa (Nasscrius) obsoleta (Say) D *M Lacuna marmorata Dall M Lacuna porrecta Carpenter M Lamellaria D B *M Littorina planaxis Philippi D *B *M Littorina scutulata Gould M Marginella (?) M Mitra D *M Mitrella (= Columbella) carinata (Hinds) *M Mitrella gouldii (Carpenter) *M Mitrella tuberosa (Carpenter) *M Nassarius mendicus Gould M Nassarius perpinguis Hinds M Odostomia oregonensis Dall and Bartsch TB *M Olivella biplicata (Sowerby) M Phasianella compta Gould M Pseudomelatoma torosa (Carpenter) D M Purpura foliata Martyn D *M Searlesia dira (Reeve) M Spiroglyphus lituellus Morch D M Thais canaliculata (Duclos) D *M Thais emarginata Deshayes *B M Thais lamellosa (Gmelin) D D *M Tritonalia circumtexta Carpenter *M Tritonalia foveolata Hinds M Tritonalia gracillima Stearns *M Tritonalia interfossa Carpenter D *M Tritonalia lurida Middendorff M Tritonalia painei Dall M Tritonalia subangulata Stearns D M Trivia M Turbonilla *B Urosalpinx cinereus (Say) M Velutina laevigata Muller Viviparus japonicus von Martens F F Viviparus malleatus Reeve

Order <u>Opisthobranchiata</u>

Suborder <u>Tectibranchiata</u>

- TB Actaeon punctocaelata (Carpenter)
- M Haminoea vesicula (Gould)
- TB Phyllaplysia taylori Dall
- B Tethys californica (Cooper)

Class PELECYPODA

On a fresh or preserved clam locate the <u>hinge</u> at the dorsal side, the <u>gape</u> at the ventral side of the shell, the <u>siphons</u>, <u>exhalent</u> (dorsal) and <u>inhalent</u>, either separate, as in *Macoma*, or united to

Fig. 127. The pelecypod shell, terminology (after Keen and Frizzell): A, cross section; B, right valve.

form a "<u>neck</u>," as in *Mya* or *Schizothaerus*. Remove one valve to see the <u>mantle folds</u> and the relations of the siphon to them. Within the <u>mantle</u> chamber make out the <u>gills</u> two pairs of <u>labial palps</u>, located on either side of the mouth, the <u>visceral mass</u> and <u>foot</u>, making up the body proper, and the <u>anterior</u> and <u>posterior</u> <u>adductor</u> <u>muscles</u> running between the two valves of the shell.

The major divisions (orders) of the Pelecypoda are based in part at least on the structure of the gills. We shall deal with two orders. The *Filibranchia* are characterized by gills in the form of parallel filaments and by a holdfast, typically of numerous threads, known as a <u>byssus</u>. Here belong the jingles (*Pododesmus*, fig. 129,A), the marine mussels (*Mytilus* and *Modiolus*) and the pectens or scallops (*Pecten*, *Hinnites*, fig. 129,B).

The great majority of pelecypods belong to the order Eulamellibranchia. This includes the oysters, the clams, the freshwater mussels, the boring clams and the shipworms (*Teredo*). They are characterized by lamellar gills composed of completely joined filaments.

See slides of permanent mounts of sections of *Mya* and *Mytilus* to show these two types of gill structure and study pieces of the gills of each from freshly collected specimens. On these last note also the powerful ciliary action.

The common names ordinarily used for groups of pelecypods are not derived from the names of the orders but are true vernacular names, such as oysters, scallops, rock oysters or jingles, sea mussels, freshwater mussels, clams, etc.

Classification of pelecypods to genus and species is based largely on characters of the shell. On the shell given you, orient yourself by remembering that the <u>hinge</u> is dorsal and that the <u>umbo</u> lies nearest the

PELECYPODA

anterior end and the <u>beak</u> (fig. 127) is often inclined toward it. On the exterior of the shell note the concentric growth lines and the radiating <u>striae</u>. On the inner surface locate the <u>pallial line</u> (fig. 127) connecting the anterior and posterior muscle scars, and the <u>pallial</u> <u>sinus</u> (fig. 127), marking the position of the siphonal muscles in life. At the dorsal margin see the <u>hinge teeth</u> (fig. 127) and the remnants of the <u>ligament</u>.

The <u>cardinal teeth</u> are directly under the umbo and the <u>lateral</u> <u>teeth</u> either in front of or behind the umbo, if in front they are <u>antero-laterals</u>, if behind <u>posterior-laterals</u>.

Understand the following commonly encountered terms which are illustrated by demonstration specimens; <u>integripalliate</u>, lacking a pallial sinus (*Clinocardium*); <u>sinupalliate</u>, with a pallial sinus (*Protothaca*); <u>dimvarian</u>, with two adductor muscles; <u>isomvarian</u>, with adductor muscles approximately equal in size (*Protothaca*); <u>hetero-</u><u>mvarian</u>, with adductor muscles strikingly unequal (*Mytilus*); <u>mono-</u><u>mvarian</u>, with a single adductor muscle (*Ostrea*, *Pecten*); <u>chondrophore</u> (fig. 127), shelf-like process of left valve to which is attached the ligament (*Mya*); myophore (fig. 128), a more or less extended, inwardly directed, process to which muscles are attached in the boring clams. Identify your specimen by means of the key which follows.

Read the introduction to <u>Illustrated Key to West North American</u> <u>Pelecypod Genera</u>, by Keen and Frizzell, and identify several specimens by it. This excellent publication should be owned if possible and consulted extensively.

Each student should sample also Weymouth, Oldroya, and Packard.

KEY TO THE MORE COMMON PELECYPODA

1.	Two valves distinctly different due to attachment by one valve; one or both valves markedly rough and irregular (fig. 129,A,B)
1.	Two valves approximately alike, not especially irregular; at- tached by byssus or not at all 2
2.	Brown to black; valves elongated, with umbo at or very near end
х .	umbo near end 8
3. 3.	Rock borers; narrow 4 Attached to rocks or piles, or half buried in mud 5
4.	Smooth externally "The Smooth Pea-Pod Borer," Botula californiensis
4.	With fine, transverse ridges over most of shell; color uniform "The Rough Pea-Pod Borer," Botula falcata
4.	With coarser, oblique ridges at posterior end; color obscured over part of shell; shell wider than in <i>Botula</i> but with poste- rior end markedly pointed
5. 5.	Hinge and beaks at extreme tip (Mytilus) 6 Hinge and beaks at side or subterminal (Modiolus)

6. Larger: narrower with a few longitudinal ribs: growth lines prominent: brown to black-brown "The California Sea Mussel," Mytilus californianus 6. Smaller: broader: smooth; black . "The Bay Mussel." Mytilus edulis 7. Large; without ribs; width nearly uniform; buried portion dark brown, polished; free portion yellowish, hairy Modiolus (= Volsella) rectus 7. Smaller; with prominent radiating, longitudinal ribs; hinge end narrowed Modiolus demissus 8. Both valves swollen anteriorly and sculptured for boring rocks 8. Not so (except for Petricola pholadiformis which is sculptured 10. Each valve with flat expansions in front of and behind umbo: 11. Ribs of approximately same type and size throughout; shell 11. With a few large anterior ribs and numerous narrow ribs on remainder of shell: shell elongated . . Petricola pholadiformis 12. Very small, shell subquadrate Glans carpenteri 13. Ribs broad and prominent; growth lines not marked; margin scalloped: integripalliate "The Basket Cockle," Clinocardium nuttallii (= Cardium) 13. Ribs narrow; growth lines prominent; margin not scalloped but often distorted; sinupalliate . . "The Rock Cockle," Protothaca (= Venerupis = Paphia) staminea 14. Concentric growth lines prominent, often protruding; shape irregular, often distorted owing to its being a nestler . . . 15 15. Growth lines in form of thin prominently projecting flanges, Irus (= Venerupis) lamellifera 16. Median cardinal tooth (fig. 127) prominent, plate-like; growth lines close set and relatively regular; shell without periostracum; tips of siphons bright purple Petricola carditoides 16. Without cardinal teeth; growth lines irregular in shape and distribution; shell chalky, covered with a brown periostracum, some remnants of which are present in nearly all old shells; siphon tips red Saxicava pholadis 17. In colony of compound ascidians; higher than long ••••• Mytilimeria nuttallii

PELECYPODA

18. 18.	Small, less than an inch long 19 Not so 24
19. 19.	Marine
20. 20.	5 mm. long or less
21.	Shell rosy; with transverse chondrophore in both valves; nestling in barnacle beds Unidentified
21.	Shell white; without transverse chondrophore
22.	Sinus deep, dorsally directed; lateral teeth not conspicuous
22.	Sinus not noticeable or anteriorly directed; lateral teeth conspicuous, ridge-like
23.	Nestler in pholad holes; teeth prominent; shell short, oval, smooth with gleaming green periostracum
23.	Often in kelp holdfasts; almost three times as long as high; teeth inconspicuous
24.	Long-oval, much elongated; with a prominent ridge running down- ward from the teeth on the inside of each valve
24.	Not so
~~~	
25.	Both valves bent to the right at the posterior end
25. 25.	Both valves bent to the right at the posterior end 
25. 25. 26. 26.	Both valves bent to the right at the posterior end Not so
25. 25. 26. 26. 27. 27.	Both valves bent to the right at the posterior end 
25. 25. 26. 26. 27. 27. 28.	Both valves bent to the right at the posterior end Not so
25. 25. 26. 26. 27. 27. 28. 28.	Both valves bent to the right at the posterior end 
<ol> <li>25.</li> <li>25.</li> <li>26.</li> <li>26.</li> <li>27.</li> <li>27.</li> <li>28.</li> <li>28.</li> <li>29.</li> </ol>	Both valves bent to the right at the posterior end 
25. 25. 26. 26. 27. 27. 28. 28. 29.	Both valves bent to the right at the posterior end 
<ol> <li>25.</li> <li>25.</li> <li>26.</li> <li>26.</li> <li>27.</li> <li>27.</li> <li>28.</li> <li>28.</li> <li>29.</li> <li>30.</li> </ol>	Both valves bent to the right at the posterior end "The Bent-Nosed Clam," Macoma nasuta Not so
<ol> <li>25.</li> <li>25.</li> <li>26.</li> <li>26.</li> <li>27.</li> <li>28.</li> <li>28.</li> <li>29.</li> <li>30.</li> <li>30.</li> </ol>	Both valves bent to the right at the posterior end 
25. 25. 26. 26. 27. 27. 28. 28. 29. 30. 30. 30.	Both valves bent to the right at the posterior end
25. 25. 26. 26. 27. 27. 28. 28. 28. 29. 30. 30. 31. 31.	Both valves bent to the right at the posterior end 

- 32. Sculpture fine to moderate, confined to a triangular section of anterior half of shell, consisting of fine concentric ridges undulated by fine radial ridges; with one or more conspicuous accessory plates along dorsal margin (fig. 128). 33



Fig. 128. Rock borers (after Keen and Frizzell): A-C, <u>Parapholas californica</u> (Conrad); D-F, <u>Pholadidea penita</u> Conrad.

33. Dorsal margin doubled and reflected both anterior and posterior to beaks; posterior half of shell divided approximately in half by a conspicuous radiating angle which marks change in direction of concentric lines; a conspicuous posterior extension of brown periostracum; siphon tips pale lavender .... Parapholas californica (fig. 128,A-C)



Fig. 129. A, <u>Pododesmus</u> <u>macroschiśma</u> (Deshayes); B, <u>Hinnites multirugosus</u> (see Gale) (= "giganteus Gray"); C, <u>Pholadidea penita</u> Conrad. (All from Guberlet.)

# PELECYPODA

33.	Dorsal margin d ous radiating siphon tips v	loubled only anterior to beaks; without conspicu- g angle; no posterior extension of periostracum; white with faint brownish tinge 
34.	Lower valve wit	th hole or deep notch near hinge "The Rock Jungle," <i>Pododesmus</i> (fig. 129,A)
34.	Both valves ent	ure
35.	Large, approxim side of umbo; and younger p	mately circular, with distinct wings on either ; purplish within; with radiating ribs; left valve portions of right valve distorted "The Rock Scallop," <i>Hinnites</i> (fig. 129.B)
35.	Small, with poi	inted beak; elongate to circular; surface of upper
	valve laminat	ted or irregularly plaited
	• • • • • •	"The Western Oyster," Ostrea lurida
		LIST OF PELECYPODA
	Order <u>Filibran</u>	<u>chiata</u>
	*M	Botula californiensis Philippi
	* <u>M</u> 5.*v	Botula falcata Gould
	U M M	Lithophaga plumula Hapley
	*B	Modiolus (= Volsella) demissus Dillwyn
	* M	Modiolus rectus Conrad
	D *M	Mytilus californianus Conrad
	т <u>В</u> п <b>*</b> м	Mytilus edulis Linnaeus Pededeerus respecthierus Desheves
		Septifer bifurcatus (Conrad)
	Order Bilemell	ibmonchiate
	Urder <u>Eurameir</u>	<u>I DIALIGILA LA</u>
		Bankia setacea (Tryon)
	TB B M R	Cruntomua californica (Conrad)
	B	Gemma gemma (Totten)
	M	Glans carpenteri (Lemy) (= Cardita subquadrata)
	D M	Irus (= Venerupis) lamellifer (Conrad)
		Kellia (= chironia) laperousii (Desnayes) Macoma inconspicua (Broderin end Sowerby) (= W halthica)
•	*B TB	Macoma irus (Hanley) (= M. inguinata)
	*B TB M	Macoma nasuta Conrad
	TB	Macoma secta Conrad
	М *т	Milneria minima (Dall) Kuppulium
	*B M	Mua arenaria Linnaeus
	D M	Mytilimeria nuttallii Conrad
	<b>B</b>	Ostrea gigas Thunberg, Japanese Oyster
	"B M mp	Ostrea lurida Carpenter Panana gananaga Gauld The Gooduck
	TB M	Parapholas californica (Conrad)
	* M	Petricola carditoides Conrad
	В	Petricola pholadiformis Lamarck
		· · · · · · · · · · · · · · · · · · ·

# Order <u>Eulamellibranchiata</u> (Continued)

- D M Pholadidea parva Tryon
- D *M Pholadidea penita (Conrad)
  - M Platyodon cancellatus Conrad
- *B D *M Protothaca (variously Paphia or Venerupis) staminea (Conrad)
  - D M Psephidia lordi Baird
  - TB Sanguinolaria nuttallii (Conrad)
  - D *M Saxicava pholadis (Linnaeus)
    - TB Saxidomus nuttallii Conrad
  - B TB Schizothaerus nuttallii (Conrad)
    - B Siliqua lucida Conrad
    - B Siliqua patula (Dixon)
    - TB Tellina bodegensis Hinds
    - *B Teredo navalis Linnaeus
    - M Zirfaea pilsbryi Lowe (= Z. gabbi)

# PHYLUM ENTOPROCTÀ (Kamptozoa, Calyssozoa)

This group has usually been included with the Bryozoa, but differs from it fundamentally in structure. The term entoproct refers to the inclusion of the anus within the circle of tentacles (the anus is outside in the true or ectoproct Bryozoa). Externally, the simplest way to distinguish the two is to note whether the tentacles are folded into the center when withdrawn (as in a hydroid), in which case it is an entoproct, or whether the whole anterior end of the body is introverted into the basal part, with the tentacles still pointing forward, in which case it is an ectoproct. The nodding movement of individual zooids is also characteristic of the Entoprocta. The Entoprocta are much less common than the Ectoprocta, but will probably be collected as they are often found forming small, moss-like patches on coralline algae.

#### PHYLUM BRYOZOĀ (Ectoprocta)

Under the low power of the microscope see that the colony or <u>zoarium</u> is composed of numerous individuals. Make yourself familiar with the terms defined below which commonly occur in keys and descriptions. Each individual consists of a <u>zooecium</u> (pl. <u>zooecia</u>) and a <u>polypide</u>. The zooecium is a chamber or sack, the proximal portion of the individual, and is covered externally by a secreted wall of calcareous, chitinous, or rarely, gelatinous, or membranous nature. The polypide is the distal half of the individual, when extended, including the <u>lophophore</u> (which bears the <u>tentacle</u>) and the alimentary tract. The polypide is retractile within the zooecium. The opening at the end of the zooecium when the polypide is withdrawn is the <u>orifice</u> (Plate XVI, B). The front wall of the zooecium is often called the <u>aperture</u>. Do not confuse this with the orifice.

<u>Avicularia</u> (sing. <u>avicularium</u>) are bird's-head-like appendages of the zooecia of certain species. <u>Vibracularia</u> (vibracula) are long setalike appendages of the zooecia of certain species. The <u>ooecium</u> (pl. <u>ooecia</u>) or <u>ovicell</u> is an expanded chamber, above a zooecium, in which the embryos develop.

# BRYOZOA

Zoaria may be <u>creeping</u>, <u>erect</u>, <u>subcrect</u>, <u>encrusting</u>, <u>flexible</u>, or <u>stiff</u>. They may be <u>articulated</u> (divided into internodes by joints or nodes) or nonarticulated (Plate XVI). See expanded living individuals. Seek to identify common species by means of the key which follows.

# A PRELIMINARY KEY TO THE BRYOZOA AND ENTOPROCTA OF THE MOSS BEACH REGION

1.	Individuals composed of distinct stalk and body regions and connected by stolons; individuals separately moveable. ENTO- PROCTA (base of stalk bulbous)
1.	Colony (zoarium) composed of individuals (zooecia) not readily divisible into stalk and body regions; individuals usually not movable. ECTOPROCTA
2.	Colony gelatinous; zooecia without calcareous skeletons. CTENO- STOMATA
2.	Zooecia with calcareous skeletons
3.	Zoarium brownish, covered with branched reddish, spine-shaped projections which arise from between the zooecia; zooecia hardly discernible; colony resembling seaweed
3.	Zoarium gray or colorless, without spines; zooecia with distinct outlines A. mytili
4.	Zooecia tube-like, with orifice at one end (Plate XVI,C,D);
4.	Zooecia box-like, orifice on "front" (Plate XVI, B, E). CHEILO- STOMATA
5. 5.	Zooecia uniserial, with joints between each; joints black, giving characteristic speckled appearance to older parts of colony (Plate XVI,C) Crisidia franciscana Zooecia biserial; joints few, not present between each zooecium (Plate XVI,D)
6. 6.	Zeeving energy sting reaks sizes shalls other Bayeses at $\nabla$
	Zoarium not encrusting, but forming a branching mass
7. 7.	Zoarium not encrusting, but forming a branching mass
7. 7. 8. 8.	Zoarium not encrusting locks, algae, shells, other Dryozoa, etc
7. 7. 8. 8. 9.	Zoarium not encrusting locks, algae, shells, other Dryozoa, etc
7. 7. 8. 8. 8. 9.	Zoarium not encrusting locks, algae, shells, other Dryozoa, etc
7. 7. 8. 8. 9. 9.	Zoarium not encrusting locks, algae, shells, other Diyozoa, etc



# BRYOZOA

10.	Zooecium possesses a special semicircular pore, with a sieve-	
	plate in it, below the orifice; orifice semicircular, with	
	straight lower margin (Plate XVI,E)	11
10.	Zooecium without special pore	12



Fig. 130. Bryozoan colonies (from Guberlet): A, <u>Membranipora membranacea</u> (Linnaeus); B, <u>Retepora pacifica</u> Robertson; C, <u>Flustra lichenoides</u> Robertson.

11.	Zooecium bears spines above the orifice
11.	Zooecium does not bear spines M. californica
12.	Orifice simple, usually contracted near the lower margin, covered with brown operculum; color of zoarium in life old rose 
12.	Not as above
13.	Orifice simple, with narrow sinus on lower margin; zooecium with transverse ridges (Plate XVI,G) Hippothoa hyalina
13.	Secondary orifice developed by growth of peristome (Plate XVI,H) 14
14.	Orifice with deep sinus on lower margin; zooecia erect or sub- erect, heaped together
14.	Orifice without sinus on lower margin; zooecia not erect 15
15.	Peristome elevated, forming secondary orifice channeled on lower margin (Plate XVI.B); primary orifice dentate 16
15.	Peristome elevated, forming secondary orifice, which has a mucro or tooth on its lower margin (Plate XVI.H)
	Mucronella sp.
16.	Zooecium with two spines on upper margin of orifice and two or three large blunt protuberances below the orifice
16.	Zooecium spineless with no large protuberances
10.	Smittina reticulata

17.	Branching regular; one or more main trunks, from which periodic
	whorls of branches are given off; colony has the appearance
	of having been twisted into a spiral Bugula californica
17.	Branching much less regular than above; branches do not come

18. Zooecia have only lateral avicularia; joints occur usually between every three zooecia . . . . . . . . . Menipea occidentalis
18. Zooecia have frontal avicularia as well as lateral ones. More

than three zooecia between each joint

# LIST OF ENTOPROCTA AND BRYOZOA

KAMPTOZOA (ENTOPROCTA)

Barentsia (= Pedicellina) gracilis Lomas

BRYOZOA (ECTOPROCTA)

Order Phylactolaemata

Plumatella (fresh water)

Order <u>Gymnolaemata</u>

Suborder <u>Ctenostomata</u>

D *M Alcyonidium cervicornis Robertson Alcyonidium mytili Dalyell

Suborder Cyclostomata

Crisia pacifica Robertson Crisidia franciscana Robertson

Suborder Cheilostomata

- D *M Bugula californica Robertson Callopora horrida Hincks Cauloramphus spinifer Johnston Costazzia incrassata Lemarck Cribrilina sp. Eurystomella bilabiata Hincks Hippothoa hyalina Linn. Menipea occidentalis Trask
- B TB D Membranipora membranacea Linn. Microporella californica Busk Microporella ciliata Mucronella sp. Scrupocellaria californica Trask Smittina collifera Robertson Smittina reticulata Macgillivray

## ECHINODERMATA

## PHYLUM PHORONIDEA

This is a very small phylum with but two genera (*Phoronis* and *Phoronopsis*) and relatively few species. Under favorable conditions they occur in great numbers as in Elkhorn Slough, Bolinas Bay, and Tomales Bay. In the upper end of Tomales Bay students have estimated that over a billion individuals were living in one acre. Six species have been reported from the Pacific Coast, two from British Columbia, one from Humboldt Bay and Puget Sound, and three from southern California. Just which species (one, two, or more) occur in central California is not known. The special paper of T. H. Bullock represents the only attempt to identify these animals in this vicinity.

Study preserved specimens. Keep in mind that while they are elongated worm-like animals the mouth and anus open close together and that terms of orientation such as anterior and posterior must be used with caution. Note the lophophore, the great double semicircular whorl of tentacles with incoiled ventral edges, the cilia on which serve to set up currents which bring plankton to the mouth.

If time permits, study sections to get some idea of the interesting anatomy of this type. Consult Borradaile and Potts or <u>Cambridge</u> <u>Natural History</u> for figures.

# PHYLUM BRACHIOPODA

A very few small individuals of this small phylum are found at the lowest tide levels in this region. They belong to a species, *Tere*bratalia transversa (Sowerby), found in large numbers in deeper waters or in shallow waters farther north.

The two-valved shell suggests a pelecypod mollusk but they are entirely different structural types. Superficially they are easily differentiated by the unequal valves of the shell which are dorsal and ventral instead of right and left.

#### PHYLUM ECHINODERMÄTÄ

The present-day echinoderms fall into five distinct classes, the Asteroidea or sea stars (starfishes), the Ophiuroidea or brittle stars, the Echinoidea or sea urchins, the Holothuroidea or sea cucumbers, and the Crinoidea or crinoids (sea lilies). All save the last class have representatives in the local fauna. Make certain that you are able to recognize and distinguish the members of these classes. Since only the class Asteroidea is represented by a number of species, we shall confine our laboratory study to the sea stars.

On a sea star make out the radiating <u>rays</u> or <u>arms</u>, the oral surface with the central <u>mouth</u>, the <u>ambulacral groove</u>, in the oral surface of each arm containing the <u>tube feet</u> (<u>podia</u> or <u>ambulacral appendages</u>). On the aboral surface locate the <u>anus</u> and the <u>madreporic plate</u> and note the absence of tube feet. Note the <u>spines</u>; their <u>shape</u>, <u>size</u>, and arrangement are of importance in classification. Using a lens seek minute pincer-like organs, the <u>pedicellariae</u>. These are more strikingly developed on the sea urchin. Examine the living demonstration specimen under the microscope.





Fig. 131. Mouth parts of brittle stars: A, Ophioderma; B, Ophiopteris.

Scrape away the outer body layers and the spines to expose the plates of the skeleton of one entire arm and the area around mouth and anus.

Using Pratt when available, attempt to determine the family of one species. Meanwhile, identify your specimen, using the key below.

On a brittle star locate mouth with "jaws" (fig. 131) and oral papillae, buccal plates, genital bursae, tentacles (modified tube feet), disk scales, radial plates, dorsal arm plates.

Identify your specimen using the key below.

# ECHINODERMATA

# KEY TO THE ECHINODERMS

# Holothuroidea (Sea Cucumbers)

1.	Pale (usually white) in color; lacking tube feet; small in size
1.	Colored; tube feet present
2.	Tentacles 20 or more, fairly short, each somewhat resembling a flower: size of animal large
2.	Tentacles about 10; tentacles longer, dendritic (tree-like in branching)
3.	Dorsal and ventral surfaces of body markedly distinguished from each other: small: red in color
3.	No distinction of dorsal and ventral surfaces; some species large, some small
	Echinoidea (Sea Urchins)
1. 1	Body very flattened; spines short; below intertidal zone 
1. 0	body not greatly listtened; spines long. "Sea orchins"
<i>د</i> .	short
X.	Large; red or purple; spines longer
	Ophiuroidea
	(Brittle Stars, with long mobile arms)
1. 1.	Disk with overlapping scales
2. 2.	A single dorsal arm plate to each segment
3.	Smaller, disk usually less than 5 mm. wide; radial plates in contact save at proximal tip, three pairs of oral papillae, first as long as next two together; dorsal arm plates not in
3.	contact, less than twice as wide as long . Amphipholis pugetana Larger, disk usually about 10 mm. wide; radial plates separated by smaller disk scales save at bases; a single pair of oral papillae; dorsal arm plates broadly in contact, twice as wide as long
	<u>Asteroidea</u> (Sea Stars)
1.	Leathery outer covering
1.	Spiny outer covering

2.	About twenty arms "The 20-rayed or Sunflower Star." Pycnopodia helianthoides
2.	Not more than six arms
3.	Small, $\frac{1}{2}$ to $2\frac{1}{2}$ inches in diameter
4. 4.	Five arms; spines of aboral surface in elongated groups (pseudo- paxillae) young of <i>Henricia leviuscula</i> With six arms; spines as usual
5.	Small, usually less than one inch in diameter; arms slender; spinulation sparse; common in tide pools of mid-tide horizon

 5. Larger, reaching a diameter of 2¹/₂ inches; arms stouter, somewhat swollen at base; spinulation close-set; common in tide pools of low-tide horizon . . Leptasterias aequalis (fig. 132,A)



Fig. 132. Sea stars (from Guberlet): A, <u>Leptasterias</u>; B, <u>Henricia leviuscula</u> (Stimpson).

6. 6.	Disk very broad; arms short and triangular Patiria (Asterina) Disk smaller; arms long, subcylindrical
7. 7.	Arms slender; spines very tiny, in groups (pseudopaxillae); color an even orange red <i>Henricia leviuscula</i> (fig. 132,B) Spines more conspicuous; body and arms stouter 8
8.	Spines conspicuous, forming a network
8.	Very large; spines conspicuous but not forming a network
8.	Spines very short and inconspicuous, forming a network; pale pink in color

## ENTEROPNEUSTA

# LIST OF ECHINODERMS

# HOLOTHUROIDEA

- M Cucumaria spp.
- M Leptosynapta albicans (Selenka)
- M Stichopus californicus (Stimpson)
- M Thyonepsolus nutriens Clark

## ECHINOIDEA

Sector States and

A Second s

- M Dendraster excentricus (Eschscholtz)
- *M Strongylocentrotus franciscanus (Agassiz)
- *M Strongylocentrotus purpuratus (Stimpson)

## OPHIUROIDEA

- M Amphiodia occidentalis (Lyman)
- M Amphipholis pugetana (Lyman)
- M Ophiopholis aculeata kennerlyi (Lyman)
- M Ophioplocus esmarki Lyman

# ASTEROIDEA

- M Dermasterias imbricata (Grube)
- *M Henricia leviuscula (Stimpson)
- *M Leptasterias aequalis (Stimpson)
- *M Leptasterias pusilla Fisher
- *M Patiria miniata (Brandt)
- *M Pisaster brevispinus (Stimpson)
- *B *M Pisaster ochraceus (Brandt)
  - M Pisaster giganteus (Stimpson)
  - M Pycnopodia helianthoides (Brandt)

## PHYLUM CHORDATA

#### SUBPHYLUM HEMICHORDA

## Class ENTEROPNEUSTA

One species of this group (Mesoglossus intermedia) has been found in small numbers at Moss Beach. The Enteropneusta are worm-like animals (our species small, generally not more than an inch long) which can be distinguished from other worm-like creatures by the division of the body into three parts; proboscis, collar, and trunk. The species which has been found at Moss Beach is small and is taken on the under sides of rocks lying in coarse sand in protected tidal channels or lagoons.

#### SUBPHYLUM UROCHORDA (TUNICATA)

There are three classes in this subphylum, the Larvacea, Thaliacea, and Ascidia. The first consists of small pelagic forms which will not be encountered in this course. The Thaliacea are also pelagic, but are larger and more common. Some may occasionally be seen floating in

the water or washed ashore. They are soft, jelly-like, transparent, colorless except for a relatively small "nucleus." Salpa is the genus commonly encountered. The Ascidia are attached to rocks or piling and form a conspicuous element in our littoral fauna. Some of them are solitary; they are sac-like and possess two orifices at or near the distal end: one, the incurrent or <u>branchial orifice</u>, the other the excurrent or <u>atrial orifice</u>. The majority of species, however, are colonial. The individuals, called zooids, may be merely united by their outer layer (test) or their cavities may be variously united. One common arrangement is the fusion of several atrial orifices into a common <u>cloacal</u> orifice, the branchial orifices remaining separate, arranged in a circle around the cloaca. The <u>stigmata</u> referred to in the key are internal gill openings between the branchial and atrial cavities. See Borradaile and Potts or another text for other internal characters mentioned in the key.

Many different species of compound ascidians are known. Many of them form smooth, lobed colonies and are often spoken of as sea pork (fig. 135).

## A KEY TO THE MORE COMMON LITTORAL ASCIDIANS OF THE MOSS BEACH AREA

#### By Robert L. Fernald

1. 1.	Individuals fixed and solitary. ASCIDIAE SIMPLICES 2 Many individuals more or less completely embedded in a common cellulose mass. ASCIDIAE COMPOSITAE
2.	Long, club-shaped; peduncle or stalk at least as long as body; prevailing color dark red
2.	Without peduncle; sac-like
3.	Test translucent and without color; plates surrounding the atrial and branchial orifices
3.	Test tough and coated with foreign material; basic red-brown color with bright-red siphon tips
4.	Zooids with basal portions only embedded in common test; con- nected by stolons. "Social Ascidians"
4.	Zooids entirely embedded in common cellulose mass 6
5. 5.	Individuals mound-like, 2 to 4 mm. in diameter; colored various shades of red Metandrocarpa michaelseni Individuals ovoid, 2 mm. by 3 mm.; pale greenish-yellow; test transparent: attached to rocks, coralline algae, etc.
5.	Individuals elongate, club-shaped, 2 to 4 cm. high; test trans- parent; pink internal organs clearly visible. Clavelina huntsmani
6.	Colony broken up into few or many club-shaped masses each with a neduncle about twice as long as the more or less rounded head . 7
6.	Colony otherwise
7. 7.	Sand-encrusted

#### TUNICATES

Fig. 133.-A, Zooid of <u>Macroclinum par-fustis</u> (enlarged); B, zooid of <u>Amaroucium</u> <u>aequali-siphonis</u> (enlarged). (Both after Ritter and Forsyth.)



vas deferens

stomach

intestine

ovary

testis



Fig. 134.—A, spicule of <u>Didemnum carnulentum</u> (enlarged); B, spicule of <u>Trididemnum</u> <u>della vallei</u> (enlarged). (Both after Ritter and Forsyth.)

stomach with

folded wall

intestine

ovary

testis

В

11. Zooids divided into three body regions—thorax, abdomen, and post-abdomen (fig. 136,A); atrial orifice without lobes but with long, tapering languet; 8 to 14 series of stigmata; stomach cylindrical with longitudinal folds sometimes branching or discontinuous (fig. 136,A); abundant

11. Zooids divided into two body regions—thorax and abdomen . . . 12



Fig. 135.-<u>Amaroucium</u> californicum (from Guberlet).

12. 12.	Atrial siphon as long as, or longer than the branchial siphon; 3 to 5 series of stigmata
13.	Colony hard, much sand embedded in the test; brown to claret in color; zooids in systems; atrial siphon longer than branchial; three series of stigmata; abundant
13.	Colony not hard, relatively free of sand; lighter than E. psammion, zooids not in systems
14.	Colony thick and encrusting, pedunculate or lobate; color opaque white through yellow-brown to light vermillion; three series of stigmata Eudistoma diaphanes
14.	Colony thick and encrusting or lobate; five series of stig- mata
15.	Colony soft and encrusting, pedunculate or capitate; wide color variation; zooids may or may not be in systems; atrial languet well developed; stomach ovate, wall not folded but with a network of ridges on inner surface (fig. 136,B); very abundant Distaplia occidentalis
15.	Colony soft, thin, and encrusting; systems if present, irregu- lar; atrial orifice large with simple opening; stomach smooth walled
	Species accounts of the above may be found in Ritter and Forsyth, 1917, <u>Acidians of the Littoral Zone of Southern California</u> . Univ. Cal. Publ. Zool., <u>16</u> : 439-512.



Fig. 136.—A, zooid of <u>Amaroucium californicum</u> (enlarged); B, zooid of <u>Distaplia</u> <u>occidentalis</u> (enlarged). (After Ritter and Forsyth.)

# SUBPHYLUM CRANIATA or VERTEBRATA

We have designated our field as Invertebrate Zoology. The vertebrates, however, have very important relations to the invertebrates and as predators and in other ways powerfully influence their lives and the conditions under which they live them. For that reason we give brief consideration to them here.

# Class PISCES

Studies at the seashore are largely made, perforce, at low tide. During low tide most of the animals concerned are not functioning fully but are largely passive, keeping alive under adverse conditions of exposure, by means of various types of adaptations, until the returning tide

gives them again the normal conditions of submergence under which they are equipped to live. During the falling of the tides, also, many of the animals important in the life of the seashore swim out with the tides. The picture gained from low-tide studies is, therefore, very partial for both these reasons and every attempt should be made to visualize the true conditions of life during high tide.

As aids to this we have recourse to the tide pools, or under fortunate conditions to the glass-bottomed boat or the diving bell. The last two give us, as does the tide pool to much lesser extent, some idea of the importance of the fishes in the interrelated communities of the intertidal zone. They figure largely as predators, putting a premium on numbers, or swiftness, or defensive weapons, or protective devices and behaviors of many kinds.

We shall not devote any time to the study of the fishes. The ones commonly encountered by us will be the small spotted sculpins of the tide-pools (*Oligocottus maculosus*) sometimes called rock-pool johnnies. This and other common species may be identified by the key which follows. For further details or for other species see <u>Keys to the Fishes</u> of Washington, Oregon, and Closely Adjoining Regions, by L. P. Schultz, University of Washington Publications in Biology, <u>2</u>: 103-228.

FIELD KEY TO THE FISHES COMMONLY SEEN OR TAKEN AT MOSS BEACH (Figure references are to Walford, Fish Bulletin 28, 1930)

1. 1.	Elongated, eel-like
2.	No paired fins; median fins vestigial; gill opening a small hole; head bilaterally flattened
2.	Pectoral fins present; median fins fin-like; gills opening as in other fishes; head dorsoventrally flattened 
3.	Median fins prominent; tail fin distinct; pectoral fins longer than eye Cebidichthys violaceus (Walford, fig. 110)
3.	Median and tail fins narrow, inconspicuous; pectoral fins very short Xiphister mucosus (Walford, fig. 109)
4.	Body very deep and thin (Surf Fishes, "Perch"); commonest species with longitudinal stripes of dull orange and blue "The Striped Perch," <i>Taeniotoca lateralis</i> (Walford, fig. 81)
4.	Body not deep and thin
5. 5.	With a ventral sucker
6.	Tadpole-like rock-pool fish, with large flat head, and a single dorsal fin
6.	Head smaller, normal in shape; two dorsal fins

BIRDS

7. 7.	Two dorsal fins
8. 8.	Without scales         9           With scales         12
9. 9.	Small rock-pool fish
10. 10.	With abundant cirri, giving woolly appearance 
11.	With ugly depressed head bearing a strong perpendicular spine with two or three hooks; greenish above, abruptly white below; pectorals and caudal banded with black
11.	Commonest rock-pool fish; head normal, spine very short; with many color shades and patterns "Rock-Pool Johnny," <i>Oligocottus maculosus</i> (Jordan, fig. 566)
12.	Three large projecting spines in anal and 12 or 13 in anterior dorsal; anal with few rays; a single lateral line 
12.	No projecting spines; anal with about 20 rays, dorsal with about 21; five lateral lines; males and females different in shape and color (see Walford) 
	Close AVES

#### Class <u>AVES</u>

In contrast to the fishes, birds are most active in the intertidal zone during low tides when they pick up great numbers of invertebrates. Most important, no doubt, are the gulls which in addition to being scavengers eat great numbers of small animals, notably sand crabs (*Emerita*) and the mud crab (*Hemigrapsus oregonensis*) and are, therefore, the terminal animals of a number of food chains. Several gulls occur along our shores as seen from the list below, but only one, the Western Gull, is a summer resident.

Other birds feeding largely on shore animals are the curlews, the sandpipers, the oyster catchers, and some ducks such as the scoters.

The curlews and sandpipers feed largely upon dwellers in the mud and sand and the list of animals involved is probably a large one, consisting chiefly of species of Crustacea and Polychaeta.

One animal which occurs in enormous numbers at times and serves as a most important key industry animal, since it is fed upon by most of the birds mentioned, is the sand crab (*Emerita analoga*). Only a little observation will show the gulls to be regular hunters for these crustaceans. Likewise even the curlews and smaller shore birds can be seen joining the feast, shearing off the legs and eating them when the animal itself is too large for them.

As for the scoters they put on a truly amazing performance in their search for these sand-dwelling plankton feeders. Washing up with a wave they follow the backwash of it down the sandy beach for a short distance, digging madly for *Emerita*, then waddle clumsily down to repeat the process on another wave.

Besides these birds which feed directly on the invertebrates there are several which feed on the fish which themselves feed on the invertebrates. Important among these are the pelicans and several species of cormorants (see list below).

Finally we might mention birds of entirely different food habits, the plant feeders, which affect the invertebrates only indirectly. An interesting bird of this type to be seen at Dillon Beach and at Año Nuevo Island is the black brant, which seems to feed entirely on extensive local growths of an Ulva-like green algae.

A list of the common and scientific names of the commoner species of birds of the types mentioned here is given below. For distinctions between the species see Hoffmann, <u>Guide to the Birds of the Pacific</u> <u>States</u>.

## Gulls:

Glaucous-winged Gull (Larus glaucescens Naumann) California Gull (Larus californicus Lawrence) Western Gull (Larus occidentalis Audubon) Ring-billed Gull (Larus delawarensis Ord) Herring Gull (Larus argentatus smithsonianus Coues) Bonaparte Gull (Larus philadelphia [Ord])

#### Terns:

Caspian Tern (Hydroprogne caspia imperator [Coues]) Forster Tern (Sterna forsteri Nuttall)

Oyster catcher (Haematopus bachmani Audubon)

#### Curlews:

Long-billed Curlew (Numenius americanus Bechstein) Hudsonian Curlew (Phaeopus hudsonicus [Latham])

## Scoters:

White-winged Scoter (Melanitta deglande [Bonaparte]) Surf Scoter (Melanitta perspicillata [Linnaeus])

## Pelicans:

Brown Pelican (Pelicanus occidentalis Linnaeus)

## Cormorants:

Double-crested (Farallon) Cormorant (Phalacrocorax auritus [Lesson]) Brandt's Cormorant (Phalacrocorax penicillatus [Brandt]) Baird's Cormorant (Phalacrocorax pelagicus Pallas)

## Brant:

Black Brant (Branta nigricans [Lawrence])

#### MAMMALIA

# Class MAMMALIA

Important in the pelagic communities are the whales, which we may see blowing offshore. They are feeders on invertebrates, consuming vast quantities of them. The smaller porpoises are predators on fishes. Other fish feeders commonly noted on our trips are the Steller Sea Lion (*Eunetopias jubata*) and the Harbor Seal (*Phoca richardii*).

Finally and most important, so far as the intertidal fauna is concerned, is man. His activities as clam digger, abalone hunter, and collector of mussels, marine snails, and sea urchins have sadly impoverished the faunas. One has only to visit a biological preserve such as Año Nuevo Island, south of Pescadero, to realize the effect of man's activities on the large gastropods. There the red abalone (*Haliotis rufescens*) is abundant and the black abalone (*Haliotis cracherodii*) forms solid layers overlapping under especially favorable ledges, even well above the low-tide level, while family groups of the giant limpet (*Lottia*) are seen on every favorable rock surface.

# FIELD STUDIES

These studies are designed to give the student a firsthand knowledge of living invertebrate animals in their natural habitats, of their behavior and interrelations, their adaptations as correlated to the various factors of the environment, and the influence of physical conditions upon their local distribution.

Naturally such studies are largely in the nature of field trips with an all-too-brief period in the field during which those animals needed for further study are collected and as complete observations and records as possible are made of the ecological settings characteristic of the different animals seen, of their distribution within the ecologically varying environment, and of the major differences in this environment which seem to be responsible for the different distributions.

The approach and spirit of these studies is, therefore, essentially ecological whereas the method can rarely, if ever, be the quantitative and experimental one characteristic of modern ecology. This is due in part to limitations of training and equipment but essentially to lack of time.

It might be said that we make ecological surveys or reconnaisances and seek to set up preliminary hypotheses as to the role of different factors in determining the distribution of the animals, hypotheses based only on readily observable and relatively obvious facts with regard to such features for example as degree of exposure as determined by vertical level of occurrence, by the nature and arrangement of the substrate, by position with regard to wave impact, wind, rain, sun, etc.

These field trips are interspersed with the laboratory studies according to a logic of necessity. Groups are studied in the laboratory not according to any taxonomic order but as best to prepare for the field trips as they occur. The order of the field trips in turn is determined by various factors chiefly those of season, weather and tide. Hence the schedule of events will differ not only as between the spring semester and the intersession but also for each from year to year. Examples of such schedules will be found in Appendix A.

The conditions of study vary greatly as between the spring semester when the student is carrying other courses and the intersession when for six weeks nothing else intervenes and only time and tides must be considered. These courses (Zoology 112, and S112 and S119) will be considered separately therefore. First, however, come certain general instructions for field work.

#### GENERAL DIRECTIONS FOR FIELD WORK

Equipment needed: Geologist's pick (if possible); forceps; containers of various sizes (preferably screw-topped); hard-backed notebook with automatic pencil; if possible a magnifying glass (the magnifying glass and, if possible, the forceps to be attached in some way); and some sort of bag or basket for carrying equipment and specimens.

<u>General Suggestions</u>: Plan your program beforehand, especially if at the seashore, as every minute of low tide must be made to count. Go out at once to the tide line. Follow the tide out. Collect back as the tide drives you in. Take <u>great</u> care not to be caught by the tide.

<u>Methods of Collecting</u>: Do not collect unless you plan to use the specimens for (1) study or identification, or (2) for your class or personal collection. Do not collect great numbers of the same species.

Destroy as little as possible either of animal life or of the natural conditions of the environment. Replace overturned stones to their original position, since the fauna living on the under side or under the stone cannot survive when exposed to air and wave action.

#### FIELD STUDIES

<u>Field Notes</u>: If specimens are taken merely for immediate study or practice in identification, field notes are perhaps not necessary. Any specimen to go into a permanent collection, however, should be accompanied by certain information to make it of value to any future student. Experience has shown that most collections ultimately come to be used for study whether that was the original intention of the collector or not. Many troublesome errors and difficulties have arisen because of the lack of information with regard to specimens in such collections as well as from accidents and carelessnesses in making and preserving field records of collections designed for study. <u>No</u> collection should be made, therefore, which lacks the essential information with regard to the specimens in it, least of all a collection made in connection with a study of natural history.

It is an exceedingly difficult thing to insure the correlation of specimens and notes in general collecting where time is greatly limited by the tides and organisms occur in profusion. There are two common ways of keeping these notes. One, perhaps the safest, but by no means the easiest, or the most commonly used, is to write the information in pencil and drop it into the container with the specimen, or wrap it with the specimen if several are in one container. When the collection is put into permanent form later the information thus obtained must be copied on the label in (or on) the bottle and on the museum or collection record, whether card or journal. The second method is to drop into the container or wrap with or attach to the specimen a number written at the time or, better yet, already prepared, and, after the same number to give the desired information in a field notebook or on cards used for that purpose. The last method, while easier, involves the danger of loss of the notes, in which case the number means nothing, and also the danger of mixing numbers and notes due to haste in the field must be guarded against. Experience will dictate your choice of methods. Your problem is to obtain essential information at the time of collection and keep it in such a way as to insure that it will be correlated with the particular specimen concerned and ultimately preserved as a permanent record and in part, at least, placed with the specimen itself as a museum label. There is almost no limit to the amount of available information which might

There is almost no limit to the amount of available information which might prove valuable to the student of distribution, variation, or ecology if connected with a specimen. Points commonly noted are (1) exact locality, including county, (2) date, including hour if of any significance, (3) exact location (as regards tide level, or altitude for example), (4) environmental situation (underside of rock), (5) any organisms or organic remnant apparently associated with it ("with polychaete worms, no. 63, in hole of boring clam," for example), (6) anything unusual in the behavior or stage of the animal, and (7) the collector's name. The absolute minimum must include locality, date, location and environmental situation, and name of collector.

The difficulty of collecting and keeping proper notes under the conditions of wet hands, lack of place to sit, presence of rain or spray, lack of time, difficulty of keeping specimens separate, must again be emphasized to make clear the necessity of careful planning and discipline of the will to accomplish the required end. Such notes will be required with the collections which are to be turned in as a part of the required work of the course and for the various ecological and observational studies. They can only be obtained by limiting the objective, making it sharply definite, and refusing to be deflected from it. For that reason the earlier trips will usually have more general objectives and records will be confined to those having to do with ecologic features noted.

A shell bag or fishing creel is convenient for carrying vials, bottles, etc. A wise provision against loss by breakage on the rocks is to use tins to hold vials and even bottles. Another danger is the losing of corks and the consequent loss or mixing of specimens. <u>See that corks are in tightly</u> or, better yet, use screw-top vials and jars in so far as possible.

The most rewarding places for collecting are, (1) deep shaded tide pools near low-tide level, (2) on and in seaweed, particularly in its holdfasts,

(3) in the crevices and cavities of rock and within rock, particularly if the rock be soft, porous, or covered with coralli is algae, (4) under rocks, and (5) in sand and mud if they are not subject to constant movement by the tides.

Small rocks, especially favorable pieces from larger rocks, and holdfasts of kelp or Laminaria, from the outer low-tide level may be brought in and the animals removed and cared for at leisure. This requires but the one set of notes in the field for many specimens. Also numerous specimens from the same exact environment (a low-level tide pool, for example) may be placed in a single container with the proper notes and be sorted later. Care must be taken, however, to segregate certain types of organisms. Most worms, for example, secrete mucus and tend to form a tangled, often inextricable, mass with other organisms. This is particularly true of nemertean worms, which should be kept separately. Certain other animals, particularly crabs, tend to tear others. Voracious animals, such as large isopods, often devour smaller forms and the spines of echinoderms form a place of escape and entanglement for many smaller, mobile animals. Intelligent care will be necessary, therefore, if satisfactory collections are to be obtained by putting numerous specimens in the same container in the field.

#### PRESERVATION AND STUDY

On return to the laboratory the first move should be to get material segregated and either into fixative or into dishes of clear seawater, taking care always to maintain the correlation between specimens and field notes. As a routine it is worth while to observe under the microscope, while still living, any small animal, or developmental stage, not already studied, as this will often bring out much of beauty and interest otherwise lost. If time permits and there is any probability that your specimens are to be used for future systematic studies, careful color notes will be of value.

Well-known animals may be preserved at once or steps taken in that direction. Others should be preserved when they have been studied and the proper notations made. For methods of preservation see <u>Bulletins</u> 39-42 of the United States National Museum (bound together).

#### THE SPRING SEMESTER

#### (Zoology 112)

You will be given a tentative schedule of exercises for the semester. Fasten this in your syllabus and note on it <u>at the time</u> such changes as may be announced from time to time.

You will note that the exercises consist of a number of field trips interspersed with laboratory exercises designed to give you a knowledge of the animals to be studied in the field. The field trips constitute the heart of the course. The dates of a number of these trips will be determined by tides and hence no regular schedule, as regards days of the week, is possible. These irregularities are unavoidable and have been cut to a minimum. Please note them at once and make provision for them in your program.

The field trips usually undertaken are listed below in the order in which they are considered in the pages which follow. It will be seen that they sample three major environments, marine (intertidal), freshwater, and terrestrial, and one, the estuarine, intermediate between the first two. This order while a logical one cannot be followed chronologically because of seasonal requirements and the tides. The schedule of exercises should be consulted for the chronological sequence.

These studies should be cumulative and comparative. Each new situation

#### FIELD STUDIES

should be compared to the others and differences and similarities should be noted as to environmental conditions, faunas, and their interrelationships.

#### FIELD TRIPS OF THE SPRING SEMESTER

#### Marine

- A. Point Richmond in San Francisco Bay. Tide flats and a rocky beach in an enclosed bay.
- B. Halosaccion Flats, Moss Beach, San Mateo County. A flat rock surface on the open sea, exposed at intermediate tides.
- C. Dillon Beach, Marin County. A three-day trip permitting comparison of the faunas of (1) an exposed rocky shore (Tomales Point), (2) partially protected rocky shores (Bodega Bay near Dillon Beach) and (3) protected tide flats in an enclosed bay (head of Tomales Bay).

#### Estuarine

- D. Lake Merritt, Oakland. A brackish-water, estuarine lake subject to great annual shifts in salinity but not usually subject to tidal shifts of level.
  E. Fruitvale Bridge, Alameda Estuary, Oakland. Fauna of under-bridge piling in
- a tidal estuary.

# Freshwater

F. Fauna of a freshwater pond or lake.

G. Fauna of some seasonal pond or pool.

#### Terrestrial

H. Strawberry Canyon, Berkeley Hills. Terrestrial habitats and faunas of a wooded canyon.

#### DIRECTIONS FOR THE FIELD TRIPS OF THE SPRING COURSE AND THE LABORATORY EXERCISES IMMEDIATELY PREPARATORY TO THEM

#### A. The Animals of Point Richmond. a Rocky Shore with Tidal Flats in an Enclosed Bay

<u>Preliminary Laboratory Study</u>.—This study is a necessary preliminary to the first field trip. A list of the animals commonly encountered will be posted. A study collection of these animals will be on display to enable you to get a preliminary familiarity with their appearance and names. Your work in the field will be to find and observe as many as possible of these animals in their natural habitats and associations. Several species of decapods form a conspicuous part of this fauna. Specimens of these will be distributed through the class and they should be identified by means of the accompanying key. Do the same for such other specimens as are available. Keys follow to the decapods, isopods, amphipods, limpets (*Acmaea*) and annelids. These keys cover only the species reported from Point Richmond; consult the index for more complete keys for these animal groups found in the preceding section.

#### Field Trip to Point Richmond

<u>Purpose</u>: (1) To learn the various animals of this region as they exist under natural conditions, i.e., each in its normal ecologic setting ("niche"); (2) to determine their distribution with regard to physical and biotic factors; (3) to learn their groupings by zones or other environmental situations; and (4) to obtain as clear an idea as possible of their interrelationships in such groupings, especially their food relations.

<u>Procedure</u>: (1) Make field notes with diagrams or sketches. (2) Collect such animals as are necessary to identify species using the keys which follow and where needed those in the preceding section.

A second trip will probably be necessary to complete these studies for those who have no previous knowledge of the fauna.

<u>Report</u>: The report, if any, will be in the form of a synthetic vertical section of the shore at Point Richmond showing the relative location of all important habitats or associations, accompanied by lists of the species found in each of these different habitats or associations. A discussion of the reasons for the distribution of the different types is optional.

If this trip follows the one to Halosaccion Falts (see below) it should raise many questions as to the great differences in the faunas of the two regions.

#### <u>A Sample Set of Questions on the Point Richmond Fauna</u>

(1) Name three major factors which probably account for the sparse nature of the fauna. (2) Which large and important phylum of animals was not found represented at all? (3) What conditions probably account for their absence? (4) Where were the oysters largest and most abundant? (5) What differences in physical conditions were correlated with this abundance? (6) What predator was confined to the area of the abundance of oysters? (7) What could be shown to be the usual explanation of the occurrence of shells of gastropods at intertidal levels where the living species were not found? (8) What is the most important predator (or scavenger of freshly killed animals) in each of the following situations: (a) under stones fitting closely against the substrate? (b) in the small, high, rock-bottomed tide pools during low tide? (c) over the higher rock surfaces during high tide? (9) List the animals found in the zone of pebbly beach. (10) Which if any of these occurred in the sandy beach-a few inches away? (11) How do you explain this great difference? (12) Name a different amphipod characteristic of each of the following locations: (a) hightide pools in rock; (b) under surface of smooth stones resting on substrate. low in tidal zone; (c) felted mass of algae over surface of rock outcrop in mussel zone; (d) algal debris at or near high-tide line. (13) What biotic reason might you give for the absence of relatively large predators such as the larger sea anemones and starfishes both of which are present at the yacht harbor? (14) What two physical conditions may also be concerned? (15) Which two species are diagnostic of the higher splash zone? (16) Which two of the lower splash zone or the highest tide line? (17) What three vicissitudes must be met by animals living in small high-tide pools? (18) What is the present status in the mussel-bed succession? (19) Judging from the situations in which you found them name as many as you can of the more than a dozen species whose numbers would probably be greatly increased if the mussel beds were fully developed. (20) On a line, representing the beach line from the middle of the pebbly beach (small stones between mud flats and sand beach above) to the fixed boulders at the point, indicate by brackets where you would expect to find each of the following: (a) Hemigrapsus oregonensis; (b) Hemigrapsus nudus; (c) Thais lamellosa; (d) chitons. (21) Choose four species whose niches seem best defined by our study and attempt to state the factors involved. (22) Which one species had the widest intertidal range? What makes possible this wide range? (23) Which species common here are absent at Halosaccion Flats? Attempt to explain the absence of each species.

# FIELD STUDIES

and the second

# A KEY TO THE DECAPODA OF POINT RICHMOND

1. 1.	Antennae long (generally at least as long as carapace); body elongated, not flattened
2.	Abdomen twisted, carried in a mollusk shell Hormit Crebs Paqurus spp. (figs 97 98)
2.	Abdomen symmetrical, exposed
3.	Abdomen not narrowed behind; one cheliped of male very large; living in burrows in mud or muddy sand, Ghost Shrimn, Callianassa (fig. 96)
3.	Abdomen narrowed behind at base of tail fan; chelipeds all slender; not burrowing
4.	Small (less than one and one-half inches long); rostrum long, slender
4.	Larger (one and one-half to two inches); rostrum short, dorsally flat- tened; a circular black area on either side of 6th abdominal seg- ment Crago nigromaculata
	(Other species of Spirontocaris and Crago may possibly
	he found See Key n 104
	be found. bee key, p. 104.7
5. 5.	Body nearly square
5. 5. 6.	Body nearly square
5. 5. 6.	Body nearly square
5. 5. 6. 7.	Body nearly square
5. 5. 6. 7. 7.	Body nearly square
5. 5. 6. 7. 7. 8.	Body nearly square
5. 5. 6. 7. 8.	Body nearly square
5. 5. 6. 7. 8. 8.	Body nearly square

# A KEY TO THE ISOPODA OF POINT RICHMOND

1.	Uropods terminal (fig. 61); largely above high-tide mark
1.	Uropods lateral (fig. 58); or ventral (fig. 54); not above high tide 2
2.	Uropods valve-like, inflexed (fig. 54); pleopods largely branchial;
2.	color green or brown
3. 3.	Abdomen usually of 6 segments
4.	Smaller; caudal fan spreading (fig. 58,A); surface not densely granular;
4.	Larger; caudal fan not noticeably spreading; surface densely granular
	••••••••••••••••••••••••••••••••••••••
## A KEY TO THE AMPHIPODA OF POINT RICHMOND

1. 1.	Body laterally compressed as usual in amphipods; prominent side plates covering bases of legs (fig. 63)
2.	Antennule (fig. 63) very short, only as long as first two segments of peduncle of antenna; habitat usually above high-tide mark; large
2.	Antennule at least as long as entire peduncle of antenna; habitat intertidal or lower
3.	Third uropod (fig. 63) extending posteriorly beyond second uropod
3.	Third uropod not extending beyond second; antennule without accessory flagellum
4.	Eye round or irregularly round; outer ramus of the third uropod sev-
4.	Eye bean-shaped; outer ramus of third uropod not more than three times as long as inner ramus
5.	Inner ramus of third uropod at least two-thirds as long as outer ramus
5.	Inner ramus of third uropod less than one-half as long as outer ramus
	•
6. 6.	Third uropod with two prominent upward-pointing hooks at the tip of the outer ramus; color in life green or gray stippled with small brown spots
6. 6. 7. 7.	Third uropod with two prominent upward-pointing hooks at the tip of the outer ramus; color in life green or gray stippled with small brown spots
6. 7. 7. 8.	Third uropod with two prominent upward-pointing hooks at the tip of the outer ramus; color in life green or gray stippled with small brown spots
6. 7. 7. 8.	<pre>Third uropod with two prominent upward-pointing hooks at the tip of the outer ramus; color in life green or gray stippled with small brown spots</pre>
6. 7. 7. 8. 9.	Third uropod with two prominent upward-pointing hooks at the tip of the outer ramus; color in life green or gray stippled with small brown spots
6. 7. 7. 8. 8. 9.	<pre>Third uropod with two prominent upward-pointing hooks at the tip of the outer ramus; color in life green or gray stippled with small brown spots</pre>
6. 7. 8. 9. 9.	Third uropod with two prominent upward-pointing hooks at the tip of the outer ramus; color in life green or gray stippled with small brown spots
6. 7. 8. 9. 9.	<pre>Third uropod with two prominent upward-pointing hooks at the tip of the outer ramus; color in life green or gray stippled with small brown spots</pre>

## 

<ol> <li>Ribs close together, rough; margin serrate; inner, central area por- celaneous, white or mottled The Rough Limpet, A. scabra</li> <li>Ribs well separated, rounded; margin crenate; inner area shiny, with one central brown spot; apex usually overhanging</li> <li> The Mask Limpet, A. digitalis</li> </ol>
4. Elevated; profile with straight sides
5. Shell heavy; inside with a considerable white area
5. Shell thinner; black externally and brown internally The Shield Limpet, A. perta
A KEY TO THE ANNELIDA OF POINT RICHMOND (Refer to plates, figures, and explanations of terms under Phylum Annelida in preceding section)
1. Non-segmented; tough-skinned, finely tuberculated; with an introvert terminated by dentritic branchiae (fig. 13,E); in rock crevices.
1. Segmented worms, with parapodia (figs. 13,A and 14) more or less developed and variously modified; often with accessory head and body appendages. POLYCHAETA
2. Body dorsally covered with overlapping scales (fig. 17,B). POLYNOIDAE
2. Body without scales
<ol> <li>Head completely covered by feathery tentacles (fig. 16); body in a calcareous tube. SERPULIDAE</li></ol>
3. Head otherwise; body generally not in a tube
<ol> <li>Anterior end of body with long filamentous outgrowths, usually extending forward over head. CIRRATULIDAE (fig. 17,H) Cirratulids</li> <li>Filamentous outgrowths, if present, not concentrated near anterior end . 5</li> </ol>
<ol> <li>5. Prostomium bearing tentacles or palpi and often accompanied by peristomial cirri (fig. 15)</li> <li>5. Prostomium plain, without tentacles or palpi, and not accompanied by peristomial cirri</li> </ol>
<ul> <li>6. Prostomium with conspicuous tentacles or palpi</li></ul>
7. Prostomium with tentacles, but without palpi; small, very active,
7. Prostomium with a pair of long, prehensile, tentacular palpi (fig. 17,J) SPIONIDAE
7. Prostomium with a pair of thick, fleshy, palpi (fig. 15)
<ol> <li>Parapodia distinctly biramous; prostomium with only paired antennae; dorsal cirri never articulated. NEREIDAE</li> <li>Parapodia uniramous; prostomium with a median antenna in addition to paired antennae; dorsal cirri often articulated (fig. 17,D); mostly minute. SYLLIDAE</li> </ol>
<ol> <li>Prostomium angular (fig. 27,A); recurved cirri between branches of parapodia (fig. 27,B); pearl-gray in life; in sand. NEPHTYIDAE . Nephtys</li> <li>Prostomium pointed, annulated; parapodia tiny, without recurved cirri. GLYCERIDAE</li></ol>

١.

11. Parapodia reduced; bluish-red in life; in mud flats. CAPITELLIDAE

11. Parapodia more or less normal; orange to reddish-metallic in life; in sands or sandy mud. LUMBRINEREIDAE ..... Lumbrinereids (fig. 17,A)

## B. <u>The Animals of Halosaccion Flats, a Horizontal Rock Exposure at About</u> <u>Mid-Tide Level, on the Open Coast, Moss Beach, San Mateo County</u>

Location: The name Halosaccion Flats is our own, given because of the presence of the peculiar, finger-like, gas-inflated green algae in great numbers near the center of the rocky flat which lies (see Map I) just south of Moss Beach Point and immediately north of the lagoon-like cove we have designated Seal Cove.

<u>Physical Conditions</u>: These have been largely stated: A rocky substrate of fairly hard slaty shale, with relatively few crannies but cut at intervals by narrow crevices which are tidal channels at intermediate tides but contain long, narrow tide pools at low tides, often containing accumulations of sandy gravel. The precipitous seaward face of the rock, rising about two feet above low-tide level, receives the full force of the waves and is cut at intervals by tidal channels, most of which do not penetrate far. Shoreward at the northern end the reef rises to near high-tide level. Shoreward also are **prot**ected channels and tide pools with a sloping rocky or sandy beach rising to the sheer cliff.

Physical habitats of diverse types are found, therefore. The factor of exposure, varying primarily with vertical height with regard to the low-tide line, is variously affected by the nature and arrangement of the substrate. Thus we have tide pools; shallow, gravel-filled crevice pools; deep protected tidal channels; outer exposed tidal channels; ledges; exposed rock surfaces with varying relations to wave impact, etc.

<u>Special Biotic Features</u>: (1) Living seaweed forming a close growth over most of the horizontal rock surface, (2) close-set aggregates of a sea anemone (Bunodactis elegantissima) which cover themselves with pieces of shell and gravel, (3) a Mytilus-Mitella zone on the high northern shoulder.

<u>Purposes of Study</u>: Familiarity with members of fauna and their names; experience in the observation of animals in the field in terms of the effects of ecological factors on the distribution and success of species and on the faunal associations.

<u>Procedures</u>: If this is the first field trip it will be preceded by a laboratory study of the animals most commonly to be encountered. Go out to the sea-front to take advantage of the low tide. Study the animals at the lowest tidal exposure first. Look under ledges. Break off overhanging ledges to get a more intimate knowledge of the dwellers on the surface and in the crannies and burrows. Distinguish between borers, nestlers, and cranny dwellers. Work back across the horizontal surface, noting differences of faunas, if any, (1) between the seaward and landward sides; (2) correlated with different algal types; (3) of the narrow crevice pools; (4) of the gravel-bottomed high-crevice pools; (5) of protected inner tidal channels and tide pools; (6) of the higher northern shoulder; (7) of the rocks between the reef and the beach slope; (8) of the beach slope; (9) of the crevices at the foot of the cliff.

If this follows the Point Richmond trip, differences between the two faunas should be noted and an attempt made to explain these. Some of the differences are those to be expected between bay and open shore faunas. Others are due to special conditions in the two situations. Attempt to distinguish between these two types of differences.



Map I. Moss Beach and vicinity (using many local names)



## Map II. Moss Beach shore area (local names)

Sample questions:

- 1. What phylum well represented here was absent at Point Richmond?
- 2. Differences in what two important ecologic factors might be thought to explain this difference?
- 3. Which two phyla were represented most extensively in the fauna of the horizontal algae-covered flat?
- 4. Can you give any reason for the absence of large individuals and species here?
- 5. Contrast the assemblages found in crevice pools and surface growth. What explains the differences?
- 6. Compare the limpets (Acmaea) of the flat and of the inner shore rocks and high shoulder. How would you explain this situation?
- 7. Attempt to explain the occurrence of the patches of *Bunodactis*. Why not more extensive?
- 8. What seems to restrict the occurrence of Anthopleura in this area?
- 9. Describe the home habits of Lophopanopeus in the larger, more shoreward crevice pools.
  - C. <u>Comparison of Faunas of Exposed Rocky Shore (Tomales Point)</u>, <u>Partially Protected Rocky Shore (Bodega Bay) and Protected</u> <u>Tidal Mud and Sand Flats (Tomales Bay)</u>

Location: The class will have its laboratories and living quarters at Dillon Beach, Marin County, California (see Map IV) on the shores of Bodega Bay near the mouth of Tomales Bay.

<u>Purposes</u>: This will be by far the most important field trip of the course. It will usually come relatively late in the semester and enable the student to focus the knowledge gained from the preceding field trips and laboratory studies in an intensive study of three faunal assemblages not far apart spatially but ecologically distinct. The opportunity given by continuous study for the three days makes it possible to identify the unknowns collected by all, thus giving a relatively complete picture of these rich faunas, and to compare notes and impressions as to ecological features and relationships.

<u>Procedure</u>: One morning the class will visit an area of tumbled rocks whose bases are exposed at low tide at a point known as "The Second Sled Road" (see Map V) along the shore of Bodega Bay north of Dillon Beach. Here a relatively rich and diversified fauna will be found in tide pools, on rock surfaces, among algae, in gravel and sand about roots of eelgrass, etc. This will suggest in some ways the fauna of Halosaccion Flats. Differences from it should be noted and explanations for these differences sought. Again it should be compared with that to be seen at Tomales Point a more exposed region where rocky formations abound with deep tidal channels, tide pools, etc.

Another morning will be devoted to the fauna of the tidal channels, tide pools, and rocks of Tomales Point. Among other things make certain that you investigate fully the association of animals in a well-developed mussel bed such as will be found here on the higher rocks. Be able to explain the role of each type of animal in the association or what advantages it receives by the association.

Finally one morning will be given to the faunas of animals to be found at various levels of the tidal flats of muddy sand just inside the mouth of Tomales Bay (map V). Here the numbers of species are not so great as in the faunas so far studied but there is a wealth of individuals. Particularly important here are the giant clam, Schisothaerus, the bent-nosed clam, Macoma nasuta, Phoronopsis sp., whose pale-green lophophores practically cover the ground for several acres, polychaete worms of several interesting types especially Clymenella, and capitellids. At certain levels in a restricted area the mud shrimp, Upogebia, will be found, while Callianassa occurs in great numbers at somewhat





higher levels. In the time available get as clear a picture as possible of these major types in their natural setting, and the other species which will be encountered, and of the varying ecologic ranges of the different species, seeking to assign environmental causes for the limitations of these ranges.

In identifying species use the keys to the various groups as listed in the index. Report any species not listed in the syllabus and turn these in with information as to place of collection.

#### D. <u>Lake Merritt: A Brackish Water Estuarine Lake</u>

Lake Merritt has been formed from a branch of Alameda Estuary. Its level is controlled by tide gates and hence the factor of the tides is eliminated. During the rainy months the salinity is very low. During the summer and fall it reaches a concentration (30 parts per 1000) not far below that normal for seawater (34 parts per 1000). An abundant algal growth, chiefly green algae and diatoms, furnishes a rich food supply. As a result a few species, adjusted to low and varying salinity and not adapted to withstand exposure or wave action, flourish and occur in great numbers except during periods of high salinity.

Such species are the tube worm Mercierella enigmatica, the associated amphipods Corophium bonellii and Gammarus confervicolus, the polychaete, Neanthes succinea, the crab, Rhithropanopeus harrisii, all of which live among the masses of tubes of Mercierella, the endoproct bryozoan, Barentsia (= Pedicellina), common as a mossy growth over the tube-worm masses, especially hear the exit of the lake, and the horse mussel, Modiolus demissus.

Several other species, while typically marine, invade the lake at times of high salinity but maintain a precarious existence during the remainder of the year. Such are the soft-shell clam, Mya, the barnacles, the encrusting bryozoan, Membranipora, the mud snail, Ilyanassa obsoleta, the oyster drill, Urosalpinx, the tunicate, Ciona intestinalis, and various other species.

<u>Procedure</u>: Study the fauna to be found on the sides of the pier of the Municipal Boathouse. See a boat lifted in the shops near by and observe the enormous numbers of gammarids leaving it as it leaves the water and the thick encrustation of *Mercierella* tubes. Observe *Modiolus* in life in the mud near the inner end of the pier and the young *Mya* just west of the boathouse. Can you distinguish as to niche, between *Nereis* and *Nearthes*.

Tows will be made which should be studied on return to the laboratory. These will probably contain very numerous larvae of *Mercierella* in various stages of development, trochophores, polytrochs, and young worms. Also veliger larvae, probably of *Mya*, possibly also of *Modiolus*, may be found in great numbers. In late spring or summer entomostraca, especially copepods, are present in great numbers, as also rotifers.

Mud from the bottom will show great numbers of worms, chiefly of the genus Streblospio.

Break apart one of the tube-worm masses and study the relations between the different animals in this association.

Be responsible for a knowledge of this fauna, the food habits of all its elements, and the chief physical and biotic features responsible for the abundance of each.

Keys for the identification of amphipods and polychaetes are given below. Identifications of other groups must be made by the general keys.

#### A KEY TO THE AMPHIPODS OF LAKE MERRITT AND OAKLAND ESTUARY

Oakland Estuary .... Metopa 1. Side plates reduced; dorsoventrally flattened; tube-builders ... Corophium



Map V. Dillon Beach and vicinity

2. Outer branch of uropod 3 broadened and much longer than that of uropod 1 and 2 (Family Gammaridae)	9 3
2. Outer branch of uropod 3 not broadened and not longer than that of uro pods 1 and 2; in moist but not in wet places (Family Talitridae)	
••••••••••••••••••••••••••••••••••••••	llela
3. Antenna 1 at least one-half as long as body; eyes not crescent-shaped; dorsal groups of spinules only on fifth pleon segment; Lake Merritt	
и и и и и и и и и и и и и и и и и и и	<i>iita</i>
3. Antenna 1 not one-half as long as body; eyes crescent-shaped; pleon	
segments 4-6 with dorsal groups of spinules; lake merritt	tolus

## A KEY TO THE ANNELIDS OF LAKE MERRITT

1. 1.	In closely packed, calcareous tubes; head covered by feathery tentacles (fig. 16); operculum spiny Mercierella enigmatica Not so
2.	Larger; head with a pair of fleshy palpi, 2 small anterior antennae and 4 pairs of peristomial cirri (fig. 15)
2.	Smaller; head with 2 long, prehensile palpi or without palpi 4
з.	First few segments provided dorsolaterally with oblique wrinkles; poste- rior notopodia with only pointed setae
3.	First few segments smooth dorsally, without oblique wrinkles; posterior parapodia with some blunt setae Nereis vexillosa
4.	Anterior end of prostomium with 4 small antennae; palpi absent (figs. 28.B.C)
4.	Anterior end of prostomium without antennae; posterior margin provided with conspicuous prehensile palpi (fig. 17,J)
5.	Prehensile palpi accompanied by a pair of foliaceous appendages; a dor- sal collar on segment 3; in muddy tubes
5.	Prehensile palpi not accompanied by foliaceous appendages; without dor- sal collar
6.	Pale white; minute; constructing erect tubes which project from crev-
6.	Salmon to red in life; inhabiting burrows constructed in clay banks or in crevices; dorsal branchiae present on segments 3 to 5 as well as more posteriorly Boccardia (17,J)
7.	Slender, thread-like; yellowish or somewhat green; first segment well-
7.	Depressed, short; pale or white; first segment dorsally reduced

## E. Pile Communities and Zonation as Seen at Fruitvale Bridge

<u>Laboratory Preparation</u>: A group of invertebrates which is an important part of the Fruitvale Bridge fauna but which has not been previously encountered in any abundance in this course is the hydroids. The Hydrozoa should therefore be studied in the laboratory not long before the field trip.

<u>Field Procedure</u>: Collections and notes must be made from boats. The animals taken will be studied and identified in the laboratory on the same day. Materials needed are several screw-top jars, several vials for individual specimens, forceps, scalpel.

Observe and record the vertical and horizontal distribution of the animals

found. What factor usually determines vertical distribution? You will find some types here at higher levels than would ordinarily be expected. What are these types? Do you find any difference in this regard between central and marginal piles? What is the factor thus modifying the action of the factor which usually determines vertical distribution?

Note especially the hydroids and the anemones. Attempt to distinguish the different genera of hydroids and the different species of anemones in the field. Collect specimens to enable you to check your field determinations. Be able to place each in its characteristic zone. Learn to see the highly modified amphipods (Caprellidea) which are abundant on the hydroids. Study these in the laboratory. Are the caprellids different on different genera of hydroids? Where do you find nudibranchs and their coiled egg masses?

Some of the piles will be covered with muddy debris. This is made up of tubes of great numbers of small amphipods. Many species of animals seek shelter in and about the mud tubes. Collect some for later study. Does the location of these piles give you any clue as to why they, and not others, bear this association?

Select a pile which shows zonation especially clearly. Working in teams of three or four, study the zonation carefully, designating the various zones, measuring their extent and relation to low tide level. Keep notes on the animals found to be characteristic of each zone. Seek to determine the factors, physical and biotic, influencing the zonation.

As time allows, stop at other neighboring piles. Compare them with your first pile. Study the piles on the other side of the estuary. Account for differences in the fauna of the different piles.

## F. <u>A Permanent Freshwater Pond or Lake</u>

The laboratory preparation for this trip requires introductory studies of some of the invertebrate groups whose members are largely inhabitants of fresh water. Such are the Rotifera, the Cladocera, the Ostracoda, and the Copepoda.

<u>Purposes</u>: To get a comprehensive picture of the fauna, food chains, and food cycle of a freshwater pond or lake.

<u>Procedure</u>: Collect as completely as possible from various habitats in the pond. Especially important are (1) floating plants; (2) the surface of floating wood, etc.; (3) under the bark of floating branches and logs; (4) the fine roots of trees; (5) plants growing in the water at various levels; (6) the bottom mud. Tows will be made near the surface, some inches below, and near the bottom. Mud will be taken from the bottom for making cultures.

Identify your collections, using the keys in the preceding section. Sample the fauna of the tow and the bottom mud and identify the animals found there.

Insects need not be identified beyond the family or order groups, thus, belostomid bugs, dytiscid beetles, damsel-fly larvae, dragon-fly larvae, chironomid larvae, phantom larvae (*Corethra*). Use Needham in Ward and Whipple, or <u>A Guide to the Study of Freshwater Biology</u> (1930) by Needham and Needham, and works dealing with individual groups which are listed in the bibliography.

The common, small, somewhat transparent leeches belong to the genus *Glossiphonia* and are predators on the snalls rather than bloodsuckers as are typical leeches exemplified by the larger species (Genus *Hirudo*).

Consider carefully the food habits of each species or group found. Fit them into food chains and these into a food cycle for the pond. Put the food cycle in the form of a diagram. This is to be turned in for criticism and evaluation.

### Some Animals of a Permanent Pond Listed According to Food Habits

<u>Plankton Feeders</u>: Protozoa, sponges, rotifers, Cladocera, Bryozoa, Musculium (pelecypod), Copepoda.

<u>Predators</u>: Hydra, Dugesia (= Planaria), leeches, water mites, spiders, dragonfly larvae, water bugs (back-swimmers, water boatmen, Belostomatidae), water-striders (Gerridae), beetles and their larvae (Dytiscidae, Hydrophilidae), ghost larvae (Corethra), fishes, Amphibia, reptiles, birds.

Plant Feeders: Isopoda, snails, aphids, amphibian larvae, some fishes.

- <u>Plant Scavengers</u> (including detritus feeders): nematodes, oligochaetes, Ostracoda, Isopoda, Amphipoda, may-fly nymphs, bloodworms (larval Chironomidae), mosquito larvae, gnat larvae (Simuliidae).
- <u>Animal Scavengers</u>: Ostracoda, Isopoda, Amphipoda, water-striders (Gerridae), Gyrinidae.

## G. <u>A Temporary Pond</u>

Life in all small bodies of water is subject to relatively rapid seasonal changes due to changes in temperature and other climatic factors. The life of a permanent pond or lake undergoes also a vastly slower series of changes, known as geoglogical succession owing to the fact that physical conditions change slowly, each body of water tending to become more and more sedimented and ultimately passing through a marsh or a bog stage to become a meadow.

The seasonal pond undergoes each year profound changes in its life since it is not only subject to the influence of climatic factors but also a change from dry land to pond and from that back to dry land through marshy stages. Only those organisms will be found in it which have a resistant stage to carry them over the dry period or such as may be introduced either by visiting animals or by wind-borne resting stages.

In such ponds the shifts of population are very rapid. First a short period of rapid development of plankton which furnishes the food basis for a rapidly pyramiding population of plankton feeders (Protozoa, phyllopods, Cladocera, copepods, rotifers) which develop in enormous numbers followed somewhat later by a horde of predators and scavengers. The predators are largely insects, waterbugs, and water beetles, larvae and adults. Important as scavengers at this stage are the ostracods, which oftentimes occur.in very great numbers in such ponds.

To get the true picture of the seasonal succession of life in such a pond would require a number of visits beginning early in the spring. We shall designate the pond to be studied, suggest the time for two earlier visits, and set aside a day for a visit by the class when the population can be thoroughly sampled.

## H. Terrestrial Habitats of Strawberry Canyon

The laboratory preparation for this trip will consist of a study of invertebrate groups which are primarily terrestrial, chiefly arthropods: centipedes, millipedes, arachnids, etc. Many insects will be found. They should be placed to the order and their ecologic position with respect to other invertebrates should be noted wherever possible.

In the field investigate all habitats, especially (1) under logs, (2) under dead bark, (3) in decaying wood, (4) in damp surface debris, (5) under stones, (6) in debris and under loose stones in the creek bed. The aquatic habitats of the stream should be noted and compared with other freshwater habitats studied.

Collect animals of whose systematic position you are uncertain. Keep records of others. Keep in mind the food relations of the various species seen. Identify the slugs and isopods using the keys listed in the index.

No report will be called for but you will be held responsible for the knowledge thus gained.

#### THE SPECIAL PROBLEM

Each student will choose a special problem for careful study and report. This problem will deal with the classification, the anatomy, the development, the behavior, the distribution, or the ecology of some local animal or group of animals, or with the fauna of a certain circumscribed area.

The problem should be chosen and work initiated early in the course. A certain part of the laboratory time will be allotted to it. It is to be carried out and reported on as a research problem. Every effort should be made to make it as scientific as possible. All statements should be supported by the author's accurately presented findings or by definite reference to authority. Reference should be made to sources found to be useful such as previous reports on the same subject, general treatises and especially articles in scientific journals. Care should be taken to limit the scope of the problem so as to make this possible.

The following is suggested as a standard form for these reports:

Brief table of contents Statement of problem Brief survey of literature and previous reports Materials and methods General findings, including lists of species, keys, etc. Detailed presentation of results Discussion of results (if needed) Summary Bibliography

Illustrations should be placed in the body of the paper where they will be of most value. Both <u>Zoological Record</u> and <u>Biological Abstracts</u> may be used in making up the bibliography. The standard bibliographical forms should be used, as in the example below, and references made by name and year, thus Oldroyd (1924):

Oldroyd, I. S. 1924. The marine shells of the west coast of North America. Stanford Univ. Publ. Geol. Sci., <u>1</u>: 1-247, pls. 1-47.

A rough draft, or at least an outline, should be turned in for criticism and suggestions as early as possible, not later than two weeks before the last laboratory period during the regular session or one week during the summer session.

The finished reports will be held for use of future students in the course. Duplicates should be made if the student desires to retain a copy. Carefully labeled examples of the species dealt with are to be turned in with each report.

## THE SUMMER COURSE

#### (Zoology S112, S119)

In alternate years the course is given at the seashore during the six weeks of the Intersession, usually from near the middle of May to near the end of June. Sll2 is given at this time for undergraduates or graduates seeking a teaching certificate in zoology or biology and for other graduates who, for good reason, do not wish to take Sll9.

Candidates for the Ph.D. degree in the department of Zoology of the University of California at Berkeley may take S119 in fulfillment of the requirement in Marine Zoology. The subject matter will be much the same as that in S112 but greater proficiency will be expected of these students, their examinations will be fewer and separate and they will do much more intensive problem work.

The summer course has been given at two different stations, Moss Beach or Montara, San Mateo County (Map I), and Dillon Beach, Marin County (Map IV). Each location has its advantages. Facilities for board, room, and laboratory usually decide which shall be chosen in any given year. Directions are given for each, therefore.

Board and room for the six weeks usually ranges from a minimum of from \$50.00 to \$55.00 where a number of students share a room to a maximum of from \$70.00 to \$75.00 where a single room is desired. This includes the use of the laboratory and at Dillon Beach transportation across the bay on two or three trips and to the tide flats on two or three trips.

As noted above, undergraduates and those graduates not taking the course to fulfil the marine zoology requirements for the doctorate will take S112. This has a unit value of 3 but the amount and nature of the work done during the six weeks is the equivalent of a five-unit course and students desiring the additional two units may enroll for two units of S119 (without additional laboratory fee).

Those desiring six units or those who have taken Zoology 112 may enroll for problem work (S199 or S224), the number of units to be arranged with the instructor, who is enabled to act for the registrar and the comptroller.

The course given at the beaches, has the same general aims as the regular course. Much of the general discussion in the early part of the syllabus, as well as the laboratory directions, will be applicable to it. The program of the summer course will naturally be very different because of the short period of time involved.

The detailed program will vary from year to year with the incidence of the tides, but the projects will remain much the same.

The first necessity is to learn the fauna, its distribution, in general, and the major physical features which determine this distribution. Following this, problems of a more definite nature will be attempted. Since advantage must be taken of all low tides and since the lowest tides usually occur during the first or the second week of the course, these will necessarily be especially strenuous, the very early morning being devoted to field study and collecting and the remainder of the day to the identification and study of the animals collected on those field trips. Those exercises which are to be carried on independently should be undertaken early in the course and plans made for their completion.

During the remainder of the course, in addition to continuing the study of the fauna as a whole, more emphasis will be placed on problems of a general or specific nature.

## GENERAL PURPOSES OF S112 and S119

- 1. The gaining as rapidly as possible of the ability to identify from the specimen or the name the common invertebrates of the region, chiefly those of the marine littoral. This is a necessary preliminary to other types of study. To facilitate the gaining of this knowledge preliminary lists will be posted and named collections put on demonstration. Relatively early in the course an identification test will be given.
- 2. The study of those characters used in the identification of the various groups of invertebrates.
- 3. Experience in the identification of animals by means of keys.
- 4. A knowledge of the ecologic niches (the characteristic environmental settings) of all the common animals seen.
- 5. A knowledge of the grouping of the different species in faunas of specific areas and habitats.
- 6. A knowledge of the grouping of species in associations and their interrelationships in associations, most obviously their relations in food chains and cycles.
- 7. A knowledge of the distribution and density of population of certain species and of groups throughout the region as a whole with a view to understanding some of the factors which limit their distribution.
- 8. A knowledge of the habits and behavior of certain species.

Read those portions of the introduction dealing with the use of scientific names and systems of classification, and with field and laboratory methods.

Read Flattely and Walton, <u>The Biology of the Seashore</u>; and Ricketts and Calvin, <u>Between Pacific Tides</u>; papers by MacGinitie on feeding habits and natural history of a number of marine animals; also MacGinitie on <u>Littoral Marine</u> <u>Animal Communities</u>; Shelford <u>et al.</u>, <u>Some Marine Biotic Communities of the</u> <u>Pacific Coast of North America</u>; Hewatt, <u>Ecological Studies on Selected Marine</u> <u>Intertidal Communities of Monterey Bay</u>; Newcombe, <u>Certain Environmental Factors of a Sand Beach</u>; and other articles listed in the bibliography as dealing with ecology and natural history.

Collections should be made on all field trips of animals not already known or not in the demonstration sets. Those belonging to the Mollusca and decapod Crustacea should be identified at once and those at all common learned in preparation for the identification tests. Others should be preserved for future identification in connection with scheduled exercises. Polychaetes should be killed by adding formalin, a few drops at a time, and preserved.

## 1. AS GIVEN AT MOSS BEACH

<u>Exercises 1 to 16</u> deal with the marine littoral fauna of Moss Beach and San Mateo County. Exercises 13, 14, 15, and 16 should be begun at the earliest possible oportunity. Read instructions under individual projects, p. 204, study the exercises and organize your program accordingly.

The diversity of fauna of Moss Beach and vicinity is due to the wide variety of physical conditions within a relatively narrow area, especially to the diversity in nature and arrangement of the substrate. Maps I and II give the local names which it will be necessary to learn in order to discuss the different faunas.

The following points should be identified at the outset in preparation for work in the field: North Point, Sand Rocks, Sunshine Creek, the Reefs, Kelp Cove, Moss Beach Flats, San Vicente Creek, Moss Beach Point, Nye's Channel, Nye's Rocks, Egregia Flats, Halosaccion Flats, Seal Cove, Marine View Point, Marine View Rocks, Frenchman's Reef, the Lagoon.

Read the account by Charles Reed of the geology of the Moss Beach Region.

## General Purposes of These Exercises (1-16)

- 1. Knowledge of all marine littoral invertebrate animals of the region.
- 2. Knowledge of the fauna of various specific habitats.
- 3. An appreciation of the factors responsible for major differences in faunas, as between Moss Beach Flats and Frenchman's Reef for example.
- 4. A study of the distribution of certain species or groups with a view to determining the limiting factors.
- 5. The behavior of certain groups or species.

These have been separated out into exercises in an effort to make them specific. They actually overlap, forming part of a continuous program necessarily altered by the nature of the tide and the weather and other considerations. These exercises should be read over to gain a comprehensive picture and to allow for greater efficiency in their prosecution.

## Exercise 1. A Preliminary Survey of Moss Beach and the Fauna of Moss Beach Flats

If the time before low tide permits there will be a brief survey of the important local landmarks.

After this follow up the receding tide across Moss Beach Flats to Nye's Rocks and Channel and Egregia Flats, collecting any animals not known to you

and keeping notes on those destined for your collection, together with notes on the faunas of the different habitats.

Learn the names of as many animals in the field as possible.

When the tide has driven you from profitable collecting grounds take your collections to the laboratory for identification, preservation, or study under the microscope.

Do not bring in specimens of species known to you and not needed for your collection or sea urchins and sea stars (except the small individuals of *Leptasterias* and *Henricia*.

#### Exercise 2. Halosaccion Flats

Ecological distribution of a meager fauna in an area of little diversification.

Exercise 1 should have given you some general idea of the animals to be encountered, their range of size, and ordinary distribution in a region of diversified environmental conditions.

In this exercise we shall confine our efforts to a circumscribed area of the flat central portion of Halosaccion Flats (Maps I and II). Study the environmental conditions, both physical and biotic. Consider such factors as intertidal range, nature of substrate, position and disposition of the substrate, degree of exposure to sun, wind, wave impact, predators, etc.

Distinguish all the different habitats represented, determine the specific assemblages in each, seek to understand presences and absences in terms of definite physical or biotic conditions.

Is the fauna as a whole characterized by any conspicuous absences? If so, how is this explained in the light of the ecological features? Is it conspicuous as a whole for largeness or smallness of the species involved or the individuals of the species? If so, set up an hypothesis to explain this feature.

## Exercise 3. Fauna of Sand Rocks and Vicinity

Location: Sand Rocks just beyond the Reefs which form the northern boundary of Kelp Cove (see Map II).

<u>Physical Conditions</u>: An area of varied physical conditions involving several very distinct habitats (and their intergrades) such as (1) high tide pools (in top of Sand Rocks); (2) sheer, soft rock surfaces (sides of Sand Rocks) exposed to tidal and wave action; (3) a rock surface sloping upward toward the shore composed of granite interspersed with softer areas and ending in a sheer or overhanging shoreward face; (4) tiny tide pools contained in the surface of this rock layer; (5) a shaly low low-tide bottom exposure; (6) the inner ends of nearly upright reefs of hard rock (The Reefs) extending out some distance; (7) a region of rocks and small boulders near low tide line; and (8) a sandy inner beach of coarse sand.

<u>Biotic Conditions</u>: These are correspondingly varied, from areas practically devoid of life to those with heavy growths of large seaweeds.

<u>Purpose</u>: Experience in thinking in terms of ecologic factors as determining habitats and ecologic niches. We are using the term ecologic niche to refer to the sum total of environmental conditions, physical and biotic, to which a particular species is adapted and which are necessary to its continued existence. A habitat on the other hand is a <u>kind</u> of place, a place or region characterized by certain major environmental features. A habitat will possess a characteristic fauna, each species of which has its own niche. Thus, for example, a tide pool will contain a number of different species each with its own niche. Since the distribution of ecologic conditions within a habitat may spatially limit an ecologic niche we may, for convenience, connect certain niches with places within the habitat, but this is not true of many niches and not really correct for any niche. To completely define a niche would involve an immense amount of quantitative and experimental investigation of the physical and biotic ecological factors not yet begun for the species we study. However, we are usually able to discern one or more obvious features of each niche which give it objective reality and allow us to give it a preliminary definition and to use it in discussion.

Procedure: Study each of these habitats and its characteristic fauna. Be able to discuss the distribution of the different groups and species in this area in terms of the ecologic factors involved. Be able to make a field key to the species of Acmaea, and to answer such questions as the following: Why are the gastropods (aside from Acmaea) absent from the Sand Rocks? Which genus is dominant on the sides of Sand Rocks? What is the dominant species in the tide pools in the top of Sand Rocks? Where did you find zonation?

There will be no report but a written test will be given covering the information gained in Exercises 1-3.

You have now seen three different habitats or locales each with its own characteristics and variations. You should begin to form a picture of the ecologic ranges of certain species, such as those of the genus Acmaea (see Exercise No.12), the hermit crabs (see the key, p.113 and the special paper by Harris), and the flat-topped crabs of the genus Petrolisthes (see special paper by Fields and Benton).

#### Sample Questions on Sand Rock and Vicinity

- 1. What species not found or rare at Sand Rock and vicinity were found on Halosaccion Flats proper?
- 2. Name species found abundantly in the vicinity of Sand Rock that were rare or not found on Halosaccion Flats proper.
- 3. Suggest one general reason for the fact that the latter list is longer than the former.
- What were the most important plant feeders; scavengers; predators; plank-ton feeders, in the Sand Rock vicinity?
   Name animals characteristic of Sand Rock proper that were not found among
- smaller rocks around its base.
- 6. List differences in fauna between loose rocks on sandy substratum closer in and farther out.
- 7. Which of the three major factors seems most important here? Illustrate.
- 8. On the basis of today's observations how could you distinguish the niches of the three shore crabs?

9. What evidences did you note of vertical zonation of the species of Acmaea?

- 10. Which was the most abundant polychaete? 11. What two features of the situation probably account for its abundance? 12. What are the advantages and disadvantages for A. scabra of sandrock as against granite rock?
- 13. Why so few barnacles and no mussels on sandrocks?
- 14. Why so few littorines?
- 15. What structural character of Cirriformia luxuriosa not found in C. spirabrancha is correlated with its habit of life?
- 16. Name three genera of isopods encountered. Characterize the very distinct
- ecologic niche of each. Which two may be found together? Where and why? 17. With what other enimal did the presence of *Acanthina* seem to correlate? 18. Why were borers not abundant? Nestlers?
- 19. What terebellid worm was abundant? Give some features of its niche.

## Exercise 4. Frenchman's Reef

Location: Between Marine View and Pillar Point (see Maps I and II). Physical Features: A rocky reef, with a relatively flat top, extending into the open sea, exposed on its high side to direct wave action and cut by numerous, deep, narrow, tidal channels (see Map III) with steep, often overhanging walls; numerous high tide pools; ledges under exposed horizontal rock strata; a protected, shallow lagoon between shoreward end and shore on north side.

Biotic Features: Very great abundance of algae except on high central shoreward portion; beds of narrow eelgrass and Laminaria, etc., on protected side; sea urchin beds and mussel bed near outer end.

Procedure: Study first the deep tidal channels and the fauna of the seaweeds and eelgrass of the protected sides. On the return study and attempt to explain shoreward changes in fauna on the reef surface. On the way out or back study the under-rock fauna of the lagoon, comparing it with that of Iridaea Channel and Marine View Rocks. Hydroids should be collected wherever found and taken back to the laboratory for study and identification (at least ten species should be found).

A colony of the sea anemone, Corynactis, occurs under one of the high ledges about halfway out. Be certain to see it.

Attention should be paid to three species of limpets each confined to a single plant species: A. paleacea on the eelgrass (Phyllospadix), A. insessa on Egregia, and A. instabilis on the stalks of Laminaria; all found on the north side of the reef.

## Some Questions on Frenchman's Reef

- 1. List nine or more habitats or subhabitats each with an essentially distinct fauna. Give one to three characteristic species for each. 2. Name five extremely stenotopic species of sessile gastropods.
- 3. What advantages probably explain the abundance of *Plumularia* on the bases of the brown algae near the laminarian zone? 4. At many points a fauna characteristic of the lowest littoral or the sub-
- littoral was encountered at relatively high levels. How could you ex-
- plain this in terms of physical factors? 5. What biotic factor (associated with a physical feature of the subhabitat) operates with regard to the hydroids?
- 6. What factors do you conceive to operate to determine the distribution of
- Strongylocentrotus purpuratus?
  7. What major difference with regard to S. franciscanus?
  8. Name four types belonging to as many phyla which are found competing for space in certain favorable spots? What makes these spots favorable?
- 9. Name five genera of hydroids encountered. Which was most abundant? 10. What arthropods seem adapted for life on this particular hydroid?

- 11. What highly stenotopic pelecypod was encountered?
  12. Why the relative scarcity of limpets (biotic factor)? Of barnacles? Of *Tegula* except near inner end of reef?

## Exercise 5. Iridaea Channel

Location: Iridaea Channel (see Map II), really lagoon-like, is a lower area in Moss Beach Flats which drains at low tides through Nye's Channel and Egregia Flats.

Physical Features: Protection from strong tidal or wave action and from exposure except at extreme low tide. Numerous rocks resting in gravelly sand containing much organic detritus.

Procedure: Learn the fauna and attempt to explain it on the basis of physical features of the environment. Be able to name another location where the same general conditions prevail. What two factors seem most significant in determining the nature of this fauna?

## Some Questions on Iridaea Channel

- 1, What other spots have furnished a somewhat similar fauna? Which one especially, at Frenchman's Reef?
- 2. List five physical features and two biotic features which conspire to bring together the characteristic fauna.

199

3. Be able to list (1) the in-rock dwellers, as borers, nestlers or cranny dwellers; (2) the on-rock dwellers both those of exposed and of under surfaces; (3) the under-rock dwellers; and (4) the dwellers in the under-rock substratum.

4. Have in mind the food habits of each and, in so far as possible, the reasons for their presence there.

5. For each of the following name one or more species which are conspicuous in, or characteristic of, the fauna:

Brachyurous anomurans
Anomurous anomurans
Brachyurans
Chitons
Errant polychaetes
Sedentary polychaetes
Aberrant annelids
Small snail-like gas-
tropods

Larger snail-like gastropods Asteroids Limpets Barnacles Isopods Rock-boring pelecypods Nestling pelecypods

Surface-dwelling pelecypods Cranny-dwelling gastropods Rock-dwelling brachyurous anomurans Ophiuroids Holothuroids

6. What two types of prochordates (chordate invertebrates) are found?

7. What was the largest animal? What correlation between its size and its location?

8. What important predators were not seen by us?

9. Why were barnacles less numerous than on Nye's Rock?

10. What species of Acmaea is found only here? What does the nature of its shell and the places where it is found suggest as to the factors limiting its distribution?

#### Exercise 6. Marine View Rocks and Seal Cove

Location and Ecologic Features: Most important controlling physical condition is the presence of a broken line of outer rocks and reefs which more or less completely protects (1) the area of rocks of various sizes lying in gravel or sand which is Marine View Rocks (Map I); and (2) Seal Cove just north of it and between it and Halosaccion Flats already visited. These outer reefs support a heavy growth of many types of seaweed which are frequently torn away and carried in over the Marine View Rocks, and along the shoreward side of Seal Cove, where they break down and decay, furnishing food for many animals.

Note similarities between conditions and fauna at Marine View Rocks and other areas studied. One rock rises high enough to have a sample of a formation different from that found elsewhere in the vicinity. What gastropod marks this formation and why does it occur at that particular spot?

Seal Cove is particularly interesting for the occurrence there in numbers of two species which occur rarely or not at all in the other localities visited. These are Olivella biplicata, to be found in the sand at the end of surface trails, made presumably at night, and a large cirratuled worm, Cirriformia spirabrancha, whose slender, greenish tentacles resemble nemerteans.

Locate these two and attempt to explain their abundance here and their absence or rarity elsewhere.

## Exercise 7. The Fauna of a High Rock Exposed on Its Outer Face to Violent Wave Action

Location: Nye's Rock (see Map II), separated from the high outer front of Moss Beach Flats by a deep narrow tide channel, Nye's Channel.

<u>Physical Features</u>: Rock sufficiently hard to withstand wave action but still penetrable by borers and sea urchins; base below low low tide, hence in Laminarian zone; high enough on seaward face to be exposed except at high water; with two lower shoreward shelves.

<u>Biotic Features</u>: A relatively rich growth of seaweeds of various types; mussel beds at certain areas and levels.

<u>Habitats</u>: A great number of habitats, some protected from wave action, others exposed to its greatest violence or to the scouring effect of tidal channels, tide pools, crannies, mussel beds, close set algal growths, Iaminaria, etc.

<u>Procedure</u>: Make as complete as possible a study of the fauna. Note differences between exposed and protected sides. Seek an explanation for the location of the different species or associations, especially for the mussel and *Mitella* beds and the sea urchins.

## Exercise 8. Fauna of a Tidal Cave

Drake's Cave, really a tunnel, furnishes excellent opportunities for a study of the influence of light or its absence. Attempt to segregate the influences of reduced light from those of the peculiar water flow resulting from the configuration of the cave and its varying diameter.

Before the field trip read the special problem report by Groody and Villee on "The Biology of Drake's Cave." Check your findings against theirs as to the fauna and its distribution. Are the differences real or simply differences in sampling? If real, have you any explanation for them?

#### Exercise 9, Under-Rock Faunas

<u>Purpose</u>: To visualize the importance of the factor of protection. <u>Procedure</u>: Choose a rock resting on or partly embedded in sand or gravel, one small enough to be turned over, but yet of considerable size and so located as to be relatively stable.

Note carefully the physical location of the rock with regard to tide level, protection from wave action, etc., also whether embedded in or resting on the substrate, or with space between it and the substrate.

Overturn the rock and make immediate notes of the active population which almost at once seeks protection elsewhere.

Carefully list and evaluate the remaining fauna of the lower surface of the rock and of its crevices and crannies if any.

Attempt to arrange the total fauna thus listed on various bases: (1) as to the reasons for their presence there, (2) their food relations, etc.

### Exercise 10. Rock Dwellers

At a low tide choose a small rock from Egregia Flats or break off a small piece from the shoreward bank of Nye's Channel.

Collect and make careful record of the surface-dwelling animals.

Break it open and identify and list (1) the crevice and cranny dwellers, (2) the rock borers and (3) the nestlers.

Attempt to explain the presence of each species in its particular location.

## Exercise 11. Fauna of a Seaweed Holdfast

By means of a geologist's pick separate from the rock a holdfast of one of the larger algae (*Laminaria*, *Egregia*, etc.) found at low tide level along the front of Moss Beach Flats, Nye's Channel, or on Egregia Flats.

In the laboratory break it open and list the different species present. Attempt to explain the presence of the different species.

## Exercise 12. The Distribution and Habits of the Limpets of the Genus Acmaea

Purpose: The genus Acmaec offers an unusual opportunity for the study of numerous species of the same genus living in the same general habitat. Fourteen species occur in this area, of which ten should have been encountered by all. The purpose of this study is to consider the structural differences of these species, their interrelationships within the genus, their habitats and habits of life insofar as time allows with a view to discovering what correlation, if any, is to be found between these structural characters and the habitats and habits of life of the different species. The following ten species will be used for the study, all of them common except Acmaea persona and A. instabilis which will be pointed out to you:

TO HOROGOG GOME	1.	Acmaea	asmi
-----------------	----	--------	------

5. Acmaea pelta

- 6. Acmaea paleacea
- 2. Aomaea digitalis
- 7. Acmaea persona
- 8. Acmaea scabra 3. Acmaea insessa
- 4. Acmaea mitra
- 9. Acmaea scutum
  - 10. Acmaea instabilis

(Other species occurring but not so favorable for such studies are: Acmaea fenestrata, A. limatula, A. ochracea, and A. triangularis.)

Procedure: Make careful notes as to the characteristic location of these species as seen by you during low tides. Look for characters of general shape, color, and marginal ornamentation which seem to have an adaptive relation to the particular niche which each occupies.

Read introductory portions of thesis of Dr. Avery Grant and papers on homing behavior by Hewatt, and by Villee and Groody.

If time of tides allows (as during the summer) observe their behavior on a nocturnal low tide. Again look for correlations between their feeding behavior, their "home" locations, and their structural characteristics. To what ex-tent is there competition between species?

#### Exercise 13. A Collection of Mollusks, Crustacea and Polychaetes

Purposes: (1) Training in collecting, preserving and labelling of invertebrates. (2) The additional familiarity with the species involved.

Directions: The utmost care, accuracy and neatness is to be used in all the work involved in collecting the specimens, in making ecologic notes, in correlating these notes with the specimens, in preparing the specimens, in their identification, and in labelling them properly. The work should be conducted at all times as if the materials were to be used for purposes of scientific research as, indeed, may well be the case.

The specimens turned in should, in general, be only those collected by the student involved. If specimens are obtained from others the collector should be cited on the label and it should be clear who is responsible for the ecologic data. Any other procedure or attitude vitiates the whole situation.

Juveniles or worn or damaged specimens should not be used except under unusual conditions.

Collections will be evaluated on the basis of completeness, correctness of identification, excellency of the preparations, neatness in organization and labelling, accuracy and completeness of data furnished and especially on the general and specific indications of scientific attitude and method.

Read carefully the general directions for collecting and for the keeping of field notes, and also the section on the use of scientific names.

Identifications should not be made lightly. Read the section on the identification of invertebrate animals. Where the species is uncertain the specimen should be labelled with the generic name followed by sp.? Thus: Tegula sp.? If it is believed to be a certain species but the identification is in

doubt, a question mark in parentheses should follow the author's name, thus: *Tegula funebralis* Adams (?).

#### COLLECTIONS

## <u>Mollusca</u>

<u>Chitons</u>: Minimum, 5 species. For permanent preservation chitons should be placed in a mixture of equal parts of water, alcohol and glycerine. For our purposes fixation in 5% formalin after flattening on a glass slide or other flat surface will be satisfactory. Specimens thus fixed may be left in formalin. <u>Pelecypods</u>: Minimum, 9 genera. Remove soft parts, using hot water if necessary. <u>Gastropods</u>: Minimum, 30 species in at least 15 genera. Bodies are best removed after leaving for some days in 30% alcohol. This is too expensive and time consuming for our purposes and it may be accomplished by placing them in hot (not boiling) water. This may slightly alter the color and surface of the shell hence making them unfit for a permanent collection.

#### Polychaeta

Minimum, 15 species in 10 genera. For permanent preservation specimens should be anaesthetized, fixed in special fixatives and preserved in alcohol. For our purposes they may be preserved in formalin and identified in connection with the laboratory study of this group.

#### Crustacea

Minimum requirements: <u>Copepode</u>, mounts of at least 5 species, including at least one from each of the common orders. <u>Amphipoda</u>, at least 8 species. <u>Isopoda</u>, at least 6 species. <u>Macrura</u>, at least 3 species. <u>Anomura</u>, at least 6 species in at least 4 genera. <u>Brachvura</u>, at least 10 species in at least 6 genera.

<u>Organization of collections</u>. Specimens should be arranged in a species list by phyla and classes and by collection numbers. When turned in they must be so arranged as to be easily inspected and checked. Labels should be made with India ink. See page 175 for instruction as to contents of label. Full scientific names should be used.

## Exercise 14. Collection of a Single Group and a Study of Its Ecological Distribution

This should be begun as early as possible in the course to allow for studies at low tide. Choice of group should be approved by the instructor. The degree of emphasis on the taxonomic or the ecological phase of the exercise will be determined in some cases by the size of the group involved, in others by the interest of the student.

Groups suggested are: the hydroids, the Bryozoa, the sea anemones, the seastars, the true crabs, the shrimps, the Anomura, the species of *Petrolisthes*, the species of *Pagurus*, the *Aomaea*, the small gastropods, the species of *Crepidula*, the amphipods, the isopods, harpacticoid copepods, the polychaetes in general or any group within them such as the Nereidae, the Phyllodocidae, the Spionidae, the Cirratulidae, etc.

### Exercise 15. Fauna of Small Tide-Pools with Emphasis on Behavior and Feeding Habits

Location: A small, permanent, relatively high tide pool. A particular pool will be assigned for this study.

<u>Procedure</u>: Visit the pool at various times and under different conditions as regards tides, etc. Do not disturb unnecessarily the inhabitants or remove any of them at any time during the study. Station yourself so as not to cast a shadow on the pool.

Make a careful survey and census of the population keeping a faunal list with approximate numbers of individuals. Make a diagram to show distribution of the inhabitants. Species not sufficiently seen to allow for diagnosis may be described and identifications will be supplied by the staff.

Note and record any activities observed during a period of 15-30 minutes after the original disturbance, if any, has quieted down. Attempt to explain these movements.

Devise experiments to determine reactions of different animals to various types of stimuli.

Introduce a small piece of mussel previously prepared so as to avoid disturbances. By this method seek (1) to determine the numbers and locations of catnivorous animals, (2) to understand and record their feeding behavior, (3) to determine whether sight, chemical sense or touch enables them to find their food.

By varying this device seek to determine which are facultative carnivores and which obligatory. By using tiny fragments of dead seaweed detect plant scavengers if any. By using whole tiny organisms seek to determine which, if any, of these carnivores are predators. By using different animal bodies seek to determine whether they have favorite foods. Interpret negative results with caution.

Consider also relations with other species present only during high tide. Attempt thus to build the food chains involved. Do they form a cycle? Visit the pool numerous times on different days, preferably on sunny days and after the water has become warm. Before leaving the pool remove any debris or food particles which you might have added. Leave the pool as undisturbed as when you found it.

Make an effort to determine (1) to what degree the fauna changes from day to day, (2) to what extent the animals concerned have permanent locations.

Turn in a report covering all the points studied.

Please make this an entirely individual study and report avoiding discussion or conference.

Make the study and report an exercise in the scientific method.

## Exercise 16. The Fauna of the High Tidepools between Sand Rocks and North Point and the Problem of the Distribution of the Red Copepods (Tigriopus californicus)

These tide pools vary in size from a few inches in depth and diameter to deep pothole pools on the top of sand rocks and elsewhere. The substratum also varies from soft shaley sandstone through conglomerate to granite. Other physical factors possibly concerned are elevation, exposure to sunlight, etc.

The dominant animals of these pools are three, *Pachygrapsus crassipes*, Boccardia probiscidea, whose waving tentacles are readily seen on close observation, and the red copepod, present in varying numbers or absent. Some of the pools are inhabited by the cirratulid worm, *Cirriformia luxuriosa*, whose dark tentacles form conspicuous patches.

Study the distribution of the copepods with a view to determining why they are absent or nearly so in some pools and present in others. Important among the factors to be considered are predatory animals and food requirements. Previous studies have shown the copepod adapted to withstand extreme ranges of temperatures and salinity as would be expected of an animal living in small high tide pools.

On the basis of early observations propose an hypothesis. Make observations at later times, organize your evidence, and criticize your hypothesis in the light of the evidence. Incorporate this in a report to be turned in not later than the end of the fourth week.

#### Exercise 17. The Identification of Polychaeta

Identify and label all the polychaete worms collected using the key on page 34. Refer to Hartman (thesis and various papers), and Fauvel, Errantia (1923) and Sedentaria (1927) in <u>Faune de France</u>. Co-operate with the staff (1) in accumulating a correctly labelled series

Co-operate with the staff (1) in accumulating a correctly labelled series of well-preserved reference specimens, and (2) in gathering all animals seemingly not in our lists or new to the region to be sent to Dr. Hartman for identification.

### Exercise 18. Fauna of Tidal Flats in an Enclosed Bay (Tomales Bay near Dillon Beach, Maps IV and V)

For directions see Exercises 28, 30, 31, and 32.

Read: MacGinitie, "Ecological Aspects of a California Marine Estuary (Elkhorn Slough)" and "Littoral Marine Communities"; Shelford and Towler, "Animal Communities of San Juan Channel and Adjacent Waters"; Shelford et al. "Some Marine Biotic Communities of the Pacific Coast of North America"; Alice Mulford, report of special problem on "Distribution of Callianassa."

## Individual Projects

All members of the S112 class will do the following as individual projects:

1. Either Exercise 13, 14, or 15, with collection (or report if 15).

2. An intensive study of the behavior of some one common species.

A special problem (see suggested subjects below) may be done either in addition to the above or, with the instructor's permission, in place of 1 or 2. If additional credit is desired for special problem work the student should enroll for extra units early in the course.

#### <u>S119</u>

Each member of the Sl19 group will carry out at least one special problem. The number of possible problems is almost endless. A careful study of any species from any one of several points of view would produce results of interest and value. In addition there are many problems of various types dealing with groups and local faunal assemblages.

## Suggestions for Special Problems

Distribution and behavior of the two littorines, especially factors differentially affecting the two species. A collection of nemerteans with notes on their behavior and distribution for Dr. Coe. Further studies on Tegula funebralis (see paper by Gorbman). The distribution of Tegula brunnea, limiting factors and an analysis of population. Behavior and habits of the large sand flea, Orchestoidea corniculata. Orchestoidea californica, its behavior and distribution (Half Moon Bay) and limiting factors. Is it a separate species? Fauna of Montara tidal caves. Habits and behavior of Olivella biplicata; food. Anatomy of Olivella with a view to its availability for use as type for the study of streptoneury, asymmetry and extreme torsion. Classification and ecologic distribution of any common family of polychaete worms such as (1) Lumbrineridae and Glyceridae, (2) Opheliidae and Orbiniidae, (3) Nereidae, (4) Phyllodocidae and Nephthyidae, (5) Syllidae, (6) Terebellidae, (7) Polynoidae, (8) Sabellidae, etc. The anemones, with a key for their identification. Structural and ecologic differences between the two large anemones, Anthopleura xanthogrammica and Bunodactis. A key to the hydroids of Frenchman's Reef with

notes on their distribution. The fauna of the inner lagoon of Frenchman's Reef. Taxonomy and biology of the common flatworm. Fauna of a sandy beach (Montara Beach). A practical key to the common Bryozoa. The harpacticoids. Stages in the development of the isopod, parasitic in barnacles at Marine View Rocks. Alloniscus, the high beach isopod, its habits and ecology. Marine and beach dwelling insects, their behavior and ecology. Authentically named demonstration collection of Polychaeta. Botula falcata and B. californica; distribution; borers or nestlers? If borers, how accomplished? Anatomy of pholad compared with that of typical clam and an attempt to determine adaptive features of anatomy. Acmaea limatula; distribution; limiting factors. Same for A. fenestrata. Halosaccion Flats: (1) Distribution of polychaetes; (2) distribution of decapods, especially hermits. Feeding habits of Acanthina. Further studies on ecologic segregation of the species of Pagurus (see paper by Morgan Harris). Further study on homing of Acmaea scabra (see papers by Hewatt, and by Villee and Groody).

## 2. AS GIVEN AT DILLON BEACH AND VICINITY

Dillon Beach lies on the shore of Bodega Bay not far north of the mouth of Tomales Bay (Maps IV and V) and within reach of numerous diverse faunas.

The bold rocky outer coast of Tomales Point affords excellent opportunities for the study of animals of tide pools, tide channels, and exposed rocks rising from the low tide line. Just off this shore lies Bird Island, which supports a faune less reduced by human collecting than that of the shore. Tomales Bay has many tidal mud- and sand flats supporting rich faunas. Within reach, also, are numerous other interesting marine faunas. Such are those of Bodega Head to the north (Map IV), Duxbury Reef, Bolinas Bay and Bolinas Lagoon to the south (Map IV), and Moss Beach south of San Francisco (Maps I, II).

Tomales Bay, as its long, narrow, straight shape would indicate, is a fault bay. Bolinas Bay and the creek which runs into it from the north are continuations of the same fault line, the San Andreas Rift, which traverses San Francisco.

The fault line marked by the bay separates the Point Reyes block from the mainland. This block is supposed to have been an island during much of Tertiary times, perhaps connected with the Farallons. Its mesozoic granites are exposed along the western shore of the Point, where we shall collect.

The eastern shore of Tomales Bay is a part of the bed of the ancient Merced Sea (Pleiocene). Along most of this shore the Merced deposits have been eroded, exposing the older Franciscan deposits (Jurassic?) like those about Berkeley. In the northeastern portion, however, and along the shores of Bodega Bay, the Merced deposits remain. The conspicuous rocky outcrops east of Dillon Beach formed part of the shores of the Merced Sea, and the rocks which we study at Perch Rock Point and Second Sled Road must be from the Merced or from Franciscan deposits.

The sand dune area south of Dillon Beach partly closing up the mouth of Tomales Bay consists of much younger (Pleistocene and Recent) alluvial deposits. Consult Dickerson (1922, <u>Proc. Calif. Acad. Sciences</u>) for a detailed ac-

count of the geology of the region.

Read the general statements with regard to the summer course (p. 193) and individual projects (p. 214). Begin as soon as possible the reading of appropriate chapters in Flattely and Walton and in Ricketts and Calvin, especially those dealing with the tides. Consult also the schedules given you and the list of low tides and begin to plan your program. Study Maps IV and V and make yourself familiar with the local names in preparation for field trips.

A list follows of field studies which may be made with Dillon Beach as headquarters. Not all these are possible in any one six-week period and during the tides available. A tentative schedule will be issued each year listing those field trips to be attempted and the dates as well as the laboratory exercises to be interspersed among them. Keep this schedule and amend it from time to time on the basis of announcements to be made.

### FIELD STUDIES FROM DILLON BEACH

Exercise	19.	The Distribution of Polychaete Worms
Exercise	20.	The Ecologic Distribution of the Limpets of the Genus Acmaea
Exercise	21.	Field and Laboratory Observations on the Adaptations in Behavior and Structure of Callianassa, Upogebia and Emerita
Exercise	22.	A Study of the Fauna in an Area of Rocks Resting in Sand (Perch Rock Point, the first field trip)
Exercise	23.	The Fauna of Large Exposed Boulders of Hard Rock (Second Sled Road Point, second field trip)
Exercise	24.	The Fauna of an Outer Exposed Rocky Shore (Tomales Point)
Exercise	25.	The Fauna of a Rocky. Exposed Islet (Bird Rock)
Exercise	26.	The Fauna of a Long. Narrow Rocky Reef Extending into the Open
		Sea and Cut by Deep, Narrow Tidal Channels (Frenchman's Reef, Moss Beach)
Exercise	27.	Boring, Nestling and Cranny-Dwelling Animals
Exercise	28.	A General Survey of the Faunas of Various Areas of the Tidal Flats in Upper Tomales Bay
Exercise	29.	The Fauna of the Tidal Mud Flats of Bolinas Lagoon
Exercise	30.	The Fauna of the Eelgrass Flats of Upper Tomales Bay
Exercise	31.	The Phoronopsis and the Macoma-Phoronopsis Associes
Exercise	32.	Ecological Succession and Distribution on the Sandy Mudflats with Emphasis on the Fauna of the High Flats
Exercise	33.	Estuarine Faunas of Piles and Mud Flats (Inverness on the South- western Shore of Tomales Bay)
Exercise	34.	Oyster Breeding and the Fauna of a Commercial Oyster Bed (Bivalve or Marshall on the East Side of Tomales Bay)
Exercise	35.	A Study of the Minute Plants and Animals of the Sea, the Plankton, Which Constitute the Food of Many Seashore Animals
Exercise	36.	An Individual Study of a Small High Tide Pool
Exercise	37.	An Individual Study of the Fauna of a Limited Area of Rock Surface in the Intertidal Zone
<b>.</b>	00	

Exercise 38. An Individual Study of the Fauna and Food Cycle of a Fresh Water Pond (Rolland Pond or another)

Exercise 39. The Fauna of a Small Coastal Stream (Salmon Creek) with an Attempt to Visualize Adaptations to Flow and Some of Its Food Chains

Exercise 40. Terrestrial Faunas

## Exercise 19. Ecologic Distribution of the Polychaete Worms

A large number of species of polychaetes belonging to many genera and families are to be found in this diversified area. See Dr. Hartman's thesis for a list of species and something of the ecologic distribution of some of them. Polychaetes should be collected whenever found and, after microscopic observation and identification, properly preserved and labelled. If it is not possible to identify them at the time preserve them for future identification. About the end of the second week a period will be devoted to the identification of polychaetes.

Please co-operate with the staff in its efforts to accumulate a wellpreserved, correctly-identified, study collection and also in the accumulation of rare forms or those new to this locality. Since the summer course has been given at Dillon Beach only once previous to 1941, much remains to be known of the polychaete fauna and its distribution.

There is a distinct value in identifying and becoming familiar with a wide range of types in a group. It gives a picture of the range of structural diversity, the results of a long evolution. Here, in the realm of taxonomy, a rare species is just as important as a common one, or more so. To the student

of ecology, however, the species which occur in considerable numbers are the important ones since they have a proportional effect upon the communities of which they form parts.

Make certain, therefore, that you collect and identify all of the species of polychaetes which occur in any considerable numbers, keeping as complete a record as possible of this occurrence and ecologic distribution. Be prepared to report on the ecologic distribution of at least a dozen such common polychaetes.

## Exercise 20. The Ecologic Distribution of the Limpets of the Genus Acmasa

Read introductory portions of the thesis of Dr. Avery Grant and papers on homing behavior by Hewatt, and by Villee and Groody. Identify in the field or on return from it all species of the genus *Acmaea*. Place them ecologically with regard to (1) vertical location, (2) nature of substrate, and (3) food. Keep this in mind on all field trips and be able to combine your total

findings into a chart or diagram.

### Exercise 21. The Ecologic Distribution of Callianassa. Upogebia. and Emerita Considered in the Light of Their Adaptative Structure and Behavior

Read papers by MacGinitie on the natural history of these three decapods (Anomura) with highly specialized structure and habits.

#### A. Laboratory Study

<u>Purpose</u>: (1) To understand the correlations between special structure, behavior, and environmental location, that is, the structural adaptations, of these three anomuran decapods adapted to a life in the substrate, and (2) to see how differently the fundamental decapod type of structure has been modified in the three species.

<u>Procedure</u>: Remove and arrange in parallel series all the appendages of the right side of the three species. Care must be taken in removing the peraeopods to obtain the gills with them. Each peraeopod is provided with a gill attached near its proximal articulation.

Make a table for these appendages, with separate columns for the three species in the order *Callianassa*, *Upogebia*, *Emerita*, to bring out all differences. Attempt to correlate differences of structure with differences in behavior and these with life-habit differences. Is *Upogebia* more like *Callianassa*? If so why? Which of the two is most like *Emerita*? Do you think this is to be explained in terms of relationship? If not, on what basis do you explain it?

#### B. Field Studies

The sandy beaches from Sand Point up to Second Sled Road Point and beyond abound in sand crabs, the adults scattered but numerous, the young in countless thousands. These should be observed from the first field trip. Be able to describe their method of swimming, walking and digging in, the type of trail they make and the part played in these different activities by the different thoracic appendages. Read: MacGinitie, "Movements and Mating Habits of the Sand Crab."

See if you can discern by your own observations an animal which preys on them. This will best be made out when the tide is coming in. Be able to present your evidence in convincing form.

Make yourself familiar with the holes and burrows of the ghost shrimp in the upper end of Tomales Bay. See the various associated organisms especially the gobies, the pinnotherid crabs and *Cryptomya*. Preliminary reading: Mulford, <u>Distribution of Callianassa californiensis Dana at Sand Point</u>; MacGinitie, "The Natural History of Callianassa." Run a transect from the inner eelgrass associes to the sand dunes noting the change of fauna enroute. Be able to draw a diagrammatic section showing this change in fauna in relation to increasing height of surface of substrate.

In running the above transect individuals of *Upogebia* may have been encountered at the lower levels. If not, make a search at or very near the lowtide level along the inner channels to locate these mud-shrimps. Attempt to state how spatially and ecologically they are isolated from *Callianassa*.

In this connection read MacGinitie, "Natural History of the Mud-Shrimp."

## Exercise 22. Fauna of a Sandy Beach and Scattered Elevated Rocks in Sand

Location: Perch Rock Point just at northern edge of the Dillon Beach settlement.

<u>Physical conditions</u>: Facing the open sea to the west, hence subjected to wave action, violent at times of storm. Rocks relatively hard with few if any crevices or crannies. Beach relatively long with gentle even slope from low tide level to the rocky cliff. Rocks irregular in shape but generally sloping to a narrow top, bottoms buried for unknown depth in sand. Sand washed out about bases of most rocks, leaving temporary tide pools. Two major habitats, rocks and sand.

<u>Biotic conditions</u>: Living seaweed small in quantity: very little on rocks, a few scattered clumps of *Egregia* in sand. A certain amount of dead seaweed is present. That at upper level should be investigated for plant scavengers. Algal film seemingly lacking on upper rocks. Two striking rock communities, one dominated by *Mytilus californianus*, the California Mussel, the other almost pure sea anemones.

The following animals are among those present:

#### Rock Fauna

Anemones, large and small Tegula funebrale Adams T. canaliculata Duclos Thais emarginata Deshayes Littorina scutulata Gould Littorina planaxis Philippi Acmaea digitalis Eschscholtz Acmaea scabra Gould Acmaea scutum Eschscholtz Acmaea limatula Carpenter (rare) Mytilus californianus Conrad Ligia (The Rock Louse) Katharina Mopalia ciliata Sowerby Balanus glandula, the common acorn barnacle B. cariosus, the thatched barnacle Chthamalus, the tiny barnacle Mitella, the leaf barnacle

## In Mussel Bed

Thais canaliculata Duclos Petricola (rare) Nereis vexillosa Grube Petrolisthes, the flat-topped crabs

Pachycheles, the big clawed crabs Pagurus Cirolana Amphipods

## Sand Fauna

Nainereis Nephtys caeca Fabricius Nereis vexillosa Grube Emerita analoga, the sand crab Orchestoidea, the sand flea

#### <u>Others</u>

Pisaster ochraceus, the ochre seastar Pachygrapsus, the lined shore crab Hemigrapsus nudus, the purple shore crab Epialtus productus, the kelp crab Cancer antennarius, the rock crab

<u>Purpose</u>: To gain familiarity with the members of the fauna, their names, their ecological niches, their interrelationships.

<u>Procedure</u>: Identify as many of the animals as possible in the field, use their names again and again until they become familiar. Bring those not identified to the laboratory for identification. Keep careful notes as to distribution and associations and of any biotic or physical factors which seem to explain them.

Be able to answer such questions as the following:

What is the dominant animal in the most conspicuous animal association of the area? What other animals are present in this association? What is their relation to it? What other sedentary animal is present in considerable concentration? Does it seem to compete with the other association? Make a field key to the species of *Acmaec*. What evidence did you note of differences in niche of these species? What is the most important sand dwelling organism? What plant scavengers were noted? Where are the different polychaetes to be found?

Do you find any clams? Reasons?

A WERE TO ALL PROPERTY SERVICE

How does the method of progression of *Emerita* differ from that of most crabs? Can you differentiate their trails?

## Exercise 23. Hard Rocks in Intertidal Zone (Second Sled Road Point)

Recognize as many animals as possible in the field. Collect and identify those not thus recognized. Get as clear a picture as possible of the distribution of the animals of this locality in relation to the diversified physical and biotic factors involved.

Attempt to classify the general area into more or less definite habitats each marked by a characteristic faunal assemblage. Such, for example, would be the beds of narrow-leaved eelgrass (*Phyllospadix*).

Find the outcrop of softer rock and collect the borers, nestlers, and cranny dwellers in it for study in connection with Exercise 26.

## Exercise 24. An Outer Exposed Rocky Shore (Tomales Point)

This area offers the richest fauna of any habitat to be studied in the Dillon Beach locality and approaches that of Frenchman's Reef. Especially to be studied are (1) the tide pools, (2) the tidal channels, (3) under rock assemblages, (4) the mussel beds, here at climax.

## Exercise 25. The Fauna of a Rocky Island (Bird Island), with Tide Pools. Tidal Caves and Tidal Channels

Get as complete a picture of the fauna, its distribution and the ecologic features involved as is possible in the brief time available. Biotic features require attention. Such are the luxuriant growth of seaweed and the negative one of the relative absence of the disturbing presence of man. Be able to explain various features of the fauna in the light of these factors as well as the physical conditions.

The tide pools are on the flat rock at the southwestern end of the islands, the tidal cave at the northern end, the tidal channels along the western shore.

On top of the high flat-topped plateau which forms the eastern half of the island is a colony of nesting cormorants and the nests of gulls, etc. These are interesting as forming end organisms of some of our food chains.

## Exercise 26. The Fauna of a Long Narrow Reef Extending into the Open Sea and Cut by Deep, Narrow Tidal Channels (Frenchman's Reef, San Mateo County, Maps I and III)

This region is discussed elsewhere, Field Trip C, p. 183 and Exercise 4, p. 197.

Attempt to segregate in your mind some eight or ten very different types of habitats found here and their characteristic assemblages. Where elsewhere have you found the same or similar faunal assemblages? Have they been correlated with similar environmental conditions? If so, you can begin to formulate general statements as to the animals to be found under given sets of environmental conditions.

Make a special effort to see and to collect for identification as many hydroids as possible as well as certain species of Acmaea not common elsewhere (A. paleacea, A. instabilis, and A. insessa).

#### Exercise 27. Boring, Nestling and Cranny-Dwelling Animals

A number of pelecypods are able to bore into relatively hard substrata or occur in cavities in substrata so hard as to seem to indicate that they have bored into it. It is not known just how this boring is accomplished. Some have thought it was purely mechanical abrasion, others that it was due to the dissolving action of some secreted acid and, more recently it is believed that carbonic acid may be involved.

As a result of the action of the borers, including the purple sea urchin, many of the softer intertidal rocks are full of holes and crannies in addition to those which might normally arise from fracturing and weathering. These holes and crannies furnish protected sites for a large array of species of various groups. Some of them live within the shells left by preceding species. Such have been termed nestlers in distinction to the cranny dwellers which live in the cavities of one kind or another in the rock. Sometimes we may have a series of successive nestlers. For example, a tiny young Kellia in a Saxicava shell, itself in a Protothaca shell which lies within the shell of Pholadidea, the original borer.

The conditions concerned vary all the way from deep, almost entirely shut off cavities to shallow ledges or surface cavities. We shall encounter conditions favorable for such studies in several localities. Some of the rocks in the vicinity of the Second Sled Road are soft enough to permit of their being occupied by borers. The same is true of many of the rocks at Frenchman's Reef and especially of many near the lagoon. At Duxbury Reef also will be found situations for the study of these borers, nestlers and cranny dwellers.

Keep notes concerning them as encountered at different times and make lists of all the species by phyla which fall under these different categories. Attempt to determine the food habits of all of them. Refer to various papers by MacGinitie.

### Exercise 28. Ecological Distribution as Seen on the Sand Flats and Sandy Mud Flats on the Eastern Shore Just Inside the Mouth of Tomales Bay

Just inside Tomales Bay on the northeastern shores are extensive areas of sandy mud flats already sampled in Exercise 21. Here wave action is largely eliminated and sedimentation active. Here tidal currents while not violent, except in certain relatively limited channels, are prolonged bringing an immense amount of water over a given area of bottom.

This area supports a fauna which seems to belong to the Macoma formation as defined by Shelford and Tower (1925) with general and special modifications due to local conditions. We shall sample this fauna in general on this trip, compare it with another tidal flat (Exercise 29 on Bolinas Lagoon) and study

more intensively two of its subdivisions (Exercises 29 and 30), and finally consider it in terms of ecologic variation and succession in Exercise 31.

In preparation for these exercises and during their prosecution make yourself familiar with the ideas and terminology in the article by Shelford and Towler and read MacGinitie's "Littoral Marine Communities" and his "Ecological Aspects of a California Marine Estuary (Elkhorn Slough)." The three important associes, studied separately, are at different levels

The three important associes, studied separately, are at different levels as regards the tides. The eelgrass associes or Macome-Schizothaerus associes (perhaps same as the Macoma-Synapta associes of Shelford) is lowest, being mostly a few inches under water at low low tide due in part to the very slow run-off in this area. The Phoronopsis or Macoma-Phoronopsis associes is just a few inches above low low tide level, while the Callianassa or Macoma-Callianassa associes, already studied, is much higher. These should be studied with the idea of an ecological succession in mind whose climax may be the sand dune formation.

In narrow zones are other associes. Among these should be studied the *Clymenella* associes which form narrow zones between the others. More broadly distributed than the limits of these associes but less widely than *Macoma* is the abundant horse clam *Schizothaerus nuttallii* and the much less common geoduck, *Panope generosa*.

Study the distribution of the three types of clams, and of *Phoronopsis*, *Clymenella* and other common polychaetes. Turn in a map showing their distribution.

## Exercise 29. Bolinas Lagoon

This may be combined with a study of the fauna of Duxbury Reef (Exercise 27) since the tides are much later in the lagoon. It should be sampled at least at two points, one very near the mouth where a *Phoronopsis-Urechis-Macoma* association should be studied, the other high up the lagoon where the mudcrab is the dominant animal as is the case at numerous points along the lower reaches of Tomales Bay.

Get a clear picture of the other members of the associes there and seek to place them in terms of food chains or a food cycle.

# Exercise 30. The Eelgrass Flats

These outer flats near the mouth of Tomales Bay, separated from the shore flats by a tidal channel are subject to fluctuation in level and consequently in fauna and flora. Whether this is a seasonal variation or associated with the extensive shifts in location of sand deposits which are caused by differences in wind and tide is not known. In 1935 they supported a luxuriant growth of eelgrass (*Zostera*) and various seaweeds and were never completely exposed even at the lowest tides. In the spring of 1940 they were a few inches above low-tide level and the eelgrass and large algae were largely lacking.

Whatever their condition they should be studied and their fauna well known. If these outer flats are lacking in extensive plant growth this may be found and should be studied in lower areas near the shore, bordering on the Macoma-Phoronopsis association.

Go prepared for wading in several inches of mud and water.

Collect and make notes on the ecologic distribution of the rich but monotonous fauna of this habitat. There are really three important habitats or zones here, (1) the mud below, (2) the water, and (3) the luxuriant growth of eelgrass and large algae (*Ulva*, etc.). Do not neglect the fauna of the mud. Material will be collected and brought to the laboratory to allow for the study of the sub-macroscopic fauna of the water and the algae masses and the eelgrass.

Be on the lookout for holothurians and *Edwardsiella* (an 8-tentacled anemone). Note those species present here only because the large seaweeds give them sites above the muddy bottom.

#### Exercise 31. Phoronopsis and the Macoma-Phoronopsis Associes

<u>Laboratory Study</u>: *Phoronopsis* represents a small group of uncertain systematic position, the Phoronidea. The U-shaped intestine and lophophore suggest bryozoan affinities but the well-developed blood vascular system and the entirely different embryology render this relationship unlikely. We shall consider it a phylum as does Borradaile and Potts.

Study whole specimens dissecting to get an idea of the structure of the lophophore, etc. Study serial sections to see the body cavity, the circulatory system, the finer structure of the lophophore, etc.

On living individuals see the ciliary action of the lophophore.

<u>Field Studies</u>: Where the substrate has been built up (by ordinary deposition or mud transportation) to the level of low tides the plant growths are inhibited and here are to be found luxuriant clans of *Phoronopsis*, with *Macoma* secta less abundant.

The class will attempt a preliminary population study in this area. Working in teams of two, two areas six inches square will be chosen by each team, half of these so as to avoid any clam holes which perhaps crowd out a certain number of *Phoronopsis* and certainly obscure their openings. Six-inch square, open-ended metal boxes will be pushed in surrounding these areas and a careful count made and checked, of the holes visible at the surface. The earth will then be removed on all sides of the box and the number of individuals within the box carefully counted. This should give the correction necessary to make surface counts accurate. How do you explain the discrepancy, if any, both where clams are present and where not? To what extent, if any, do the clams seem to reduce the *Phoronopsis* population?

Half of the teams will now measure off areas of a yard square and on the basis of a count of the clam openings present, estimate the population of clams, remembering that *Macoma* has two separate siphons, one smaller than the other.

The other half will measure off areas of six inches square using the metal boxes and after attempting to determine the number of clams involved from surface counts carefully excavate to determine definitely the number actually present.

Exploratory transects will be run to determine the limits of the particular *Phoronopsis* clan and an estimate made of the number per acre (43,560 square feet).

## Exercise 32. Ecologic Succession

Study again the relation of the shore tide flats from the lowest algae grown portion to the sand dunes with the possibility in mind that the sand encroaching on the upper end of the bay is responsible for the change, locally at least, (1) from Zostera associes to the Macoma-Phoronopsis associes, (2) from this to the Clymenella associes, (3) from it to the Macoma-Callianassa associes, (4) from this to the Staphylinid-beetle associes and (5) from it in turn to the sand dunes. Or is the succession in the other direction with wind and current resulting in the encroachment of the marine on the sand dunes?

See again the special paper by Alice Mulford on the distribution of Callianassa.

#### Exercise 33. Estuarine Faunas on Piles and Mud Flats

Estuaries or deep estuarine bays have characteristic faunas which are rich in individuals but low in number of species. Here food is abundant and wave action is negligible but inhibiting factors are (1) lowered salinity and (2) great amounts of sediment and often of polluting materials in the water.

The study will be made at Inverness on the west side of the inner end of Tomales Bay. Here piles offer surface for sessile animals and broad mud flats afford favorable substrate for others which live within the substrata.

Make certain that you know all species involved and are able to discuss their distribution in terms of ecological factors.

### Exercise 34. Commercial Oyster Beds at Bivalve on Tomales Bay

These beds will be visited to see the methods of commercial oyster culture, the ecological conditions favorable to it and the associated fauna. Especially interesting are the introduced species.

## Exercise 35. The Plankton

A surprising number of littoral marine invertebrates are plankton feeders. No true understanding of the food relationships, food chains, and food cycles is possible from the low tide investigations to which we are largely confined. We shall therefore devote at least one period to a study of the floating population, the organisms concerned, and something of their relation to the animals already studied.

Identify common forms to the group and seek to understand their place in the food cycle. Supplementary aids to this end will be supplied. Refer also to Johnstone, Scott and Chadwick, <u>The Marine Plankton</u>.

Be on the lookout for larval forms which should be brought to the attention of the instructor for demonstration to the class.

#### Exercise 36. Individual Study of a Small Tide Pool

See Exercise 15 for directions.

### Exercise 37. Individual Study of the Fauna of a Limited Area of Rock Surface in the Intertidal Zone

As an alternative individual exercise if the tide pools are not available, as is frequently the case due to movements of sand, study a limited area of one of the rocks at Perch Rock Point or Second Sled Rock, or a limited especially interesting area of beach or tide flat.

## Exercise 38. The Fauna and Food Cycle of a Freshwater Pond (Rolland Pond)

A small segregated body of water lends itself to this purpose much better than the marine littoral with its tidal changes. Even here, however, there are interrelations with nonaquatic or amphibious organisms which should be brought into the food cycle so far as ascertainable.

Begin this study early in the course and continue it from time to time. Read Exercise F on page 191.

Turn in your food cycle as finally conceived.

## <u>Exercise 39. The Fauna of a Coastal Stream</u> (Salmon Creek or Upper Stemple Creek)

This is to be an entirely individual problem.

The individuals should scatter out along the creek, each working along. Make a collection of macroscopic and microscopic life in connection with notes on ecological features.

In your report place each species found in its individual niche in a food cycle and attempt to explain the special adaptations of each species to its niche. In Salmon Creek note especially the peculiar shrimps, *Sycnaris* (see special paper by Lee).

## Exercise 40. Terrestrial Fauna

Terrestrial faunas in general are less rich in numbers of species and of individuals than are those of the seashore. Also their constituent species are less easily observed since the necessities of food-getting and protection require either great speed or retiring life habits.

Conditions such as those furnished by a wooded canyon, where moisture abounds and many types of cover are available, make for relatively rich and diversified fauna. Study such a fauna referring to page 192 for suggestions as to the types to be expected.

We shall take advantage also of the near-by sand dunes to study terrestrial life under much more severe conditions. These conditions result in limitation of the number of species to a few highly specialized types. The detection of these would be a baffling problem indeed were it not that many of them leave trails to indicate their activities. As it is, we shall find it an intriguing problem to determine the animals of this community, especially so, since I know of no investigations of this fauna. For studies of sand dune communities elsewhere, see Chapter 19 of Chapman's Animal Ecology or Pierce, Dwight and Pool (1938, 1939).

Make numerous visits to the dunes, keeping a record of all trails and animals observed. Some visits should be made at early morning and evening hours and at least one at night, using flashlights. Excavate wherever trails seem to end and elsewhere to determine the in-ground fauna in general. Gain as complete as possible a picture of the community, its constituents and interrelationships.

## Individual Projects

Instructions as regards individual projects and special problems for S112 and S119 will be found on pp. 193 and 204.

There is great need for systematic, faunistic, and distributional studies in the Dillon Beach area, the results of which will be of value to future classes. The summer session course has been held here only once, in 1985, and very much remains to be known of the fauna and its ecologic distribution. Following is a list of a few of the many problems which suggest themselves.

#### Taxonomic

The pelecypods	The tunicates
The amphipods	The Bryozoa
The harpacticoid copepods	Phoronopsis: Are there two species?
Other benthonic copepods	Their distinguishing characters?
The isopods	The terebellid polychaetes
The sponges	The Nereidae

#### <u>Faunistic</u>

The sand-dwelling polychaetes

Polychaetes of the eelgrass flats

Polychaetes of the shore tidal flats

A survey of the shore tide flats eastward around the eastern shoulder of Tomales Bay

The fauna of the sand flats in front of Dillon Beach

The fauna of the sand flats at Perch Rock Point

The fauna of the sandy beach from Dillon Beach to Sand Point The fauna of Stemple Creek Lagoon

The fauna of the narrow-leaved eelgrass beds (Second Sled Road and elsewhere)

## Ecologic Distribution and Other Ecologic Studies

The Clymenella associes, its constituent species and distribution

- The degree of intergradation between the *Clymenella* associes and other associes and an attempt to explain the segregation of these associes
- The relative abundance and distribution of *Panope* as compared to *Schizothaerus Schizothaerus* as a dominant animal and its influence on other members of the association

Distribution of *Phoronopsis* and factors limiting it

- Evidence as to the degree of correlation between color and pattern of Acmaea digitalis and Acmaea scabra and that of their backgrounds (Balanus, Mytilus, Mitella, etc.)
- The smaller gregarious sea anemones (Bunodactis elegantissima) of the Perch Rock Point rocks: Are they different structurally from the solitary anemones (Anthopleura xanthogrammica)? What are the ecologic features characteristic of the sites of each? What differences as to behavior? As to food?
- Succession of animals settling on glass slides exposed below low-tide level at Sand Point
# APPENDIX A

#### SAMPLE SCHEDULES

#### Z00LOGY 112: SCHEDULE, 1940

January 26. F. .... Decapoda 27. S. .... Amphipoda February F. .... Pelecypoda S. .... Animals at Point Richmond Su. .... Field Trip to Point Richmond (2:00 p.m. at beach) M. .... Field Trip to Point Richmond (2:00 p.m. at beach) 2. 3. 4. 5. 9. F. .... Free S. .... First Mid-Term including tests on identification and ecology and behavior of animals of Point Richmond 10. 16. F. .... Polychaeta 17. S. .... Coelenterata T. ..... Field Trip to Fruitvale Bridge (be at bridge at 2:00 p.m.) 20. or W. ..... Same as above at 2:30 p.m. 21. 23. F. .... Free 24. S. .... Free March 1. F. .... Copepoda 2. S. .... Entomostraca completed 8. F. .... Rotifera 9. S. .... Free F. .... Free 15. Gastropoda 16. S. .... Spring Recess Spring Recess 22. F. .... S. .... 23. 29. F. .... Terrestrial Arthropoda 30. S. .... Field Trip to Strawberry Canyon April F. .... Second Mid-Term S. .... Field Trip to Lake Merritt 5. S. .... 6. 12. F. .... Free 13. 19. Field Trip to Freshwater Pond Marine Gastropods S. .... F. .... 20. S. .... Continued: Polychaeta  ${\mathbb S}{\mathbb T}$ 21. ... Field Trip to Dillon Beach for three tides 26. 27. s. ..... Free May 3. F. .... Free 4. S. .... Property clearance S112 AND S119, SCHEDULE, 1939

May

15.	M.		Adjustment of rooms, etc. 7:30 p.m. Preliminary meeting.	•
16.	Т.	8:30 a.m.	Sll9 (alone) for orientation	
		9:00 a.m.	S112 and S119. General introduction, Laboratory study	
			of Decapoda	
		2:00 p.m.	Gastropoda	
17.	W.	8:30 a.m.	Pelecypoda	
		2:00 p.m.	Polychaeta	

May	May (Continued)				
	18.	Th.	(-0.5, 4:07 a.m.)	Trip on S.S. Scripps and study of plank- ton taken	
	19.	F.	(-0.8, 4:58 a.m.)	Halosaccion Flats	
	20.	s.	(-1.0, 5:40 a.m.)	Sand Rocks and Vicinity	
	21. 22.	Su. M.	(-1.1, 6:25 a.m.) (-0.9, 7:10 a.m.)	Frenchman's Reef Moss Beach Flats, especially Iridaea Chan-	
	23.	т.	(-0.7, 8:06 a.m.) 2:00 p.m.	Special problems Lecture by Prof. E. T. Schenck, Palaeontol- ogist. Stanford University	
	24.	W.	(-0.4, 9:00 a.m.)	Special problems	
	25.	Th.	(0.0, 9:40 a.m.) 2:00 p.m.	Special problems Lecture by Dr. Robert C. Miller, Director of the Museum and Aquarium of the California Academy of Sciences on "The Pacific Ocean a Balanced Aquarium"	
	26.	F.	8:30 a.m 2:00 p.m	Gastropoda completed Amphipoda, Isopoda	
	28.	Su.		Nothing scheduled	
	29.	М.	10:00 a.m	Mid-Term	
	30.	Т.	2:30 p.m 8:30 a.m 2:00 p.m	Decenoda completed Lecture by Dr. Avery R. Grant on speciation	
	31.	₩.	(-0.6, 3:40 a.m.)	Special problems	
June					
	$\frac{1}{2}$ .	Th. F.	(-0.7, 4:25 a.m.) (-0.8, 5:00 a.m.)	Special problems Marine View Rocks and Seal Cove Polyapacts	
	3. 4.	S. Su.	(-0.8, 5:40 a.m.) (-0.6, 6:15 a.m.)	Polychaeta of Moss Beach Flats Unscheduled	
	5.	М.	(-0.4, 7:00 a.m.)	Special problem	
	7.	Υ. W.	(-0.1, 7:40 a.m.) 8:30 a.m.	Special problem Freshwater Ecology, Entomostraca	
	8.	Th.	2:00 p.m 8:30 a.m 2:00 p.m.	Ostracoda, Cladocera A Freshwater Pond Botifera	
	9.	F		Special problems	
	10.	S Su.	• • • • • • • • • • • • • • • • • • • •	Special problems Free	
	12.	M.	8:30 a.m	Terrestrial Arthropoda	
	13.	т.	2:00 p.m 8:30 a.m 2:00 p.m	Field trip in Sunshine Creek Valley Bryozoa Porifera	
	14. 15. 16. 17. 18.	W. Th. F. S. Su.	8:30 a.m 8:30 a.m (-0.8, 4:00 a.m.) (-1.1, 4:40 a.m.) (-1.2, 5:15 a.m.)	Coelenterata Special problems Special problems Special problems Nye's Rock and Channel	
	19. 20. 21. 22.	M. T. W. Th.	(-1.2, 6:00 a.m.) (-1.0, 6:45 a.m.) (-0.6, 7:40 a.m.) 9:30 a.m 2:00 p.m	Frenchman's Reef Special problems Problems and collections to be in by noon Practical Examination Property checked in and packed	
	23.	F.	8:30 ā.m	Final Examination	

<u>S112</u>	AND 5119	
CENTATIVE	SCHEDULE,	1941

May

19.	М		Housing arrangements
		7:15 p.m	First meeting for general discussion
20.	т.	8:30 ā.m	S119 alone for orientation
		9:00 a.m.	S112. Introductory
		9:30 a.m.	S112, S119, Decanoda
		2.00 pm.	Decanoda
21	w	8.30 p.m.	Isonoda: 2:00 n m Amphinoda
00	m.	9.90 c m	Dolmahaata. 2:00 m m Dolwahaata
ພະ ພະ	тщ. т		Controlatera, 2:00 p.m. Pologrando
<i>د</i> ی.	r.	8:30 a.m	Gastropoda; 2:00 p.m. Pelecypoda
24.	ຽ.	8:30 a.m.	Chitons
25.	Su.	(-0.3, 5:10 a.m.)	
26.	Μ.	(-0.5 5•40 a.m.)	Field trin to Perch Rock Point, Ex. 21
27	π	-0.5 6.15 a m	Ex 21 completed: 3.00 n m test on fauna
61.1	*•	(0.0, 0.10 a.m.)	of Perch Pock Point
20	147	(-0.6, 6.50, 0.0, 1)	Field trip to tide flate The OF
۰0 <u>،</u>	W.	(-0.6, 6:50 a.m. + 1)	Fleid trip to tide flats, Ex. 27
29.	Th.	(-0.6, 7:30 a.m.)	Field trip to Second Sled Road, Ex. 22
30.	F.	(-0.4 at 8:10 a.m.)	Individual projects
31.	s.	(-0.3 at 9:00 a.m.)	Individual projects
			•

June

1. 2.	Su. M.	(-0.1 at 9:50 a.m.) 9:30 a.m.	Mid-Term: 2:30 p.m. Bryozoa
ã.	Ŧ.	8:30 a.m.	Sponges; 2:00 p.m. Pelecypoda
4.	W.	8:30 a.m	Copepoda; 2:00 p.m. Cladocera and other Branchiopoda
5.	Th.	8:30 a.m	Laboratory portion of Ex. 20 on Callia- nassa, Upogebia, and Emerita; 2:00 p.m. Coelenterates
6. 7.	F. S.	8:30 a.m (-0.7 at 3:35 a.m.)	Coelenterates; 2:00 p.m. Gastropoda Individual projects
0.	bu.	[4:28 + 50])	Field trip to tide flats, Ex. 29
9. 10. 11. 12.	M. T. W.	(-1.4 at 5:15 a.m.) (-1.5 at 6:00 a.m.) (-1.4 at 6:50 a.m.) (-1.1 at 7:40 -	Field trip to Tomales Point, Ex. 23 Field trip to Bird Island, Ex. 24 Second field trip to Tomales Point
13. 14. 15.	F. S. Su.	45) (-0.7 at 8:25 a.m.) (-0.2 at 9:15 a.m.)	Field trip to Frenchman's Reef, Ex. 25 Individual projects Individual projects
16. 17.	<u>М</u> . Т.	8:30 a.m 8:30 a.m	Identification of polychaetes Ostracoda and Rotifera; 2:00 p.m. Rolland Pond Fr. 37
18. 19.	W. Th.	8:30 a.m 8:30 a.m	Completion of study of freshwater pond Terrestrial arthropods; 2:00 p.m. Sand-dune animals. Ex. 39
20. 21. 22.	F. S Su.	8:30 a.m.	Further on terrestrial arthropods Individual projects
23. 24. 25. 26.	M. T. W. Th.	(-0.3, 4:50 a.m.) (-0.5, 5:20 a.m.) (-0.6, 5:55 a.m.) (-0.7, 6:30 a.m.)	Individual projects Tide flats, Ex. 30 and 31 Optional field trip to oyster bed, Ex. 33 Optional field trip to Duxbury Reef and Bolinas Lagoon, Ex. 26 and 28; 2:30 p.m.
27.	F.	(-0.6, 7:10 a.m.)	10 a.m. Final Examination

•

218

-

# APPENDIX B.

THE CLASSIFICATION OF INVERTEBRATES FOLLOWED IN THIS TEXT (Modified from Hyman, Borradaile and Potts, and others)

Phylum PROTOZOA1

Classes MASTIGOPHORA SARCODINA SPOROZOA INFUSORIA

Phylum PORIFERA

Classes <u>Calcarea</u> <u>Demospongiae</u> Hexactinellida

Phylum COELENTERATA

Class HYDROZOA

Order HYDROIDA

Suborders GYMNOBLASTEA (ANTHOMEDUSAE)

CALYPTOBLASTEA (LEPTOMEDUSÁE)

Order Siphonophora

Three other orders (see Hyman)

Class SCYPHOZOA

Class ANTHOZOA

Subclasses ALCYONARIA ZOANTHARIA (Sea Anemones)

Phylum CTENOPHORA Phylum PLATYNELMINTHES

Class TURBELLARIA

Orders <u>Accela</u> <u>Rhabdoccela</u> Tricladida Polycladida

Classes TREMATODA CRESTODA

Phylum <u>NEMERTEA</u> Phylum <u>ROTIFERA</u> Phylum <u>Gastrotricha</u> Phylum NEMATODA Phylum Nematomorpha

¹Explanation of meaning of four different ways of printing group names:
1. Those groups in <u>UNDERLINED</u> <u>CAPITALS</u> are given specific treatment in the exercises, or form an essential part of the classification of such groups.
2. Those groups in CAPITALS are not given specific treatment but should be known to all students of invertebrate zoology. In some cases, such as the Protozoa, these are very important groups which are not considered because they form the subject matter of other courses. In other cases the groups are of moderate importance, but are rarely encountered in the the groups are of moderate importance, but are rarely encountered in the collections dealt with here; in still other cases the animals are important but these group names are little used.

4. Those groups in lower case and not underlined do not appear in the exercises or lists, but are included here, because, in most cases, they are of equal taxonomic rank with better-known groups.

^{3.} Those group names in <u>underlined lower case</u> refer to animals given in the lists but either the animals are of subordinate importance here or these group names are little used.

Phylum Acanthocephala Phylum <u>ANNELIDA</u> Class <u>Archiannelida</u> Class <u>POLYCHAETA</u> (Families given in keys and list) Class OLIGOCHAETA Classes HIRUDINEA ECHIUROIDEA SIPUNCULOIDEA Phylum ONYCHOPHORA (or subphylum of Arthropoda) Phylum <u>ARTHROPODA</u> Subphylum CRUSTACEA Class BRANCHIOPODA Orders <u>Anostraca</u> <u>Notostraca</u> <u>Conchostraca</u> <u>CIADOCERA</u> Class <u>OSTRACODA</u> Class <u>COPEPODA</u> Orders <u>CALANOIDA</u> <u>CYCLOPOIDA</u> <u>HARPACTICOIDA</u> Class CIRRIPEDIA Thoracica Acrothoracica Orders Apoda Rhizocephala Ascothoracica Class MALACOSTRACA Subclasses Leptostraca Hoplocarida Syncarida Subclass Pericarida Orders <u>Mysidacea</u> Cumacea Tanaidacea Order ISOPODA Suborders FLABELLIFERA VALVIFERA ONISCOIDEA Order AMPHIPODA Suborders <u>GAMMARIDEA</u> Hyperiidea Caprellidea Subclass Eucarida Order Euphausiacea Order <u>DECAPODA</u>

CLASSIFICATIONS OF THE DECAPODA

Parker and Haswell	Borradaile and Potts	Pratt;	Schmitt
Suborders:	Suborders:	Suborders:	Sections:
Macrura ANOMURA BRACHYURA	(Penaeidea CARIDEA Palinura Astacura <u>ANOMURA</u> <u>ERACHYURA</u>	Natantia Reptantia	(Penaeidea ( <u>CARIDEA</u> Palinura Astacura <u>ANOMURA</u> <u>BRACHYURA</u>

Subphylum MYRIAPODA

Classes <u>CHILOPODA</u> <u>DIPLOPODA</u> <u>Symphyla</u> Pauropoda

Subphylum <u>INSECTA</u> (Divisions too numerous to give here—see texts) Subphylum <u>ARACHNIDA</u> Classes <u>Scorpionida</u> Xiphosura

<u>Acarina</u> <u>Phalangida</u> (Several other terrestrial classes) <u>PYCNOGONIDA</u>

Subphyla (?) Tardigrada Pentastomida

#### Phylum MOLLUSCA

Class AMPHINEURA

Orders <u>POLYPLACOPHORA</u> Aplacophora

Class <u>GASTROPODA</u>

Order STREPTONEURA (Prosobranchiata, prosobranchs, or strepotoneurous gastropods)

Suborder DIOTOCARDIA (Aspidobranchiata, Aspidobranchs)

#### Tribe <u>Rhipidoglossa</u>

Section <u>Zygobranchiata</u> (with paired gills; zygobranchs: abalones, keyhole limpets) Section Azygobranchiata (with single gill; azygobranchs; <u>Tegula</u>, <u>Calliostoma</u>)

Tribe Docoglossa (true limpets, Acmaea)

Suborder MONOTOGARDIA (Pectinibranchiata; pectinibranchs: all other snail-like forms)

Order OPISTHOBRANCHIATA (opisthobranchs)

Suborder TECTIBRANCHIATA (tectibranchs: sea hares) Suborder NUDIBRANCHIATA (nudibranchs)

Order PULMANATA (pulmonates: land snails and slugs) (Opisthobranchiata and Pulmonata are considered by some to be suborders of the order Euthyneura)

#### Opposed Terms

Streptoneurous vs Euthyneurous Prosobranchs vs Opisthobranchs Pectinibranchs vs Aspidobranchs Zygobranchs vs Azygobranchs Tectibranchs vs Nudibranchs Pulmonates vs Gill-breathing gastropods

Construction and the second

# Class SCAPHOPODA Class <u>PELECYPODA</u>

Orders Protobranchiata <u>Filibranchiata</u> <u>Eulamellibranchiata</u> Septibranchiata

#### Class CEPHALOPODA

Phylum KAMPTOZOA (Endoprocta) Phylum <u>BRYOZOA</u>

Orders <u>Phylactolaemata</u> <u>Gymnolaemata</u>

Phylum BRACHIOPODA

- Phylum Chaetognatha Phylum PHORONIDEA Phylum <u>ECHINODERMATA</u>

Classes ASTEROIDEA OPHIUROIDEA ECHINOIDEA HOLOTHUROIDEA CRINOIDEA

Phylum CHORDATA

Subphylum HEMICHORDATA Subphylum UROCHORDATA

Classes Larvacea Ascidiacea Thaliacea

Subphylum CEPHALOCHORDATA Subphylum CRANIATA

Class PISCES Class Amphibia Class Reptilia Class AVES Class MAMMALIA

# **APPENDIX C.**

ATTEMPT AT A FIELD KEY TO SOME OF THE COMMONER ALGAE OF MOSS BEACH (For further identification see mounted specimens and mono-graphs by Setchell and Gardner)

A. Green Algae B. Brown Algae C. Red Algae (oftentimes blackish or brownish)

### A. Green Algae

·	
1.1.	Made up of slender filaments
2.	A fine, green felting over tops of rocks covered only at high tide
2.	Small, but thick, felted masses; common on Moss Beach Flats, scattered? Cladophora
<u>B.</u>	Brown Algae
1. 1	With naked, stout, cylindrical stipe or "stem," blades only at its apex; found chiefly in outer zone of breakers
±•	
2. 2. 2.	Stipe less than two feet long, erect, with a crown of many short blades. See Palm Postelsia palmaeformis Stipe averaging two feet or more, with a single long blade Laminaria Stipe very long, up to 60 feet, stipe hollow and ending in a swollen, hollow bulb; many long blades Nereocystis
3.	Unilateral branching along one side of long cylindrical stipe; blades broad, with a bulb-like float at base; edges of blades with scattered tag-like outgrowths
3.	Bilateral branching along sides of flattened rachis; blades small; interspersed with bladder-like floats
3.	Dichotomously branched fronds; branches less than a centimeter wide
C.	Red Algae
1. 1.	Fronds cylindrical       2         Fronds more or less flattened       3
2.	Forming low, stiff, reddish-brown masses, seldom more than an inch in height; densely branched, covered with very tiny, spinose branches
2.	Fronds blackish, elongated, hanging, several inches in length, ultimate branches several millimeters long, all of about same length . Microcladia
2.	Fronds longer, more open, ultimate branches thicker, scattered
3.	Fronds very broad, little-branched, iridescent in color
з.	Fronds narrower, much branched 4
4.	Fronds only slightly flattened, finely branched and delicate, bright
4.	red; often epiphytic <i>Microcladia</i> Fronds flattened, dichotomously branched, varying from broad red blades to narrow, much-branched brownish blades <i>Gigartina</i>

#### GENERAL ANATOMY AND CLASSIFICATION OF INVERTEBRATES

Borradaile and Potts. 1935. The invertebrate (probably the best one-volume text)

text)
 Bronn. <u>Klassen und Ordnungen des Tierreichs</u> (many volumes, a large part of which remains to be published)
 <u>Cambridge Natural History</u>. 1895-1909 (several volumes)
 Hyman, L. H. 1904. <u>The invertebrates</u>. vol. 1. <u>Protozoa through Ctenophora</u>. (other volumes to be published)
 Wikenthel W. 1992 to date. Headback der Zealerie (gewent relumes renu volumes)

Kükenthal, W. 1923 to date. <u>Handbuch der Zoologie</u> (several volumes-many parts yet to be published: bibliographies very good)

Lankester, E. Ray. 1900-09. <u>A treatise of zoology</u> (several volumes) Parker and Haswell. 1940. <u>Textbook of zoology</u>. Revised by Lowenstein. Vol. 1. Invertebrates.

<u>Tierreich. Das.</u> (A series of systematic monographs on various parts of the animal kingdom, published during the past 50 years)

#### GENERAL OR AMERICAN FAUNA

Johnstone, Scott and Chadwick. 1924. The marine plankton Morgan, A. H. 1930. <u>Field book of fields and streams</u>
Needham and Needham. 1930. <u>A guide to the study of fresh-water biology</u>
Pratt, H. S. 1935. <u>A manual of the common invertebrate animals</u> (revised edition, Blakiston)
Ward and Whipple. 1918. <u>Freshwater biology</u>

#### PACIFIC COAST FAUNA

Guberlet. 1936. <u>Animals of the seashore</u> Johnson and Snook. 1927. <u>Seashore animals of the Pacific Coast</u> Ricketts and Calvin. 1939. Between Pacific tides

#### ECOLOGY --- GENERAL

Allee, W. C. 1938. <u>The social life of animals</u> Chapman, R. N. 1931. <u>Animal ecology</u> Crowder, W. 1928. <u>A naturalist at the seashore</u> Ekman, S. 1935. <u>Tiergeographie des Meeres</u> Elton, C. 1927. <u>Animal ecology</u> Flattely and Walton. 1922. <u>The biology of the seashore</u> Hesse, Allee, and Schmidt. 1937. <u>Ecological animal geography</u> MacGinitie, G. E. 1938. "Marine littoral communities," <u>Amer. Midland Natural-ist</u> (see bibliography) Pearse, A. S. 1939. <u>Animal ecology</u> Shelford, V. E. 1929. <u>Laboratory and field ecology</u>

#### ECOLOGY-SPECIFIC LOCALITIES OR SITUATIONS

Allee, W. C. 1923. Studies in marine ecology. I and II. <u>Biol. Bull., 44</u>
Allee, W. C. 1934. "Concerning the organization of marine coastal communities," <u>Ecol. Monographs</u>, 4.
Eggleton, F. E. "Fresh-water communities," <u>Amer. Midland Naturalist, 21</u>
Hewatt, N. G. 1937. "Ecological studies on selected marine intertidal communi-ties of Monterey Bay, California," <u>Amer. Midland Naturalist, 18</u>
MacGinitie, G. E. 1935. "Ecological aspects of a California marine estuary (Elkhorn Slough)," <u>Amer. Midland Naturalist, 16</u>. 1937. "The use of mucus by marine plankton feeders," <u>Science, 86</u>: 398. 1938. "Notes on the natu-ral history of some marine animals," <u>Amer. Midland Naturalist, 19</u>
Newcombe, C. L. 1935. "Certain environmental factors of a sand beach," <u>J. Ecol., 23</u>
Pierce, Dwight, and Pool. 1938, 1939. The fauna and flora of the El Segundo sand dunes. I-V, <u>Bull. Southern Calif. Acad. Sci</u>.

sand dunes. I-V, Bull. Southern Calif. Acad. Sci.

\$

Shelford and Tower. Animal communities of San Juan Channel and adjacent waters. Publ. Puget Sound Biol. Sta., 5

#### PORIFERA

de Laubenfels, M. W. 1932. "The marine and fresh water sponges of California," <u>Proc. U.S. Nat. Mus.</u>, <u>81</u>. 1936. "A discussion of the sponge fauna of the Dry Tortugas, with material for a revision of the families and orders of the *Porifera*." <u>Carn. Inst. Publ</u>., No. 467.

#### COELENTERATA

Hydrozoa

Fisher, W. K. 1938. "Hydrocorals of the North Pacific Ocean," Proc. U.S. Nat.

Mus., 84 Fraser, C. McL. 1937. Hydroids of the Pacific Coast of Canada and the United

States

Mayer, A. G. 1910."Medusae of the world. I. The Hydromedusae." Carn. Inst. Bull. <u>No. 109</u>, vols. 1, 2

#### Scyphozoa

Mayer, A. G. 1910. "Medusae of the world. II. The Scyphomedusae." Carn. Inst. Bull. No. 109, vol. 3

#### Anthozoa

Harrison, A. H., Zool. 112 Report. <u>A classification of the sea anemones of the San Francisco Bay region</u> Kemp, N. E., Zool. 112 Report. <u>The anemones of the Moss Beach area</u>

#### PLATYHELMINTHES

Turbellaria

Boone, E. S. 1929. "Five new polyclads from the California coast," Ann. Mag. Nat. Hist., ser. 10, vol. 3 Heath and McGregor, 1912. "New polyclads from Monterey Bay, California," Proc. Acad. Nat. Sci. Phila., 64

NEMERTEA

Coe, W. R. 1904. <u>Nemertinea, Harriman Alaska Expedition, 2</u> (pts. 1,2). 1905. "Nemerteans of the west and northwest coasts of America," <u>Bull. Ma Comp. Zool.</u>, Harvard, 47. 1940. Revision of the Nemertean fauna of the Pacific Coast, etc., <u>Allen Hancock Pacific Expedition</u>, <u>2</u> Mus.

#### ROTIFERA

(For identification of freshwater rotifers, see Ward and Whipple or Pratt, Revised Edition)

Harring, H. K. 1913. "Synopsis of the Rotatoria," <u>Bull. U.S. Nat. Mus., 81</u> Hudson, C. T. and Goss, P. H. <u>The Rotifera</u>. 2 vols., 1886. Supplement, 1889

#### ANNELIDA Polychaeta

Hartman, O., Ph.D. Dissertation. <u>Polychaetous annelids of the littoral zone of California</u>. 1936. "Nomenclatorial changes involving California Polychaete worms," <u>Jour. Wash. Acad. Sci.</u>, 26. 1936 and later. "Papers on the Families Spionidae, Nereidae, Eunicidae, Stauronereidae, Opheliidae, Phyllodocidae," <u>Univ. Calif. Publ. Zool.</u>, 41. 1936. New species of polychaetous annelids of the family Nereidae from California, <u>Proc. U.S. Nat. Mus.</u>, 83. 1938. "A revision of the Nephtyidae from the northeast Pacific," <u>Proc. U.S. Nat. Mus.</u>, 85. 1939. "New species of polychaetous annelids from Southern California," <u>Alan Hancock Pacific Expeditions</u>, 7. 1939, 1940. "Polychaetous Annelids, I and II," <u>Alan Hancock Pacific Expeditions</u>, 7: 289
Fisher and MacGinitie. 1928. "Natural history of an echiuroid worm (*Urechis*)," <u>Ann. Mag. Nat. Hist.</u>, ser. 10, vol. 1.

Ann. Mag. Nat. Hist., ser. 10, vol. 1. Newby, W. W. 1940. "The embryology of the echiuroid worm Urechis caupo," <u>Amer.</u> <u>Phil. Soc.</u>, 16

#### SIPUNCULOIDEA

Brown, H. E., Zool. Report. <u>The sipunculids of the Moss Beach, California, area</u> Fisher, W. K. 1928. "New sipunculoidea from California," <u>Ann. Mag. Nat. Hist</u>., ser. 10, vol. 1

#### ARTHROPODA

#### Crustacea, Entomostraca

(For freshwater Entomostraca, see in addition to those given below, articles in Ward and Whipple or other manual)

Johnson, D., Zool. 112 Report. Freshwater Cladocera of the San Francisco Bay

region Juday, C. 1907. "Cladocera of the San Diego region (marine)." <u>Univ. California</u> <u>Publ. Zool., 3</u>

#### Ostracoda

Juday, C. 1906-7. Ostracoda of the San Diego region (marine). <u>Univ. Calif.</u> <u>Publ. Zool., 3</u> Skogsberg, T. 1928. "Studies on marine ostracods," <u>Occ. Papers. California</u>

Skogsberg, T. 1928. <u>Acad. Sci., 15</u>

#### <u>Copepoda</u> (Marine)

Esterly, C. 0. 1924. The free swimming Copepoda of San Francisco Bay. Univ. Calif. Publ. Zool., 26
Fraser, J. H. 1936. "The occurrence, ecology, and life history of *Tigriopus fulvus* (Fisher)," Jour. Mar. Biol. Assoc., 20. 1936. "The distribution of rock pool copepods according to tidal level," Jour. Animal Ecol., 5
Light and Hartman. 1937. A review of the genera Clausidium and Hemicyclops.

Light and Hartman. 1937. A review of the genera Clausidium and Hemicyclops. <u>Univ. Calif. Publ. Zool., 41</u>
Monk, C. R. 1941. "Marine harpacticoid copepods from California," <u>Trans. Amer.</u> <u>Micr. Soc., 60</u>
Wilson, C. B. 1909. "North American parasitic Copepoda," <u>Proc. U.S. Nat. Mus.,</u> <u>35</u>. 1932. The Copepoda of the Woods Hole region, Massachusetts. <u>Bull.</u> <u>U.S. Nat. Mus., 158</u> (both marine and freshwater). 1935. "Parasitic cope-pods from the Pacific Coast," <u>Amer. Midland Naturalist, 16</u>
Various special reports on the red tide pool copepod, *Tigriopus californicus*

(= T. fulous or T. triangulus)

#### Copepoda (Freshwater)

Coker, R. E. 1934. "Contribution to knowledge of North American harpacticoid freshwater copepod Crustacea," Jour. Elisha Mitchell Sci. Soc., 50
 Illg, Paul. Ph.D. thesis. Cyclopoid Copepoda of California
 Kiefer, F. 1929. "Crustacea Copepoda. 2. Cyclopoida Gnathostoma," in Das Tier-

reich, 53 Light, S. F. 1938. New subgenera and species of diaptomid copepods, <u>Univ. Calif.</u> <u>Publ. Zool., 43</u>. 1939. New American subgenera of *Diaptomus*. <u>Trans. Amer.</u> <u>Micr. Soc., 58</u> Marsh, C. D. 1929. "Distribution and key of the North American copepods of the

genus Diaptomus," Proc. U.S. Nat. Mus., 75

#### Branchiura

Meehean, O. L. 1940. "A review of the parasitic Crustacea of the genus Argulus," Proc. U.S. Nat. Mus., 88

#### Cirripedia

Cornwall, I. E. 1935. "On the nervous system of four British Columbian barnacles," J. Biol. Board Can., 1. 1937. "A new species of barnacle from the coast of California," <u>Ann. Mag. Nat. Hist</u>., ser. 10, vol. 20
Henry, Dora P. 1938. "Gregarines of the barnacles from Puget Sound and adja-cent areas," <u>Archiv. Protistenkunde, 90</u>. 1940. "Notes on some pedunculate barnacles from the North Pacific," <u>Proc. U.S. Nat. Mus., 88</u>. 1940. Cirri-pedia of Puget Sound with a key to the species. <u>Univ. Wash. Publ. Oceanog</u>-repty. 4 raphy, 4

Michener, C. D., Zool. 112 Report. <u>Barnacles of the Moss Beach region</u> Pilsbry, H. A. 1916. "The sessile barnacles," <u>Bull. U.S. Nat. Mus., 93</u> Childred Worldw. Rice, 1930. Articles on barnacles in <u>Publ. Puget</u> Shelford, Tower, Worley, Rice. 1930. Articles on barnacles in <u>Publ</u> Sound Biol. Sta., 7

#### Isopoda

Holmes, S. J. 1909. "Four new species of isopods from California," Proc. U.S.

Nat. Mus., 36 Kofoid, Miller, et al. 1927. Limnoria and its allies, the crustacean borers, in Hill and Kofoid, <u>Marine borers and their relation to marine construc</u>-

In hill and koloid, <u>marine borers and their relation to marine construction on the Pacific coast</u>
 Miller, M. A. 1938. Comparative ecological studies on the terrestrial isopod Crustacea of the San Francisco Bay Region. <u>Calif. Publ. Zool., 43</u>
 Richardson, H. 1905. Monograph on the isopods of North America. <u>Bull. U.S. Nat. Mus., 54</u>
 Van Name, W. G. 1936. The American land and freshwater isopod Crustacea. <u>Bull.</u>

Amer. Mus. Nat. Hist., 71

#### Amphipoda

Alderman, A. L. 1936. Some new and little known amphipods of California. <u>Univ.</u> <u>Calif. Publ. Zool., 41</u>
 Holmes, S. J. 1908. "Amphipods collected by the 'Albatross' off the west coast of North America," <u>Proc. U.S. Nat. Mus., 35</u>
 Rodholm, A. K., M.A. thesis (copy in Z-112 collection). <u>Contributions to the biology of the tube-building amphipod. Corophium bonellii</u>
 Shoemaker, C. 1925. The Amphipoda collected by the "Albatross" in 1911. <u>Bull. Amer. Mus. Nat. Hist., 52</u>. 1934. "Two new species of <u>Corophium</u> from the west coast of America," <u>Jour. Wash. Acad. Sci., 24</u>
 Stebbing, T. R. 1906. The Amphipoda. I. Gammaridea, in <u>Das Tierreich, 21</u>

#### Mysidacea

Tattersall, W. 1832. Contributions to the Mysidacea of California. <u>Univ. Calif.</u> <u>Publ. Zool., 37</u>

#### Decapoda

Bonnot, P. 1932. <u>The California shrimp industry</u>. <u>Fish. Bull</u>. No. 38, Calif. Div. of Fish and Game

Fields, R. and Benton, E., Zool. 112 Report. Ecologic distribution of the porcellanid crabs (Petrolisthes, Pachycheles). Harris, M., Zool. 112 Report. An experimental study of factors responsible for

Harris, M., Zool. 112 Report. An experimental study of factors responsible for distribution of the species of *Pagurus* in the intertidal zone
MacGinitie, G. E. 1930. "Natural history of the mid shrimp, *Upogebia pugetten-*sis," <u>Ann. Mag. Nat. Hist.</u>, ser. 10, vol. 6. 1934. "The natural history of *Callianassa californiensis*," <u>Amer. Midland Naturalist</u>, 15. 1937. "Notes on the natural history of several marine Crustacea," <u>Amer. Midland Natural</u>-

<u>ist, 18</u> Lunz, C. R. jr. 1927. "Notes on Callianassa major Say," <u>Charleston Museum Leaf-</u> <u>lets, 10</u> MacKay, 1928. Callianassidae, from the west coast of North America. <u>Publ. Puget</u> Lunz, U. <u>lets</u>

<u>Sound Biol. Sta., 6</u> Mulford, A., Zool. 112 Report. Distribution of Callianassa californiensis at

Mullord, A., Zool. 112 Report. Distribution of Callianassa californiensis at Sand Point, Marin Co.
Rathbun, M. J. 1917. The grapsoid crabs of America. Bull. U.S. Nat. Mus., 97. 1925. The spider crabs of America. Bull. U.S. Nat. Mus., 129. 1930. The cancroid crabs of America. Bull. U.S. Nat. Mus., 152. 1930. The oxysto-matous and related crabs of America (California. Univ. Calif. Publ. Zool., 23 1930. The

#### Pycnogonida

Exline, Harriet I. 1936. "Pycnogonids from Puget Sound," <u>Proc. U.S. Nat. Mus</u> Hall, H. V. M. 1913. Pycnogonida from the coast of California. <u>Univ. Calif.</u> Mus., Publ.

Zool., 11 Hedpeth, J. W. 1941. "A key to the pycnogonids of the Pacific Coast of North America," <u>Trans. San Diego Society of Natural History</u>

#### Terrestrial Arachnida

# Comstock, J. H. 1940. <u>The spider book</u> Savory, T. H. 1935. <u>The Arachnida</u> (good general survey, not for identification) Machler, K. L., Zool. 112 Report. A taxonomic study of the spiders with especial reference to those collected in Strawberry Canyon (Key to genera)

#### Myriapoda

Gressitt, J. L., Zool. 112 Report. A key to the local centipedes Ellsworth, J. K. Zool. 112 Report. A key to the local millipedes

#### <u>Insecta</u> (General)

Brues and Melander. 1932. Classification of insects, a key to the known fami-lies of insects and other terrestrial arthropods. <u>Bull. Mus. Comp. Zool</u>. Harvard, 131 Essig, E. O. 1926. Insects of western North America Lutz, F. E. 1935. <u>Fieldbook of insects</u>

#### Insecta (Freshwater)

Needham, J. G., and P. R. Needham. 1930. A guide to the study of fresh-water biology.

<u>biology</u>.
Claassen, P. W. 1931. <u>Plecoptera nymphs of America (north of Mexico)</u>
Hungerford, H. B. 1919. The biology and ecology of aquatic and semi-aquatic Hemiptera. <u>Kansas Univ. Bull., 11</u>
Johannsen, O. A. 1933-37. Aquatic Diptera. Parts I-V. <u>Cornell Univ. Agr. Exp.</u> <u>Sta. Memoirs 164, 177, 205, 210</u>
Lloyd, J. T. 1921. The biology of North American caddis fly larvae. <u>Bull. Lloyd Library, 21</u>
Needham, J. G. and P. W. Claassen. 1925. <u>A monograph of the Plecoptera of America north of Mexico</u>
Needham, J. G. and H. B. Heywood. 1929. <u>A handbook of the dragenflies of North America</u>

<u>America</u>

Needham, J. G. and J. R. Traver. 1935. The biology of mayflies with a systematic account of North American species

#### Insecta (Intertidal zone)

Chamberlin, J. C. and G. F. Ferris. 1929. On *Liparocephalus* and allied genera (Coleoptera: Staphylinidae). <u>Pan-Pacific Ent.</u>, <u>5</u> Michener, Chas. D. 1939. Zool. 112 report. Some intertidal insects of the Moss

Beach region (a key to seventeen species) Van Dyke, E. C. 1918. New inter-tidal rock-dwelling Coleoptera from California.

Ent. News, 29

#### MOLLUSCA General

Keen, A. M. 1937. <u>An abridged check list of west North American Mollusca</u> Keep and Bailey. 1935. <u>West Coast shells</u> Packard, F. L. 1918. Molluscan fauna of San Francisco Bay. <u>Univ. Calif. Publ</u>.

Zool., 14 Schenck and Keen. 1936. "Marine Molluscan provinces of west North America," Proc. Amer. Phil. Joc., 77 Tryon and Pilsbry. 1879-98. Manual of conchology. structural and systematic

#### Amphineura

Berry, S. S. 1917, 1919. "Notes on western American Chitons," <u>Proc. Calif.</u> <u>Acad. Sci</u>., ser. 4: vols. 7, 9 Shelden, F., Zool. 112 Report.

#### Gastropoda

Bonnot, P. 1930. Abalones in California. <u>Calif. Fish and Game</u>, <u>16</u> Grant, A. R., Ph.D. Dissertation (copy in Z-112 collection). Systematic revision of the genus Acmaea

Hewatt, W. G. 1940. "Observations on the homing limpet, Acmaea scabra, Gould," <u>Amer. Midland Naturalist, 24</u>

MacFarland, F. M. 1906. Opisthobranchiate Mollusca from Monterey Bay. <u>Bull</u>. Bur. Fish., 25 Nicholson, J. L., Zool. 112 Report. Notes on the commoner local land shells with

Micholson, J. L., 2001. 112 Report. Notes on the commoner local land shells with descriptions and illustrations
O'Donoghue, C. H. 1926. "A list of the nudibranch Mollusca recorded from the Pacific Coast of North America," <u>Trans. Roy. Can. Inst., 15</u>
Oldroyd, I. S. 1927. <u>The marine shells of the west coast of North America</u>. Gastropoda and Scaphopoda. <u>Stanford Univ. Publ. Geol. Sci., 2</u>
Turner, F. E., Zool. 112 Report. Classification and distribution of the fresh-

water gastropods of the San Francisco Bay region Vokes, H. E., Zool. 112 Report. The smaller Gastropoda from the littoral zone

at Moss Beach

Waste, R. J., Master's Thesis. The land slugs of California Villee, C. A. and T. C. Groody. 1940. "The behavior of limpets with regard to their homing instinct," <u>Amer. Midland Naturalist</u>, <u>24</u>

#### Pelecypoda

Hewatt, W. G. 1935. "Ecological succession in the Mytilus salifornianus habitat," Ecology, 16
Hill and Kofoid (ed.). 1927. Marine borers and their relation to marine construction on the Pacific Coast (Teredo, etc.)
Keen and Frizzell. 1939. Illustrated key to west North American Pelecypoda
Oldroyd, I. S. 1924. The marine shells of the west coast of North America. Pelecypoda. Stanford Univ. Pub. Geol. Sci., 1
Rankin, E. R. 1918. The mussels of the Pacific Coast. Calif. Fish and Game, 4
Sommer and Meyer. "Mussel poisoning," Calif. and West. Med., 42
Weymouth, F. W. 1920. The edible clams, mussels and scallops of California. Fish. Bull. No. 4. California Fish and Game Comm.

#### Cephalopoda

Berry, S. S. 1910. A review of the cephalopods of western North America. <u>Bull</u>. <u>Bur. Fish., 30</u> Robson, 1929. <u>A monograph of the recent Cephalopoda</u>. Part 1. Octopoda. British

Museum

Fisher, W. K. 1923. "Brooding habits of a cephalopod," <u>Ann. Mag. Nat. Hist.</u>, ser. 9, vol. 12. 1925. "On the habits of an octopus," <u>ibid.</u>, ser. 9, vol. 15

#### BRYOZOA

Harmer, S. F. 1930. Polyzoa. Proc. Linn. Soc. London, 141; 1931. Recent work on Polyzoa. <u>Ibid.</u> <u>143</u> O'Donoghue, C. H. and E. 1925. List of Bryozoa from the vicinity of Puget

Sound. Publ. Puget Sound Biol. Sta., 5
O'Donoghue, C. H. 1926. Second list of Bryozoa from the Vancouver Island region. Contr. Can. Biol. and Fish., new ser., 3
Robertson, A. 1900, 1908, 1910. Three papers on marine Bryozoa of the west coast of North America, respectively, non-incrusting Cheilostomata, incrusting Cheilostomata, and Cyclostomata. Univ. Calif. Publ. Zool., 2, <u>4, 6</u>

#### CHAETOGNATHA

Michael, E. L. 1911. Classification and vertical distribution of the Chaetognatha of the San Diego region. Univ. Calif. Publ. Zool., 8

#### PHORONIDEA

Bullock, T. H., Zool. 112 Report. Phoronidea from Marin County Cori. 1939. Phoronidea, in Bronn's Klassen und Ordnungen des Tierreichs, 4:4:1:1

#### ECHINODERMATA Asteroidea

Fisher, W. K. 1911-1930. Asteroidea of the North Pacific and adjacent waters. Bull. U.S. Nat. Mus. 76, pts. 1-3

Verrill, A. E. 1914. Monograph of the shallow water starfishes of the northern Pacific Coast from the Arctic Ocean to California. <u>Harriman Alaska Series</u>, <u>Smithsonian Inst.</u>, <u>14</u>

#### <u> Ophiuroidea</u>

Clark, H. L. 1911. North Pacific ophiurans. <u>Bull. U.S. Nat. Mus., 75</u> May, R. M. 1924. Ophiurans of Monterey Bay. <u>Proc. Calif. Acad. Sci</u>., ser. 4, <u>13</u>

#### <u>Echinoidea</u>

Clark, H. L. 1925. <u>A catalogue of the recent sea urchins (Echinoidea)</u>. British Museum

#### Holothuroidea

Clark, H. L. 1901. "The holothurians of the Pacific coast of North America," <u>Zool. Anz., 24</u>. (See Ricketts and Calvin, p. 276, for revised nomenclature in part)

in part) Wells, W. M. 1924. "New species of holothurians from Monterey Bay," <u>Ann. Mag.</u> <u>Nat. Hist.</u>, ser. 9, vol. <u>14</u>

#### CHORDATA Tunicata

Ritter, W. E. 1913. "The simple ascidians from the northeast Pacific in the collections of the U.S. National Miseum," <u>Proc. U.S.N.M.</u>, <u>45</u>.
Ritter, W. E., and R. Forsyth. 1917. Ascidians of the littoral zone of southern California. <u>Univ. Calif. Publ. Zool.</u>, <u>16</u>

<u>Fishes</u>

Jordan, D. S. 1925. Fishes Schultz, L. P. 1936. Key to the fishes of Washington, Oregon and closely adjacent regions. Univ. Wash. Publ. Biol., 2

Birds

Hoffman, Ralph. Guide to the birds of the Pacific States

# INDEX

Acmaec, distribution, 201 (Moss Beach); 207 (Dillon Beach); keys to, 133 (in Gastropod key); 180 (Point Richmond) Acarina, 118 Algae, key to, 223 Amphineura, 126 Amphipoda, 93; key to Gammaridea, 95; list of, 102; of Point Richmond, 180 Amphipods, see Amphipoda, 93 Annelida, 28; of Point Richmond, 18 Anthozoa, see sea anemones, 19 Arachnida, 118 Araneida, 118 Archiannelida, see Annelida, 28 Arguloidea, see Branchiura, 80 Argulus, see Branchiura, 80 Argulus, see Branchiura, 80 Arthropoda, 66; terrestrial, 116 Ascidians, 166; key to, 166 Asellota, see Isopoda, 84 Aves, 171 Bermelog, 80; key to, 82 Barnacles, 80; key to, 82 Birds, 171 Bird Island, 209 Bird Rock, 209 Bivalves, see Pelecypoda, 150 Bolinas Lagoon, 211 Borers, 210 Borers, 210 Brachiopoda, 161 Branchiopoda, 7 Branchiura, 80 Brittle stars, 161 Bryozoa, 156; key to, 157 Calanoida, see Copepoda, 73 Callianassa, 207 Calyssozoa, 156 Centipedes, 117 Cephalopoda, 125 Chelifera, see Isopoda, 84 Chilopoda, 117 Chitons, 126; key to, 127; list of, 129 Chordata, 165 Chordates, 165 Chordates, 165 Cirripedia, 80; key to barnacles, 82; list of, 83 Cladocera, 70; key to genera, 71 Classification, 1, 219 Coelenterata, 11 Collections, 201 (Ex. 13), 202 (Ex. 14) Common names, 4 Copepoda, 73; key to, 76; list of, 79 Cranny-dwellers, 210 Crustacea, 66; key to groups of, 66; types of, Plates I, II Ctenophora, 21 Cumacea, 84 Cvelopoida, see Copepoda, 73 Cyclopoida, see Copepoda, 73 Daddy longlegs, see Phalangida, 119 Decapoda, 104; key to, 104; list of, 114; of Point Richmond, 179

Dillon Beach, 185, 205 Diplopoda, 117 Drake's Cave, 200 Earthworms, see Oligochaeta, 64 Echinodermata, 161 Echinoderms, 161; key to, 163; list of, 165 Echiuroidea, 65 Ecologic succession, 212 Ectoprocta, 156 Eelgrass, broad-leaved (Zostera), 211; narrow-leaved (Phyllospadix), 197. 209 Emerita, 207 Enteropneusta, 165 Entoprocta, 156 Eucarida, 104 Field trips, Bird Island, 209; Bolinas Lagoon, 210; Dillon Beach, 185; Drake's Cave, 200; Duxbury Reef, 209; Frenchman's Reef, 197; fresh-water pond, 191; Fruitvale Bridge, 190; Halossecion Flats, 182, 196. Water point, 151; Fruitvale bridge, 190; Halosaccion Flats, 182, 196; Iridaea Channel, 198; Inverness, 212; Lake Merritt, 188; list for Dillon Beach, 206; Marine View Rocks and Seal Cove, 199; Moss Beach Flats, 195; Nye's Rock, 199; of the apping sometry 177; output of the spring semester, 177; oyster beds, 213; Perch Rock Point, 208; Point Richmond, 177; Sand Rocks, 196; Second Sled Road, 209; Strawberry Canyon, 192; tide flats (To-males Bay), 210, 211, 212 Field work, directions for, 174; field notes, 175; field trips, see above Flatworms, 22 Frenchman's Reef, 197, 210 Fruitvale Bridge, 190 Garden centipedes, see Symphyla, 117 Gastropoda, 130 Gastropoda, 130; key to freshwater snails, 146; list of gastropods, 147; key to land slugs, 147; key to marine shelled, 123; key to nudibranchs, 144; key to shelled land pulmonates, 146 strotricha, 27 Gastrotricha, 27 Halosaccion Flats, 182, 196 Harpacticoida, see Copepoda, Harvestmen, see Phalangida, 119 Hemichorda, 165 Hirudinea, 65 Hydroids, 12; key to, 16; list of, 18 Individual projects, 193, 201-204, 214 Insecta, 118 Insecta, 110 Insects, 118 Iridaea Channel, 198 Isopoda, general key, 87; key to orders, 84; list of, 92; of Point Pichmond, 179

Keys: Acmaea, 133, 180; Algae, 223; Amphipoda, 95 (general), 180 (Point Richmond), 188 (Lake Merritt); An-Amphipoda, 55 (general), 100 (100 Richmond), 188 (Lake Merritt); An-nelida, 190 (Lake Merritt); ascid-ians, 166; barnacles, 82; Bryozoa, 157; chitons, 127; Cladocera, 71; Copepoda, 76; Crustacea, 66; Deca-poda, 104 (general), 179 (Point Richmond); earthworms, 64; echino-derms, 163; fish, 170; Gastropoda, 133 (marine shelled), 144 (nudi-brenchs) 146 (freshwater. shelled branchs), 146 (freshwater, shelled land pulmonates), 147 (land slugs); hydroids, 16; isopods, 84 (orders), 87 (general), 179 (Point Richmond); Nemertea, 23; Pelecypoda, 150; Polychaeta, 34; Porifera, 9; Pycno-gonida, 119; Rotifera, 26; sea anem-ones, 19; Sipunculoidea, 65; tuni-cates, 166; use of, 3 Lake Merritt, 188 Leeches, see Hirudinea, 65 Macoma, 210, 211, 212 Malacostraca, 84 Mammals, 173 branchs), 146 (freshwater, shelled Mammals, 173 Marine View Rocks, 199 Millipedes, 117 Mites, 118 Mollusca, 125 Moss Beach, 195 Myriapoda, 117 Mysidacea, 84 Nemertea, 23; key to, 23; list of, 25 Nemerteans, see Nemertea, 23 Nemertinea, see Nemertea, 23 Nestlers, 210 Nudibranchs, 144; key to, 144 Nye's Rock, 199 Octopus, 125 Oligochaeta, 64; key to earthworms. 64 Oniscoidea, see Isopoda, 84 Ostracoda, 73 Paroctopus, 125 Pelecypoda, 150 Pelecypods, 150; key to, 150; list of, 155 Peracarida, 84 Perch Rock Point, 208 Phalangida, 119 Phoronidea, 161 Phoronis, see Phoronopsis, 161 Phoronopsis, 161, 210-212 Phyllospadix, or narrow-leaved eel-grass, 211 Pisces, 169 Plankton, 213

Platyhelminthes, 22 riatynelmintnes, 22
Polychaeta, 28; distribution, 204
 (Dillon Beach), 206 (Moss Beach);
 key to, 34; list of, 60; types of,
 fig. 17, plates II-IX
Polyplacophora, see Amphineura, 126
Porifera, 6; key to Moss Beach spe cies, 9; list of, 10
Pyenogonida, 119, key to, 119 cles, 9; 11st of, 10 Pycnogonida, 119; key to, 119 Red copepod (*Tigriopus*), 203 Rotifera, 25; key to, 26; list of, 27 S112, 193 S119, 193, 204 Sand Rocks, 196 Scaphopoda, 125 Schudiger 216 Scaphopoda, 125 Schedules, 216 Schizothaerus, 210, 211 Scientific names, use of, 4 Scorpionida, 118 Scorpions, 118 Scophona, 11 Sea anemones, key to, 19; list of, 21 Sea cucumbers, 161 Sea stars, 161 Seal Cove, 199 Scoord Slad Pood 209 Second Sled Road, 209 Second Sled Road, 209 Siphonaphora, 11 Sipunculoidea, 65; key to, 65 Slugs, key to, 147 Snails, 133; key to marine snails, 133; key to genera of freshwater snails, 146; key to shelled land pulmonates, 146 Sneedel problems, 193, 204, 214 Special problems, 193, 204, 214 Spiders, 118 Sponges, 6 Starfish, see sea stars, 161 Strawberry Canyon, 192 Summer Course, 176, 193 Symphyla, 117 Tanaidacea, see Chelifera, 84 Taxonomy, 5, Appendix B, 219 Terrestrial arthropods, 116 Ticks, 118 Tigriopus, 203 Tomales Bay, 185 Tomales Day, 100 Tomales Point, 185, Maps IV, V Tooth-shells, see Scaphopoda, 125 Tunicates, 165; key to, 166 Upogebia, 207 Urochorda, 165 Valvifera, see Isopoda, 84 Vernacular names, see common names, 4 Vertebrates, 169 Zostera, broad-leaved eelgrass, 211