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A NOTE ON TRANSFORMED DENSITY REJECTIONJOSEF LEYDOLDAbstrat. In this paper we desribe a version of transformed density reje-tion that requires less uniform random numbers. Random variates below thesqueeze are generated by inversion. For the expensive part between squeezeand density an algorithm that uses a overering with triangles is introdued.1. IntrodutionTransformed density rejetion, introdued in Devroye (1986) and under a di�er-ent name in Gilks and Wild (1992) and generalized in H�ormann (1995), is one ofthe most eÆient universal methods for generating non-uniform random variates.This aeptane/rejetion tehnique is based on the idea that the probability den-sity funtion f is transformed by a stritly monotonially inreasing di�erentiabletransformation T with domain (0;1), suh that T (f(x)) is onave. We then saythat f is T -onave; log-onave densities are an example with T (x) = log(x).By the onavity of T (f(x)) it is easy to onstrut a majorizing funtion for thetransformed density as the minimum of n tangents. Transforming this funtionbak into the origninal sale be get a hat funtion h(x) for the density f . Byusing seants between the touhing points of the tangents of the transformed den-sity we an onstrut a simple lower bound s(x) for the density, alled squeeze,to redue the number of (expensive) density evaluations. See H�ormann (1995) fordetails. Figure 1 illustrates the situation for the standard normal distribution andthe transformation T (x) = log(x). The left hand side shows the transformed den-sity with three tangents. The right hand side shows the density funtion with theresulting hat. Squeezes are drawn as dashed lines.Obviously T must have the property that the area R h(x) dx below the hat is�nite, and that generation from the hat distribution is easy (and fast). In thefollowing we only onsider the family T of transformations, where T0(x) = log(x)and T(x) = (x � 1)=, as the most important transformations. For densities withunbounded domain we must have  2 (�1; 0℄ (H�ormann 1995), but for speial ases > 0 are possible (Evans and Swartz 1998).Random variates proportional to the hat funtion h(x) are generated by parti-tioning the domain of h into intervals I1; � � � ; In de�ned by the n di�erent partsof the hat funtion, see �gure 1. Algorithm tdr desribes the standard version of1991 Mathematis Subjet Classi�ation. Primary: 65C10 random number generation, Se-ondary: 65U05 Numerial methods in probability and statistis; 11K45 Pseudo-random numbers,Monte Carlo methods.Key words and phrases. non-uniform random variates, universal method, transformed densityrejetion, aeptane-omplement, ontinuous distributions, log-onave distributions, T-onavedistributions. 1



2 JOSEF LEYDOLD
1 2 3Figure 1. Constrution of a hat funtion for the normal den-sity utilizing transformed density rejetion. The tangents are on-struted at 1, 2 and 3.transformed density rejetion. (We do not disuss here how to get suitable onstru-tion points i; some methods are introdued in Gilks and Wild (1992), H�ormann(1995) and Deringer and H�ormann (1998).)Algorithm tdrRequire: density f(x); transformation T (x), onstrution points 1; : : : ; n.=� Setup �=1: Construt hat h(x) and squeeze s(x).2: Compute intervals I1; : : : ; In.3: Compute areas Hj below the hat for eah interval Ij .=� Generator �=4: loop5: Generate I with probability vetor proportional to (H1; : : : ; Hn).6: Generate X with density proportional to hjI (by inversion).7: Generate U � U(0; 1).8: if U h(X) � s(X) then =� evaluate squeeze �=9: return X .10: if U h(X) � f(X) then =� evaluate density �=11: return X .For step 5 indexed searh (or guide tables) an be used (Chen and Asau 1974). Byreusing of uniform random numbers (see (Devroye 1986, xII.3.7)) only one uniformrandom variate is neessary for steps 5 and 6.The expeted number of uniform random numbers per generated non-uniformrandom variate is therefore 2C = 2 R h(x) dx= R f(x) dx � 2, where C denotesthe rejetion onstant. However onurring algorithms like the ziggurat methodby Marsaglia and Tsang (1984), the table method by Ahrens (1995), or a variantof the ratio-of-uniforms method as suggested by Leydold (1999) require less than2 uniform random numbers. These methods are aeptane/rejetion tehniquesthat uses the fat that below the squeeze immediate aeptane is possible withoutgenerating a seond uniform random number.In this paper we show that we an avoid the generation of a seond randomnumber below the squeeze and desribe an eÆient method for generating from thepiee between probability density funtion and squeeze funtion.



A NOTE ON TRANSFORMED DENSITY REJECTION 32. A new approahThe given density funtion f an be deomposed into the disrete mixture of thesqueeze and its omplement, i.e.,f(x) = s(x) + (f(x)� s(x)) (1)Generating from s(x) is easy and an be done by the same method as in algrithmtdr for generating from the hat funtion via inversion. But in opposite to thestandard algorithm, the domain of f is partitioned into intervals de�ned by thedi�erent parts of the squeeze s. Sine we have a \region of immediate aeptane"below the squeeze, only one uniform random number is neessary.Generating from a variate with density proportional to f(x)�s(x) is the diÆult(and expensive) part (H�ormann 1999). Let j , j = 1; : : : ; n, denote the touhingpoints of the tangents, and let Ij = (j ; j+1℄, j = 1; : : : ; n � 1, be the intervalsbetween these points. Moreover let I0 = (x0; 1℄ and In = (n; x1), where (x0; x1)is the (not neessary bounded) domain of f .In what follows we assume that T (x) is onave, i.e.,  � 1 for the family T. Ineah interval Ij = (j ; j+1℄, the set of points Rj = f(x; y) : j � x � j+1; s(x) <y � h(x)g is bounded by three urves: the squeeze and two di�erent parts of thehat; see �gure 2. By the onavity of T , the piees of the hat funtion and of thesqueeze are onvex funtions. Hene tangents on the squeeze are lower bounds;
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Figure 2. The area between squeeze s(x) and hat h(x) an beovered by a quadrangle Qj . To generate tuples uniformly dis-tributed in Qj it an be split into two triangles along diagonaluj lj .



4 JOSEF LEYDOLDseants between between two points in the same part of the hat give upper bounds.Let j = (j ; f(j)), let lj denote the intersetion of the tangents on the squeezein the boundary points and let uj be the \vertex" of graph of the hat funtion.Then the quadrangle Qj with verties j , lj , j+1 and uj overs the region betweenhat and squeeze and onsequently the region Rj between density and squeeze, see�gure 2.It is easy to generate a point (X;Y ) uniformly distributed in Qj by dividing thequadrangle into two triangles along the diagonal uj lj (dashed line in �gure 2). Ineah triangle the simple algorithm from Devroye (1986, p.570) an be used. Notiethat we annot assume that Qj is onvex, i.e., the diagonal jj+1 might not bein the quadrangle. To ompile a suitable algorithm we have to be aware of thefollwing two fats.(i) There are no squeezes in the \boundary" intervals I0 and In. Hene in thisregion we have to generate by rejetion from hat distribution.(ii) Using a partitioning of the domain of h(x) into the intervals Ij togetherwith deomposition (1) and the proedure desribed above results in the followingalgorithm: (1) hoose an interval at random; (2) hoose \squeeze or quadrangle"at random; (3) either generate from a distribution with density proportional tothe squeeze and return the random variate; or (4) generate random tuples (X;Y )uniformly distributed in quadrangle Qj until (X;Y ) 2 Rj and return X . Howeverthis approah requires the knowledge of the area of Rj , i.e., R j+1j (f(x)� s(x)) dx.(It is not neessary for algorithm tdr that R f(x) dx is known; the normalizationonstants for the p.d.f. an be omitted.) This problem an be avoided by hangingthe proedure in the following way:Algorithm tdrimprRequire: density f(x); transformation T (x), onstrution points 1; : : : ; n.=� Setup �=1: Construt hat h(x) and squeeze s(x).2: Compute intervals I0; : : : ; In.3: Compute j , uj and lj for j = 1; : : : ; n� 1.4: Compute areas Hsj below squeeze for j = 1; : : : ; n� 1.5: Compute areas H lj and Hrj of left and right triangle, resp., inside Qj .6: Compute areas H0 and Hn below hat for intervals I0 and In.=� Generator �=7: loop8: Generate I with probability vetor proportional to(H0; Hs1 +H l1 +Hr1 ; : : : ; Hsn�1 +H ln�1 +Hrn�1; Hn).9: if 0 < I < n then =� inner interval �=10: Generate W with probability vetor proportional to (HsI ; H lI ; HrI ).11: if W = 1 then =� region of immediate aeptane �=12: Generate X with density proportional to sjI .13: return X .14: else =� one of the two triangles �=15: Generate (X;Y ) uniformly distributed in quadrangle RI .16: if s(X) < X � f(X) then =� evaluate squeeze and density �=17: return X .18: else =� I = 0 or I = n; boundary intervals: no squeeze, use hat �=19: Generate X with density proportional to hjI .
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