
ePubWU Institutional Repository

Michael J. Barber and Manfred M. Fischer and Thomas Scherngell

The Community Structure of R&D Cooperation in Europe. Evidence from a
social network perspective

Article (Accepted for Publication)
(Refereed)

Original Citation:
Barber, Michael J. and Fischer, Manfred M. and Scherngell, Thomas (2011) The Community
Structure of R&D Cooperation in Europe. Evidence from a social network perspective. Geographical
Analysis, 43 (4). pp. 415-432. ISSN 1538-4632

This version is available at: http://epub.wu.ac.at/3280/
Available in ePubWU: November 2011

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

This document is the version accepted for publication and — in case of peer review — incorporates
referee comments. There are minor differences between this and the publisher version which could
however affect a citation.

http://epub.wu.ac.at/

http://epub.wu.ac.at/3280/
http://epub.wu.ac.at/


1 

The Community Structure of R&D Cooperation in Europe*. 

Evidence from a social network perspective 

 
 

Michael J. Barber1, Manfred M. Fischer2 and Thomas Scherngell1 
 
 

1Foresight and Policy Development Department, 
Austrian Institute of Technology, Vienna, Austria 

2Institute for Economic Geography and GIScience,  
Vienna University of Economics and Business, Vienna, Austria 

 
Abstract. The focus of this paper is on pre-competitive R&D cooperation 
across Europe, as captured by R&D joint ventures funded by the European 
Commission in the time period 1998-2002, within the 5th Framework 
Program. The cooperations in this Framework Program give rise to a 
bipartite network with 72,745 network edges between 25,839 actors 
(representing organizations that include firms, universities, research 
organizations and public agencies) and 9,490 R&D projects. With this 
construction, participating actors are linked only through joint projects. 
 In this paper we describe the community identification problem based 
on the concept of modularity, and use the recently introduced label-
propagation algorithm to identify communities in the network, and 
differentiate the identified communities by developing community-specific 
profiles using social network analysis and geographic visualization 
techniques. We expect the results to enrich our picture of the European 
Research Area by providing new insights into the global and local structures 
of R&D cooperation across Europe. 
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1  Introduction 
 
Knowledge production takes place within a complex web of interactions among firms, 

universities and research institutions (see, for instance, Fischer et al. 2006, Autant-Bernard et 

al. 2007, Fritsch and Kauffeld-Monz 2010). Long viewed as a temporary, inherently unstable 

organisational arrangement, R&D networks have become the norm, rather than the exception, 

in modern innovation processes (Powell and Grodal 2005). In the recent past, regional, 

national and supranational Science, Technology and Innovation (STI) policies have 

emphasized supporting and fostering linkages between innovating actors (for a discussion of 

major international examples, see Caloghirou et al. 2002). At the European level, the main 

STI policy instruments are the European Framework Programmes (FPs) that promote an 

integrated European Research Area (ERA). The FPs support pre-competitive R&D projects, 

creating a pan-European network of actors performing joint R&D. 

 

In this paper, we examine pre-competitive European1 R&D cooperations from a social 

network perspective, which focuses not on the individual social actors, but on the broader 

interaction contexts within which the actors are embedded. The notion of a social network and 

the procedures of social network analysis have attracted considerable interest and curiosity 

from the social science community in recent years. Much of this interest can be attributed to 

the appealing focus of social network analysis on relationships among social actors, and on 

the patterns and implications of these relationships. The relationships may be of many kinds: 

economic, political, interactional, or affective, to mention a few. The focus on relations, and 

the patterns of relations, requires a set of procedures and analytical concepts that are distinct 

from methods of conventional statistics and data analysis.  

 

As observed by Ter Wal and Boschma (2009, p. 793), “the potential of the application of 

network methodology to regional issues is far from exhausted.” Indeed, because networks are 

a natural and general way to represent and analyze relationships of all sorts, networks have 

been considered across the scientific spectrum, ranging from the social sciences to the natural 

sciences to pure mathematics. We hope to benefit from the great potential of this diverse 

literature, focusing initially on the possibilities offered by identifying communities in social 

networks. For regional science, in particular, community identification enables us to detect 

and investigate appropriate substructures of large social systems, such as Framework 

Programmes.  
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Social network analysis explicitly assumes that actors participate in social systems connecting 

them to other actors, whose relations comprise important influences on one another’s 

behaviors. Central to network analysis are identifying, measuring, and testing hypotheses 

about the structural forms and substantive contents of relations among actors. This distinctive 

structural-relational emphasis sets social network analysis apart from individualistic, variable-

centric traditions in the social sciences (Knoke and Young 2008). 

 

The importance of social network analysis rests on two underlying assumptions. First, 

structural relations often are more important for understanding observed behaviors than are 

attributes of the actors. Second, social networks affect actors’ perceptions, beliefs and actions 

through a variety of structural mechanisms that are socially constructed by relations among 

them. Direct contacts and more intensive interactions dispose actors to better information, 

greater awareness, and higher susceptibility to influencing or being influenced by others. 

Indirect relations through intermediaries also bring exposure to new ideas, and access to 

useful resources that may be acquired through interactions with others. Networks provide 

complex pathways for assisting or hindering flows of information and knowledge. 

 

In this paper, the focus is on networks derived from R&D joint ventures funded by the 

European Commission in the time period 1998-2002, within the 5th Framework Programme 

(FP5). The Programme gives rise to a bipartite network with 72,745 edges existing between 

9,490 projects and 25,839 actors representing formal organizations such as firms, universities 

and research organizations. With this construction, participating actors are linked through 

joint projects. The objective is to detect and describe the community structure of this network. 

Community detection may be loosely defined as partitioning the nodes or vertices into groups 

such that there is a higher density of links within them than between them. The definition is 

based on comparing intra-group density to inter-group sparseness. The popularity of density-

based grouping is due to the likelihood that actors within communities share common 

properties and/or play similar roles within a network, and thus constitute a relevant 

subnetwork to consider in some detail. This is the motivation for analyzing network 

communities in general, and European R&D network communities in particular. 

 

The usual approach for community detection in bipartite networks is to first construct a 

unipartite projection of one part of the network (i.e., a network of organizations by linking 

them when they cooperate in a project), and then to identify communities in that projection 
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using methods for unipartite networks. This unipartite projection can be illuminating, but 

intrinsically looses information. In this study, we use the recently introduced label-

propagation algorithm (LPA) to explicitly account for the bipartite character of networks (see 

Raghavan et al. 2007, Barber and Clark 2009). 

 

The paper is organized as follows. Section 2 describes the community identification problem 

based on the concept of modularity. Section 3 introduces the LPA to identify communities in 

the network under consideration. The LPA was originally presented operationally, with 

communities defined as the outcome of a specific procedure. In this paper, we consider an 

equivalent mathematical formulation, in which community solutions are understood in terms 

of optima of an objective function. Section 4 differentiates the identified communities by 

developing community-specific profiles using social network analysis and geographic 

visualisation techniques. Section 5 concludes with a summary of the main results, and a brief 

outlook. 

 

2  The community-identification problem 
 
A network of R&D cooperation can be viewed in several ways. One of the most useful views 

is as a graph consisting of vertices (nodes) and edges (links). A familiar representation is 

obtained by letting V be a set of vertices representing actors participating in FP5, and E be a 

set of vertex pairs or edges from V × V, representing participation in a joint FP5 project2. The 

two sets together are a graph G=(V, E). This is called a simple graph, because all pairs {u, 

v}∈ E are distinct and {u, u}∉ E.  

 

Given a partition V=V1+V2 where no edges exist between pairs of elements within V1 or V2, 

then G is said to be bipartite. We can represent R&D cooperations as a bipartite graph, letting 

V1 be a set of vertices representing actors participating in FP5, and V2 be a set of vertices 

representing the projects funded in FP5, with an edge between two vertices if and only if one 

vertex is a project (and thus in V2) and the other is an actor (and thus in V1) that takes part in 

the project. The bipartite graph can be used to define the previously described graph of actors 

as a projection: define edges between actors when the actors are separated by a path of length 

two in the bipartite graph. The converse is not true. Thus the bipartite graph contains more 

information than the actor graph, and can be advantageous to use. In this paper, we focus 

principally on the bipartite network of actors and projects 
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We consider simple graphs on a large finite set V={1, 2, …, n}. The number of edges in a 

graph is denoted by m, and the number of edges incident on a vertex i=1, …, n is called the 

degree ki. The connectivity pattern of a graph is encoded in the n × n adjacency matrix A with 

elements 

 

1 if { , }
0 otherwise.ij

i j E
A

∈⎧
= ⎨
⎩                                                                      

 i, j=1, …, n (1) 

 

In many real world networks, the vertices vary widely in their degrees, reflecting a high level 

of order and structure. The degree distribution is highly skewed; many vertices with low 

degrees coexist with some vertices with high degrees. The distribution of edges may be both 

globally and locally heterogeneous, with a high concentration of edges within specific groups 

of nodes, and a low concentration between these groups. This feature of real world networks 

is called community structure. 

 

A traditional approach to identifying community structure is simply to draw its network, 

positioning vertices close to one another when they are connected and farther apart when they 

are not, and identify the communities by eye. This approach works well for small-sized 

networks, and is viable for networks of tens or perhaps hundreds of vertices by means of 

computer-aided drawing using applications such as Pajek3, UCINet4, Graphviz5, or Gephi6. 

However, the visual approach fails if the number of vertices is larger because the display 

becomes too cluttered. Drawing the 35,329 vertices of the FP5 R&D network as dots on a 

page would require the dots to be placed about 1 mm from each other, and we would still need 

to draw the edges that link them. Larger networks with millions or billions of vertices and 

edges are impossible to draw in practice. For all but the smallest networks, we must 

investigate statistical properties of the network connectivity patterns in order to “see” the 

community structure.  

 

There is a plethora of ways to define the community-identification problem (for recent 

reviews, see Porter et al. 2009, Fortunato 2010). The most prominent formulation is based on 

the concept of modularity, a measure that evaluates the quality of a partition of a graph into 

subsets of vertices in comparison to a null model. Formally, the modularity Q is defined as 
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( ) ( )
,

1 ,
2 ij ij i j

i j
Q A P g g

m
δ= −∑  (2) 

 

with the Kronecker delta term 

 

( ) 1 if
,

0 otherwise,
i j

i j

g g
g gδ

=⎧
= ⎨
⎩

 (3) 

 

where ig  and jg  denote the community groups to which vertices i and j are assigned, 

respectively, and ijP  denotes the probability in the null model that an edge exists between 

vertices i and j. Thus, the modularity Q is – up to a normalization constant – defined as the 

number of edges within communities minus those expected in the null model. 

 

The standard choice of the null model is that proposed by Newman and Girvan (2004), and 

consists of a randomized version of the actual graph, where edges are rewired at random, 

under the constraint that each vertex i keeps its degree ki. Assuming that ijP  may be written in 

the product form 

 

,ij i jP P P=  (4) 
 

2i iP k m= and 2 ,j jP k m=   

 

and, thus,  

 

.
2
i j

ij

k k
P

m
=  (5) 

 

With this choice for ijP , the modularity becomes 

 

( )
,

1 , .
2 2

i j
ik i j

i j

k k
Q A g g

m m
δ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑  (6) 
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The goal now is to find a division of the vertices into communities such that the modularity Q 

is optimal. An exhaustive search for a decomposition is infeasible. Even for moderately large 

networks, far too many ways exist to decompose such networks into communities. 

 

Here we study the bipartite character of the network in question. Bipartite networks have 

additional constraints that can be reflected in the null model. For bipartite graphs, the null 

model should be modified to reproduce the characteristic form of bipartite adjacency matrices 

(see Barber 2007 for more details) 

 

( )
1 1 1 2

2 22 1

n n n n

T
n nn n

O A

A O
× ×

××

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

A
%

%  (7) 

 

where 1n  and 2n  denote the number of vertices in 1V  and 2V , respectively, and 1 2 ,n n n= +  

and 
1 2n nO ×  is the all-zero matrix with 1n  rows and 2n   columns. Using this null model, the 

following bipartite modularity QB is obtained: 

 

( )
,

21 , .
2

u v
B ik i j

i j

k dQ A g g
m m

δ⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑  (8) 

 

In Eq. (8), the degrees for the two parts of the network are handled separately as ku and dv. For 

the network that we consider here, ku denotes the degree for vertices representing 

organizations (with ku=0 for projects) and dv denotes the degree for vertices representing 

projects (with dv=0 for organizations).  

 

3 A label-propagation algorithm for maximizing (bipartite) modularity 

 
We detect network communities using an approach that builds on the label propagation 

algorithm (LPA) introduced by Raghavan et al. (2007). In the LPA, community assignments 

are described by labels assigned to the network vertices. Vertices are initially assigned unique 

labels; these labels may be numbers. Labels propagate dynamically between vertices, with the 

new label for a vertex assigned to match the most frequent label among the neighboring 

vertices. The relabeling is illustrated in Fig. 1, where a new label is assigned to the vertex 

marked with a question mark. The most frequent label among the neighbors is “2” and hence 
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the vertex also takes this label. Once a stable assignment of labels is obtained, network 

communities are taken to be sets of vertices bearing the same labels.  

 

Figure 1 about here 

 

We formalize the LPA following the presentation of Barber and Clark (2009), describing the 

LPA as an optimization problem. We introduce an objective function H, which is just the 

number of edges linking vertices with the same label (i.e., in the same community group g). 

This function can be expressed formally in terms of the adjacency matrix A, giving  

 

,

1 ( , ),
2 uv u v

u v
H A g gδ= ∑           (9) 

 

where, as before, ug  and vg  denote the community groups (i.e. labels) to which vertices u 

and v are assigned. Label assignment corresponds to selecting a new community group vg′ for 

vertex v that maximizes H (i.e., a label g that occurs most frequently among the neighbors of 

v). Formally, this is 

 

 = arg max ( , ).v uv u
g u

g A g gδ′ ∑          (10) 

 

Multiple choices of g could produce a maximal H. In such a case, a specific label is selected 

by keeping the current label if it would satisfy Eq. (10), and otherwise taking a label at 

random that satisfies Eq. (10). This decision rule excludes non-terminating cycles where a 

vertex varies between different labels satisfying Eq. (10). 

 

To put the label-update rule (10) into effect, we must also define an update schedule. A 

practical schedule, suggested by Raghavan et al. (2007), is to update the vertex labels 

asynchronously and in random order. Multiple updating passes are made through the vertices, 

continuing until all vertices have labels satisfying Eq. (10). This update schedule ensures 

termination of the search by eliminating cycles where two neighboring vertices continually 

exchange labels. 
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The LPA offers a number of desirable qualities. As previously described, it is conceptually 

simple, being readily understood and quickly implemented. The algorithm is efficient in 

practice. Each relabeling iteration through the vertices of a graph has a computational 

complexity linear in the number of edges in the graph. The total number of iterations is not a 

priori clear, but relatively few iterations are typically needed to assign the final label to most 

of the vertices (over 95% of vertices in five iterations; see Raghavan et al. 2007, Leung et al. 

2008). 

 

A significant drawback of the LPA is that the objective function H corresponds poorly to our 

conceptual understanding of communities. In fact, the global maximum in H is trivially 

obtained by assigning the same label to all vertices, providing no information at all about 

community structure. Thus, interesting community solutions must be located at local maxima 

in H, but H offers no mechanism for comparing the quality of the solutions. An auxiliary 

measure, such as the modularity Q, can be introduced to assess community quality. Using 

modularity, communities found using LPA are seen to be of high quality (Raghavan et al. 

2007); label propagation is both fast and effective. 

 

Barber and Clark (2009) have elucidated the connection between label propagation and 

modularity, showing that modularity can be maximized by propagating labels subject to 

additional constraints, and proposing several variations of the LPA. In this paper, we make 

use of a hybrid, two-stage label propagation scheme, consisting of the LPAr variant followed 

by the LPAb variant (see Barber and Clark 2009 for details). The LPAr is defined similarly to 

the original LPA, but with additional randomness to allow the algorithm to avoid premature 

termination. Instead of preferentially keeping the current label if it would satisfy Eq. (10), in 

the LPAr we always select randomly from those labels that satisfy Eq. (10). As this 

assignment could, in principle, prevent the algorithm from terminating, we consider the label 

propagation to be complete when no label changes in a pass through the vertices, rather than 

the more stringent condition that no label could change. This practice produces better 

communities as measured by Q or QB than does the LPA. The LPAb imposes constraints on 

the label propagation so that the algorithm identifies a local maximum in QB using a modified 

label update rule with the form 

 

2arg max ( , )v uv u v u
g u

g A k d g g
m

δ⎛ ⎞′ = −⎜ ⎟
⎝ ⎠

∑ .       (11) 
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Update rule (11) can be implemented in such a fashion as to preserve the desirable properties 

of the LPA while imposing a clearer measure for community quality than that in Eq. (9).  

 
4  Network communities and topical differentiation 
 
In this section, we use the LPA algorithm to identify and differentiate communities for the 

European R&D cooperation network. We develop community-specific profiles to 

thematically characterize the network communities, and consider their spatial distribution. We 

identified 3,482 network communities. The communities vary greatly in size, as measured 

either by the number of organizations in a community or by the number of projects in a 

community (ranked by size in Fig. 2). Most (2,878) communities consist of just a single 

project with some or all of the participating organizations. In contrast, twenty or more projects 

are observed in just nine communities, but they contain over a third of the organizations and 

over half of the projects present in FP5. For the rest of this paper, we consider only eight of 

these nine largest communities (see Table 1 and Fig. 3); the ninth is of a different character 

than the others, focusing on international cooperation rather than R&D. 

 
 

Figure 2 about here 

 

Thematic differentiation and characterization of the network communities 

 
Communities are identified using only the network structure, which arises from the processes 

by which projects form. To gain a better understanding of the nature of the communities, we 

examine the properties of the constituent organizations and projects. We focus particularly on 

three characteristics: (i) the standardized subject indices (sometimes also referred to as 

keywords) assigned to the projects by the EU, (ii) the project titles, and (iii) the identity of the 

organizations. By considering these three features, we find a strong thematic character for the 

communities. We summarize the community themes concisely in Table 1 and provide 

additional details here. 

 

As a first step, we gain a basic understanding of the communities by examining their thematic 

orientation using standardized subject indices assigned to the projects in a community. There 

are 49 subject indices in total, ranging from Aerospace Technology to Waste Management; a 
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complete list of subject indices is given by CORDIS (2008). Absolute counts of projects with 

a particular subject index are uninformative, as the subject indices occur with different 

frequencies in FP5 projects. A more meaningful assessment is to compare the number of 

projects Ns in a community featuring a subject index S to the number E[Ns] we would expect 

if the projects were chosen at random from FP5; differences in the values can be tested for 

statistical significance using a binomial test. In Table 1, we show the most strongly over-

represented subject indices for each community, giving the values as a ratio Rs = Ns / E[Ns] of 

actual occurrences (Ns) to expected occurrences of the index (E[Ns]). The subject indices are 

strongly suggestive of thematic differentiation between the communities, with communities 

apparently oriented toward the life sciences, transportation, electronics, and other topics. 

 

Further insight into the communities is gained by examining the project titles, allowing a 

more specific characterization of their thematic character. Particularly for the larger 

communities, the titles suggest possible community substructures of a more specialized 

nature; we note the presence of such subnetworks, but do not pursue them further in this 

work. Using the standardized subject indices and the project titles, we assigned the names as 

shown in Table 1 to each community.  

 

Table 1 about here 

 

Larger communities show greater diversity in their substructure. The largest, Life Sciences, 

shows a broad selection of topics in biotechnology and the life sciences, including health, 

medicine, food, molecular biology, genetics, ecology, biochemistry, and epidemiology. The 

second largest, Electronics, focuses principally on information technology and electronics, 

with projects in related fields dealing with materials science, often related to integrated 

circuits; projects about algorithms, data mining, and mathematics, and a definite subset of 

projects with atomic, molecular, nuclear, and solid state physics. The third largest community, 

Environment, is focused on environmental topics, including environmental impact, 

environmental monitoring, environmental protection, and sustainability. 

 

As communities become smaller, they also become more focused. We see, for example, three 

distinct transportation related communities. The largest of these, Aerospace, is focused on 

aerospace, aeronautics and related topics, including materials science, manufacturing, fluid 

mechanics, and various energy topics. The next, Ground Transport, has projects dominated 
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by railroad and, especially, automotive topics; notable subtopics include manufacturing, fuel 

systems, concrete, and pollution. The smallest transportation community, Sea Transport, is 

more specifically focused; virtually all project titles are shipping-related. The remaining 

communities, Aquatic Resources and Information Processing, are the smallest and 

thematically most uniform.  

 

In Fig. 3, we visualize the network of key FP5 communities using a standard approach from 

spectral graph analysis, so that communities that show a relatively higher number of links 

between them are positioned nearer to each other. The vertices are positioned by taking the x 

and y coordinates to be the components of two eigenvectors of the normalized Laplacian 

matrix ( )ij n nl ×=L  that is defined as 

 

1/2

1 if   and 0

if   and   adjacent to  

0 otherwise

i

ij i j i j

i j k

l k k i j k k
−

= ≠⎧
⎪⎪ ⎡ ⎤= − ≠⎨ ⎣ ⎦
⎪
⎪⎩

      (12) 

 

where ik  denotes the degree of vertex i . Matrix L can be written as   

 
1 2 1 2− −= −L I D A D           (13) 

 

where A is the n n×  adjacency matrix as defined in Section 2, I is the n n×  identity matrix, 

and D is the n n×  diagonal matrix with ( 1, ..., )ij iD i nλ= =  the ith eigenvalue of L. The 

relevant eigenvectors for network layout are those corresponding to the two smallest positive 

eigenvalues. The normalized Laplacian matrix is much studied in spectral graph analysis 

(Chung 1997), and is of great practical use in data clustering and visualization (Higham 2004, 

Seary and Richards 2003). 

 

A node size corresponds to the number of organizations of the respective community. The 

Life Sciences and the Electronics community have the highest number of organizations. The 

Electronics community appears to have the highest collaboration intensity with other 

communities (i.e., knowledge produced in this field is used intensively in other fields). The 

Life Sciences community has a strong connection to the third largest community, 

Environment. The three transport-related communities are positioned on the left-hand side of 
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Figure 3; i.e., they show relatively high inter-community collaboration intensity. The largest 

of these is Aerospace, which is closer to Ground Transport than to Sea Transport. The 

community Aquatic Resources has the strongest connection to Environment, while 

Information Processing is far from all other communities.  

 

Figure 3 about here 
 
  

The structure of the network communities 

 

Table 2 provides an overview of some measures that characterize the structure of the eight 

FP5 communities under consideration. We focus here on the partnerships present, and thus 

turn attention to the organizations projection graphs for the communities. Some differences in 

the network structure are worth noting. As indicated in the preceding subsection, the number 

of vertices, and thus the number of organizations, in a community is highest for the Life 

Sciences and Electronics. Though the number of organizations in these two communities is 

nearly equal, the number of edges is markedly higher in the Life Sciences community than in 

the Electronics community, leading to a higher density in the Life Sciences community. The 

average path length also varies across the eight communities. It is highest for the Environment 

community (2.797), though it has a lower number of vertices than the Life Sciences and the 

Electronics community; i.e., from a social network analysis perspective, the condition for 

diffusion of information is better in the latter two communities than in the Environment 

community. In all cases, the distribution of vertex degree (i.e., the number of partners) is 

skewed rightward.  This skewness is highest for the Ground Transport community, with a 

value of 6.739. Compared to the other communities, Ground Transport features central hubs 

that are in many more projects than the other organizations, and are of great importance for 

the spread of information in the network.  

 

Table 2 about here 
 

Spatial patterns of the network communities 

 

We next consider the spatial distribution of the eight FP5 communities. Figure 4 illustrates the 

projection of the communities onto NUTS-2 regions across Europe. The 255 regions cover the 

pre-2007 EU25 member states, as well as Norway and Switzerland. Note that the region-by-

region community networks are undirected, weighted graphs from a network analysis 
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perspective. The nodes represent regions; their size is relative to their degree centrality, 

corresponding to the number of links connected to a region.  

 

The spatial network maps in Fig. 4 reveal considerable differences in spatial collaboration 

patterns across eight FP5 communities. One important result is that the region Île-de-France 

takes an important position in all communities7. Furthermore, this visualization clearly 

discloses the different spatial patterns of the Transport related communities, Aerospace, 

Ground Transport, and Sea Transport. Though the region Île-de-France appears to be the 

central hub in all transport-related communities, the directions of the largest collaboration 

flows from Île-de-France differ markedly. For the Sea Transport community, we observe 

intensive collaborations with important sea ports in the north (Zuid Holland, Agder Rogeland, 

Denmark, Hamburg) and the south (Liguria, Lisbon, Athens), while for the Ground Transport 

community, collaborations with the east and south are dominant (Lombardia, Oberbayern, 

Stuttgart). In the Aerospace community, we can observe a strong localization of 

collaborations within France and its neighboring countries.  

 

Figure 4 about here 

 

In the largest community, Life Sciences, the highest number of collaborations is observed 

between the regions of Île-de-France and Piemonte (174), while the second largest 

community, Electronics, is characterized by a very high collaboration intensity between the 

regions of Île-de-France and Oberbayern (474 collaborations), followed by Île-de-France and 

Köln (265 collaborations), and Oberbayern and Köln (157 collaborations). In the Environment 

community, we find the strongest collaboration intensity between Denmark and Helsinki (131 

collaborations). In the Aquatic Resources community, the regions Denmark and Agder 

Rogaland (Norway) show the highest collaboration intensity, not only between them (21 

collaborations), but also with other regions, while for the Information Processing community, 

we identify Helsinki as the central region, featuring intensive collaboration with Athens, 

Lazio and Lombardia. 

 

5  Summary and conclusions 
 

In this paper, we employ recently developed methods to identify communities in European 

R&D networks using data from joint research projects funded by the European Framework 
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Programmes (FPs). The identification and characterization of thematically relevant 

substructures in these networks is of crucial importance in a European policy context. The 

present study complements earlier empirical work about the structure of R&D networks in 

Europe that neglect relevant substructures (see, for instance, Breschi and Cusmano 2004). To 

our knowledge, the current study is the first to apply the community detection methodology 

for identifying the relevant subnetworks in a regional science perspective. 

 

Networks of R&D collaborations under the 5th Framework Programme give rise to a bipartite 

network, with 72,745 edges existing between 9,490 projects and 25,839 organizations which 

take part in them. With this construction, participating organizations are linked only through 

joint projects. The usual approach taken to identify communities in bipartite networks is to 

first construct a unipartite projection of one part of the network (i.e., a network of 

organizations by linking organizations when they cooperate in a project), and then detect 

communities in that projection using methods for unipartite networks. The unipartite 

projection can be illuminating, but intrinsically loses information because multiple bipartite 

networks with distinct connectivity patterns can give rise to the same projection (see Barber 

2007). In this paper, we adopted a label propagation algorithm (LPA) for identifying 

community groups in this bipartite network. The LPA is designed for maximizing bipartite 

modularity that accounts for the bipartite character of the network (see Barber and Clark 

2009). The advantages of the procedure are its conceptual simplicity, ease of implementation, 

and practical efficiency.  

 

This study produces interesting results, both from a scientific point of view, and in a European 

policy context. We detect eight relevant, thematically relatively homogenous FP5 

communities, providing a new view on the R&D collaboration landscape in Europe. The 

larger communities identified are Life Sciences, Electronics, and Environment. However, 

these communities may show further relevant substructures. As communities become smaller, 

they also become more focused. We identify three transport related communities: Aerospace, 

Ground Transport, and Sea Transport. The remaining communities, Aquatic Resources and 

Information Processing, thematically are the smallest and most uniform ones. Furthermore, 

results clearly reveal that the geographical distribution of the communities varies 

considerably. However, the region of Île-de-France plays a central role in each of the detected 

communities.  
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Further, we illustrate that the application of network analysis techniques has great potential in 

a regional science and spatial analysis context. In particular, the detection and investigation of 

substructures in social systems is of great relevance in regional science, and, thus, enhances 

our analytical toolbox for the spatial analysis of such social systems. By this, the study 

provides an important starting point for further employing and improving community 

detection algorithms for analyzing substructures of (spatial) R&D networks.  

 

The general approach followed in this study may be extended and improved upon in several 

ways. Alternate community detection methods may be considered. More significantly, 

alternate definitions of what we mean by community may be considered, allowing 

investigation of hierarchical substructures of the communities, or community to overlap. 

Other methods from social network analysis may be used to characterize the network, and 

techniques from spatial analysis may be applied to characterize the network as a whole and its 

community structure.  
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Endnotes 
 
1  R&D networks constituted under the heading of the FPs have recently attracted a number of empirical studies. 

Maggioni et al. (2007), and Scherngell and Barber (2009) focus on the geography of pre-competitive R&D 
networks across European regions by using data from joint research projects of FP5. Breschi and Cusmano 
(2004) employ a social network perspective to analyse R&D collaborations, with the objective to unveil the 
texture of the European Research Area (ERA); but their work predates the explosion of papers about network 
analysis following the seminal paper by Newman and Girvan (2004) introducing modularity.  

 
2  We use data from the EUPRO database, which comprises systematic information on funded research projects 

of the EU FPs (complete for FP1-FP6) and all participating organizations (see Roediger-Schluga and Barber 
2008 for further details). 

 
3  http://vlado.fmf.uni-lj.si/pub/networks/pajek/ 
 
4  http://www.analytictech.com/ucinet/ 
 
5   http://www.graphviz.org/ 
 
6   http://gephi.org/ 
 
7   We stress, however, that one cannot conclude from this finding that individual Parisian scholars or 

organizations are the most important for the communities.  
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Fig. 1: Updating community assignment by propagating labels 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Ranking of communities by number of organizations 
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Fig. 3: Community structure in the network of R&D cooperation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Vertex positions were determined using spectral graph analytic methods so that communities that 
are strongly interconnected are positioned nearer to each other. With these positions, the network was 
visualized using UCINet 6.303. 
 

Number of organizations: 2,400 
Number of organizations: 1,200 
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Table 1: Characterization of communities by thematic orientation as 
captured by Rs = Ns / E[Ns], where Ns are the actual occurrences 
and E[Ns] the expected occurrences of a specific subject index s 

 Rs > 5 5 ≥ Rs  >  3 3 ≥ Rs  >  1 

Aerospace Aerospace Technology*** 

Energy Saving***;  
Energy Storage,  
Energy Transport***; 
Renewable Sources of 
Energy***;  
Transport*** 

Industrial 
Manufacture***; 
Information Processing, 
Information Systems***; 
Other Energy Topics** 

Aquatic Resources Agriculture***; Resources 
of the Sea, Fisheries*** Life Sciences*** 

Economic Aspects***; 
Environmental 
Protection*** 

Electronics - 

Electronics, 
Microelectronics***; 
Evaluation*; 
Telecommunications*** 

Education, Training***; 
Forecasting***; 
Information Processing, 
Information Systems***; 
Media*** 

Environment 
Earth Sciences***; 
Meteorology***; 
Standards*** 

Forecasting***;  
Resources of the Sea, 
Fisheries*** 

Agriculture*; 
Environmental 
Protection***; 
Measurement 
Methods**; Regional 
Development*; 
Scientific Research*; 

Ground Transport Energy Storage,  
Energy Transport*** Fossil Fuels** 

Energy Saving***; 
Environmental 
Protection*; Materials 
Technology*; Reference 
Materials*; Safety*** 

Information 
Processing 

Electronics, 
Microelectronics***; 
Legislation, 
Regulations***; 
Mathematics, 
Statistics***; Policies*** 

- Information Processing, 
Information Systems*** 

Life Sciences - 

Biotechnology***;  
Life Sciences***;  
Medicine, Health***; 
Regional Development*** 
 

Agriculture***; 
Food***; Policies***; 
Safety***;  
Scientific Research***; 
Social Aspects***; 
Waste Management*** 

Sea Transport Transport*** Safety*** Environmental 
Protection*** 

Notes:  Statistical difference tested using binomial tests whether Ns is different from  E[Ns]  
***significant at the 0.001 level, **significant at the 0.01  level, *significant at the 0.05 level 
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Table 2: Properties of the FP5 communities 

 Aerospace Aquatic 
Resources Electronics Environment Ground 

Transport 
Information 

Processing 
Life 

Sciences  
Sea 

Transport 

Vertices n 1,146 81 2,307 1,855 686 40 2,366 218 

Edges m 13,870 451 30,456 23,155 5,251 226 33,178 2,978 

Average path 
length  2.669 2.199 2.732 2.797 2.549 1.731 2.713 2.030 

Density 0.021 0.139 0.010 0.013 0.022 0.290 0.012 0.126 

Skewness 4.263 1.169 5.132 4.512 6.739 1.097 4.749 1.718 

Mean degree 24.206 11.136 26.403 24.965 15.309 11.300 28.046 27.321 

 
 
 

 


