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Abstract 
 
Dengue fever is one of the world’s most important vector-borne diseases. The transmission area 
of this disease continues to expand due to many factors including urban sprawl, increased travel 
and global warming. Current preventative techniques are primarily based on controlling mosquito 
vectors as other prophylactic measures, such as a tetravalent vaccine are unlikely to be available 
in the foreseeable future. However, the continually increasing dengue incidence suggests that this 
strategy alone is not sufficient. Epidemiological models attempt to predict future outbreaks using 
information on the risk factors of the disease. Through a systematic literature review, this paper 
aims at analyzing the different modeling methods and their outputs in terms of accurately 
predicting disease outbreaks. We found that many previous studies have not sufficiently 
accounted for the spatio-temporal features of the disease in the modeling process. Yet with 
advances in technology, the ability to incorporate such information as well as the socio-
environmental aspect allowed for its use as an early warning system, albeit limited 
geographically to a local scale. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

learning points in the review 
 
- Dengue fever as well as other infectious vector borne diseases continues to spread and 
cause disease, despite surveillance and control efforts 
 
- Integrated mathematical and mapping models aid in the prevention and prediction 
process of early warning systems 
 
- Models should include multi-factorial components including environmental, disease 
dependent and socio-economic parameters. 
 
- Increased transparency through information sharing and collaborations are needed to    
help fight emerging infectious diseases  
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Introduction 
 
Dengue fever (DF) is one of the most common widespread vector borne diseases in the world 
[1,2,3,4]There are currently 2.5 billion people living in areas at risk of DF transmission, with 100 
million cases reported annually [5,6]. DF is a flaviviral disease caused by one of four serotypes 
of dengue virus (DEN 1-4) which are transmitted by mosquito vectors, in particular the 
peridomestic species Aedes aegypti [2,7], and Ae. albopictus, which has recently been expanding 
its geographic distribution as seen in several outbreaks [8].  
Infection by one serotype will provide lifelong immunity to that particular strain but not to the 
remaining three [1,9]. Cross-strain infections are common and can have severe consequences, 
with extreme cases leading to death [10]. Over the past 40 years the incidence and geographic 
distribution of DF has increased in many countries, particularly in those with tropical and sub-
tropical climates [6,11,12,13,14]. DF has strong spatial and temporal patterns which have been 
linked to climatic and environmental conditions [15]. Thus the inclusion of spatial and temporal 
data in analytic processes may potentially allow for the identification of DF characteristics linked 
to these parameters and have significant applications in the prevention and control of this disease. 
Additionally, as discussed in the Intergovernmental Panel on Climate Change report [16], with 
global temperatures likely to  increase, it is predicted that the endemic range of DF will expand 
geographically [17,18,19,20,21]. Warmer temperatures will also allow for increased vector 
reproduction and activity and decreased incubation time of larvae, resulting in an increased 
capacity for producing offspring. Thus an increase in the transmission potential and prevalence of 
DF seems likely [18,22].  

5 key papers in field 
 
1: Spatial modelling of dengue and socio-environmental indicators in the city of Rio 
de Janeiro, Brazil. Teixeira TR, Cruz OG.  Cad Saude Publica. 2011 Mar;27(3):591-
602.  
 
2: Using geographic information systems and decision support systems for the 
prediction, prevention, and control of vector-borne diseases. Eisen L, Eisen RJ.  Annu 
Rev Entomol. 2011 Jan;56:41-61. Review.  
 
3: The impact of the demographic transition on dengue in Thailand: insights from a 
statistical analysis and mathematical modelling. Cummings DA, Iamsirithaworn S, 
Lessler JT, McDermott A, Prasanthong R, Nisalak A, Jarman RG, Burke DS, 
Gibbons RV.  PLoS Med. 2009 Sep;6(9):e1000139. 
 
4: Climate variability and dengue fever in warm and humid Mexico. Colón-González 
FJ, Lake IR, Bentham G.  Am J Trop Med Hyg. 2011 May;84(5):757-63. 
 
5: Models of the impact of dengue vaccines: A review of current research and 
potential approaches. Johansson MA, Hombach J, Cummings DA.  Vaccine. 2011 
Jun 23. 
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As with many infectious diseases, one of the success measures of a surveillance system depends 
on the ability to predict an imminent outbreak through an early warning system. The process of 
identifying a potential threat and targeting surveillance and control methods form part of an early 
warning system. Such an approach is categorized as a targeted surveillance system as opposed to 
random surveillance [23]. This is an important difference in order to increase the probability of 
detection of any first or repeated incursion of disease at the earliest time possible. The ability to 
create an early warning system through the combination of climate, environmental, host and 
vector based data through various processes such as mathematical modeling and Geographical 
Information System (GIS) mapping have been used in many ways to improve veterinary and 
public health surveillance systems [24]. The combination of different prediction, surveillance and 
control methods and the tools involved in each process present a great potential in the combat 
against a variety of disease as described in Eisen & Eisen 2011[25]. This paper aims at providing 
an insight into the current DF modelling processes and the implementation of their outputs 
reported in published studies. 
 
 
Methods 
 
Through a comprehensive literature review, major databases including Blackwell synergy, CSA 
Illumina, Web of Science, Academic Search Elite, CINAHL with full text, Georef, medline, 
Professional Development Collection, Informaworld, InformitSearch, Proquest, Springerlink and 
Wiley Interscience and Pubmed (http://www.ncbi.nlm.nih.gov/pubmed) were searched. The key 
words used in this literature search were Dengue, Dengue fever, climate change, Dengue 
haemorrhagic fever, Climate anomalies, Dengue fever and climate anomalies, Risk factors and 
dengue fever, Dengue fever and modelling, vector borne diseases, Dengue fever and Aedes 
aegypti, Dengue fever and Aedes aegypti, vector borne disease modelling, regression analysis, 
spatio-temporal models, infectious disease surveillance and early warning systems. Studies were 
included if the use of one or more epidemiological models were reported. During the initial 
search, studies were selected based on a review of titles and abstracts. Full studies were retrieved 
and reviewed for all relevant studies as seen in Figure 1. 
In order to analyse the DF models, it was important to review the background information as well 
as the method used in output generation. Due to the difference in output objectives, biological 
factors, spatio-temporal parameters, geographical scales and mathematical equations used in 
more current models, the comparison of efficacy between models is complex. A synopsis of the 
different pathways and risk factors found in the literature review is shown in Figure 2.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.ncbi.nlm.nih.gov/pubmed
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Figure 1: Graphical summary of the literature search process. 
 

 
 

Results 
 
Although many articles were identified in the field of DF, those containing a current 
mathematical model in combination with a predictive application were selected. As mentioned, 
the models include different transmission mechanisms, clinical manifestation data, current 
disease and vector control methods, treatment options, risk factors of DF and the potential of 
developing into dengue hemorrhagic fever. The risk factors for developing DF included 
biological, human, vector, environmental, socio-demographic data as well as climate and 
parameters linked to climate change (Figure 2). 
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Figure 2: Transmission pathway and risk factors involved in dengue fever outbreaks. 
 

 
 
 
As seen in Table 1, different categories for the analysis of the models existed, such as spatial 
scale, data collection time frame, model type and finally the incorporated risk factors. Although 
the main countries in the study were Australia, Brazil, China, Cuba, India, Indonesia, Mexico, 
Puerto Rico, Singapore, Thailand and the USA, the actual spatial scale used in the models varied 
from community level to multi-country. Collection time points spanned from daily measures to 
biannual analysis. Although the mathematical basis of many of the models shared a common 
regression point, these varied from logistic, autoregressive, spatio-temporal or Poisson equations. 
Finally, one of the most encompassing and diverse parameters were the risk factors used in the 
dengue model creation such as temperature, precipitation, vegetation indices, wind velocity or 
even hygienic markers.  
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There were a number of different models capable of producing prediction equations for the 
transmission of dengue fever. The type of model selected was dependent on the type of data 
collected and the nature of the variables (Figure 3), and due to the subtle differences involved in 
each outbreak, no universal models existed for analysis and prediction.  
 
 
Figure 3: Flow chart process for data incorporation in dengue fever outbreak modelling 
 
 

 
 
 
 
Traditionally, the data usually consisted of serologic and environmental or socioeconomic 
variables. Recently, socio-environmental changes have been identified as important determinants 
in the transmission of  DF, and spatial and temporal aspects of these changes have been 
increasingly incorporated into studies [26]. The inclusion of spatial data allows for the 
identification of spatial patterns of occurrence and the ability to identify areas at high risk of 
disease. The majority of previous studies in the past decade have implemented logistic or 
multiple regression models to identify possible risk factors. A drawback of these models is that 
they are not capable of accounting for autocorrelation in time-series data, which may limit the 
predictive capabilities of the resultant model. 
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In terms of choice of mathematical methods, the AutoRegressive Integrated Moving Average 
(ARIMA) and Seasonal AutoRegressive Integrated Moving Average (SARIMA) models, which 
have the ability to cope with stochastic dependence of consecutive data, have become well 
established in the commercial and industrial fields [27,28]. A DF study in Queensland, Australia 
used ARIMA modelling to examine the relationship between weather variables and the disease 
[29]. The implementation of SARIMA accounts for auto-correlations in time-series as well as 
seasonality, long-term trends and lags. Consequently, SARIMA has higher predictive capabilities 
than other models described above. However, this approach requires the input of a large amount 
of data meaning that SARIMA may not be suitable for studies with a small sample sizes. 
SARIMA is also based on the assumption of normality. For diseases that are rare or occur less 
frequently, the assumption of normality may not be met and thus SARIMA might not be an 
appropriate choice. To account for the possibility of non-normally distributed data, SARIMA 
could be combined with another ecological model such as a Poisson likelihood or Bayesian 
spatiotemporal model. Unfortunately a software package combining these approaches is not yet 
available. Further studies into combined ecological models should be undertaken in order to 
determine the socio-environmental impact of DF in a systematic way.  
As seen in Table 1, Figures 2 and 3, there are several different data collection and analysis 
pathways used to model DF transmission and intervention strategies. In terms of using the 
outputs of these models, two main objectives were identified: the use of DF models as a 
retrospective and validating method, and as an early warning tool to predict potential epidemics. 
Retrospective models use data as a validation method as seen in  [30] for DF in Peru where data 
from 1994 to 2006 was analysed, and validated in latter epidemics throughout the region by 
evaluating the degree of association with demographic and geographic variables. Such techniques 
also allow for intervention and control strategies to be tested firstly on a hypothetical level, and 
then applied in the field, as seen in Luz et al.,2011 [31]. In this study, epidemiological and 
economic assessments of different vector control strategies were tested in the city of Rio de 
Janeiro in Brazil in relation to DF.  
Although many models discussed above include risk factors involving basic climate and 
household information, the calculations are mainly based on human and vector borne parameters. 
Through the advancement and access to technology, various software programs and 
improvements in database infrastructure allow for the use of multidimensional values to be 
included in models in order to progress from a purely applied mathematically based theme to 
more a dynamic one.  
 
Discussion   
 
As seen in the tables and the studies reviewed, there are a large number of environmentally 
related as well as disease based parameters which influence the intensity, frequency, location and 
spread of a DF outbreak.  Several limitations exist when using models as predictive tools in DF 
outbreaks. One of the main limitations for such models as mentioned is the geographic restriction 
due to data sources, often meteorological stations which might affect the availability of data as 
well as the spatial applicability. In order to be less constraint on such static datasets, Fuller et al., 
2009 [32], included vegetation indices data, as well as sea surface temperatures in relation to El 
Niño Southern Oscillation (ENSO). Using this model, the authors suggested that a DF outbreak 
could be predicted with a 40 week advance in Costa Rica.  
Secondly, the differences in input parameters vary due to both natural and artificial factors. 
Biologically, differences in egg survival time, extrinsic incubation periods, median of lag phase 
are all directly or indirectly affected by external factors including temperature, humidity or even 
the immune system on an individual level. [15]. The effects of socio-environmental factors on 
mosquito vectors and transmission of DF are often not immediate, which involves a lag time 
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between exposure to a risk factor and the development of the disease. The inclusion of temporal 
data allows for the identification of lag times and patterns of transmission over time [15]. Spatial 
data alone cannot provide the analysis of the temporal kinetics of an outbreak whereas the use of 
temporal data does not allow for the identification of high risk areas [15]. Ideally, studies should 
include both spatial and temporal aspects in the analysis to maximise the ability of the resultant 
equation to predict future outbreaks. Through the literature review, several interesting parameters 
were indentified which affect the predictive ability of models, such as the range of transmission 
of DF being at temperatures of 18 - 33.2 °C, with females feeding more frequently when 
temperatures are higher [4,33]. Directly affecting the biology of the vector, temperature also 
plays an important role on pathogen replication, maturation and period of infectivity. 
Transmission was also higher in areas where two or more serotypes were found to circulate 
simultaneously [7]. On the clinical level, facts such as the range in viraemic phase of DF which 
lasts from 2 to 12 days [34] will affect the precision of the model output. On an artificial level, 
models can vary due to the choice of regression analysis, the choice of map in terms of digital 
charting such as raster or vector outputs, although current methods favour vector maps due to 
their more flexible nature. Within these also lie the choice of geometric factors such as point or 
polygonal data which in turn will affect the predictive power of the models. [35] 
Although modelling studies promote the need for a DF vaccine [36], a suitable vaccine that 
accounts for all four serotypes of DF is yet to be developed, hence the most effective means of 
controlling DF is through prevention via vector control. However, many vector control programs 
deteriorate as the economic condition of most high risk countries is unfavourable [37]. The 
identification of areas most at risk of DF transmission is essential to ensure the most efficient and 
effective use of resources for the continuation of vector control and eradication programs. With 
the predicted socio-environmental changes brought by urbanisation, climate change and 
globalisation, the regions at risk of transmission along with the economic impact of DF are set to 
increase. The analysis of previous outbreaks of DF may provide a means of predicting future 
epidemics in order to establish early warning systems and allocate resources more efficiently 
[38,39,40].  
The use of models as a prediction method or part of a surveillance system in terms of early 
warning have been done for other vector borne diseases such as malaria [41,42], Rift Valley 
Fever [43]and bluetongue virus  [44], which after determining the basic transmission pattern in a 
mathematical model, could then apply climatic events to predict potential outbreaks through 
Geographical Information Systems (GIS). Such models have been created on a local scale to 
predict DF outbreaks based on climatic factors as seen in Brazil [45] which used thermal, 
hydroclimatic, wind, atmospheric pressure, and humidity data as well as in and Puerto Rico [46] 
where climatic water budget indicators were used to create an early warning system, with the 
latter study being able to predict a DF outbreak with a three week warning period. 
Few studies have been able to collect the necessary amount of spatio and temporal data as well as 
epidemiological information to analyse the correlation between all these factors. Bayesian spatio-
temporal modelling takes into account the effect of covariates and correlations as well as being 
able to correct for possible errors arising from median estimates of random effects as seen in 
Yang et al., 2005 [47]for schistosomiasis, whereby conditional autoregressive models (CAR) 
were used in the Bayesian smoothing process. Another study addressing the advantages of this 
modelling technique is seen for dengue in Brazil [48], but as mentioned, data constraints, in this 
case the lack of socio-economic and meteorological covariates affect the predictive power of the 
model. Through the analysis of various dengue models and the ability to include varying levels of 
qualitative and quantitative data, the CAR method seems to have the most potential for 
developing a robust climate-based epidemic forecasting model. 
The identification of high risk areas and trigger factors such as humidity, precipitation, 
temperature or even travel related disease could allow for early implementation of such 
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interventions so that DF can be effectively and efficiently controlled and prevented. Through the 
modelling, eventual intervention strategies have been analysed such as the effect of vaccination 
and the reduction in the number of susceptible individuals [14,49].  
Although this review primarily focuses on mathematical models, the implementation of tools 
which use a combination of various climatic, environmental, epidemiological and socio 
economic factors to create an early warning system are showing encouraging results, as seen in 
the Chinese Infectious Disease Automated alert and Response System (CIDARS), which uses a 
combination of a fixed threshold, spatial and temporal detection methods for real time warning of 
many infectious diseases on a national scale[50]. Information gathering and sharing platforms 
[51] as seen in the multi-disease data management system interface are promising tools for 
infectious disease surveillance. 
 
Conclusion 
 
Interventions based on early warning systems aimed at preventing DF transmission require 
significant financial resources and human input, thus it is desirable to target areas and 
populations at high risk of DF. Modelling processes have shown their potential in identifying 
such high risk areas. The authors encourage the collection of information on both a spatial and 
temporal level, along with climatic and socio-environmental variables during future outbreaks of 
DF, as this will allow for the development of models with maximum predictive capabilities. 
Multiple and logistic regression models are most often used for analyses, yet as mentioned they 
are limited due to their inability at accounting for possible confounding factors, auto-correlations, 
trends and lags in a sufficient manner thus limiting their predictive performance. Recently,  the 
use of spatial and temporal data has enhanced the ability of models to predict outbreaks of DF by 
allowing for the spatial identification of high risk areas whilst taking into account the temporal 
kinetics of DF transmission [15].  
Certain factors will have to be taken into consideration when modelling DF in light of climate 
change and travel trends as well as vector habitat alterations. Due to the emerging spread of 
Aedes albopictus[52], models will have to be able to accommodate for the slightly different 
biology of these mosquitoes, as seen in the spatial modeling using socio environmental indicators 
in Brazil which had different breteau indices for both Ae. aegypti and Ae. albopictus[53]. 
Similarly to other vector borne disease, models vary in their complexity, methodology and area 
of study which can be very specific and not easily applied to other geographical areas, hence the 
comparison of less traditional mathematical techniques is more problematic. Transparency is a 
key factor which will allow for the improved accuracy and performance of models, not only for 
DF but for many other vector borne diseases which have complex transmission cycles.   
 
Acknowledgments 
This study was supported by Grant of the National Health and Medical Research Council, 
Australia (No. 1002608) and the Grants of Queensland University of Technology 
(2008BAI56B02, 2009ZX10004-201). The funders had no role in study design, data collection 
and analysis, decision to publish, or preparation of the manuscript. 
Disclosure statement 
There were no conflicts of interest involved in this study.  
 
Legend for Figures  
 
Figure 1: Graphical summary of the literature search process. 
Figure 2: Transmission pathway and risk factors involved in dengue fever outbreaks. 
Figure 3: Flow chart process for data incorporation in dengue fever outbreak modelling 



Predicting dengue fever outbreaks 

 10 

Tables 
 
Table 1: Setting and parameters used in predictive dengue model creation 
 
Spatial scale Collection time frame Model Risk factors 

 

Community Daily Poisson Temperature 

Parish Weekly Time-series Precipitation 

District Monthly Autoregressive Wind velocity  

Municipality Bi-monthly Multiple regression Sea surface 
temperature  

Province Annually Logistic regression Humidity 

City Bi-annually Autoregressive 
Integrated Moving 
Average  (ARIMA) 

Geographical settings 

State   
Step-wise regression  

Hygienic parameters 

Country  Classification & 
Regression Tree (CART) 

Average pan evapo-
transpiration (APET) 

Multi- country   
Spatio-temporal 
regression 

Proximity to potential 
artificial breeding 
sights 
 
Vegetation dynamics 
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