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Abstract - Time-activity patterns and the airborne pollutant concentrations encountered by children 
each day are an important determinant of individual exposure to airborne particles. This is 
demonstrated in this work by using hand-held devices to measure the real-time individual exposure 
of more than 100 children aged 8-11 years to particle number concentrations and average particle 
diameter, as well as alveolar and tracheobronchial deposited surface area concentration. A GPS-
logger and activity diaries were also used to give explanation to the measurement results. Children 
were divided in three sample groups: two groups comprised of urban schools (school time from 
8:30 am to 1:30 pm) with lunch and dinner at home, and the third group of a rural school with only 
dinner at home. The mean individual exposure to particle number concentration was found to differ 
between the three groups, ranging from 6.2×104 part. cm-3 for children attending one urban school 
to 1.6×104 part. cm-3 for the rural school. The corresponding daily alveolar deposited surface area 
dose varied from about 1.7×103 mm2 for urban schools to 6.0×102 mm2 for the rural school. For all 
of the children monitored, the lowest particle number concentrations are found during sleeping time 
and the highest were found during eating time. With regard to alveolar deposited surface area dose, 
a child's home was the major contributor (about 70%), with school contributing about 17% for 
urban schools and 27% for the rural school. An important contribution arises from the 
cooking/eating time spent at home, which accounted for approximately 20% of overall exposure, 
corresponding to more than 200 mm2. These activities represent the highest dose received per time 
unit, with very high values also encountered by children with a fireplace at home, as well as those 
that spend considerable time stuck in traffic jams. 

 
 

Keywords: particle number concentration, individual exposure, children daily dose, deposited 

surface area, dose intensity. 

 

 

1. Introduction  

Epidemiological studies have demonstrated that exposure to particulate air pollution is associated 

with several adverse health effects (Pope and Dockery, 2006). Long-term exposure to high 
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concentrations of particulate matter (PM) increases the risk of lung cancer, respiratory diseases and 

arteriosclerosis, whereas short-term exposure peaks can cause exacerbation of several forms of 

respiratory diseases, including bronchitis and asthma, as well as changes in heart rate variability 

(Sorensen et al., 2003). To date, the majority of these studies have dealt with the relationship 

between health outcomes and ambient levels of PM10 and PM2.5, which are the mass of particles 

with an aerodynamic diameter of ≤ 10 μm and 2.5 μm, respectively. Recently, however, interest has 

focused on ultrafine particles (UFPs, diameter ≤ 100 nm), due to the adverse health effects caused 

by their high alveolar deposition fraction, large surface area, chemical composition and potential to 

translocate to the circulation (Donaldson and Tran 2002; Schins et al. 2004; Braniš et al., 2010; 

Weichenthal, 2012), as well as their ability to induce inflammation, penetrate into cell membranes 

(Unfried et al., 2007) and deposit in secondary organs (Semmler et al., 2004) and brain tissue 

(Calderon-Garciduenas et al., 2004). In particular, these effects are much more pronounced in 

children because they inhale a higher dose of UFPs relative to both lung size (when compared with 

adults) (Buonanno et al., 2012; Burtscher and Schüepp, 2012) and increased breathing rates, since 

they are generally more physically active than adults (Bateson and Schwartz, 2008; Pinkerton and 

Joad, 2006). Physiological research has shown that exposure of developing lungs to particulate 

matter can permanently affect the lungs themselves, and in particular, exposure to UFPs in early life 

can result in persistent alterations in distal airway architecture that are characterized by an initial 

decrease in airway cell proliferation (Lee et al., 2010). While there is considerable toxicological 

evidence of the potential harmful effects of UFPs on human health, there are still insufficient 

epidemiological studies to draw conclusions on the dose-response relationship concerning this 

aerosol fraction, especially with regard to children (WHO, 2005).  

 

1.1 Children's personal exposure 

An exposure assessment is defined as the process of estimating or measuring the magnitude, 

frequency and duration of exposure to an agent, along with the number and characteristics of the 

population exposed (Ott, 1982). With regard to the exposure assessment of children, five different 

spatial scales can be carried out: i) “city scale”, the broadest and most common scale used to 

characterize air quality across several city blocks using remote measurements; ii) “outdoor scale”, 

which is representative of particle exposure outside school buildings and grounds; iii) “indoor 

scale”, which reflects indoor-based exposure in classrooms; iv) “individual scale”, where the 

sampling location is within 3 meters of the person; and v) “personal scale”, using hand-held 
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instruments carried as a personal monitor, with a distance between the sampling site and the nasal 

cavities < 30 cm (Cattaneo et al., 2010). 

Wallace and Ott (2011) carried out measurements of personal exposure to UFPs by positioning a 

portable condensation particle counter (CPC 3007, TSI Shoreview, MN, USA) inside homes, cars 

and restaurants. They identified a number of important indoor sources, ranging from cooking on 

stoves (both gas and electric) and toaster ovens to the use of hair dryers. Vinzents et al. (2005) 

studied personal exposure in terms of number concentrations of UFPs in the breathing zone, using 

hand-held condensation particle counters (CPC 3007, TSI, St. Paul, MN, USA) for 15 healthy non-

smoking subjects (who were also determined to have oxidative DNA damage) over six 18-hr 

periods. They found that biologic effects of UFPs occur from modest exposure, such as that 

occurring in traffic, which supports the relationship between UFPs and the adverse health effects of 

air pollution. 

In the literature, no studies have investigated the daily personal or individual exposure of children to 

UFPs and until now, most child exposure assessment studies have used data based on fixed 

monitoring site measurements inside and/or outside school grounds, and background particle 

concentrations measured at some central location in the urban area of interest (Janssen, 2001; Kim 

et al., 2004). PM10 has a smaller spatial and temporal variation in a given location with respect to 

UFP concentrations, which are primarily generated from gas-to-particle conversion and high-

temperature combustion sources present in urban areas (particularly during rush hours), which 

rapidly decrease with increasing distance from the source (Buonanno et al., 2011a). Because of the 

different fluid dynamics and sources, UFP exposure evaluations have to be carried out differently 

from those for coarse particles, and data from fixed monitoring stations are generally not useful in 

assessing such exposure. Furthermore, ambient concentrations are generally insignificant compared 

to the concentrations found in other microenvironments, which also depend on the exact 

whereabouts of individuals (Klepeis, 2006). In fact, each individual person is exposed to pollutant 

concentrations in a different way, depending on their lifestyle and the different microenvironments 

which they frequent. When an individual makes a trip from one location to another, their personal 

exposure can be defined as the weighted average of concentrations present in each single 

microenvironment through which he or she travels, taking into account the amount of time he or she 

spends in each one (WHO, 1999).  

In general, a child's daily overall exposure is dominated by particle concentration levels in three 

main microenvironments: at home, on school grounds and aboard transportation (Ashmore and 

Dimitroulopoulou, 2009; Xue et al., 2004; Hussein et al., 2012). Therefore, children attending the 
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same school can still receive different doses, depending on the characteristics of their home 

environment and the mode/s of transport which they use.  

 

1.2 Aims of the work 

In previous works (Buonanno et al., 2011b; Buonanno et al., 2012), activity pattern data were 

combined with micro-environmental data (human activities and particle number size distributions) 

using an indirect approach, in order to evaluate the dose of alveolar and tracheobronchial-deposited 

particle number and surface area experienced by different age groups in Italy and Australia. From 

the Italian study, it was found that the major activities contributing to alveolar and tracheobronchial 

particle number deposition in children aged 6-10 years were sleeping and resting (13% and 15%, 

respectively), eating (22% and 18%, respectively) and transportation (19% and 20%, respectively), 

while the contribution from time spent at school was less than 10%. With regard to surface area, the 

predominant contribution was from meal times (>54%). This finding confirms the importance of the 

time spent eating, where high particle concentrations are likely to remain in the air following 

cooking activities. With regard to transportation microenvironments, the highest dose intensity 

values, in terms of particle number deposition, were found for children (6-10 years old), indicating 

that it is very important to consider the exposure of children to UFPs emitted by traffic.  

The current work was carried within the international project titled “Ultrafine particle from traffic 

emission on children health (UPTECH)” (Queensland University of Technology, Brisbane, 

Australia), which is being undertaken in response to the lack of epidemiological results concerning 

the effects of exposure to UFPs emitted by motor vehicles on children's health in schools 

(http://www.ilaqh.qut.edu.au/Misc/UPTECH%20Study%20Design.htm). This paper deals with the 

children's individual exposure to UFPs, in order to identify the activities and microenvironments 

that make the greatest contribution to a child’s average daily dose. In fact, the driving force for this 

exposure will be the activity pattern of each child and the microenvironments they visit each day. 

Given that short-term exposure may contribute significantly to average daily exposure, the daily 

dose of alveolar and tracheobronchial deposited surface area, together with daily exposure to 

particle number concentration was measured for over 100 children, and a detailed study of each 

child's daily activity patterns was conducted based on the Global Positioning Systems (GPS) and 

diaries carried by each child. 

 

 

2. Methodology 

http://www.ilaqh.qut.edu.au/Misc/UPTECH%20Study%20Design.htm
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2.1 Study design, sampling sites and population  

The measurements were carried out on week days in Cassino, in Central Italy (41°30’0’’ N -

13°50’0’’E), which can be considered a typical busy Italian middle town (resident population: 

33,000 inhabitants; daily commuter workers and students: 20,000; surface area: 83 km2), between 

October 2011 and March 2012. Personal exposure measurements were performed on children aged 

8-11 years who attended three different schools, (S1, S2 and S3):  

- S1 is a primary school located on an urban street with traffic mostly dominated by light 

vehicles (50% diesel cars). Traffic density on the roads around S1 was 36 ± 2 vehicles min-1 

and traffic peak hours were detected at 8:30am and 1:30pm, which correspond to the times 

in which pupils enter and exit from school, respectively (Buonanno et al., 2011a). Three 

school buses were used to transport children to this school. 

- S2 is a secondary school close to the intersection of moderately and heavily trafficked urban 

streets (7.7% heavy duty vehicles, typically buses). Traffic density and traffic peak hours on 

the roads around S2 was comparable to those for S1 (Buonanno et al., 2011a), where students 

also entered the school at 8:30am and exited at 1:30pm.  

- S3 is a primary school located in a rural area far away from urban traffic (average traffic 

density: 4 ± 1 vehicles min-1). At this school, pupils arrived at 8.30am and left the school 

grounds around 4.15pm, except for one day a week, when children in the fifth grade left the 

school at 5.45pm. 

In order to describe the study population, and measure potential confounders and effect modifiers 

relevant to the analysis (such as housing conditions, socio-economic status, exposure to 

environmental tobacco smoke and ethnicity), a questionnaire was developed following the 

International Study of Asthma and Allergies in Childhood (ISAAC) guidelines. A time-activity 

diary (which provides information on potential peak exposures in specific locations) was also 

completed by each child under the supervision of their parents. Overall, 103 children agreed to 

participate in this project, of which 33 attended S1, 25 attended S2 and 45 attended S3.  

 

2.2 Instrumentation and quality assurance 

The mobile experimental apparatus was composed of three hand-held UFP counters (NanoTracer, 

Philips) equipped with GPS tracking. This device works by diffusion charging, using an 

electrometer that measures the number particle concentration by means of the current induced by 

previously charged particles collected on a filter inside a Faraday cage. The NanoTracer is also able 

to evaluate the different fractions of the lung deposited surface area through a semi-empiric 
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algorithm implemented by Marra et al. (2010). These personal monitors are equipped with an 

internal rechargeable lithium-ion battery, which allows them to be used during outdoor trips. The 

total run time (single battery charge) is about 7 hours. The NanoTracer can operate in two different 

modes: fast mode and advance mode. The fast mode measures real-time particle number 

concentrations (in the range 10-300 nm), while the advance mode measured both particle size and 

concentration. 

These counters were calibrated at the beginning of the experimental campaign, in order to allow for 

data quality assurance by comparison with: i) a Condensation Particle Counter (CPC, TSI Model 

3775) to measure particle number concentration; ii) a Nanoparticle Surface Area Monitor (NSAM, 

TSI Model 3550) to assess the human lung-deposited surface area of particles (reported as µm2 cm-

3) corresponding to tracheobronchial (TB) and alveolar (A) regions of the lung; and iii) a Scanning 

Mobility Particle Sizer Spectrometer (SMPS, TSI Model 3936) to measure the mean diameter of the 

particle number size distributions. 

The calibration was conducted within a closed box (about 16 L), in a uniform and stationary 

environment, in terms of number concentration. Different polydisperse aerosols were generated 

from a watery solution of sodium chloride (NaCl) by a TSI 3940N aerosol generator in the 5-300 

nm diameter range. Three tests were performed under stationary conditions (30 min of 

measurements), at low (10 000 part. cm-3), medium (20 000 – 80 000 part. cm-3) and high 

concentrations (> 120 000 part. cm-3). The correction factors, defined as the ratio between the 

reference values measured by the reference instrument (CPC for the particle number concentration 

and NSAM for alveolar-deposited surface area of particles) and the ones obtained by the 

Nanotracers, varied between 1.3 at high concentrations and 0.9 at low concentrations. Therefore, the 

Nanotracers were found to under-count at high concentrations, however they were reasonably 

accurate at medium and low particle number concentrations. 

A further CPC TSI 3775 was used to measure total particle number concentration at a background 

site. This instrument, located on a rooftop at the University of Cassino, was protected from rain and 

wind, and provided information on airshed exposure. Particle number concentrations were 

continuously measured with a 30 s time resolution during the experimental campaign. Measurement 

quality assurance of the CPCs was guaranteed through calibration checks and flow checks 

conducted at the start of the monitoring periods: each condensation particle counter was calibrated 

in the European Accreditated Laboratory at the University of Cassino and Southern Lazio by 

comparison with a TSI 3068B Aerosol Electrometer. 
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2.3. Methodology description  

Each child kept the NanoTracer device for two days, carrying it with them in all of the 

microenvironments where he or she spent their time. The children were also asked to record their 

main indoor and outdoor activities (such as studying, eating, transportation, sleeping etc), indicating 

the start and end times  for each activity. The temporal resolution of the NanoTracers was set to 16 s 

(advance mode). 

Based on the time duration of each activity, the corresponding average particle number 

concentration, diameter, and deposited alveolar and tracheobronchial surface area concentrations 

were calculated. The dose (in terms of deposited alveolar or tracheobronchial surface area) received 

by 8-11 year old children in each microenvironment/activity was determined by multiplying the 

alveolar and tracheobronchial surface area ( a ,tbS ) for the time spent (T ) in the jth microenvironment 

and the inhalation rate ( activityIR ) corresponding to the activity carried out (Klepeis, 2006). Then, we 

added the partial doses to estimate the daily total deposited alveolar and tracheobronchial surface 

area (dose), a ,tbS , as reported in eq. (1). 

 

{ }
=

= ⋅ ⋅∑
n

a ,tb activity a ,tb j
j 1

S IR S T          (1) 

 

Inhalation rates for the different activities were adopted on the basis of the US EPA approach (US 

EPA, 2004), ranging from 0.3 m3 h-1 during sleeping and resting to 1.4 m3 h-1 during sporting 

activities. 

In order to analyze the contributions of each activity/microenvironment in more depth, we 

determined the “exposure (dose) intensity”, in order to compare exposure (dose) in different 

microenvironments by linking the daily exposure fraction with the daily time fraction, as described 

in equation (2) (Wang et al., 2011): 

 

Exposure (dose) intensity = Daily exposure (dose) fraction (%) / Daily time fraction (%) (2) 

 

 

3. Results and Discussion 

3.1 Study population and daily time activity analysis  
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Table 1 shows the key characteristics of the study population. Data collected from the 

questionnaires highlight that among children attending the two urban schools (S1 and S2), 50% and 

44% live in urban areas, 37% in rural areas and more than 13% in suburban areas. Of those children 

who lived in an urban area, 75% go to school by car and 25% on foot. the data collected for S3 was 

quite different, with only 3% of students living in an urban area. While gas cooking was the only 

cooking method used in the homes in this study, fireplaces were a more common heating method 

than the use of gas heaters. 

Figure 1 shows the relative contributions, C, (minimum, first quartile, median, third quartile and 

maximum) of each activity/microenvironment analyzed to the daily time activity pattern (grey box 

plots) for the three schools (S1 and S2, S3). Children who attended urban schools S1 and S2 spent 

21% (300 min) of their daily time at school and 71% (1017 min) at home, of which 6% was spent 

during lunch time and 37% was for sleeping. In contrast, the children at S3 spent less daily time at 

home (59%, 868 min), with more time spent at school (35%). Moreover, they spent less time eating 

(4%), because the children ate pre-cooked lunches at school, and therefore, they were not exposed 

to the emissions from cooking activities during lunch time. Therefore, the time spent eating by 

children at S3 was considered to have the same emissions profile as school time. The daily time 

contribution for time spent on transportation ranged between 2% (29 min) for children at S3  and 

4% (56 min) for children at S1 and S2. 

The values obtained were in good agreement with the data presented in the literature. For example, 

Chau et al. (2002) reported that individuals from Hong Kong (China) spent an average of 86% of 

their time indoors, 3-7% in enclosed transit and 3-7% outdoors. Brasche and Bischof (2005) carried 

out an analysis of the time spent indoors at home, with a mean time equal to 942 min (65%). The 

overall mean time spent at home is also in good agreement with results from American (940 min, 

65%) and Canadian (950 min, 66%) human activity surveys carried out in the nineties, as reported 

by Leech et al. (2002). Generally, a child's daily activity pattern is characterized by longer periods 

spent at home (Schweizer et al., 2007; McCurdy et al., 2003; Xue et al., 2004; Hussein et al., 2012)  

and the daily time spent in different microenvironments is affected by several influential 

parameters: type of day (weekday, weekend, holiday) ambient temperature, gender. In a previous 

paper, the authors estimated the time spent by 6-10 years old children at home (73%, 1051 min), as 

well as during transportation (4.9%, 71 min), sleeping (37%, 537 min) and eating time (4.8%, 69 

min), on the basis of the Italian daily activity patterns database (Buonanno et al., 2011b). The good 

agreement between this and other studies confirms that in Western countries the adopted lifestyles 

are similar, in terms of daily activity patterns. Different considerations can be withdrawn from 
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studies carried out in Korea and China (Yang et al., 2011; Jim and Chen, 2009): these population 

activity patterns are, in fact, substantially different from those in Western countries. 

 

3.2 Exposure to particle number, alveolar and tracheobronchial deposited surface area 

concentrations. 

In Table 2, average particle number, and alveolar and tracheobronchial deposited surface area 

concentrations are reported for children attending the three schools (S1, S2, S3). The daily average 

particle number concentrations are equal to 6.2×104 part. cm-3, 3.9×104 part. cm-3 and 1.6×104 part. 

cm-3 for S1, S2 and S3, respectively. Morawska et al. (2008) carried out a meta-analysis of 71 UFP 

studies performed in several microenvironments. They found mean concentrations of 2.6, 4.8, 7.3, 

10.8, 42.1, 48.2, 71.5 and 167.7×103 particles cm-3 for clean background, rural, urban background, 

urban, street canyon, roadside, on-road and tunnel environments. Therefore, children attending S1 

and S2 are exposed to daily UFP exposure typical of on-road and street canyon environments, 

respectively. For all of the children monitored, the lowest particle number concentrations were 

found during sleeping time, with average particle number concentrations (and average particle size) 

equal to 3.8×104 ± 1.7×104 part. cm-3 (mode diameter equal to 84 nm) for children attending S1, 

2.4×104 ± 9.9×103 part. cm-3 (101 nm) for S2 and 7.4×103 ± 3.6×103 part. cm-3 (136 nm) for S3. 

Maximum particle number concentrations were detected during eating time, with 2.3×105 ±  

2.1×105 part. cm-3 (84 nm) for S1, 9.2×104 ± 5.1×104 part. cm-3 (67 nm ) for S2 and 9.4×104  ± 

4.1×104 part. cm-3 (79 nm) for S3. The sleeping time presents a higher mode diameter range (84-136 

nm) in respect to eating time (67-84 nm) because of the presence of more aged particles. The high 

levels of exposure during eating time are a result of the high emission factors of indoor cooking 

activities, as well as the reduced use of hoods and forced ventilation systems in Italian kitchens 

(Buonanno et al., 2009, 2011b; He et al., 2004; Hussein et al., 2006). Children are also exposed to 

high particle number concentrations during their time spent on transport, with average particle 

number concentrations equal to 6.8×104 ± 2.8×104 part. cm-3, 5.5×104 ± 2.4×104 part. cm-3 and 

2.1×104 ± 8.2×104 part. cm-3 for children from S1, S2 and S3 respectively. 

The daily average alveolar (and tracheobronchial) deposited surface area concentrations were 

1.9×102 µm2 cm-3 (38 µm2 cm-3) for children attending S1, 1.5×102 µm2 cm-3 (31 µm2 cm-3) for S2 

and 59 µm2 cm-3 (12 µm2 cm-3) for S3. Minimum alveolar surface area concentrations were detected 

during sleeping for children from S1 and S2, and during school time for children from S3. Once 

again, maximum values were found, for all children, during eating time (average values of 3.6×102 

µm2 cm-3 and of 7.2×101 µm2 cm-3 for the alveolar and tracheobronchial deposited surface area 
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concentrations, respectively). These values represent high exposures in comparison to the data 

reported by other studies. For example, Wilson et al. (2007) measured the alveolar and 

tracheobronchial deposited surface area in Minneapolis and East St. Louis, USA and found typical 

values ranging between 10 - 50 µm2 cm-3 and 5 - 20 µm2 cm-3, respectively. Moshammer and 

Neuberger (2003) found acute asthma-like effects of active particle surfaces on the pulmonary 

function of elementary school children, with half-hour mean values for deposited active surface area 

ranging between 4.80 - 343 µm2 cm-3, and a mean value of 58 µm2 cm-3. 

 

3.3 Dose, dose intensity and contribution to the daily dose of the different 

activities/microenvironments of alveolar deposited surface area. 

In Table 3, dose, dose intensity and the contribution to the daily dose of the different 

activities/microenvironments for alveolar deposited surface area are reported for children attending 

the three schools (S1, S2, S3). The daily dose of children attending urban schools was equal to 

1.93×103 ± 1.03 ×103 mm2 and 1.53×103 ± 6.4×102 mm2, respectively, which is in very good 

agreement with the corresponding value (1.72×103 mm2) determined by Buonanno et al., (2011b) 

for 6-10 years old attending schools in Italy from 8.30 am to 1.30 pm on weekdays. The daily dose 

for children attending S3 was considerably lower than for S1 and S2, and is similar to the value 

determined for Australian children, of about 4.0×102 mm2 (Buonanno et al., 2012). The main 

reasons for this low value are the location of the school and houses  (97%) in a rural area and the 

fact that children only partake in one eating time during the day, which is similar to the activity 

patterns of Australian children (Buonanno et al., 2012). 

Figure 2 reports the average particle number concentration for all children attending a) urban (S1 

and S2) and b) rural schools (S3) compared to background levels. Starting from 7.00am, children 

attending S1 and S2 (Figure 2a) were exposed to higher levels of UFP compared to background 

values until 8:25 am. The main reasons for this finding are due to indoor UFP generation from 

cooking activities (breakfast) and transportation exposure. From 8:25 am to 1.30 pm (school time), 

the exposure is lower compared to background levels, which is typical of an indoor 

microenvironment without any relevant particle number sources. During the afternoon and evening, 

two major peaks are clearly shown and these refer to cooking activities during lunch and dinner 

time. The contribution from cooking activities does not only affect UFP levels during eating time, 

but it also contributes to exposure during other time spent at home. The main difference between 

children attending the rural school (S3) is a lower background exposure (due to the location of the 

school and houses) and the presence of one only peak due to cooking activities at dinner time. 
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With regard to the alveolar deposited alveolar surface area dose, we found that a childs' home was 

the major contributor (72%, 71% and 65% for children of S1, S2 and S3, respectively), even for 

children attending S3, who spent more time at school than at home (see Table 3). School time 

contributes 16% to the daily time activity patterns for urban schools (with school time from 8.30am 

to 1.30pm), and 27% for the rural school (with school time from 8.30am to 4.15pm). An important 

contribution arises from cooking/eating time, with a time fraction of about 15%, corresponding to 

more than 200 mm2. This activity presents the highest dose intensity (greater than 3.7), highlighting 

the very high dose received per time unit during eating time. The contribution of cooking/eating 

time is even higher because children are also exposed to high concentrations after the afternoon and 

the evening eating times. Therefore, even if school and eating time made a similar contribution to 

the daily dose, the dose intensity is very different, as shown in Figure 1. 

In order to better understand the overall population of students attending urban schools (S1 and S2), 

we separated it into several distinct sub-populations according to: gender, smoking parents, 

presence of fireplaces at home, traffic jams during the school-home route, prevalent type of 

transportation (car, walking), and the location of the children's houses. Figure 3 shows the relative 

exposure to particle number concentration, E, and received dose of alveolar deposited surface area, 

D, for the different sub-populations, with respect to the overall population of students attending 

urban schools S1 and S2. 

The exposure and dose received by females was higher compared to males, with the main additional 

contribution related to a higher frequency of females in the kitchen and/or adjacent rooms during 

and post cooking activities. Very high values were also encountered for children with a fireplace at 

home and for ones that experienced traffic jams on their way to or from school. However, the dose 

is relatively lower than exposure because of the reduced inhalation rate during these activities. In 

contrast, children that walk to school generally exhibit a higher inhalation rate and therefore, 

experience a greater dose compared to exposure. Finally, the location of the houses also seems to be 

relevant, with children living in urban areas experiencing a higher exposure of about 25%. 
 

 

4. Conclusions 

 

In this study, children's individual exposure and dose to UFPs were measured during a 6 month 

experimental campaign, in order to evaluate the contribution of different activities and 

microenvironments. To this purpose, measurements of particle number concentration, and alveolar 
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and tracheobronchial deposited surface area were conducted for 8 – 11 year old children attending 

three different schools in Cassino (Southern Italy). Time activity data were recorded in a diary 

completed by each child and location data were recorded by a Global Positioning System (GPS). 

Our results showed that children attending urban schools, with a higher percentage of subjects 

living in urban areas than those attending a rural school, experienced higher individual exposure to 

particle number concentration, mainly due to the extra cooking activities and traffic-related sources 

they encountered.  

In terms of time, a child's home was found to be the most significant microenvironment, 

contributing to daily exposure to particle number and alveolar deposited surface area dose, 

accommodating around 70% of a child's daily activities. This contribution mainly comprised of 

sleeping and eating times, which despite making similar daily contributions to dose, were totally 

different in terms of exposure. For example, sleeping was characterized by low particle 

concentrations over a long duration, while eating was characterized by high concentrations over a 

shorter time period. Children were also exposed to high particle number concentrations during 

transportation to and from school, with children travelling by car exposed to greater UFP levels than 

those who walked to school. The exposure and dose received by females was higher when 

compared to males, and particularly high exposures were experienced by children with fireplaces at 

home and those that experienced traffic jams on their way to or from school. Finally, the location of 

the children's houses also seemed to be relevant, with children living in urban areas experiencing a 

higher exposure of about 25%. 

The results of this work show the importance of individual exposure assessment, in order to provide 

information for the protection of public health, especially for children who represent one of the 

most vulnerable groups in society. Personal exposure studies should be carried out in developed 

countries as an essential tool to identify health risks, set and review air quality standards and 

evaluate effective policy interventions. Future work will focus on the individual exposure of adult 

females during cooking activities, since they generally experience greater exposure compared to 

adult men and children. 
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Table 1 - Characteristics of Study Population (%). (Total number of children N =103, 
age = 10.1 ± 1.1 years) 

Characteristic % 
S1 S2 S3 

Male 50 50 59 
Living in urban/rural/suburban area  50/37/13 44/37/19 3/97/0 
Going to school by car/walking/bus 94/6/0 79/14/0 55/26/19 
Urban route /suburban/mixed 59/0/41 34/18/48 0/82/18 
Heavy traffic during transport  19 21 3 
Smoking in the home 6 13 7 
Living in damp home 50 32 36 
Pets in the home 31 32 26 
Parental education high/medium/low 34/59/7 40/56/5 22/67/11 
Gas cooking 100 100 100 
Heating gas/fireplace/both 13/62/25 18/50/32 19/33/48 
After school care 0 11 13 
Living in other house (>50 days/year) 19 18 3 
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Table 2 - Particle number, alveolar and tracheobronchial surface area deposited concentrations. 

Microenvironment 
or activity 

N (part. cm-3) Sa (µm2 cm-3) Stb (µm2 cm-3) 
S1 S2 S3 S1 S2 S3 S1 S2 S3 

School 4.0×104 3.3×104 1.2×104 1.5×102 1.5×102 3.5×101 3.0×101 3.4×101 7.0×100 
Indoor (home) 6.3×104 4.5×104 2.6×104 1.9×102 1.7×102 9.3×101 3.9×101 3.3×101 1.9×101 
Indoor (other) 5.1×104 3.8×104 2.0×104 3.6×102 1.2×102 4.8×101 7.4×101 2.5×101 9.7×100 
Sleeping 3.8×104 2.4×104 7.4×103 1.4×102 1.1×102 4.2×101 2.8×101 2.2×101 8.5×100 
Cooking/Eating 2.3×105 9.2×104 9.4×104 5.6×102 2.8×102 2.4×102 1.1×102 5.7×101 4.9×101 
Transportation 6.8×104 5.5×104 2.1×104 2.1×102 1.8×102 7.3×101 4.2×101 3.7×101 1.5×101 
Outdoor 2.2×104 6.7×104 1.8×104 8.8×101 2.4×102 6.9×101 1.4×101 4.3×101 1.4×101 
Daily average 6.2×104 3.9×104 1.6×104 1.9×102 1.5×102 5.9×101 3.8×101 3.1×101 1.2×101 
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Table 3 – Dose, dose intensity and contribution to the daily dose of the different 
activities/microenvironments of alveolar deposited surface area. 

Microenvironment 
or activity 

Alveolar deposited surface area 
dose (mm2) Dose Intensity Daily dose fraction (%) 

S1 S2 S3 S1 S2 S3 S1 S2 S3 
School 287±137 265±58 160±61 0.71 0.91 0.79 15% 17% 27% 
Indoor (home) 460±231 407±377 128±73 1.05 1.09 1.55 24% 27% 21% 
Indoor (other) 312±318 121±169 43±43 0.95 0.84 1.29 16% 8% 7% 
Sleeping 377±150 274±120 110±64 0.66 0.61 0.48 20% 18% 18% 
Cooking/Eating 295±290 180±146 89±105 3.58 2.45 5.23 15% 12% 15% 
Transportation 102±75 86±73 18±16 1.24 1.52 1.48 5% 6% 3% 
Outdoor 94±105 193±171 52±45 0.58 1.48 1.29 5% 13% 9% 
Daily dose 1926±1029 1526±635 601±205       
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Figure captions 
 
 

Fig. 1 – Relative contributions (minimum, first quartile, median, third quartile and maximum) of 

each activity/microenvironment analyzed on the daily alveolar deposited surface area dose for S1, S2 

and S3 (white box plots). Grey box plots represent the corresponding relative contributions to the 

daily time activity pattern. The time spent by children at S1 and S2 was constant. Red line box plots 

are referred to S1, green to S2 and black to S3. 

 

Fig. 2 – Average particle number concentration trends vs. background particle number 

concentrations for children attending a) urban and b) rural schools. 

 
 

Fig. 3 – Relative exposure to particle number concentration, E, and received dose of alveolar 

deposited surface area, D, of sub-populations with respect to the overall population of students 

attending urban schools S1 and S2. 
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