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A NOTE ON TRANSFORMED DENSITY REJECTIONJOSEF LEYDOLDAbstra
t. In this paper we des
ribe a version of transformed density reje
-tion that requires less uniform random numbers. Random variates below thesqueeze are generated by inversion. For the expensive part between squeezeand density an algorithm that uses a 
overering with triangles is introdu
ed.1. Introdu
tionTransformed density reje
tion, introdu
ed in Devroye (1986) and under a di�er-ent name in Gilks and Wild (1992) and generalized in H�ormann (1995), is one ofthe most eÆ
ient universal methods for generating non-uniform random variates.This a

eptan
e/reje
tion te
hnique is based on the idea that the probability den-sity fun
tion f is transformed by a stri
tly monotoni
ally in
reasing di�erentiabletransformation T with domain (0;1), su
h that T (f(x)) is 
on
ave. We then saythat f is T -
on
ave; log-
on
ave densities are an example with T (x) = log(x).By the 
on
avity of T (f(x)) it is easy to 
onstru
t a majorizing fun
tion for thetransformed density as the minimum of n tangents. Transforming this fun
tionba
k into the origninal s
ale be get a hat fun
tion h(x) for the density f . Byusing se
ants between the tou
hing points of the tangents of the transformed den-sity we 
an 
onstru
t a simple lower bound s(x) for the density, 
alled squeeze,to redu
e the number of (expensive) density evaluations. See H�ormann (1995) fordetails. Figure 1 illustrates the situation for the standard normal distribution andthe transformation T (x) = log(x). The left hand side shows the transformed den-sity with three tangents. The right hand side shows the density fun
tion with theresulting hat. Squeezes are drawn as dashed lines.Obviously T must have the property that the area R h(x) dx below the hat is�nite, and that generation from the hat distribution is easy (and fast). In thefollowing we only 
onsider the family T
 of transformations, where T0(x) = log(x)and T
(x) = (x
 � 1)=
, as the most important transformations. For densities withunbounded domain we must have 
 2 (�1; 0℄ (H�ormann 1995), but for spe
ial 
ases
 > 0 are possible (Evans and Swartz 1998).Random variates proportional to the hat fun
tion h(x) are generated by parti-tioning the domain of h into intervals I1; � � � ; In de�ned by the n di�erent partsof the hat fun
tion, see �gure 1. Algorithm tdr des
ribes the standard version of1991 Mathemati
s Subje
t Classi�
ation. Primary: 65C10 random number generation, Se
-ondary: 65U05 Numeri
al methods in probability and statisti
s; 11K45 Pseudo-random numbers,Monte Carlo methods.Key words and phrases. non-uniform random variates, universal method, transformed densityreje
tion, a

eptan
e-
omplement, 
ontinuous distributions, log-
on
ave distributions, T-
on
avedistributions. 1
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1 
2 
3Figure 1. Constru
tion of a hat fun
tion for the normal den-sity utilizing transformed density reje
tion. The tangents are 
on-stru
ted at 
1, 
2 and 
3.transformed density reje
tion. (We do not dis
uss here how to get suitable 
onstru
-tion points 
i; some methods are introdu
ed in Gilks and Wild (1992), H�ormann(1995) and Der
inger and H�ormann (1998).)Algorithm tdrRequire: density f(x); transformation T (x), 
onstru
tion points 
1; : : : ; 
n.=� Setup �=1: Constru
t hat h(x) and squeeze s(x).2: Compute intervals I1; : : : ; In.3: Compute areas Hj below the hat for ea
h interval Ij .=� Generator �=4: loop5: Generate I with probability ve
tor proportional to (H1; : : : ; Hn).6: Generate X with density proportional to hjI (by inversion).7: Generate U � U(0; 1).8: if U h(X) � s(X) then =� evaluate squeeze �=9: return X .10: if U h(X) � f(X) then =� evaluate density �=11: return X .For step 5 indexed sear
h (or guide tables) 
an be used (Chen and Asau 1974). Byreusing of uniform random numbers (see (Devroye 1986, xII.3.7)) only one uniformrandom variate is ne
essary for steps 5 and 6.The expe
ted number of uniform random numbers per generated non-uniformrandom variate is therefore 2C = 2 R h(x) dx= R f(x) dx � 2, where C denotesthe reje
tion 
onstant. However 
on
urring algorithms like the ziggurat methodby Marsaglia and Tsang (1984), the table method by Ahrens (1995), or a variantof the ratio-of-uniforms method as suggested by Leydold (1999) require less than2 uniform random numbers. These methods are a

eptan
e/reje
tion te
hniquesthat uses the fa
t that below the squeeze immediate a

eptan
e is possible withoutgenerating a se
ond uniform random number.In this paper we show that we 
an avoid the generation of a se
ond randomnumber below the squeeze and des
ribe an eÆ
ient method for generating from thepie
e between probability density fun
tion and squeeze fun
tion.



A NOTE ON TRANSFORMED DENSITY REJECTION 32. A new approa
hThe given density fun
tion f 
an be de
omposed into the dis
rete mixture of thesqueeze and its 
omplement, i.e.,f(x) = s(x) + (f(x)� s(x)) (1)Generating from s(x) is easy and 
an be done by the same method as in algrithmtdr for generating from the hat fun
tion via inversion. But in opposite to thestandard algorithm, the domain of f is partitioned into intervals de�ned by thedi�erent parts of the squeeze s. Sin
e we have a \region of immediate a

eptan
e"below the squeeze, only one uniform random number is ne
essary.Generating from a variate with density proportional to f(x)�s(x) is the diÆ
ult(and expensive) part (H�ormann 1999). Let 
j , j = 1; : : : ; n, denote the tou
hingpoints of the tangents, and let Ij = (
j ; 
j+1℄, j = 1; : : : ; n � 1, be the intervalsbetween these points. Moreover let I0 = (x0; 
1℄ and In = (
n; x1), where (x0; x1)is the (not ne
essary bounded) domain of f .In what follows we assume that T (x) is 
on
ave, i.e., 
 � 1 for the family T
. Inea
h interval Ij = (
j ; 
j+1℄, the set of points Rj = f(x; y) : 
j � x � 
j+1; s(x) <y � h(x)g is bounded by three 
urves: the squeeze and two di�erent parts of thehat; see �gure 2. By the 
on
avity of T , the pie
es of the hat fun
tion and of thesqueeze are 
onvex fun
tions. Hen
e tangents on the squeeze are lower bounds;
f(x)


j 
j+1
s(x)

h(x)

j


j+1uj
lj

Figure 2. The area between squeeze s(x) and hat h(x) 
an be
overed by a quadrangle Qj . To generate tuples uniformly dis-tributed in Qj it 
an be split into two triangles along diagonaluj lj .



4 JOSEF LEYDOLDse
ants between between two points in the same part of the hat give upper bounds.Let 
j = (
j ; f(
j)), let lj denote the interse
tion of the tangents on the squeezein the boundary points and let uj be the \vertex" of graph of the hat fun
tion.Then the quadrangle Qj with verti
es 
j , lj , 
j+1 and uj 
overs the region betweenhat and squeeze and 
onsequently the region Rj between density and squeeze, see�gure 2.It is easy to generate a point (X;Y ) uniformly distributed in Qj by dividing thequadrangle into two triangles along the diagonal uj lj (dashed line in �gure 2). Inea
h triangle the simple algorithm from Devroye (1986, p.570) 
an be used. Noti
ethat we 
annot assume that Qj is 
onvex, i.e., the diagonal 
j
j+1 might not bein the quadrangle. To 
ompile a suitable algorithm we have to be aware of thefollwing two fa
ts.(i) There are no squeezes in the \boundary" intervals I0 and In. Hen
e in thisregion we have to generate by reje
tion from hat distribution.(ii) Using a partitioning of the domain of h(x) into the intervals Ij togetherwith de
omposition (1) and the pro
edure des
ribed above results in the followingalgorithm: (1) 
hoose an interval at random; (2) 
hoose \squeeze or quadrangle"at random; (3) either generate from a distribution with density proportional tothe squeeze and return the random variate; or (4) generate random tuples (X;Y )uniformly distributed in quadrangle Qj until (X;Y ) 2 Rj and return X . Howeverthis approa
h requires the knowledge of the area of Rj , i.e., R 
j+1
j (f(x)� s(x)) dx.(It is not ne
essary for algorithm tdr that R f(x) dx is known; the normalization
onstants for the p.d.f. 
an be omitted.) This problem 
an be avoided by 
hangingthe pro
edure in the following way:Algorithm tdrimprRequire: density f(x); transformation T (x), 
onstru
tion points 
1; : : : ; 
n.=� Setup �=1: Constru
t hat h(x) and squeeze s(x).2: Compute intervals I0; : : : ; In.3: Compute 
j , uj and lj for j = 1; : : : ; n� 1.4: Compute areas Hsj below squeeze for j = 1; : : : ; n� 1.5: Compute areas H lj and Hrj of left and right triangle, resp., inside Qj .6: Compute areas H0 and Hn below hat for intervals I0 and In.=� Generator �=7: loop8: Generate I with probability ve
tor proportional to(H0; Hs1 +H l1 +Hr1 ; : : : ; Hsn�1 +H ln�1 +Hrn�1; Hn).9: if 0 < I < n then =� inner interval �=10: Generate W with probability ve
tor proportional to (HsI ; H lI ; HrI ).11: if W = 1 then =� region of immediate a

eptan
e �=12: Generate X with density proportional to sjI .13: return X .14: else =� one of the two triangles �=15: Generate (X;Y ) uniformly distributed in quadrangle RI .16: if s(X) < X � f(X) then =� evaluate squeeze and density �=17: return X .18: else =� I = 0 or I = n; boundary intervals: no squeeze, use hat �=19: Generate X with density proportional to hjI .



Referen
es 520: Generate U � U(0; 1).21: if U h(X) � f(X) then =� evaluate density �=22: return X .By reusing of uniform random numbers only one uniform random number isne
essary for steps 8, 10 and 12. The expe
ted number of uniform random numbersper nonuniform random variate is given byR s(x) dxR f(x) dx + 2 RI0[In h(x) dxR f(x) dx + 2Pn�1j=1 jQj jR f(x) dx � 1 (2)Noti
e that for in
reasing number n of tou
hing points the �rst part in equation (2)tends to one, where the se
ond and third part 
onverges to zero.Noti
e that the reje
tion 
onstant C 0 of the new algorithm is given by C 0 =(R s(x) dx +Pn�1j=1 jQj j)= R f(x) dx, where jQj j denote the area of Qj . We imme-diately �nd C 0 � C with (C 0 � C)=C = O(n4). C 0 � C is indi
ated by the darkshaded region in �gure 2. Noti
e that C�1 = O(n2) (Leydold and H�ormann 1998).Thus the in
rease of required loops by using the new approa
h is rather small.3. Possible VariantsThe new pro
edure works analogously for 
onvex T (x) (
 � 1 for the family T
),and/or densities f where T (f(x)) is 
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