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Abstract 

Identifying the design features that impact construction is essential to developing cost 

effective and constructable designs.  The similarity of building components is a critical 

design feature that affects method selection, productivity, and ultimately construction cost 

and schedule performance.  However, there is limited understanding of what constitutes 

similarity in the design of building components and limited computer-based support to 

identify this feature in a building product model.  This paper contributes a feature-based 

framework for representing and reasoning about component similarity that builds on 

ontological modeling, model-based reasoning and cluster analysis techniques.  It describes 

the ontology we developed to characterize component similarity that represents the building 

component, the component attributes, the direction, the range of acceptable variation for 

geometric attributes, and the degree of variation required to assess component similarity.  It 
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also describes the generic reasoning process we formalized to identify component similarity 

in a standard product model based on practitioners’ varied preferences.  The generic 

reasoning process evaluates the geometric, topological, and symbolic similarities between 

components, creates groupings of similar components, and quantifies the degree of similarity.  

We implemented this reasoning process in a prototype cost estimating application, which 

creates and maintains cost estimates based on a building product model. Validation studies of 

the prototype system provide evidence that the framework is general and enables a more 

accurate and efficient cost estimating process. 

 

Keywords: Product modeling, Component similarity, Product features, Constructability, 3D 
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INTRODUCTION 

Recognizing the design conditions that affect constructability is essential to developing cost-

effective designs.  While there are many factors that affect constructability, design-specific 

factors are particularly important because they have the greatest influence on construction cost 

[1].  Building component similarity is a critical design condition that can have a significant 

impact on constructability.  However, there is little agreement on what constitutes similarity in 

the design of building components and little understanding of how component similarity might 

be assessed in a given building product model.   

Previous research efforts have recognized the importance of building component 

similarity (also referred to as uniformity or consistency in design) in constructability reasoning 

[2], method selection [3,4], productivity modeling [5], and activity sequencing [6].  However, the 

approaches to date have either represented this concept implicitly in computer code or vaguely in 

prescriptive statements.  In practice, there is limited computer-based support for evaluating the 

similarity of building components based on practitioners varied preferences and interpretations.  

Consequently, practitioners today spend significant amounts of time manually interpreting the 

design to determine whether their particular definition of similarity exists in a given design. 

There is a need for automated and customizable methods for identifying component similarity in 

a building product model.   

The research presented in this paper addresses this need by providing a formal and 

flexible way to represent and reason about component similarity.  This work is part of an on-

going research project that is developing an ontology of features to represent the design 

conditions that are important for construction.  The goal is to develop general ontological models 

to characterize construction-specific design features in a way that is consistent, unambiguous, 
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and computer-interpretable. We represent component similarity as a product feature of a building 

product model and use feature recognition to infer its existence in a standard product model.   

This paper describes the ontology we developed to represent component similarity, and 

the generic reasoning process we formalized to evaluate the degree of similarity in a given 

design.  The ontology formalizes a feature-based representation of building component similarity 

that represents the building component, the component attributes, the direction, the range of 

acceptable variation for geometric attributes, and the degree of variation required to assess 

component similarity.  The generic reasoning process leverages this project-independent 

representation to assess the degree of similarity in a given product model based on user-defined 

criteria.  This three step reasoning process employs model-based reasoning and cluster analysis 

techniques to evaluate the geometric, topological, and symbolic similarities between 

components, create groupings of similar components, and quantify the degree of similarity.  We 

implemented this reasoning process in a prototype cost estimating application, Activity-based 

Cost Estimating (ACE), which creates and maintains cost estimates based on a building product 

model.  The system identifies relevant cost-incurring design features, including building 

component similarity, and adjusts the labor productivity rates and construction methods 

accordingly to calculate the construction cost.   

The following section describes a case study that illustrates different practitioners’ 

criteria for specifying component similarity.  Subsequent sections describe the ontology, the 

reasoning process, and the prototype implementation.  Finally, the specific validation studies 

conducted to date will be discussed.  
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MOTIVATING CASE  

This section describes a case scenario to illustrate the requirements for representing and 

reasoning about component similarity. The scenario focuses on drywall construction for a 

building project in Menlo Park, California (Figure 1). One of the authors worked closely with the 

cost estimators in this project to understand the subtleties for how they assessed component 

similarity in their cost estimating process.  It highlights the different design conditions 

practitioners consider, and the different techniques they use to characterize the degree of 

variation in the drywall design.   

Figure 1 shows some of the design conditions that were important to the drywall cost 

estimators in assessing the degree of variation.  They focused on these design conditions because 

they impact construction execution and construction cost. The drywall estimators were 

concerned with the variety of Wall Types (Figure 1b) since it affected the specific items needed 

in the cost estimate and the base crew productivity, the variety of Wall Heights (Figure 1c) since 

it affected the crew productivity and the methods required, and the instances of Wall-Column 

connections (Figure 1d) since they require additional set up and framing time.   

The drywall estimators assessed the degree of variation in different ways depending on 

the nature of the design condition and the combination of design conditions in the overall design.  

Consider the estimator’s process in determining the productivity rate for metal stud installation 

and the different types of analysis it required.  When considering the degree of variation in the 

wall heights, the estimator was mostly concerned with the range of wall heights.  If the wall 

heights were within 30 cm (12 in.) of each other, they were similar enough to use the same base 

productivity rate.  When considering the degree of variation in the overall design, the estimator 
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used qualitative measures, such as ‘high’ or ‘moderate’ variation, and adjusted the productivity 

rate up or down accordingly.   

It is often too time-consuming for estimators to manually analyze and interpret all the 2D 

and related design information to evaluate the similarity of building components in a given 

design, particularly for large projects.  Lacking automated support, practitioners often employ ad 

hoc methods (e.g., estimators may quickly scan the 2D drawings and make rough adjustments to 

the productivity rate), evaluate component similarity inconsistently (e.g., the drywall estimator 

must remember how he represented and accounted for component similarity to consistently 

estimate the next project), and rely on ambiguous measures (e.g., the estimator looked for ‘high’ 

or ‘moderate’ degrees of similarity but it is unclear what level of similarity meets this standard).  

Practitioners need automated support to formally and thoroughly evaluate the similarity 

of building components in a given design. The case study highlights the requirements of such a 

system.  To represent and reason about component similarity, it is necessary to: 

o Represent numeric (geometric) component attributes (e.g., Wall Height), non-numeric 

component attributes (e.g., Wall Type), and relationships between components (e.g., 

Walls ConnectedTo Columns), 

o Represent ranges of numeric attributes (e.g., Wall Heights within 30 cm (12 in.)),  

o Assess multiple criteria simultaneously (e.g., Wall Type and Height), and 

o Consistently and unambiguously evaluate the overall degree of variation (e.g., 

provide a quantitative measure rather than ambiguous qualitative measures like 

‘moderate’ variation). 
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o Support customization of the criteria to represent practitioners’ varied preferences 

(e.g., the component attributes considered, the range for numeric attributes, and the 

overall degree of variation), 

Although the case study focuses on the application of construction cost estimating, it 

provides insights into the different project management tasks that can be affected by variations in 

the design of building components.  For example, different wall types require different sizes and 

types of metal studs, which increase the material handling and decrease the productivity of the 

metal stud installation.  Similarly, walls with a height between 2.43 m and 3.96 m (8 ft. and 13 

ft.) require scaffolding for installation whereas walls with a height between 3.96 m and 6.09 m 

(13 ft. and 20 ft.) require a scissor-lift for installation.  These variations in design affect crew 

productivity and the selection of construction methods, and ultimately impact cost and schedule 

performance. 

BACKGROUND 

Many researchers in the AEC industry have recognized the importance of design uniformity and 

similarity in construction [2-5, 7-9]. Hanna et al. [7] considered uniformity as a critical factor in 

selecting slab and wall formwork systems. They considered horizontal uniformity to be 

achievable by satisfying three conditions: regular slab type, identical beam size and location, and 

regular location and size of cantilevered balconies, whereas vertical uniformity of a building was 

assumed as one with the same size, height and location of wall from floor to floor.  In terms of 

computer-based implementations, Udaipurwala and Russell [4] developed a rule-based algorithm 

to infer component uniformity/similarity to aid in the selection of construction methods. 

However, the approaches to date either represent this knowledge implicitly in computer code 
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(e.g., [2]), vaguely in prescriptive statements (e.g., [3]), or do not reason about a product model 

(e.g., [4]).   

Research on similarity reasoning has been a subject of interest in manufacturing, biology, 

cognitive science, and information systems for a long time. The most common similarity 

measures used in manufacturing include group technology, variant process planning, geometric 

approaches (constructive and boundary models), feature-based approaches, and pattern 

recognition [10]. The purpose there is to recognize similar machines, classify and index designs, 

and assess the manufacturability of designs. 

We use the manufacturing concept of features to represent and reason about component 

similarity.  We treat component similarity as a product feature of a building product model and 

use feature recognition to infer the existence of this feature in a standard product model.  Product 

features are used extensively in manufacturing to describe the geometric forms or entities in a 

product model that are important in some aspect of the manufacturing process [11,12]. Feature 

recognition has been extensively researched in the manufacturing industry (e.g., [13,14]).  

Feature recognition systems can automatically identify features after the part is modeled by using 

the geometric and topological data from the CAD model. An alternative approach is to use a 

feature-based design system.  This method allows designers to add features as they create the 

product model, which eliminates the need for feature recognition. However, the feature 

‘component similarity’ is subjective and can be based on a variety of criteria. Consequently, it is 

unrealistic to expect the designer to add this as a feature to the product model. We developed 

feature recognition methods to identify component similarity in a standard building product 

model. 
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The Industry Foundation Classes (IFCs) developed by the International Alliance for 

Interoperability are the primary product model exchange standard for the architecture, 

engineering, construction, and facility maintenance (AEC/FM) industry [15].  The IFCs are a 

high level, object-oriented data model that support seamless data exchange between different 

applications. Many CAD vendors for the AEC/FM industry can export IFC-based product 

models, enabling the sharing of these semantically-rich product models with other software 

applications.  The IFCs define the building element classes and properties, geometry, and the 

topological relationships between elements. IFC-based product models provide the foundation 

for interpreting the existence of product features, including component similarity, independent of 

the CAD application that created the 3D model.  

In terms of similarity assessment, similarity measures used in other fields include pattern 

recognition, methods based on analogy, machine learning, and cluster analysis. Cluster analysis, 

also known as numerical taxonomy, automatic classification, or typological analysis, is the 

process of grouping a set of physical or abstract objects into classes of similar objects [16]. Most 

applications, including construction, require the combination of mixed types of data, including 

numeric, symbolic, and relational data. Researchers have acknowledged that similarity measures 

should include nominal and numeric attributes [17] as well as the relationships between objects 

[18]. We used cluster analysis in our reasoning to create groupings of components based on the 

similarity of their geometric, symbolic and topological attributes.   

Building component similarity assessment can be systematized by developing an 

ontology that formalizes a feature-based representation of a building product model. Ontologies 

provide a framework to represent the semantics of data about a certain domain and are used 

extensively in Artificial Intelligence research [19].  Gruber [20] defines an ontology as an 
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explicit specification of a conceptualization. He refers to a conceptualization as the objects, 

concepts, and other entities that are assumed to exist in some area of interest and the 

relationships that hold among them.  The two main elements of ontologies are concepts and 

relations; where concepts are used to define and explain things and relationships order the 

concepts, often in a hierarchical structure [19]. Ontologies are particularly useful for representing 

domain-specific knowledge and developing knowledge-based technologies because they provide: 

(1) a common vocabulary, (2) explication of what has been often left implicit, (3) 

systematization of knowledge, (4) standardization, and (5) meta-model functionality, where the 

concepts and relations among them are used as building blocks for the model [21]. We use an 

ontology to provide a structured and consistent way to represent building component similarity 

from a construction perspective.  We define its vocabulary in terms of objects and attributes such 

that it enables a knowledge-based program to automatically and systematically identify 

configurations of building component similarity in a given product model.   

FRAMEWORK FOR MODELING COMPONENT SIMILARITY 

To understand the subtleties for how practitioners think about the design in the context of 

assessing component similarity, we reviewed previous research in this area and interviewed 

construction professionals. We interviewed 14 practitioners from five different construction 

domains.  We interviewed two general contractors and twelve subcontractors that self-perform 

construction work on drywall, structural concrete, mechanical ductwork, process piping, and 

electrical systems. We implemented three case studies on two drywall construction projects and 

one case study on a concrete column construction project. We abstracted the types of design 

information estimators consider, the different ways estimators quantify the degree of component 

similarity, and the different steps estimators perform to evaluate component similarity.  
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We developed a prototype cost estimating application, Activity-based Cost Estimating 

(ACE), which reasons about component similarity in generating cost estimates from a building 

product model [22].  ACE identifies relevant cost-incurring design features, including building 

component similarity, and adjusts the labor productivity rates and construction methods 

accordingly to calculate the construction cost.   

Figure 2 graphically represents our framework for representing and reasoning about 

component similarity: 

(1) Represent Component Similarity: Practitioners specify their preferences for defining 

component similarity in a computer-interpretable template that is based on the ontology we 

formalized (Figure 2a).  Users define component similarity specifications (CSS) according to 

their preferences.  The system represents the instances of this feature generically, 

independent of a particular project.  In the cost estimating application, users also link this 

feature to specific cost information.  This project-independent knowledge is then utilized to 

compute similarity when the practitioner is ready to create a cost estimate for a project-

specific 3D design. 

(2) Identify Component Similarity: ACE creates a project-specific configuration of component 

similarity based on the practitioner’s generic preferences defined in the CSS.  The formal 

methods we developed reason about the geometric, topological, and symbolic similarities 

between components in the input 3D model and quantifies the degree of similarity based on 

the user’s preferences (Figure 2b).   The result is a project-specific configuration of 

component similarity customized for the user. 

REPRESENTING COMPONENT SIMILARITY 
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The ontology we developed to represent component similarity allows practitioners to specify 

their varied preferences for what component properties need to be similar and how much 

variation is acceptable for component similarity to exist.  This work fits into a broader research 

effort that is trying to characterize the design conditions that affect construction in a feature 

ontology, which will be discussed next.  Subsequent sections will describe the attributes we 

formalized to describe component similarity, and the computer-interpretable templates we 

developed to collect this information from practitioners. 

Background on Features Ontology for Construction 

This section provides some background on the ontology of features we are developing to 

represent the design conditions that affect construction [23].  This work aims to develop the 

general language and structure of the model so that it can be populated by a variety of 

construction experts and be broadly applicable across a variety of construction projects and 

domains.  The ontology classifies the features that affect cost, formalizes attributes to describe 

each feature type, and represents the sets of features and properties that affect costs for a specific 

construction domain.   

We classified features into the following types:  (1) Component Features are features that 

result from components in an IFC-based building product model; (2) Intersection Features are 

features that result from intersections of components; and (3) Macro Features are features that 

result from pre-specified combinations of other features. Component Similarity is a specific class 

of macro feature.  We defined attributes for each feature type to help estimators represent feature 

instances according to their preferences.  

Figure 3 shows the features and attributes currently represented in the ontology.  Each 

component feature represents the estimator’s preference for what features and properties 
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influence the cost of its construction using the ‘feature set’ and ‘property set’ attributes.  Each 

intersection feature represents the estimator’s preference for what properties of the feature affect 

a component’s construction cost using the ‘property set’ attribute and what component 

intersections are important using the ‘related component’ and ‘relating components’ attributes.  

Each macro feature represents the estimator’s preference for defining component similarity in 

terms of the component properties that need to be similar and the amount of variation that is 

allowed to exist.  The attributes of the three feature types enable estimators to represent their 

varied preferences for naming features, specifying the component intersections that are important 

to them, defining component similarity, and specifying the features and properties that affect a 

specific component’s construction costs.   

The feature ontology provides the blue-print for the additions and changes needed to 

transform an IFC-based product model into a product model that is useful to cost estimators of 

building construction.    The next section elaborates on the attributes defined to represent 

component similarity. 

Attributes Formalized to Represent Component Similarity 

This section describes the attributes currently formalized in the ontology to characterize the 

feature component similarity.  The attributes provide a formal way to specify the different types 

of component properties (e.g., geometric, symbolic and relational attributes) to be evaluated and 

the direction of analysis (e.g., across a single floor or multiple floors).  The ontology also 

provides a way to characterize the degree of similarity at the component level (e.g., Wall Height 

± 30 cm (12 in.)) and at the system level (e.g., 10% variation).   
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Attribute 1: Component Class:  

The component class being evaluated for similarity, such as walls and columns.  The components 

defined in an IFC-based product model are currently represented.  

Attribute 2: Component Properties 

The component properties (or property) of the component class (Attribute 1) that will be 

compared to determine whether the components are similar.  The case examples demonstrated 

that when assessing component similarity, practitioners consider geometric, topological, and 

symbolic component properties.  Consequently, we classify component properties into the 

following types:   

o Geometric component attributes: Numeric attributes that are based on the geometry of the 

component (e.g., Height, Width, and Length). 

o Symbolic component attributes: Non-numeric attributes that characterize symbolic 

aspects of a component (e.g., Type, Color, Fire-Rating).  

o Relational component attributes: Attributes that specify explicit relationships between 

components (e.g., Walls Connected-to Columns). 

The classification of component attributes facilitates the evaluation of component 

similarity. Table 1 shows the different component attributes currently implemented in the 

ontology based on the different case studies conducted to date.  The component attributes listed 

are either represented explicitly in an IFC-based product model or can be derived from an IFC-

based product model.   

Attribute 3: Geometric Property Variation 

The acceptable variation in the value of the geometric component properties.  For example, if a 

practitioner specifies 5 cm (2 in.) for the property variation of the property ‘height’, then the 
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practitioner views wall #1 as similar to wall #2 if its height is at most 5 cm (2 in.) shorter or taller 

than wall #2.  This attribute accounts for the fact that when practitioners evaluate geometric 

properties they require some allowance for deviation.  For example, the column heights on a 

floor might vary by a centimeter or two because of a sloping slab or perhaps because of an error 

in the design drawings. However, from the practitioners perspective a few centimeters does not 

mean that they are not similar enough to meet their standards.  If these minor variances in 

geometric properties are not explicitly considered, the computer analysis might falsely classify 

components as dissimilar.   

Attribute 4: Direction 

The ontology represents the direction for which component similarity will be assessed as either 

‘horizontal’ or ‘vertical.’   The horizontal direction represents similarity across a single floor and 

the vertical direction represents similarity across floors.  To represent component similarity in 

both directions, practitioners would need to apply constraints for each direction when setting up 

the analysis. 

Attribute 5: Component Variation 

The overall variation of the components allowed to achieve component similarity as a function of 

a maximum and minimum percentage.  In the drywall case example, the practitioner specified a 

minimum of 75% and a maximum of 100% to represent an ‘ideal’ degree of similarity for the 

optimal productivity. When evaluating the overall variation of all the building components 

design, practitioners also require some allowance for specifying degrees of similarity.  The 

intention here is to establish a way of measuring the degree of similarity such that it is 

quantifiable, explicit, and consistent.  Consider Hanna and Sanvido’s [3] measure of ‘moderate 

variation’ in their guidelines for selecting formwork systems.  Using such terminology is vague 



 14 

and ambiguous and does not facilitate a quantifiable analysis.  We tried to provide a flexible way 

to specify such ranges of variation. We currently use percentages to specify the degree of 

variation because it allows the user to specify the range independent of a particular unit of 

measure.   

Computer-interpretable Template for Specifying Component Similarity 

We developed templates in the ACE prototype that implements the attributes currently 

represented in the ontology to capture different practitioners’ preferences for defining component 

similarity (Figure 4). Practitioners create instances of Component Similarity Specifications 

(CSS) using the template.  The implementation is interactive, allowing practitioners to specify 

component similarity according to their preferences.   

Practitioners specify the properties of the component that need to be evaluated for 

similarity using the ‘Similar Component Properties’ attribute and the degree of similarity that 

needs to exist using the ‘Component Variation’ and ‘Property Variation’ attributes.  Practitioners 

can use these attributes to represent a variety of definitions for component similarity. For cost 

estimating, they can link a CSS to different cost estimating information.  Specifically, users can 

link the CSS to a specific crew’s productivity rate and adjust the productivity rate for a specific 

degree of similarity (Figure 4), or they can link it to a specific construction method to constrain 

its availability.  This knowledge is represented generically, independent of a particular project, 

and can be reused from project to project to compute similarity in any given 3D model.  The CSS 

instances defined by the user drives the similarity evaluation process. 
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REASONING ABOUT COMPONENT SIMILARITY  

As illustrated in Figure 2b, our reasoning process involves the following three steps: (1) Identify 

Relevant Components and Attributes, (2) Compute Similarity between Components, and (3) 

Group Similar Components and Quantify Degree of Similarity. We will explain each of these 

three steps in subsequent sections using the drywall case (Figure 1) and the sample product 

model data shown in Table 2.  The drywall estimator is primarily interested in understanding the 

degree of variation of Wall Types, Heights, and Column Connections (Figure 1b-d). We will 

discuss the similarity computation as if these constraints are considered independently (e.g., Wall 

Type is the only property specified in the CSS) and simultaneously (e.g., Wall Type, Height, and 

Column Connections are all properties specified in the CSS). Figure 4 shows the relevant CSS 

for the Wall Height constraint.   

Identify Relevant Components and Attributes 

The input to the reasoning process is a building product model that explicitly represents building 

components, attributes of components, and relationships between components.  In our prototype 

implementation, we extract the product model data from a live 3D CAD model that represents 

this information similar to the IFC standard [23].  Therefore, the reasoning process uses model-

based reasoning to identify the relevant geometric, topological, and symbolic data from the input 

product model.  In this step, the relevant components are extracted (e.g., all the Interior Walls for 

the single floor) and the relevant attributes are identified and computed. 

In many instances, the relevant component information is explicitly represented in a 

standard product model (e.g., the wall attributes for ‘Length’ and ‘Height’), which simplifies the 

reasoning process significantly.  However, in certain cases the relevant component attributes are 

either not explicitly defined by the IFCs or may not be explicitly represented in the 3D model 
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and corresponding IFC output.  For example, the IF’s do not define ‘curvature’ as an attribute of 

the wall. The curvature can be deduced based on the geometry of the wall or it can be 

represented in an extended property set.  Similar issues arise when dealing with component 

connections.  Although the IFCs provide a way to explicitly represent component connections, 

the specific connections represented in the IFC output of a 3D model depend on the drawing 

methods employed.  For example, consider the connections between the walls and columns 

illustrated in Figure 1d.  Since the structural and architectural models are typically developed by 

different disciplines and companies, the physical relationships between objects in these different 

models are typically not explicit. To identify these types of implicit relationships requires the 

application of conflict detection methods (e.g., to identify intersecting components like the walls 

and columns) or geometric reasoning methods (e.g., to identify adjacencies).  We have tried to 

avoid these issues by explicitly representing these attributes and relationships in the 3D model 

whenever possible. 

Evaluate Similarity between Components 

The CSS (Figure 4) provided by the user defines the parameters that drive the similarity 

evaluation process.  Specifically, the CSS dictates the specific component properties considered, 

the range of acceptable geometric variation, and the acceptable degree of component variation.     

The components (objects) in a building product model can be distinguished by their 

various attributes, which can be both quantitative and qualitative in nature. Our data set contains 

relational data (binary variables), geometric data (interval-scaled variables), and symbolic data 

(nominal variables). As our data set contains mixed variables, we referred to the approaches 

described by Kaufman and Rousseeuw [16] to compute similarity between objects. To work with 

mixed variables, one can perform separate cluster analyses, treat the different variables as a 



 17 

single type, or combine the different variables into a single proximity matrix [16].  We treat the 

different variables as nominal or binary variables and use the simple matching approach 

(Equation 1), which is the most common way to measure the similarity between two objects 

characterized by these types of variables.  For geometric attributes, we consider a range rather 

than a specific number based on the user preference defined by the ‘Geometric Property 

Variation’ attribute in the CSS.  Therefore, to identify matches among geometric attributes, we 

compare the available ranges for the two objects and if the attribute values fall within the 

acceptable range, the objects are considered similar for that attribute, yielding a True or False 

result. 

The simple matching approach expresses similarity as a coefficient, which looks for the 

percentage of matches between objects i and j [16]: 

s (i, j) = u (1) 
  p  

where u is the number of matches, that is, the number of variables for which objects i and j 

happen to be in the same state and p is the total number of variables.   

Similarity coefficients indicate how similar two objects i and j are, where the more 

objects i and j are alike, the larger s (i, j) becomes [16].  Similarity s (i, j) typically takes on 

values between 0 and 1 to indicate various degrees of resemblance, where 0 means that i and j 

are not similar at all and 1 reflects maximal similarity.  For all objects i and j, it is assumed that 

the following conditions hold:  
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(S1) s (i, j) = 0 ≤ s (i, j) ≤ 1 (2) 

(S2) s (i, j) = s (i, j) = 1 (3) 

(S3) s (i, j) = s (j, i) (4) 

Since we were trying to identify the components that meet the criteria specified in the CSS, we 

primarily dealt with Equation (2) where similarity along a specific attribute was either True or 

False.  We did not consider the relative similarity of attribute values (e.g., the similarity of Wall 

Types P-2 and P-2a), we weighted all component attributes equally (e.g., Wall Height and Type 

were considered of equal importance), and we assumed there is no correlation between attributes 

(e.g., the correlation between a Wall’s Height and Width).  This was the basis for computing 

similarity between pairs of objects. 

6.1 Group Similar Components and Quantify the Degree of Similarity 

We grouped similar objects based on the similarity of each of the variables, as illustrated in 

Figure 5.   We assume all objects are similar at the start because at this point, we just have a 

grouping of components of the same type (e.g., a grouping of Walls) and we have not considered 

the component attributes yet.  Then we cycle through each of the attributes based on the 

priorities set by the practitioner to create a single grouping of similar components. We then 

compute the overall degree of similarity by summing up the number of objects in the similar 

grouping and dividing by the total number of objects.   

As evident in the case data, Walls 1, 2, 4, and 5 are similar if focusing on the single 

attribute Wall Type, yielding an overall similarity of 80%. This would be the computed degree of 

similarity if Wall Type was the only property specified in the CSS.  If the attribute Wall Height 

is added as an additional constraint in the CSS, then Walls 1, 2, and 5 are grouped yielding an 

overall similarity of 60%.  Finally, Walls 2 and 5 are 100% similar based on the three attributes 



 19 

Wall Type, Wall Height, and Column Connection, resulting in an overall similarity of 40%.  The 

judgment of Table 2 also intuitively supports the results of this computation. 

Based on the practitioner’s criteria for similarity expressed in the CSS, we see that 80% 

of the walls satisfy the Wall Type constraint and meet the overall component variation criteria of 

75-100%.  However, when the additional constraint of Wall Height ±15 cm (6 in.) is added, only 

60% of the walls satisfy this additional constraint and therefore do not meet the practitioner’s 

criteria for acceptable component variation.  Naturally, when the third constraint of Column 

Connections is added, only 40% of the walls are similar, which falls far short of meeting the 

practitioner’s criteria. 

 Although this is a simple example, it illustrates the flexibility and ease of use of our 

approach.  Practitioners can consider single or multiple attributes to easily create a variety of 

component similarity definitions. It also demonstrates the importance of choosing the relevant 

component properties carefully. If too many properties or inappropriate combinations of 

properties are selected by the practitioner in the CSS, then the system will detect limited or no 

similarity which will likely be of little use. In our current implementation, we do not help the 

user to pick the appropriate properties. Practitioners can also easily specify different ranges of 

acceptable variation, which over time, will help them to better understand how component 

similarity impacts their construction environment.   

The output of this process is used in our prototype cost estimating application ACE.  If 

the computed degree of similarity meets the specification of the user in the CSS, ACE adjusts the 

related labor productivity rates or assigns the relevant construction methods accordingly when 

calculating the construction cost [23].   
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VALIDATION 

We used ACE to validate our framework for representing and reasoning about component 

similarity.  We performed four validation tests, including a Charrette test and three retrospective 

tests [24]:  (1) Charrette test with eight industry practitioners estimating interior wall 

construction costs, (2) Retrospective test case of estimating interior wall construction costs on 

the Sequus Pharmaceuticals project [25], (3) Retrospective test case of estimating interior wall 

construction costs on a DPR Office project, (4) Retrospective test case of estimating concrete 

column construction costs on the Bay Street Emeryville Project.  These tests provide evidence 

for the power and generality of our framework, as described below. 

To demonstrate generality, we wanted to show generality across component types and 

user types.  We modeled costs for two different component types (interior walls and concrete 

columns) in three retrospective test cases.  Different configurations of component similarity are 

required by practitioners estimating costs for these domains, including different component 

properties and different degrees of variation.  We also demonstrated that 13 different estimators 

could specify their preferences for defining component similarity for the different test cases.   

To demonstrate power, we wanted to show that our approach enabled cost estimators to 

generate and maintain cost estimates more accurately, consistently, and efficiently.  To assess the 

accuracy of the estimates, we evaluated the level of completeness of estimates generated by 13 

estimators using ACE and compared them to estimates generated by the same estimators using 

Timberline’s state-of-the-art Precision Estimating (PE) software [26], an industry standard for 

cost estimating software. We used level of completeness to measure the extent to which 

estimators accounted for the cost impacts of features explicitly (including component similarity).   

If estimators used ad hoc methods or overlooked the cost impact of features, they received a 
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lower score for completeness.  The results of the validation tests demonstrate that practitioners 

could generate and maintain more complete cost estimates in ACE than the state-of-the-art 

process. Estimators could generate and maintain cost estimates that are less ad hoc and contain 

fewer omissions than estimators using state-of-the-art tools.  The Charrette test demonstrates that 

practitioners using ACE were able to more consistently identify the correct cost impact and 

identify the cost impacts 17% faster using ACE when compared with the state-of-the-art process.  

Therefore, the four validation tests demonstrate that practitioners could account for the cost 

impact of features, including component similarity, more completely, consistently, and quickly 

using ACE than the same practitioners using state-of-the-art tools.   

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

This paper contributes a feature-based framework for representing and reasoning about 

component similarity that builds on ontological modeling, model-based reasoning and cluster 

analysis techniques. We formalized an ontology that represents the building component, the 

component attributes, the direction, the range of acceptable variation for geometric attributes, 

and the degree of variation required to assess component similarity.  A computer implementation 

of the ontology enables practitioners to represent their varied preferences for defining component 

similarity generically and consistently.  We developed a generic reasoning process that leverages 

this project-independent representation to identify project-specific instances of component 

similarity in a given 3D product model. This three step reasoning process evaluates the 

geometric, topological, and symbolic similarities between components, creates groupings of 

similar components, and quantifies the degree of similarity. We provide evidence that this 

framework is general and enables a more complete, consistent, and efficient cost estimating 

process. 
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  The framework presented in this paper is limited in many ways.  Additional work is 

needed to account for the subtle similarities between components that are not accounted for by 

considering the attribute values.  For example, Wall Types ‘P-2’ and ‘P-2a’ are very similar but 

if you only look at the attribute value, this relative similarity does not get addressed.  

Practitioners should also have the ability to weight certain component attributes more heavily 

than others when considering multiple attributes.  Additionally, our current approach of relying 

solely on the user to identify the relevant properties and degrees of variation could be improved 

by allowing some combination of user-driven and system-driven identification of the relevant 

information for a given product model.  Finally, this work should be extended to provide 

feedback to designers so that they can better understand how practitioners view component 

similarity and to optimize the degree of similarity in their designs. 

 Automating the detection of construction-specific design features, like component 

similarity, has the potential to significantly improve the efficiency of the project delivery 

process.  Estimators could provide cost feedback in significantly less time.  Project teams could 

perform what-if analyses on different designs and explore a larger variety of design alternatives 

to identify the lowest cost design. Practitioners could provide feedback to designers on the 

specific features that impact construction costs. Hence, project teams can leverage feature-based 

product models to develop more cost-effective and constructable designs in less time. 
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Figure Captions 

1. Fig. 1: 3D Model of drywall case study (a), and design conditions that impact drywall 

construction: Variety of Wall Types (b), Variety of Wall Heights (c), and Instances of Wall 

Connections (d). 

2. Fig. 2: Framework for (a) representing and (b) reasoning about component similarity to 

create project-specific configurations of component similarity. 

3. Fig. 3: Feature ontology that represents the attributes of the three feature types and features 

currently implemented for wall and column components.   

4. Fig. 4. Template for specifying component similarity and example practitioner’s preference 

that 75-100% of the walls have wall heights ±15 cm (6 in) for component similarity to exist. 

5. Fig. 5. Groupings of similar components based on the similarity of the different attributes and 

the degree of similarity. 
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Fig. 1: 3D Model of drywall case study (a), and design conditions that impact drywall 
construction: Variety of Wall Types (b), Variety of Wall Heights (c), and Instances of Wall 
Connections (d). 
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Fig. 2: Framework for (a) representing and (b) reasoning about component similarity to create 
project-specific configurations of component similarity. 
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Legend: 

 
 
Fig. 3. Feature ontology that represents the attributes of the three feature types and features 
currently implemented for wall and column components.   
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Fig. 4. Template for specifying component similarity and example practitioner’s preference that 
75-100% of the walls have wall heights ±15 cm (6 in.) for component similarity to exist 
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Fig. 5. Groupings of similar components based on the similarity of the different attributes and the 
degree of similarity 
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Table 1. The component attributes currently implemented in the ontology 

 
Component class 

 
(1) 

Component Attributes 

Geometric 
(2) 

Symbolic 
(3) 

Relational 
(4) 

Interior Walls 
 

Length 
Thickness 

Height 
 

Type 
Curvature 
FireRating 
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ThermalRating 
ExternalWall 

ConnectedTo 
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HasOpenings 

Concrete Columns 
Length 
Width 
Height 

Type 
Shape 

 

ConnectedTo 
DecomposesInto 
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Table 2. A Sample dataset of drywall object instances from the motivating case 

Objects 
 

(1) 

Wall type 
 

(2) 

Frame height  
(m) 
(3) 

Connectivity to  
column 

(4)  
1 P-1 3.04 Yes 
2 P-1 2.89 No 
3 P-2 9.14 Yes 
4 P-1 3.65 No 
5 P-1 3.04 No 

 


