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A NOTE ON TRANSFORMED DENSITY REJECTION

JOSEF LEYDOLD

ABSTRACT. Tn this paper we describe a version of transformed density rejec-
tion that requires less uniform random numbers. Random variates below the
squeeze are generated by inversion. For the expensive part between squeeze
and density an algorithm that uses a coverering with triangles is introduced.

1. INTRODUCTION

Transformed density rejection, introduced in Devroye (1986) and under a differ-
ent name in Gilks and Wild (1992) and generalized in Hérmann (1995), is one of
the most efficient universal methods for generating non-uniform random variates.
This acceptance/rejection technique is based on the idea that the probability den-
sity function f is transformed by a strictly monotonically increasing differentiable
transformation T' with domain (0, o), such that T'(f(x)) is concave. We then say
that f is T-concave; log-concave densities are an example with T'(z) = log(z).
By the concavity of T(f(x)) it is easy to construct a majorizing function for the
transformed density as the minimum of n tangents. Transforming this function
back into the origninal scale be get a hat function h(z) for the density f. By
using secants between the touching points of the tangents of the transformed den-
sity we can construct a simple lower bound s(z) for the density, called squeeze,
to reduce the number of (expensive) density evaluations. See Hormann (1995) for
details. Figure 1 illustrates the situation for the standard normal distribution and
the transformation T'(x) = log(x). The left hand side shows the transformed den-
sity with three tangents. The right hand side shows the density function with the
resulting hat. Squeezes are drawn as dashed lines.

Obviously T' must have the property that the area [ h(z)dz below the hat is
finite, and that generation from the hat distribution is easy (and fast). In the
following we only consider the family T, of transformations, where Ty(x) = log(x)
and T.(z) = (2 — 1) /¢, as the most important transformations. For densities with
unbounded domain we must have ¢ € (—1, 0] (Hérmann 1995), but for special cases
¢ > 0 are possible (Evans and Swartz 1998).

Random variates proportional to the hat function h(z) are generated by parti-
tioning the domain of h into intervals I,--- , I, defined by the n different parts
of the hat function, see figure 1. Algorithm tdr describes the standard version of
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FIGUureE 1. Construction of a hat function for the normal den-
sity utilizing transformed density rejection. The tangents are con-
structed at ¢y, co and c3.

transformed density rejection. (We do not discuss here how to get suitable construc-
tion points ¢;; some methods are introduced in Gilks and Wild (1992), Hérmann
(1995) and Derflinger and Hérmann (1998).)

Algorithm tdr

Require: density f(z); transformation T'(x), construction points ¢, ... , ¢y.
/#* Setup */
1: Construct hat hA(z) and squeeze s(x).
2: Compute intervals I, ..., I,.
3: Compute areas H; below the hat for each interval I;.
/+ Generator */
4: loop
5:  Generate I with probability vector proportional to (Hy,... , H,).
6:  Generate X with density proportional to h|; (by inversion).
7. Generate U ~ U(0,1).
8:  If Uh(X) < s(X) then /+ evaluate squeeze */
9: return X.
10 if Uh(X) < f(X) then /« evaluate density +/
11: return X.

For step 5 indexed search (or guide tables) can be used (Chen and Asau 1974). By
reusing of uniform random numbers (see (Devroye 1986, §11.3.7)) only one uniform
random variate is necessary for steps 5 and 6.

The expected number of uniform random numbers per generated non-uniform
random variate is therefore 2C = 2 [h(z)dz/ [ f(z)dz > 2, where C denotes
the rejection constant. However concurring algorithms like the ziggurat method
by Marsaglia and Tsang (1984), the table method by Ahrens (1995), or a variant
of the ratio-of-uniforms method as suggested by Leydold (1999) require less than
2 uniform random numbers. These methods are acceptance/rejection techniques
that uses the fact that below the squeeze immediate acceptance is possible without
generating a second uniform random number.

In this paper we show that we can avoid the generation of a second random
number below the squeeze and describe an efficient method for generating from the
piece between probability density function and squeeze function.
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2. A NEW APPROACH

The given density function f can be decomposed into the discrete mixture of the
squeeze and its complement, i.e.,

f(@) = s(x) + (f(z) - 5(2)) (1)

Generating from s(z) is easy and can be done by the same method as in algrithm
tdr for generating from the hat function via inversion. But in opposite to the
standard algorithm, the domain of f is partitioned into intervals defined by the
different parts of the squeeze s. Since we have a “region of immediate acceptance”
below the squeeze, only one uniform random number is necessary.

Generating from a variate with density proportional to f(x)— s(z) is the difficult
(and expensive) part (Hérmann 1999). Let ¢;, j = 1,...,n, denote the touching
points of the tangents, and let I; = (¢j,¢j41], § = 1,...,n — 1, be the intervals
between these points. Moreover let Iy = (zg,c1] and I, = (¢, 1), where (zg, z1)
is the (not necessary bounded) domain of f.

In what follows we assume that T'(x) is concave, i.e., ¢ < 1 for the family T.. In
each interval I; = (¢;,¢j41], the set of points R; = {(z,9): ¢; < z < ¢j1,8(x) <
y < h(x)} is bounded by three curves: the squeeze and two different parts of the
hat; see figure 2. By the concavity of T, the pieces of the hat function and of the
squeeze are convex functions. Hence tangents on the squeeze are lower bounds;

CJ]' Ci+1

FIGURE 2. The area between squeeze s(x) and hat h(z) can be
covered by a quadrangle @;. To generate tuples uniformly dis-
tributed in Q; it can be split into two triangles along diagonal
Ujlj.
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secants between between two points in the same part of the hat give upper bounds.
Let ¢; = (¢4, f(c;)), let |; denote the intersection of the tangents on the squeeze
in the boundary points and let u; be the “vertex” of graph of the hat function.
Then the quadrangle Q; with vertices ¢;, I;, ¢;41 and u; covers the region between
hat and squeeze and consequently the region R; between density and squeeze, see
figure 2.

It is easy to generate a point (X,Y") uniformly distributed in Q; by dividing the
quadrangle into two triangles along the diagonal u;l; (dashed line in figure 2). In
each triangle the simple algorithm from Devroye (1986, p.570) can be used. Notice
that we cannot assume that Q; is convex, i.e., the diagonal c;c;;; might not be
in the quadrangle. To compile a suitable algorithm we have to be aware of the
follwing two facts.

(i) There are no squeezes in the “boundary” intervals Iy and I,,. Hence in this
region we have to generate by rejection from hat distribution.

(i1) Using a partitioning of the domain of h(z) into the intervals I; together
with decomposition (1) and the procedure described above results in the following
algorithm: (1) choose an interval at random; (2) choose “squeeze or quadrangle”
at random; (8) either generate from a distribution with density proportional to
the squeeze and return the random variate; or (4) generate random tuples (X,Y)
uniformly distributed in quadrangle Q; until (X,Y) € R; and return X. However
this approach requires the knowledge of the area of R;, i.e., f;j“ (f(z) — s(x)) dz.

(It is not necessary for algorithm tdr that [ f(z)dz is known; the normalization
constants for the p.d.f. can be omitted.) This problem can be avoided by changing
the procedure in the following way:

Algorithm tdrimpr

Require: density f(z); transformation T'(z), construction points c1, ... ,cy.
/* Setup */
1: Construct hat h(z) and squeeze s(x).
2: Compute intervals Iy, ... , I,.
3: Compute ¢;, u; and l; forj=1,... ,n—1.
4: Compute areas H? below squeeze forj=1,...,n—1
5: Compute areas Hj’ and HY of left and right triangle, resp., inside Q;.
6: Compute areas Hy and H,, below hat for intervals Iy and I,,.

/+ Generator */

loop

8:  Generate I with probability vector proportional to
(Ho,Hf + H + HI,... /H? | +H. ,+H' | H,).

9: 1f 0 < I < n then /x inner interval %/

=

10: Generate W with probability vector proportional to (Hf, H:, HT).
11: if W =1 then /x region of immediate acceptance */

12: Generate X with density proportional to s|;.

13: return X.

14: else /+ one of the two triangles =/

15: Generate (X,Y) uniformly distributed in quadrangle R;.

16: if s(X) < X < f(X) then /« evaluate squeeze and density */

17: return X.

18: else /x T =0 or T = n; boundary intervals: no squeeze, use hat /

19: Generate X with density proportional to h|;.
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20: Generate U ~ U(0,1).
21: if Uh(X) < f(X) then /+ evaluate density */
22: return X.

By reusing of uniform random numbers only one uniform random number is
necessary for steps 8, 10 and 12. The expected number of uniform random numbers
per nonuniform random variate is given by

[ s(z)dx f;oufn h(x) dz Z;’;ll 19
[T T2 [i@ar T T ©

Notice that for increasing number n of touching points the first part in equation (2)
tends to one, where the second and third part converges to zero.

Notice that the rejection constant C' of the new algorithm is given by C' =
([ s(z)dz + Z;’;l |Q;1)/ [ f(x)dx, where |Q;| denote the area of Q;. We imme-
diately find C' > C with (C' — C)/C = O(n*). C' — C is indicated by the dark
shaded region in figure 2. Notice that C' —1 = O(n?) (Leydold and Hérmann 1998).
Thus the increase of required loops by using the new approach is rather small.

(2)

3. POSSIBLE VARIANTS

The new procedure works analogously for convex T'(x) (¢ > 1 for the family T),
and/or densities f where T(f(x)) is convex (see Evans and Swartz (1998)).
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