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Introduction 

It has been widely documented that plasma ET-1 and big ET-1 levels are increased in 

patients within a day of onset of acute myocardial infarction [1,2,3,4].  Similar 

changes in systemic plasma ET-1 are seen in animal models of myocardial ischaemia 

[5,6].  The source of the released ET-1 appears to be the area subjected to ischaemic 

damage, since in a study in anaesthetised pigs both short and long periods of left 

anterior descending (LAD) coronary artery occlusion were found to enhance overflow 

of ET-1 from the area of myocardium subjected to the ischaemia/reperfusion insult 

[7].  The myocardial tissue level of ET-1 has been found to be increased by 3 to 7 fold 

in the ischaemic area compared to the non-ischaemic myocardium, suggesting an 

increased biosynthesis of ET-1 during ischaemia/reperfusion [5,7]. Indeed, the 

demonstration of increased ET-1 mRNA levels in cardiomyocytes subjected to 

ischaemia [8], supports this notion that that the raised circulating levels of endothelin 

are not simply due to release of stored peptide.  The observation that ischaemia and 

reperfusion increases 125I-labelled ET-1 binding sites in rat cardiac membranes [9] 

further supports the view that the endothelin system is up-regulated during these 

events, although the observation that there is no difference in ET-1 mRNA levels 

between animals subjected to ischaemia only and hearts subjected to ischaemia 

followed by reperfusion, implies that it is ischaemia that stimulates enhanced ET-1 

production.  Taken together, these observations have led to the concept that 

endothelin may play an important role in determining the outcome of myocardial 

ischaemia/reperfusion.   

 

Based on our knowledge that ET-1 is a potent vasoconstrictor peptide, early 

hypotheses focused on the role of ET-1 as a detrimental factor in the 
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ischaemic/reperfused heart.  However, over the last decade or so, as our understanding 

of the cellular effects of endothelin has extended beyond that of vasoconstriction, 

evidence is emerging that endothelin may play a very complex role in the setting of 

the ischaemic heart, with the potential to both contribute to cellular injury and cellular 

repair.  The aim of this review therefore is to provide an overview of the effects of 

endothelin on the cardiomyocyte, in the setting of myocardial ischaemia, and within 

this to consider not only its actions mediated through vasoconstriction, but also 

through its effects on ion channels, cellular integrity and inflammatory cells.   

 

Contribution of endothelin to ischaemia/reperfusion-induced myocardial injury. 

The possibility that the coronary vasoconstrictor effects of endothelin could play a 

role in the development of injury resulting from myocardial ischaemia arose following 

a number of demonstrations that intracoronary infusion of exogenous ET-1 reduces 

coronary blood flow by approximately 90% [10-12], resulting in marked myocardial 

ischaemia.  Substantive evidence for a contributory role of endogenous ET-1 in infarct 

extension subsequently emanated from studies that demonstrated that a monoclonal 

antibody to ET-1 can reduce infarct size in rats following ischaemia/reperfusion [5]. 

The ensuing development of both selective ETA receptor and mixed ETA/ETB receptor 

antagonists led to the opportunity to demonstrate that blocking the actions of 

endogenous ET-1 prior to the onset of ischaemia resulted in preservation of the 

myocardium.  Subsequently, there is now a very large literature to demonstrate that 

both ETA-selective (e.g. BQ123; [13]) and mixed ETA/ETB receptor antagonists (e.g. 

LU135252 and bosentan; [12, 14]) can reduce myocardial infarct size following 

ischaemia and reperfusion.  Since ETB receptor blockade does not appear to be a 
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prerequisite to observe this effect, this led to the conclusion that ETA receptors 

mediate the actions of endothelin that contribute to tissue injury. 

 

Blockade of the intense coronary vasoconstriction induced by endothelin, which 

would contribute to the “no-reflow” phenomenon, can be considered a prime 

candidate for the mechanism underlying the protective effects of endothelin 

antagonists on cardiomyocyte integrity.  However, there are other actions of 

endothelin that may also contribute to tissue injury.  For example, ET-1 is known to 

activate polymorphonuclear leukocytes to generate reactive oxygen species [15,16], 

which have been identified as mediators of reperfusion injury, and studies with the 

ETA receptor antagonist LU135252 have shown that this agent reduces both 

myocardial necrosis and tissue myeloperoxidase activity in the ischaemia/reperfused 

heart [17].  Furthermore, the protective effects of ET-1 antagonists have been 

proposed to involve inhibition of ET-1-induced activation of phospholipase C and 

subsequent release of Ca2+ [18], superoxide production [19] and suppression of NO 

production [20,21]. 

 

Although the majority of studies assessing the effects of ET-1 antagonists on infarct 

size demonstrate a cardioprotection, there are also numerous studies that report no 

beneficial effects in the setting of myocardial ischaemia.  Although both bosentan [12] 

and BQ123 [13,22,23] have shown cardioprotective effects in various animal models, 

there are several studies using these agents that have failed to demonstrate protection 

against myocardial infarction [24,25].  Studies with other ETA selective (FR-139317 

and PD-156707) antagonists have also shown either a reduction in [26,27] or no effect 

on [28] infarct size.  There are several explanations for these conflicting findings.  
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First, the outcome may be dependent upon the animal model used, although this can 

not always explain the discrepancy since studies with the same antagonist in the same 

species do not always agree [29,30].  A second explanation could be the dose 

employed since there is evidence that high doses of ETA receptor antagonists may 

block the low affinity ETB binding site linked to nitric oxide release [31], which 

would abrogate any potentially protective contribution of nitric oxide production 

through activation of these receptors by endogenous endothelin, but not the high 

affinity ETB binding site linked to vasoconstriction. A similar argument may apply to 

mixed ETA/ETB receptor antagonists, since they too appear to possess different 

affinities for two different ETB receptor subtypes [32].   Neither of these explanations 

can account for all of the incongruities between the large number of studies using ET 

receptor antagonists against myocardial infarction, giving us an inkling that perhaps, 

in the setting of the ischaemic heart, the actions of ET-1 in myocardial survival cannot 

all be labelled as “bad”. 

 

Cardioprotective effects of ET-1 mediated by the ETA receptor 

Following on from the endothelin antagonist revolution, a small number of studies 

have emerged to demonstrate that, in the in vivo and in vitro rabbit heart, exogenous 

administration of ET-1 as a preconditioning stimulus can reduce myocardial infarct 

size [33,34], with the subsequent confirmation of this effect in the isolated rat heart 

[35].  These studies also provided evidence that this effect appeared to be achieved 

through ETA receptor-mediated activation of protein kinase C and KATP channels, as 

has been suggested for ischaemic preconditioning [36].  This has recently been 

corroborated in an in vivo rat study [37] which provides evidence to support the 

hypothesis that it is activation of the mitochondrial KATP channel (through the ETA 
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receptor; [38]) that is responsible for ET-1 induced cardioprotection.  However, as we 

begin to understand ET-1 physiology a little more, there are several alternative 

paradigms that might explain ETA receptor mediated cardioprotection. 

 

Inhibition of cardiac myocyte apoptosis. 

There is growing evidence that apoptosis is associated with acute myocardial 

infarction, with apoptotic cardiomyocytes being found predominantly in the hypo-

perfused border area lying between the “normal” myocardium and the core of the 

infarct (reviewed in [39]). Moreover, hypoxia and re-introduction of oxygen in 

isolated cardiomyocytes has been shown to induce apoptosis [40,41]. Evidence for a 

pathophysiological significance of apoptosis emanates from studies that have 

demonstrated the ability of caspase inhibitors to reduce infarct size [42].  There is now 

increasing evidence to show that ET-1 can inhibit apoptosis in cardiomyocytes [43], 

as well as other cells, through a signalling mechanism that involves induction of 

GATA-4 [44], which is one of a number of DNA binding proteins responsible for 

regulating cell lineage differentiation, progenitor cell proliferation and organ 

morphogenesis [39].  ET-1 has been shown to induce phosphorylation of GATA-4 

[44] in an atrial cell line, to increase the interaction between GATA-4 and NFATc in 

cardiomyocytes [45] and increase GATA-4 DNA-binding activity [44], all of which 

may contribute to its anti-apoptotic effect.  Furthermore, PPARγ has been implicated 

in the perturbation of the anti-apoptotic signalling pathway of ET-1, since activators 

of PPARγ inhibit the cardiomyocyte protection afforded by ET-1 [46].  Moreover, 

ET-1 has recently been shown to activate a protective pathway that is unique to 

cardiomyocytes, in addition to common pathways among other cell types [47], which 

provides an exciting avenue to explore for selective inhibition of apoptosis within the 
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heart.  Interestingly, ET-1 has been shown to act through stabilisation of the 

mitochondrial membrane to protect the cardiomyocyte from apoptosis, rather than 

through preservation of the mitochondrial respiratory chain [48], thus implying that its 

action is required prior to the induction of injury, rather than once injury has begun,  

Taking this evidence together, it would therefore be of great interest to elucidate 

whether or not inhibition of apoptosis represents a mechanism by which exogenous 

ET-1 improves cardiomyocyte survival during ischaemia/reperfusion. 

 

Mast cell activation 

While the traditional view regarding ET-1 release in the ischaemic heart is that it 

largely emanates from the vascular endothelium, we now know that it is generated by 

a range of cells, including granulation tissue and fibroblasts [49,50], at the site of 

infarction.  One very early observation of an alternative source of ET-1 comes from 

studies by Ehrenreich et al [51], who demonstrated that mast cells synthesize and 

secrete ET-1.  Furthermore, these cells were also seen to express ETA receptors.  

Since then, ET-1 has been shown to induce mast cell degranulation in the gut [52] 

and, more recently, in the rat heart [53].  Recent work from our own group has 

similarly demonstrated mast cell degranulation in response to ET-1 in the murine 

heart, with an associated increase in tryptase activity in the myocardium [54].  Mast 

cells are recognised as important sentinels of the innate immune response [55] and 

have long been implicated in the inflammatory events that occur after a myocardial 

infarction.  The effects of ET-1 on mast cell degranulation appear to be dependent 

upon both the type of mast cell (e.g. bone-marrow-derived versus fetal skin-derived 

mast cells) [56] and on the microenvironment (reviewed in [57]) and, until very 

recently, a phenomenon that could not be easily explained. However, the recent study 
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by Maurer et al [58] has provided unique insight into what now appears to be an 

ingenious homeostatic mechanism by which ET-1 induced stimulation of mast cells 

results in protection against ET-1 mediated toxicity.  In these studies, mast cell 

deficient mice administered ET-1 intraperitoneally fared much worse with respect to 

toxicity to ET-1 than wild type mice.  Through an elegant series of experiments, the 

authors demonstrated that one of the mechanisms by which mast cell-mediated 

protection against ET-1 associated pathology is achieved is through a reduction in the 

concentration of ET-1 by release of proteolytic enzymes.  This observation implies a 

“double-edged sword” role for endothelin, whereby not only is it responsible for 

inducing damage, but also for limiting its own effects.  In the setting of myocardial 

ischaemia/reperfusion, therefore, this may offer a possible explanation for the 

cardioprotective effects of an agent that, upon its original discovery, was 

automatically labelled as a “bad guy”.  

 

Cardioprotective effects mediated through the ETB receptor. 

The above evidence implying a cardioprotective role for ET-1 via an ETA receptor 

mechanism is all well and good, but we should not overlook the potential role of the 

action of exogenous ET-1 at the ETB receptor.  Based upon observations that short 

term ischaemia/reperfusion in the isolated rat heart results in a trend to an increase in 

ETB, but not ETA receptor, binding sites  [59]) and an increase in mRNA expression 

for both ETA and ETB receptors [60], we recently undertook a series of studies to 

determine the effects of ETB receptor activation with the ETB receptor agonist 

sarafotoxin 6c (S6c) on myocardial infarct size and on ischaemia/reperfusion induced 

changes in ETA and ETB receptor mRNA levels in the in vivo rat heart.  We 

demonstrated that while ischaemia/reperfusion resulted in a marked reduction in 
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mRNA for both receptor subtypes in the ischaemic (but not the normal) zone of the 

heart, pre-treatment with S6c significantly reduced myocardial infarct size 

concomitant with a preservation of ETB receptor mRNA [61].  Preservation of ETB 

receptors within the ischaemic zone could conceivably benefit the ischaemic heart in 

two ways.  First, by preferentially preserving the ETB receptor; this would allow 

endogenously generated ET-1 to act at this receptor, which mediates physiological 

responses (such as vasodilatation) that could be categorised as protective rather than 

destructive, rather than inducing damaging effects through the ETA receptor. The 

second benefit could be achieved through increased clearance of ET-1 from the local 

environment, since this is largely achieved through the ETB receptor [62].  In addition 

to preserving ETB receptor mRNA, activation of ETB receptors prior to ischaemia 

could similarly activate a number of mechanisms that could afford protection to the 

heart, such as direct release of prostacyclin and/or nitric oxide, both of which are 

cardioprotective [63,64] or induction of a leukocyte-mediated oxidative stress 

response, which has similarly been linked to cardioprotection [65].  In support of the 

latter, we have previously demonstrated that S6c can increase the ex vivo generation 

of reactive oxygen species from leukocytes following in vivo administration [66]. 

 

Thus, the role of endothelin in the cellular outcome following myocardial ischaemia is 

far from straightforward and involves both cytotoxic and cytoprotective effects, 

providing various paradigms for therapeutic targets (summarised in Figure 1). 

 

Contribution of endothelin to ventricular arrhythmias. 

Cellular injury is not the only adverse outcome in the ischaemic heart to which ET-1 

is thought to contribute.  The earliest studies aimed at determining the effects of intra-
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coronary ET-1 in the normal heart all demonstrated in pigs [67], rats [68] and dogs 

[69] that there was marked arrhythmic activity associated with a powerful 

vasoconstriction that induced ischaemia.  However, a subsequent study by Yorikane et 

al [70] provided the first implication that exogenous ET-1 may exert direct 

electrophysiological effects (prolongation of the action potential and induction of 

early after-depolarisations) that underlie its ability to induce arrhythmias.  However, 

the effect of exogenous ET-1 on arrhythmias in the setting of myocardial ischaemia 

was not addressed until, in an early study from our group [71], we demonstrated that 

exogenous administration of ET-1 during in vivo myocardial ischaemia in rats 

substantially increased arrhythmia severity and that this could be abrogated by 

concomitant administration of the ETA antagonist BQ123, implying an action of ET-1 

through the ETA receptor.  The importance of the ETA receptor in arrhythmogenesis 

was subsequently corroborated in an in vitro study in rat hearts, whereby BQ-485 

prevented ET-1-induced arrhythmias in normal, non-ischaemic hearts [72].  However, 

our study also demonstrated that BQ123 alone could also reduce ischaemia-induced 

arrhythmias, providing the first demonstration of a role for endogenous ET-1 in 

arrhythmogenesis in the ischaemic heart [71].   The potential for ETA antagonists to 

act as anti-arrhythmic agents as well as to reduce myocardial injury has subsequently 

been well examined and, overall, the evidence points to a potentially beneficial effect 

of these agents against ischaemic arrhythmias (for a thorough review of this topic see 

[73]), although this is by no means universal [74].  As with cellular injury, however, 

there remains some debate as to whether selective ETA receptor blockade is preferable 

to mixed ETA/ETB receptor inhibition, since some studies show that ETB receptor 

blockade with either of the ETB selective antagonists IRL-1038 and IRL-1025 has no 

effect on arrhythmias [75], thus precluding the need for mixed antagonism in this 
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setting, whereas others demonstrate an antiarrhythmic effect of ETB receptor blockade 

[76].  The antiarrhythmic effect of ET-1 antagonism has also been observed against 

high-glucose induced electrical instability (QT prolongation) through an action 

predominantly at the ETA receptor, since both an ETA selective (FR139317) and a 

mixed ETA/ETB (SB209670) antagonist, but not a selective ETB antagonist (BQ788), 

was able to block its effects [77].  As with all studies on arrhythmias, consideration 

should always be made of the possible direct effects of agents on cardiac 

electrophysiology independent of their action at endothelin receptors.  Indeed, there is 

some evidence that, at least in the case of BQ123, such a direct effect on cardiac 

electrophysiology may, in part, contribute to its antiarrhythmic effects [78].  

Notwithstanding this, while there is clear evidence for an antiarrhythmic effect of ET-

1 antagonism, what remains highly controversial is whether the pro-arrhythmic effect 

of ET-1 itself is mediated through a direct electrophysiological effect or occurs as a 

consequence of its other actions, such as vasoconstriction, and warrants detailed 

review. 

 

Mechanisms underlying the pro-arrhythmic effect of ET-1 

Several in vivo studies have attempted to identify the mechanisms by which 

exogenous ET-1 induces a pro-arrhythmic effect.  In view of ET-1’s known coronary 

vasoconstrictor action leading to myocardial ischaemia, the in vivo 

electrophysiological actions of ET-1 have been compared to those of myocardial 

ischaemia.  Such studies, all carried out in anaesthetised dogs, have concluded that 

ET-1 has a direct arrhythmogenic effect independent of its ability to cause myocardial 

ischaemia.  The evidence from a study by Szabo et al. [79] was that ET-1, given 

directly into the coronary artery, induced arrhythmias without any 

electrocardiographic or metabolic signs of ischaemia.  Indeed, ET-1 significantly 
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increased left ventricular epicardial (LVepi) and right ventricular endocardial (RVendo) 

monophasic action potential duration (MAPD) with no change in the upstroke 

velocity.  This was in direct contrast to coronary artery occlusion, which decreased 

MAPD and upstroke velocity in the ischaemic area [79].  In another study from the 

same group by Becker et al. [80], intra-coronary administration of ET-1 induced 

ventricular arrhythmias that were focal in nature, without changing local refractory 

periods, left ventricular conduction time or the overall activation pattern.  This was 

also quite distinct from the changes induced by coronary artery occlusion, which 

resulted in local conduction delay, prolonged refractoriness in all layers and 

arrhythmias that were maintained by re-entrant mechanisms [80].  Low dose intra-

coronary ET-1 (at a concentration that did not cause a significant reduction in 

coronary flow) was also shown to prolong epicardial and endocardial MAPD [81].  

An increase in the spatial dispersion of MAPD was demonstrated with the MAP close 

to the infusion site showing the most pronounced prolongation.  Significant 

differences were observed between the lengthening of the right and left ventricular 

MAPD times and the lengthening of the epicardial and endocardial MAPD times.  

This increase in dispersion of MAPD is thought to play an important role in the 

pathogenesis of ventricular arrhythmias, albeit that this is in the formation of re-entry 

circuits.  Support for ETA receptors mediating these proposed electrophysiological 

effects of ET-1 comes from studies with the ETA antagonist LU 135.252.  In these 

experiments, LU 135.252, was found to be anti-arrhythmic and was able to inhibit the 

main electrophysiological actions of ET-1 in the anaesthetised dog, namely MAPD 

prolongation and early after depolarisation (EAD) formation, while being unable to 

prevent the vasoconstriction caused by ET-1 suggesting that these direct 

electrophysiological effects of ET-1 are mediated through the ETA receptor [82]. 
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In contrast to these in vivo studies, our group have examined the electrophysiological 

effects of ET-1 and S6c, the ETB receptor specific agonist, in an isolated paced 

working rabbit heart model which is devoid of neural and humoral influences.  Over a 

wide concentration range, ET-1 reduced MAPD90 but did not increase endocardial or 

epicardial MAPD90 or refractoriness as has been reported in vivo.  Furthermore, the 

abbreviation of MAPD90 was, at all concentrations, associated with a concomitant 

reduction in coronary flow, providing no evidence of any direct electrophysiological 

effect of ET-1.  S6c lacked any marked electrophysiological effect in either the endo- 

or the epicardium suggesting that the ETB receptor does not play a major role in any 

observed electrophysiological action in the ventricles [83; In Press].   Our study 

further investigated whether ET-1 or S6c could modify the electrophysiological 

changes induced during myocardial ischeamia/reperfusion.  As shown in Fig 2, ET-1 

but not S6c, shortened MAPD90 before coronary artery occlusion but did not cause 

further shortening than that induced during myocardial ischaemia.  This data is not, 

therefore, in agreement with the in vivo studies in the dog and may suggest that an 

intact nervous system or the presence of blood is necessary to observe 

electrophysiological effects that are independent of myocardial ischaemia.   

 

There are, however, also in vitro studies in isolated cardiac tissue or cells which 

support the view that ET-1 has direct electrophysiological effects on the ventricles.  In 

isolated canine cardiac tissue ET-1 causes a prolongation of the action potential 

duration, measured at the plateau phase, i.e. APD50 in the right bundle branch, 

Purkinje cells and ventricle with the prolongation being most marked in the right 

bundle branch [70].  This study also demonstrated the development of EADs during 
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the prolonged plateau phase after ET-1 administration.  Nicardipine was shown to 

abolish these EADs, suggesting that the voltage sensitive calcium current is involved 

in their genesis [70]. It should be noted, however, that the concentrations of ET-1 used 

in this study were more than 10 fold higher than the concentration of ET-1 (10-10M) 

required to cause a significant decrease in coronary flow in our study in the isolated 

rabbit heart.  Thus, in the intact heart it may not have been possible to observe this 

ET-1 induced prolongation in action potential because of the counteracting effect of 

myocardial ischaemia.  In neonatal rat ventricular myocytes, ET-1 was found to 

increase Ca2+ entry through the sarcolemmal T-type Ca2+ channel, possibly through a 

pathway involving PKC [84].  An increase in L-type Ca2+ current (ICAL), which would 

be expected to prolong the plateau phase of the action potential and its duration has 

also been reported in adult rat ventricular myocytes.  This effect was found to be ET 

receptor mediated and involved a PKC mediated pathway [85].  

 

In contrast to the studies that have shown that ET-1 can stimulate Ca2+ current there 

have been several studies reporting an inhibition of Ca2+ current or lack of effect on 

basal Ca2+ current.  Thus, ET-1 administration decreased the L-type Ca2+ current in 

isolated canine ventricular myocytes [86,87], in guinea pig [88], rabbit [89] and 

human myocytes [90].  In guinea pig ventricular myocytes, ET-1 had little effect on 

basal L-type Ca2+ current but it did reduce this current enhanced by β1 adrenoceptor 

stimulation [91].  This anti-adrenergic effect of ET-1 on ICAL has been reported also in 

canine ventricular myocytes [86].  Thus, there is controversy in the literature about the 

role of ICAL in the observed prolongation of action potential duration by ET-1 with the 

majority of studies supporting the view that an increase in this current is unlikely to be 

the main underlying mechanism. 
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The delayed rectifier K+ current (IK), is an important determinant of action potential 

duration, which has been demonstrated to be regulated by ET-1.  ET-1 has been 

shown either to enhance or decrease IK in guinea pig ventricular myocytes [92,93], to 

decrease it in human myocytes [90] and to have no effect on this current in canine 

myocytes [86].  ET-1 has a more clear-out effect to inhibit an enhanced IK, following 

β1-adrenoceptor stimulation in a range of species [86,93].  This effect was mediated 

by the ETA receptor and through a PTX sensitive G-protein/Protein Kinase A (PKA) 

pathway [93].  ET-1 has also been shown to modulate the ATP sensitive K+ channel 

(KATP).  In guinea pig ventricular cells ET-1 caused a partial inhibition of the KATP 

current, which was abolished by BQ-485, an ETA receptor antagonist [94], suggesting 

involvement of the ETA receptor.  In the same study, ET-1 had no effect on normal 

action potential duration (measured in papillary muscle), but, it partially reversed the 

cromakalim, a KATP channel opener, induced shortening of duration.  Overall, ET-1 

effects on potassium currents are also controversial with no clear explanation of an 

ionic basis for a prolongation of normal action potential duration.  Given the 

pronounced anti-adrenergic effect of ET-1 on both calcium and potassium current 

augmented by β1-adrenoceptor stimulation it is possible that ET-1 will exhibit 

electrophysiological effects that are seen in vivo but not in vitro.  That these anti-

adrenergic effects would, in turn, be pro-arrhythmic is hard to reconcile with the 

known pro-arrhythmic actions of sympathetic stimulation. 

 

There are other possible mechanisms by which ET-1 might act to alter cardiac 

electrophysiology and arrhythmogenicity.  In both rat and cat atrial myocytes ET-1 

was found to exhibit an arrhythmogenic effect, which was suppressed by the inositol 
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1,4,5 trisphosphate (IP3) receptor antagonist, aminoethoxydiphenyl borate (2-APB), 

suggesting that activation of IP3 may be involved through an increase in Ca2+ release 

from the sarcoplasmic reticulum [95,96].  Activation of the cardiac Na+-Ca2+ 

exchanger (reverse mode activation) has been shown in guinea pig ventricular 

myocytes following ET-1 administration, which was found to be through a PKC 

dependent mechanism [97].  Reverse mode activation of the Na+-Ca2+ exchanger 

results in Ca2+ influx and may underlie arrhythmias involving after-depolarisations.  

The arrhythmogenic effects of ET-1 may also involve activation of the Na+-H+ 

exchanger leading to acidosis since activation of the Na+-H+ exchanger has been 

observed in rabbit ventricular myocytes following ET-1 administration [98].  

Acidosis, in turn, results in Ca2+ overload through the activation of the Na+-Ca2+ 

exchanger.  Moreover, Na+-H+ exchanger activation has been linked with a shortening 

of the monophasic action potential duration in pigs following coronary artery 

occlusion [99].  It is noteworthy, however, that these direct electrophysiological 

effects of ET-1, with the exception of the studies on Na+-H+ exchanger, have been 

observed with concentrations that are greater than those which cause coronary 

vasoconstriction raising the question of their relevance to ET’s pro-arrhythmic action 

in vivo.   

 

Evidence for an antiarrhythmic effect of endothelin 

Since ET-1 can mimic ischaemic preconditioning against myocardial injury (as 

described above), and given that ischaemic preconditioning can also protect against 

ventricular arrhythmias [100], it would seem feasible that ET-1 may also induce an 

anti-arrhythmic effect when given exogenously.  In the aforementioned studies 

demonstrating an infarct-reducing effect of ET-1 when given prior to the onset of a 
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period of ischaemia the effect of this exogenous ET-1 administration on consequent 

arrhythmias was not reported.  Our group undertook a study to specifically address 

this question and observed that ET-1 can indeed reduce ischaemic arrhythmias in an 

in vivo rat model of ischaemia and reperfusion [76].  In those studies we were unable 

to elucidate the receptor responsible for mediating the antiarrhythmic effect of ET-1, 

due to inherent antiarrhythmic effects of antagonists masking any blockade of the 

antiarrhythmic action of ET-1.  However, in a subsequent study we demonstrated that 

the ETB agonist S6c was also able to reduce the incidence of ischaemic arrhythmias 

[101], implying that the antiarrhythmic action of ET-1 is mediated through the ETB 

receptor, rather than through the ETA receptor.  Although the mechanisms underlying 

the antiarrhythmic effects of ET-1 remain undetermined, we have observed that its 

effects are much less evident in the isolated heart compared to the in vivo heart, 

signifying that the mechanisms are likely to be more complex than a direct effect on 

the myocardium, the coronary blood vessels, or both [102].  In contrast, in the studies 

with S6c we found that this was able to protect equally well in both the in vivo and in 

vitro heart.  Taken together this suggests that the antiarrhythmic effect of ET-1 is no 

less complex than the cytoprotective effects, probably involving a number of 

mechanisms.  However, more studies are required to fully elucidate this protective 

effect of endothelin. 

 

Concluding Comments 

As implied in the introduction to this review, the role of ET-1 in the setting of the 

ischaemic heart is much more complex than originally perceived.  Clearly there are 

benefits of blocking the actions of ET-1, yet the strong evidence now pointing to 

protective effects of this peptide tells us that we need to resolve a number of issues 
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before the most appropriate form of anti-endothelin therapy can be developed.  For 

example, can we block the injurious facet of ET-1’s action on cardiomyocyte 

integrity, while at the same time harness its ability to contribute to tissue repair or 

change the homeostatic balance of the levels of the peptide in favour of tissue 

survival?  Furthermore, with respect to the pro-arrhythmic effects of endothelin, will 

we ever be able to resolve the argument surrounding the direct versus indirect action 

of ET-1, or is the combined physiology of the ischaemic heart and of ET-1 too 

intricate to dissect out completely?  If we can answer these questions then we should 

have a very powerful tool available to us to modulate ET-1 in the ischaemic heart for 

the best possible outcome. 
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Figure 1:  Paradigm for the complex actions of endothelin in the ischaemic heart that 
contribute to both cellular damage and to cardioprotection (see text for full details).  
MAPD – monophasic action potential duration; EAD’s – early after depolarisations; 
mitoKATP – mitochondrial ATP-dependent potassium channel; ROS – reactive 
oxygen species. 
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Figure 2.  Change in MAPD90 in the endocardium of working rabbit hearts treated 

with vehicle, 10-10M ET-1 (top panel) or 10-8M S6c (bottom panel) before and during 

acute regional ischaemia and reperfusion.  ‘*’ indicates significantly different from 

pre-drug value.  ‘**’ indicates statistically significant differences from respective pre-

ischaemic values, (P<0.05 in each case).  (n=6-12). 
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