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Abstract

In this paper we address the problem of negative estimates of willingness to

pay. We find that there exist a number of goods and services, especially in

the fields of marketing and environmental valuation, for which only zero or

positive WTP is meaningful. For the valuation of these goods an econometric

model for the analysis of repeated dichotomous choice data is proposed. Our

model restricts the domain of the estimates of WTP to strictly positive va-

lues, while also allowing for the detection of zero WTP. The model is tested

on a simulated and a real data set.
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1 Introduction

Willingness to pay (WTP) is an important concept, in particular, in marketing and

environmental economics. In marketing, the willingness-to-pay refers to the maximum

amount of money an individual is willing to pay in order to acquire a certain product and

is the basis for designing a pricing strategy for that particular good. In environmental

economics, willingness-to-pay may be described as the maximum amount a person is

willing to pay in order to avoid something undesired, such as pollution. Using willingness-

to-pay as a proxy for the value of non-market goods as in the contingent valuation method

(CVM) has found broad acceptance for valuing non-market goods, since the NOAA Panel

(Arrow et al., 1993) has judged this method as suitable for producing “estimates reliable

enough to be the starting point of a judicial process of damage assessment, including

passive-use values”.

In any of these applications, even for a non-market good, an individual’s WTP is mea-

sured in monetary units. The domain of meaningful values for WTP for a certain good

is best discussed within the framework of Random Utility Modeling (RUM). There, the

individual’s decision between J multi-attributed goods is based on the utility the indi-

vidual assigns to each of the alternatives. Considering the standard representation of a

RUM (see e.g. Sonnier et al., 2007; Train, 2003; Baltas and Doyle, 2001) and denoting

the coefficient of the kth attribute xk of the valued good by β̃k and the coefficient of the

negative price (i.e. of the reduction of the disposable income) by α, McFadden (1996)

derives WTP for attribute k as

WTPk = β̃k
α
. (1)

The sign of the WTP for an improvement of attribute k is therefore a function of the

marginal utility of xk and the marginal utility of income. When α is specified as a

common parameter for all respondents, it has shown being robustly positive in numerous

applications (see e.g. Layton and Levine, 2003; Layton and Brown, 2000; Adamowicz
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et al., 1997), while when specified on the unit-level there is a significant risk that at least

some of the αi are estimated with negative sign. Under positive α, attributes imposing

negative utility on the respondent will technically lead to negative estimates for WTP.

There are goods for which a significant share of the respondents might gain utility and

for which a significant share of the respondents might experience a loss in utility. For

many goods relevant to environmental valuation and marketing, this is not a realistic

assumption.

Hence, many authors demand that estimates of WTP need to be somewhere between zero

and ∞ (see e.g. Bateman et al., 2002; Habb and McConnell, 1997; Carson et al., 1992).

Other authors argue that negative values of WTP do exist for most goods and need to

be incorporated in the study design as well as in the choice of the econometric model

(see e.g. Hanley et al., 2008; Bohara et al., 2001; Clinch and Murphy, 2001). According

to these authors, negative values represent resistance to a change in the status quo, and

neglecting them biases WTP upwards.

Our paper contributes to this literature by proposing a discrete choice model for the

analysis of consumer decisions with the purpose of avoiding negatives estimates of indi-

vidual willingness to pay, while allowing for a mass build-up at zero. Our model is able

to address (what we think) is an important problem that is common in applied work in

both marketing and economics. It is reasonable to expect that some of the attributes are

of no importance to a number of people, but when they are one can expect a positive

effect on these peoples’ utility. For such goods the utility β̃k of one additional unit of

the evaluated good xk is expected to be zero or greater than zero, but not negative. The

proposed econometric model is specified for the analysis of repeated dichotomous choice

data and produces only positive estimates of WTP through a censored random coeffi-

cients specification. This is achieved by defining a strictly non-negative heterogeneity

distribution for WTP.

When choices are modeled by specifying the latent utility as dependent variable, as it
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is done in a RUM, these heterogeneity distributions are specified for β̃ and α sepa-

rately, and hence the heterogeneity distribution of WTP can not be chosen directly.

Re-parameterizing the choice model as proposed by Sonnier et al. (2007) allows us to

define a heterogeneity distribution for WTP directly, and we overcome the problem of

negative estimates of WTP by the choice of a censored distribution resulting in a domain

of the estimated WTPs of [0,∞). The ability to detect zero WTP appears desirable, not

only because of the resulting easily interpretable domain for WTP of [0,∞), but also

since it allows us to detect resistance to abandoning the status-quo.

Our method is different from alternative approaches allowing for such a mass build-up

at zero and seems to be preferable in the context of estimating WTP. Bayesian variable

selection, for instance, allows to set coefficients close to zero to a small value by way of

mixture priors, see e.g. George and McCulloch (1997). While this method found nume-

rous applications in statistics (see e.g. Wagner and Duller, 2011) as well as in marketing

research (see e.g. Fong and DeSarbo, 2007) it does not solve the problem of (unreasona-

ble) negative WTP and, more importantly, it assumes indifference to a certain attribute

for all individuals or for none. While it is not straightforward to introduce heteroge-

neity in variable selection, see e.g. Chandukala et al. (2011) for a recent application

in marketing research and Frühwirth-Schnatter and Wagner (2011) for an application

in random-effects modeling, our approach based on the censored random coefficients

specification easily captures heterogeneity in the truncated effects.

An alternative approach would be modeling the heterogeneity distribution through a

mixture of a strictly positive distribution for some of theK coefficients and a mass at zero

for the remaining coefficients. Mixture models are very popular in marketing research

(see e.g. Allenby et al., 1998; Frühwirth-Schnatter et al., 2004) and have been introduced

in zero WTP estimation for the special case K = 1 by Kristroem (1997), where they

are referred to as spike models1. However, in the general case where K > 1 there are 2K

1For a review of spike models in contingent valuation see Hanemann and Kanninen (1999); applications
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different subsets of variables where WTP could be 0, limiting the applicability of this

approach. While each additional attribute of the good intended for valuation increases

the number of model parameters by factor 2 in the mixture model approach, our approach

based on the censored random coefficients specification does not suffer from this curse of

dimensionality. Nevertheless, we show the preferences of the censored random coefficients

approach compared to a mixture model approach exemplarily for our application in

Section 4.2.

The remainder of this article is organized as follows: Section 2 introduces the censored

random coefficients model specification, and parameter estimation by Markov Chain

Monte Carlo (MCMC) sampling is outlined in Section 3. Section 4 demonstrates the

properties of the estimation procedure on a simulated data set and on the real data

set originally evaluated in Kuriyama et al. (1999). Based on these data four alternative

models are estimated and compared to the censored random coefficients model presented

in this article. Firstly, beside reporting the estimates given in Kuriyama et al. (1999) we

demonstrate the need for restricting the domain of WTP by estimating an uncensored

random coefficients model. Secondly, we apply a specification resulting in strictly positive

WTPs by defining a lognormal heterogeneity distribution. In a final step we apply a

mixture model approach also facilitating a domain for WTP of [0,∞), but with the strong

restriction that WTP is zero or greater than zero for all attributes to overcome the curse

of dimensionality discussed in the preceding paragraph. In Section 5 some concluding

remarks about the advantages of the model and possible fields for its application are

presented.

are found in Werner (1999) and Hackl and Pruckner (1999).
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2 The Censored Random Coefficients Model

In this section an econometric model for the analysis of dichotomous repeated choice

data is formulated. We account for the longitudinal structure of the repeated choices by

the specification of random coefficients, as was done in numerous papers (see e.g. Greene

et al., 2004; Layton and Moeltner, 2004; Rossi et al., 1996). To follow the approach of

Sonnier et al. (2007) the utility ui (as defined in a RUM) is divided through the marginal

utility of income αi to yield respondent i’s surplus si = ui
αi

as dependent variable. While

this re-parametrization has no implications for the theoretical considerations we have

made in Section 1, Sonnier et al. (2007) show that for the likely case that the data

contains only few observations per respondent, the specification as a surplus model

results in a distribution of WTP with more reasonable tail behaviour in real world

applications.

We start with the formulation of the surplus model with unconstrained random coeffi-

cients

yit =

 1, if sit > 0,

0, otherwise,
(2)

with

sit = xitβi + pit + εit, εit ∼ N(0, τi), (3)

where

βi = γ
′
zi + νi, νi ∼ N(0,∆), (4)

and τi ∼ IG(r, %). (5)

In this specification the single choices yit are combined in a choice vector

yi = (yi1, . . . , yiTi)
′; similarly, si is defined as a vector of length Ti holding the sur-

pluses si1, . . . , siTi of respondent i, and εi = (εi1, . . . , εiTi)
′. Ti refers to the number of
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scenario comparisons revealed to respondent i, such that t = 1, . . . , Ti and i = 1, . . . , n.

xit is a row vector of length K with the value of attribute k at the kth position. βi holds

the coefficients being identified in the surplus specification, such that βi = β̃i
αi
, where

the kth element of βi is already the WTP for attribute k in this specification as evident

from (1). Referring to the error variance in the utility specification by σ2, note that

only τi = σ2 1
αi

is identified in the surplus specification; and r and % are the parameters

of its distribution. pit is the negative price of scenario t, and ε and ν are iid errors,

respectively. Considering γ as the coefficients matrix of the random coefficients, and ∆

as their covariance matrix, the distribution of the vector holding the surpluses is given

by si ∼ N(Xiγ
′
zi + pi,Xi∆X

′
i + τiITi), where ITi is the identity matrix with Ti rows,

Xi =
(
x′i1, . . . ,x

′
iTi

)′
and pi = (pi1, . . . , piTi)

′. In the case where zi is a single 1 for all

respondents, one yields the specification of the random coefficients model as originally

proposed by Swamy (1970), where γ is a K × 1-vector holding the average of βi across

units. If zi holds the C characteristics of respondent i, then the model has a hierarchical

structure and is able to identify the influence of these characteristics on the unit-level

coefficients βi (see e.g. Rossi et al., 2005). In this case γ is a K × C matrix.

The specification in (4) does not prevent negative estimates of WTP, (see e.g. Carlsson

and Martinsson, 2008). To overcome the problem of negative estimates of WTP, we

exploit the fact that for several goods, especially in the fields of environmental and

resource economics, but also in health economics or marketing sciences, to name only

a few, it can reasonably be assumed that some or even all attributes of an evaluated

good do not affect any individual in a negative manner. The non-existence of a loss in

surplus can be ensured by restricting βi to <+
0 in the econometric specification of the

model. Various distributions for βi satisfy this requirement, such as the lognormal, the

Weibull or the truncated normal distribution. However, to allow observing that any of

the WTPik = 0 we need to implement a distribution for βi for which Pr(βik = 0) > 0.

As in (4), we assign a βik to each respondent conditional on its characteristics. But
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whenever the characteristics of the respondent and his or her individual preferences do

not indicate a positive gain in surplus for attribute k, we assume that the respondent

considers attribute k as not relevant to his or her decision, and hence, βik is zero. We

bring this aspect into the model from (2) to (5) by introducing a latent random coeffi-

cients vector β∗i , which is then censored with respect to its sign to obtain the effective

coefficients vector βi. The formal definition of the above is

β∗i = γ
′
zi + νi, νi ∼ N(0,∆),

βi = max(β∗i ,0). (6)

This is the specification of a multivariate tobit model (for applications of the multivariate

tobit model in environmental valuation see e.g. Moeltner and Layton, 2002; Cornick

et al., 1994). The interpretation of the censoring aspect is quite straightforward: If an

individual does not align a gain in surplus with an attribute, the decision is based on

the remaining attributes only. Censoring the latent individual surpluses of attribute k

therefore presupposes that no one in the population experiences a loss in surplus from an

increase in attribute k. The selection of the attributes for which censoring is applicable

is therefore limited by the validity of exclusively non-negative effects of the candidate

attributes on the surplus of the evaluated good or service.

3 Estimation

3.1 Estimating Coefficients by Bayesian Inference

The complexity of the likelihood (see Appendix A) impedes inference by frequentist

methods. The hierarchical structure of the model suggests a Bayesian approach, in which

the conditional likelihood p(yi|βi, τi) is combined with the distribution of the random

coefficients p(βi|γ,∆), and with the distribution of the scale parameters p(τi|r, %), which
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are considered as first-stage priors in a Bayesian setting. r is chosen as fixed parameter,

such that %, γ and ∆ remain as unknown hyperparameters and follow the second-stage

prior distributions p(γ,∆|q) and p(%|h), such that the joint posterior distribution is

given by

p(β1, . . . ,βn, τ1, . . . , τn,γ,∆, %|y1, . . . ,yn, q,h, r) ∝∏
i

p(yi|βi, τi)p(βi|γ,∆)p(τi|r, %)p(γ,∆|q)p(%|h),
(7)

where q and h are the parameters of the corresponding prior distributions.

The prior on the random coefficients p(βi|γ,∆) comprises deterministic censoring of

the underlying latent variables β∗i (following (6)), such that the preferences of the prior

distribution are best discussed for the latent β∗i . From (6) one can see that the prior

parameters γ ′zi and ∆ of the unit-level coefficients can have a significant influence on the

outcome, as they can not be chosen to be arbitrarily vague. The estimator for the unit-

level coefficients in this regard is a shrinkage estimator, as the least-squares estimator

of the β∗i is pulled towards the prior mean. For the estimation of individual WTP, we

find this property appealing. The uncertainty of some individuals about their WTP for

a non-market good or service may be high and result in meaninglessly high least-squares

estimates for WTP (Beenstock et al., 1998). The shrinkage tendency of the estimator

used in this work may avoid these meaninglessly high estimated WTPs.

We select a Gamma distribution as prior of %, giving

% ∼ G(a%, A%), (8)

where a% and A% are the corresponding prior parameters. The natural conjugate priors
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for the common parameters γ and ∆ are

∆ ∼ IW (a∆,A∆),

vec(γ)|∆ ∼ N(vec(aγ),∆⊗A−1
γ ), (9)

where a∆ refers to the degrees of freedom and A∆ to the scale matrix of the inverted

Wishart distribution. vec(γ) is the vectorisation of the coefficients matrix γ. Aγ is the

covariance matrix of the normal distribution and vec(aγ), which is the vectorisation of

the prior mean matrix aγ .

3.2 Gibbs Sampling

Analytical and numerical calculation of the posterior in (7) is not feasible, but given the

latent variable structure of the model applying Gibbs sampling (Gamerman and Lopes,

2006; Geweke, 2005) for posterior inference suggests itself, where for each parameter θ

M draws are generated from p(θm+1|θm,Y ).

Sampling from the model introduced in (2), (3), (5) and (6) requires sampling from the

following distributions:

1. p(si|βi, τi,yi) ∀ i = 1, . . . , n,

2. p(β∗i |si, τi,βi,γ,∆) ∀ i = 1, . . . , n,

3. p(βi|β∗i ) ∀ i = 1, . . . , n,

4. p(τi|si,βi, %) ∀ i = 1, . . . , n,

5. p(%|τ1, . . . , τn),

6. p(γ|β∗1, . . . ,β∗n,∆),

7. p(∆|β∗1, . . . ,β∗n,γ).
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Sampling from distributions 1., 4., 5., 6. and 7. is standard in Bayesian econometric

literature, and the reader is therefore referred to Albert and Chib (1993) and Rossi et al.

(2005), for instance. Since in 3. βi is a deterministic function of β∗i , only sampling from

distribution 2. needs further explanation.

To access the distribution of the unit-level coefficients β∗i , the equation of the latent

surpluses sit in (3) is rewritten as

sit = xitβi + pit + εit,

= xit,uβi,u + xit,cβi,c + pit + εit,

= xit,uβi,u + pit + εit, (10)

where βi,u refers to the subset of positive values in βi with the corresponding explanatory

variables xit,u, while βi,c refers to the zero elements in βi. Regressing sit − pit on xit,u

is not feasible without further considerations, since it is not known a priori which of the

elements of βi are censored and which elements are uncensored.

We will access this problem by rewriting equation (10) and replacing βi with β∗i . Recall

that βi,u = β∗i,u, while βi,c 6= β∗i,c. To replace βi with β∗i in equation (10) we introduce

the “inactive surplus” isit = xit,cβ
∗
i,c. This is the surplus that would be generated by

those elements of β∗i , which were negative in an uncensored model specification. Then

sit + isit = xitβ
∗
i + pit + εit. (11)

The inactive surplus isit, in contrast to the active surplus sit, does not influence the

choice of the decision maker in any way and therefore nothing can be said about its sign

or its magnitude. For this reason drawing β∗i from p(β∗i |sit, isit) and isit from p(isit|β∗i )

alternately is not identified.

However, we can still use isit to consistently draw from p(β∗i |sit, isit). Conditionally on
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the information about the signs of the elements of β∗i , estimating their magnitudes is

straightforward. Therefore, we split the estimation of β∗i into two steps:

Step I yields the information which coefficients are censored and obtains a posterior

draw of all uncensored coefficients. Conditionally on si + isi we obtain a draw of the

signs of β∗i by drawing from β̊∗i , the random coefficients from (11). This distribution is

obtained by treating equation (11) as a “usual” random coefficients equation. Therefore,

the previous draw of β∗i,u is used to augment si from si = Xi,uβ
∗
i,u+pi+εi, and likewise

the previous draw of β∗i,c is used to define isi = Xi,cβ
∗
i,c.

Conditionally on the si and isi obtained in this way the distribution of p(β̊∗i |si, isi,∆,γ)

can be written as

β̊∗i |si, isi,∆,γ ∼ N(b̃i, B̃i)

B̃i = (X ′iXi + ∆−1)−1

b̃i = B̃i(X ′i(si + isi − pi) + ∆−1γ ′zi). (12)

With this procedure a draw of the vector β̊∗i not only holds the information about the

signs of β∗i , but its positive elements are already a consistent draw of β∗i,u = βi,u. On

the other hand, the magnitude of the negative elements of β̊∗i can not be used to achieve

further identification of the sampler. Since the specification of the βi is the specification

of a multivariate tobit model, we apply exactly the same technique as in the tobit case

in Step II.

Conditionally on the β∗i,u from Step I, Step II therefore obtains a draw of β∗i,c by

data augmentation, as in Chib (1992). In this case the magnitude of β∗i,c is estimated

independently of isi, since in this data augmentation step we use only information on the

prior parameters γ and ∆ and on the positive coefficients β∗i,u. We obtain the conditional

distribution p(β∗i,c|β∗i,u,γ,∆) by conditioning the common distribution p(β∗i |γ,∆) – as

defined in (4) – on the uncensored coefficients and truncating the resulting distribution
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above zero. This distribution is equal to a multivariate truncated normal distribution

β∗i,c|β∗i,u,γ,∆ ∼ TN[−∞,0](β̃∗i,c, Ṽ ∗i,c),

Ṽ ∗i,c = Γ−1
cc

β̃∗i,c = γ ′czi,c − Γ−1
cc Γcu(β∗i,u − γ ′uzi,u) (13)

where γc is the matrix constructed from the columns belonging to βi,c and zi,c is the

corresponding vector of the characteristics of respondent i. Likewise γu is the matrix

constructed from the columns belonging to βi,u and zi,u is the corresponding vector of

the characteristics of respondent i. The matrices Γcc and Γcu are submatrices of the

following matrix Γu,c

Γu,c=

 Γuu Γuc

Γcu Γcc

 ,
where Γ−1

u,c is the covariance matrix ∆ from (4) which has been reorganized in such a

way that ∆uu is the covariance matrix of the β∗i,u and ∆cc is the covariance matrix of

the β∗i,c: Γu,c =

 ∆uu ∆uc

∆cu ∆cc


−1

.

4 Applications of the Model

In this section, the model is applied to a simulated data set in Section 4.1 and to

the Tokyo Bay data set (Kuriyama et al., 1999) in Section 4.2. The simulation study

examines the properties of the censored coefficients model specification and compares the

estimated parameters to those retrieved under the uncensored, but otherwise identical,

model specification. On the base of the re-estimation of the Tokyo Bay data set, we

discuss the value of the additional information on the respondents preferences obtained

through the censored coefficients model specification by comparing it to different selected
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Table 1: Prior settings for the analysis of the examples in this chapter.

Prior Simulation study Tokyo Bay data set
r . 1/2
a% . 1
A% . 0.01
aγ 0C×K 0C×K

Aγ 0.01× IK 0.01× IK

a∆ K + 3 K + max(Ti)/2
A∆ a∆ · 0.1IK a∆ · IK

models.

For the simulation study the parameters of the prior distributions are chosen to be very

diffuse, following the setting in Rossi et al. (2005) for their (uncensored) random coef-

ficients model. In the case of real data, however, we experienced convergence problems

under diffuse priors. The problem arises from the fact that information on the shape of

the likelihood is contained in the positive elements of β∗i only, and with an increasing

number of negative elements of β∗i , this information decreases. If the number of negative

elements of β∗i is large and the information in the data on the positive βi is uncertain,

it is likely that during tens of thousands of draws of β∗i the fraction of zeros of a specific

draw will approach 1. In the case of diffuse priors this can lead to extremely large draws

for γ and ∆, and the sampler will lose itself in unreasonable areas of the likelihood.

To avoid this problem informative priors are chosen that prevent drawing unreasonably

large values. Prior settings for the simulation study and the Tokyo Bay data set are

given in Table 1.

4.1 A Simulation Study

In this simulation study the emphasis is on examining the effects the censoring of the

random coefficients has on the precision of the coefficients estimated. To achieve this

we compare the censored coefficients specification of our model with the uncensored

random coefficients model. Since we want to relate the difference in precision of the two
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Table 2: Results from the simulation study; true values of the parameter matrix γ in the first
three columns and corresponding posterior means of the censored and the uncensored model in
the subsequent three columns, respectively.

γ.1 γ.2 γ.3 γ̂c
.1 γ̂c

.2 γ̂c
.3 γ̂u

.1 γ̂u
.2 γ̂u

.3

1.00 -0.25 0.50 0.96 -0.24 0.62 0.94 -0.37 0.48
-0.25 0.50 -0.50 -0.17 0.61 -0.50 -0.20 0.64 -0.50
-0.25 0.25 -0.50 -0.19 0.26 -0.44 -0.20 0.28 -0.49

Table 3: Results from the simulation study; true values of the covariance matrix ∆ in the first
three columns and corresponding posterior means of the censored and the uncensored model in
the subsequent three columns, respectively.

∆.1 ∆.2 ∆.3 ∆̂c
.1 ∆̂c

.2 ∆̂c
.3 ∆̂u

.1 ∆̂u
.2 ∆̂u

.3

1.0 0.5 0.8 0.84 0.47 0.64 0.99 0.46 0.74
0.5 1.5 0.4 0.47 1.27 0.59 0.46 1.44 0.47
0.8 0.4 0.8 0.64 0.59 0.66 0.74 0.47 0.89

specifications to the censoring of the coefficients only, we consider the latent surpluses

as observable in this simulation study. In addition, the price term pit is removed and the

scale is set to τi = 1, ∀ i = 1, . . . , n. Thus, we specify the uncensored random coefficients

model as

suit = xitβ
u
i + εit, εit ∼ N(0, 1),

βui = γ ′zi + νi, νi ∼ N(0,∆), (14)

where the superscript .u denotes the uncensored specification. Likewise, we use the su-

perscript .c to refer to the censored specification in subsequent paragraphs.

The parameter matrix γ and the covariance matrix ∆ of the latent random coefficients

β∗i used in this simulation are given in Table 2 and Table 3.

The subject characteristics zi are chosen to have a 1 in the first position, are uniformly

distributed Unif(0, 2) in the second position and follow a normal distribution N(0, 2)

in the third position, hence zi has dimension 3 × 1 in the simulation. The size of the
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Figure 1: Results from the simulation study: MCMC sampling pathes of one latent censored
random coefficients vector β∗ci (left-hand side) and of the corresponding effective uncensored
coefficients vector βu

i (right-hand side) with prior means (blue lines) and actual coefficients (red
lines).

sample is set to n = 350 and T = 15 for all units. From these values the latent random

coefficients vectors β∗i are drawn and censored according to βci = max(0,β∗i ), while the

uncensored coefficients equal these latent coefficients, such that βui = β∗i . This setting

yields a fraction of censored coefficients of π(βci,1 = 0) = 26%, π(βci,2 = 0) = 42% and

π(βci,3 = 0) = 53%.

In Figure 1 the sampling paths of an arbitrarily chosen β∗i under the censored and under

the uncensored model specification are displayed. From these plots several propositions

can be derived. Firstly, we see that the loss in precision for an element of β∗ci with most

probability mass on the positive space (here β∗ci,2) in the censored model specification

is very low, compared to the uncensored model specification. Secondly, we see that the
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Figure 2: Results from the simulation study: histograms of the actual simulated random coeffi-
cients βa

i , the estimated coefficients from the uncensored specification β̂u
i , the estimated latent

coefficients from the censored specification β̂∗ci and the actual first-stage priors γ̂′zi.

variance of the estimator of the elements of β∗i with substantial probability mass on

the negative space is higher in the censored than in the uncensored model specification.

This finding is plausible, since the utilities do not contain any information about the

negative coefficients in the censored model specification, so that these coefficients need

to be estimated from the positive elements of β∗i in combination with the first-stage prior

distribution only. As a third result we see that the medians of the posterior distribution

of the coefficients do not differ much between the specifications. It should be noted that

this last finding is valid for coefficient vectors β∗ci with at least one positive element only.

Otherwise the posterior distribution of β∗ci is identical to the first-stage prior distribution

and the coefficients β∗ci are estimated independently of the set of surpluses of unit i.
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In Figure 2 the histograms of the estimated β̂∗ci and β̂ui are shown, and compared with

the actual coefficients βai and the actual first-stage prior locations γ ′zi. We see that the

shrinkage of the latent random coefficients in the censored specification is asymmetric.

Naturally, the influence of the first-stage prior distribution is much stronger on the ne-

gative space than on the positive space. This is plausible, since the positive coefficients

are “regressed” on the utilities, while the negative coefficients are drawn from the prior

distribution (conditional on the positive elements of βi). In addition, a detailed exami-

nation of the random coefficients reveals that – due to their high positive correlation –

about 11% of the actual random coefficients are negative not only for one or two elements

of βi, but for all three elements. In these cases the only information available for these

coefficients is the respective prior distribution, from which they are then drawn. Thus,

a stronger dependence on the prior distribution for the negative space of the coefficients

comes naturally with the censored coefficients specification.

Despite the strong influence of the prior on shape and skewness of the distribution of

the β̂∗ci , Figure 2 reveals that the estimated ratio of π(β̂∗ci,. < 0) of the latent censored

coefficients is similar to the estimated ratio under the uncensored coefficients specification

π(β̂ui,. < 0), and both ratios reproduce the actual π(βai,. < 0) relatively well.

In Tables 2 and 3 moments of the posterior distributions of both models are reported. The

parameter matrix γ is estimated with only moderate deviations from its actual values

under both model specifications and the deviations give no evidence of any systematic

error. For the covariance matrix ∆ the estimators of both model specifications tend to

underestimate the actual values, while the censored model shows this preference more

markedly. Again, the increased shrinkage of the censored coefficients specification is

responsible for this effect.
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4.2 The Tokyo Bay Data Set

In typical problems addressed by CVM the analyzed goods are often policy programs

for improvements of more than one environmental variable. An example of the valuation

of such a multi-attributed policy program is given in Kuriyama et al. (1999), where a

program to protect Tokyo Bay from oil spills is evaluated. With an area of 960 km2

Tokyo Bay is traversed by 600-900 ships per day. Beside several smaller oil spills, in 1997

the supertanker Diamond Grace leaked about 1,500 tons of crude oil off Tokyo Bay.

Only 6 months earlier Japan had been hit by another major oil spill: the Russian tanker

Nakhodka leaked about 5,200 tons of crude oil and threatened prized shellfish beds. In

the light of this a survey of WTP for preserving the coastal ecosystem by minimizing

the extent of four potential kinds of damage was investigated: (1) the percentage of the

recreational sites polluted, (2) the number of people harmed by the oil, (3) the percentage

of the tidal flat area contaminated, and (4) the percentage of the commercial fishing

ports affected. As the specific configuration of a policy program can place emphasis on

the improvement of one or other of these variables, WTP for the mitigation of each

of these types of loss represents important information for decision makers to find the

optimal program configuration.

In their survey each of 128 randomly selected residents was confronted with eight different

scenarios of environmental improvement compared to the precisely defined status quo;

see Table 4 for an exemplary choice set used in this survey.

The data set thus consists of 1,024 dichotomous choices with 8 choices from each respon-

dent. For each respondent information is available on the values of the four environmental

attributes and on the costs he or she was confronted with. No information regarding the

characteristics of the respondents was collected, so the vectors zi become a scalar with

value 1 for all respondents.

To study the properties of the censored random coefficients model in an application to
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Table 4: Tokyo Bay data set; choice sets used in Kuriyama et al. (1999).

Alternative A Alternative B (status quo)
recreation site: 7% protected 7% protected
harmed people: 10,000 affected 10,000 affected
tidal flat: 87% protected 13% protected
fishery: 100% protected 66% protected
yearly costs: 90,000 U 0 U

real data, we compare it to four alternative model specifications. As a starting point we

report the results in Kuriyama et al. (1999), where choices are modeled as a RUM with

fixed coefficients β and α. The utility of choosing alternative A instead of alternative B,

is therefore given as

uit = x′itβ + pitα+ εit. (15)

As a result of this constant coefficients vector only average WTP instead of the unit-level

WTPs can be calculated. Equation (15) is estimated by means of the usual logit model,

thus we denote their model byMlogit.

Beside Mlogit, all other specifications used for the model comparisons differ from the

censored random coefficients model in (2), (3), (5) and (6) only in the distribution of

the βi. Estimations are carried out by the Gibbs sampler from Section 3.2, where the

step of drawing the βi is adapted to the respective model specification. For all models

estimated by Gibbs sampling, prior parameters are taken from Table 1.

The first unit-level model specifies βi to be normally distributed as in (4), which does not

constrain the domain of the WTPs in any way. In this regard, this specification reveals

whether one or more of the valued attributes are estimated negatively for a significant

number of respondents when no constraints are placed over the coefficients, and thus

whether restricting the coefficients on the positive space is worth the effort. We denote

this model specification byMuncensN .
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The second unit-level specification defines a lognormal distribution for the random coeffi-

cients βi, such that their distribution is given by βi ∼ logN(γ ′zi,∆). The lognormal dis-

tribution ensures exclusively positive estimates of WTP, but resistance against a change

in status quo, such as zero WTP, is not identified under this distributional assumpti-

on, which we denote by MlogN . Estimation by Gibbs sampling requires a Metropolis-

Hastings step to draw from the posterior distribution of βi, which is given by

p(βi|τi,γ,∆) ∝ N(si|xiβi + pi, τiIK) logN(βi|γ ′zi,∆). (16)

Acceptance rates in the MH step lie between 0.15 and 0.6 ∀ i = 1, . . . , n under the

proposal density βcandi ∼ logN(log(βmi ), 0.1 (∆m)−1), where βmi and ∆m are the recent

draws of these parameters.

For the last comparison we specify a mixture distribution for βi. The censored random

coefficients model allows that each respondent has a WTP of zero for an arbitrary number

of theK valued attributes, while having a positive WTP for the remaining attributes. It is

impractical to apply a heterogeneity distribution accounting for all possible combinations

of signs of the elements of βi by specifying 2K = 16 groups. Therefore we estimate only

2 groups, one with all elements of βi being greater than zero and one with all elements

being zero. This implies that the ratio of zero WTP is equal for all four attributes, which

surely represents a highly restrictive assumption. Thereof we see the limitations of the

mixture model approach when the number of valued attributes K increases.

For the group with only positive coefficients βi, we again specify a lognormal distribution,

such that the resulting mixture distribution is given by

βi ∼ η1p(βi|τi,γ,∆) + η2δ0(βi1) . . . δ0(βiK), (17)

where δ0(.) is Dirac‘s point mass, p(βi|τi,γ,∆) is the density defined in (16) and drawing

22



from it is carried out likewise. As prior for the relative group sizes we specify a uniform

distribution and denote the resulting mixture model byMlogNMix.

In contrast to this, we consider the censored random coefficients as specified in Section

2 and refer to it by McensN . Under the prior settings from Table 1 convergence of the

Gibbs sampler in all specifications is reached after only a relatively small number of

draws. Nevertheless, 50,000 draws are sampled, respectively, of which the last 40,000

enter the calculation of the posterior moments.

Because the scales differ between the utility specification in Mlogit and the unit-level

models, the magnitude of their coefficients can not be compared directly. Nevertheless,

since our primary aim in making the comparison is estimating WTP under the diffe-

rent model specifications, we compare the respective ratios of two coefficients, and the

different scales are canceled out. In Figure 3 the histograms of the WTPs estimated

underMcensN for the different attributes of the environmental preventive measures are

displayed. In Table 5 some key figures of the models are shown.

As a first finding we see that under the unconstrained modelMuncensN negative WTP is

estimated for a significant number of respondents, therefore we conclude that applying

a model restricting the domain of WTP is worth the effort. Only the censored random

coefficients model McensN and the heterogeneity model MlogNMix indicate how many

of the respondents have zero WTP. While the percentage of respondents with zero WTP

is equally 29% for all attributes in MlogNMix, these percentages differ significantly in

McensN . There, the largest number of zero WTPs is estimated for the attribute REC

(protection of recreational facilities). For this environmental good 57 respondents, i.e.

about 45%, are not willing to pay for the protection of these facilities. 45 persons or

about 35% do not have a positive WTP for the protection of tidelands and 41 persons

or about 32% are not willing to pay for protection from health problems. The smallest

resistance to paying for the protection of the coastal ecosystem is found for the protection

of fishing ports; only 31 persons or about 24% are not willing to pay for their protection.
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Table 5: Tokyo Bay data set; selected key figures from the five estimated model specifications
for REC (percentage of the polluted recreational sites), TIDE (percentage of the contaminated
tidal flat area), HAR (number of people harmed by the oil), and FISH (percentage of the polluted
recreational fishing sites).

Attribute M1
censN M1

logit M1
uncensN M1

logN M1
logNMix

REC WTP 55 88 55 64 31
(15, 117) (−32, 209) (−31, 107) (31, 120) (2, 85)

π(WTP = 0) 47% . 0% 0% 29%
π(WTP < 0) 0% . 23% 0% 0%

HAR WTP 205 177 175 243 184
(132, 253) (78, 271) (78, 208) (137, 358) (100, 250)

π(WTP = 0) 35% . 0% 0% 29%
π(WTP < 0) 0% . 23% 0% 0%

TIDE WTP 302 157 258 171 220
(186, 381) (−9, 309) (93, 310) (70, 286) (118, 330)

π(WTP = 0) 32% . 0% 0% 29%
π(WTP < 0) 0% . 29% 0% 0%

FISH WTP 452 674 472 683 530
(248, 617) (429, 943) (262, 614) (314, 877) (265, 704)

π(WTP = 0) 24% . 0% 0% 29%
π(WTP < 0) 0% . 0% 0% 0%

In-sample fit2 -605.07 -641.27 -608.37 -629.57 -583.99
Out-of-sample fit 1a4 0.417 0.418 0.423 0.410 0.375
Out-of-sample fit 2a5 0.728 0.696 0.718 0.705 0.723
Out-of-sample fit 1b4 0.252 0.409 0.240 0.236 0.255
Out-of-sample fit 2b5 0.828 0.679 0.820 0.828 0.849
1 95% credibility interval in parentheses estimated from the MCMC output.
2 In sample model fit is measured by the log marginal density calculated by importance
sampling with an importance density as described in Congdon (2003).

4 Out-of-sample fit 1. is measured by mean absolute deviation of estimated choice probability
and actual choice.

5 Out-of-sample fit 2. is measured by the fraction of correctly predicted actual choices.

The plausibility of the censored model specification is compared to the other model

specifications by reporting the log marginal density (LMD) of all models (Table 5). Evi-

dence on the predictive capabilities of the models is investigated by holdout validation.

For applications in environmental economics the key issue is how good the estimated

WTP in the sample can be transferred to the rest of the population. Therefore we re-

estimate all models applying all observations from the first 100 respondents, and their

ability to predict the choices of the remaining 28 respondents is explored. Table 5 re-

ports the mean absolute deviation of estimated choice probability and actual choice in
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Figure 3: Results from the Tokyo Bay data set: histograms of estimated WTP underMcensN

for REC (percentage of the polluted recreational sites), TIDE (percentage of the contaminated
tidal flat area), HAR (number of people harmed by the oil), and FISH (percentage of the polluted
recreational fishing sites).

figure Out-of-sample fit 1a (OSF 1a), and the ratio of the correctly predicted choices in

figure Out-of-sample fit 2a (OSF 2a). Additionally, we report the same measures Out-

of-sample fit 1b (OSF 1b) and Out-of-sample fit 2b (OSF 2b) when a randomly chosen

observation of each respondent is predicted based on the re-estimated models analyzing

the remaining observations of the respondents.

Considering these fit statistics in Table 5, we see that the assumption of exclusively
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positive WTPs of all respondents in MlogN is hardly supported by the data. Further-

more, we see that both models allowing for a mass build-up at zero, namely McensN

andMlogNMix, outperform the other models. Even thoughMlogNMix shows remarkable

performance in most parameters, its highly restrictive assumptions constrain its general

applicability, especially in the politically sensitive field of environmental valuation in our

opinion. In contrast, the censored coefficients model McensN shows a good predictive

performance, both when predictions can be based on respondent specific information

(OSF .b) and when predictions are based on the prior information (OSF .a) only. Fur-

thermore, as discussed in the introductory Section 1, the censored model is the only one

producing estimates of WTP exploiting its theoretical domain [0,∞) separately for each

variable. Thus we conclude that the censored coefficients approach may be of great avail

when resistance against abandoning the status-quo is an important information to the

decision makers, and the level of this resistance can not be assumed as being equal for

all variables.

5 Discussion

In this article an econometric model for estimating consumer willingness to pay from

repeated dichotomous choice data has been proposed. Based on random utility modeling

a specification was developed in which the random coefficients (usually unrestricted)

are censored below zero. This restriction on the random coefficients yields a domain for

the estimated WTP of [0,∞), while unrestricted specifications usually result in negative

estimates for WTP for at least some respondents and/or goods.

In the authors’ opinion this specification has the advantages that first, the resulting

domain of WTP is easily interpretable and therefore possibly welcome to those who

need to share their results outside the scientific community, and second, it allows us

to detect respondents with resistance to changing the status quo, as required by some
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authors (see e.g. Hanley et al., 2008; Bohara et al., 2001; Clinch and Murphy, 2001).

The application of the model to a simulated data set in Section 4 showed the properties

of the estimation procedure and compared the censored coefficients specification with

the usual uncensored coefficients specification, to study the influence censoring has on

the precision of the outcome. Comparisons indicate that the estimation procedure is well

suited to estimating the ratio of zero WTP with sufficient precision, and that the loss of

accuracy for the estimated parameters is moderate, considering the high proportion of

censored coefficients in the simulation study.

The application to the Tokyo Bay data set compared the censored random coefficients

model to four different model specifications. Some key figures estimated under the dif-

ferent model specifications were given in Table 5 and show that the censored random

coefficients model was the only one being flexibel enough to avoid negative estimates of

WTP and revealing a differently pronounced resistance against abandoning the status-

quo for each of the four valued attributes separately. The confidence intervals reported

in Kuriyama et al. (1999) partly overlap the negative space, while credibility intervals

of the model proposed in this article do not, and give the additional information which

proportion of the respondents has a WTP of exactly zero. In this respect we conclu-

de that the proposed model has some real advantages and may be suitable for further

applications, especially in the fields of environmental valuation.

The specification of the model presented in Section 2 restricts the survey designer to

revealing only two different alternatives to the respondents at one time. Since the take-

it-or-leave-it format is very popular in stated-preference surveys, the model presented in

this article is applicable to a large number of WTP studies. Nevertheless, restricting a

survey to dichotomous choices only is not always desirable. In particular, in analysing

revealed – not stated – preferences the number of alternatives is not (fully) under the

control of the researcher, but is rather a matter of the environment and the circum-

stances of the study. For this reason an extension of the proposed model to allow the
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respondent to chose from an unlimited number of alternatives appears useful to the au-

thors. Estimation of such a multinomial probit model is straightforward in the Gibbs

sampling approach presented in Section 3. Only sampling the latent active surpluses sit

in step 1. of the six sampling steps on page 11 needs to be carried out otherwise than in

the dichotomous probit case. An overview of methods for sampling sit in the multinomial

case, where it is a vector rather than a scalar, is given in Imai and van Dyk (2005) who

also present their own method with some real advantages.
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Appendix A – Likelihood of the common parameters

The specification of the censored observations yit in (2) is that of the probit model.

Hence, the probability of observing yi conditional on parameters βi and τi is given by

p(yi|βi, τi) =
Ti∏
t=1

∫
Ait

φi(y)dy,

where

Ait =

 (−∞,x′itβi + pit), if yit = 1,

[x′itβi + pit,∞), if yit = 0,
(18)

and φi(.) is the density of the univariate normal distribution with zero mean and variance

τi. The contribution of respondent i to the unconditional likelihood of the common

parameters is then given by

`i =
∞∫
0

. . .

∞∫
0

p(yi|βi, τi) p(βi|γ,∆) p(τi|r, %)dβidτi. (19)

The density of the unit-level scales τi is given in (5), while the density of the censored

random coefficients p(βi|γ,∆) is obtained from the density of the latent random coef-

ficients p(β∗i |γ,∆) as defined in (6). The main issue in the derivation of p(βi|γ,∆) is

to take into account that it is a priori unknown which of the elements of βi are 0. We

denote the indicator holding the information which of the elements of βi > 0 by Ii. For

each βi M = 2K permutation vectors Iim of length K exist such that Iimk = 1 if βik > 0

in themth permutation. p(βi|γ,∆) is then obtained by averaging the conditional density

p(βi|γ,∆, Iim) with respect to the probabilities wim of the permutations Iim, such that

p(βi|γ,∆) =
M∑
m=1

wim p(βi|γ,∆, Iim). (20)
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To access the conditional density of p(βi|γ,∆, Iim), we start by writing down the con-

ditional density of the latent β∗i , which is given by

p(β∗i |γ,∆, Iim) = φ(β∗i |γ
′
zi,∆)∫

Bim1

. . .
∫

BimK

φ(β∗i |γ
′zi,∆)dβ∗i

(21)

where

Bimk =

 (0,∞), if Iimk = 1,

(−∞, 0), if Iimk = 0,

and φ(β∗i |γ
′
zi,∆) is the density of a K-variate normal distribution with mean vector

γ
′
zi and covariance matrix ∆.

In a second step those elements of β∗i are integrated out in (21) for which Iim indicates a

negative sign to obtain the marginal distribution of the positive elements of β∗i . Denoting

the positive elements of β∗i in the mth permutation by β∗i,mu and the negative elements

by β∗i,mc, we get

p(β∗i,mu|γ,∆, Iim) =
0∫

−∞

. . .

0∫
−∞

p(β∗i |γ,∆, Iim)dβ∗i,mc. (22)

Finally, the conditional distribution of the effective βi is obtained by the product of the

marginal distribution p(β∗i,mu|γ,∆, Iim) evaluated at the values of the equivalent non-

zero elements of βi, and the product of Dirac‘s point masses δ0(.) evaluated for the R

elements of βi,mc, such that

p(βi|γ,∆, Iim) = p(β∗i,mu = βi,mu|γ,∆, Iim) δ0(βi,mc1) . . . δ0(βi,mcR). (23)

Since the probabilities wim in (20) are equal to the integral in (21), the final unconditional
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distribution of βi is given by

p(βi|γ,∆) =
M∑
m=1

0∫
−∞

. . .

0∫
−∞

φ(βi|γ
′
zi,∆)dβi,mc δ0(βi,mc1) . . . δ0(βi,mcR). (24)

Due to the point mass operators δ0(.) in (24) all summands become zero, except for that

m for which the signs of βi correspond to Iim.
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