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This paper investigates theoretically and numerically local heating effects in plasmon nanofocusing

structures with a particular focus on the sharp free-standing metal wedges. The developed model

separates plasmon propagation in the wedge from the resultant heating effects. Therefore, this

model is only applicable where the temperature increments in a nanofocusing structure are

sufficiently small not to result in significant variations of the metal permittivity in the wedge. The

problem is reduced to a one-dimensional heating model with a distributed heat source resulting

from plasmon dissipation in the metal wedge. A simple heat conduction equation governing the

local heating effects in a nanofocusing structure is derived and solved numerically for plasmonic

pulses of different lengths and reasonable energies. Both the possibility of achieving substantial

local temperature increments in the wedge (with a significant self-influence of the heating

plasmonic pulses), and the possibility of relatively weak heating (to ensure the validity of the

previously developed nanofocusing theory) are demonstrated and discussed, including the future

applications of the obtained results. Applicability conditions for the developed model are also

derived and discussed. VC 2011 American Institute of Physics. [doi:10.1063/1.3615843]

I. INTRODUCTION

One of the major research directions in modern nanopho-

tonics and nano-optics is related to focusing of light into

regions with dimensions as small as a few nanometers, i.e., far

beyond the diffraction limit of light. This is called nanofocus-

ing of light. Nanofocusing has a wide range of applications,

including high-resolution near-field microscopy, nano-optical

sensors and detection techniques, and new approaches for

effective delivery of light energy to nanoscale structures such

as quantum dots, single molecules, nano-optical devices,

etc.1–12 One of the most common approaches to nanofocusing

of light is based on strongly localized surface plasmons in

tapered metallic waveguides, such as sharply tapered metal

rods,12–18 tapered gaps and V-shaped grooves in metals,19–23

dielectric conical and pyramidal tips covered in metal

films,2,6,8,13,14,17,20,24,25 and sharp metal wedges and tapered

sections of metal films on dielectric substrates.23,26–31

However, one of the important practical and physical

aspects of plasmon nanofocusing—the possibility of signifi-

cant local heating of nanofocusing structures caused by dissi-

pation of plasmon energy in the metal (Refs. 32 and 33)—has

received only limited attention so far. At the same time, this

effect may lead to significant alteration of material properties

of nanofocusing structures, self-influence of focused plasmons,

and even rapid destruction of the structure, especially near the

tip where the energy dissipation rates can be the greatest.

The aim of this paper is to theoretically investigate the

heating effects in freestanding nanofocusing sharp metal

wedges. Critical regimes for achieving high temperature near

the tip of the wedge are determined and discussed from two

different perspectives. On the one hand, we will determine

and characterize the typical nanofocusing regimes that do not

lead to significant heating effects, so that the previous nanofo-

cusing theory13,19,21,26,28,30,34 remains valid. On the other

hand, we will also determine and analyze the conditions for

the opposite situation where heating effects are rather rapid

and strong, so that they can be used for rapid heating and tar-

geted delivery of the thermal energy to the nanoscale struc-

tures. This may be especially important for applications of

nanofocusing in nonlinear plasmonics, nanobiotechnology,

and optical methods of diagnostics of living cells.

II. APPROXIMATIONS AND METHODS

A. Geometrical optics approximation

Consider a sharply tapered metal wedge with the taper

angle c and permittivity em¼ e1þ ie2 (e1< 0, e2> 0), sur-

rounded by vacuum or air (ed¼ 1< |e1|)—Fig. 1. Only the

symmetric film plasmons (with the symmetric charge distri-

bution across the wedge) can experience nanofocusing in a

tapered wedge.26,28 Therefore, in this paper, we consider

plasmons with this particular symmetry, propagating nor-

mally toward the wedge tip (Fig. 1).

The plasmon propagation in the wedge can be analyzed

in the geometrical optics approximation (GOA) if the taper

angle is sufficiently small, such that the variations of the

plasmon wave number q¼ q1þ iq2 within one plasmon

wavelength are negligible21,26,28,30:

dðq�1
1 Þ=dy

�� ��� 1; (1)
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where we assume that the plasmon dissipation is weak:

q2�q1, and the y axis is antiparallel to the direction of plas-

mon propagation (Fig. 1).

In the GOA approximation, the dissipation of the plas-

mon energy in the metal wedge at any distance from the tip

can be determined assuming that the plasmon propagates in

a uniform metal film of thickness that is equal to the local

thickness of the metal wedge at the considered point.26,28

Because dissipation of the plasmon energy occurs through its

transformation into heat, the amount of energy dissipated at

a given distance from the tip of the wedge is equal to the

heat discharge (heat source) at this distance.

B. One-dimensional heat conduction approximation

Significant nanofocusing effect, field localization, and

enhancement typically occur at local thicknesses of the

wedge that are of the order of, or less than, the skin depth in

the metal.12,26,28 Therefore, the thermal effects will also

mainly be considered at such small local wedge thicknesses,

especially because this is also the case where the heating

effects are expected to be the strongest. In this case, we can

assume that the heat source (due to dissipation of the sym-

metric plasmon in the metal) and the temperature are uni-

form across the wedge (i.e., z independent, Fig. 1). There are

two reasons supporting this approximation.

First, at local wedge thicknesses h that are of the order

of, or less than, the skin depth:

h. 2a�1; (2)

where a is the reciprocal penetration depth of the symmetric

plasmon into the metal, the electric field in the symmetric

plasmon in the metal is approximately uniform across the

wedge. The factor of 2 is present on the right-hand side of

Eq. (2) because the plasmon field penetrates into the wedge

from both its sides. If condition (2) is satisfied, the heat

source caused by dissipation of the symmetric plasmon in

the wedge is approximately uniform (as well as the tempera-

ture distribution) across the wedge in the z direction (Fig. 1).

Second, even if condition (2) is not satisfied, in thin and

sharp wedges (with the taper angles around a few degrees)

that are typically used for plasmon nanofocusing,26,28 ther-

mal equilibrium across the wedge is established much faster

than along the wedge, and any heat source nonuniformities

(caused by the plasmon decay into the metal) across the

wedge are efficiently smoothed out. This occurs if the other

two conditions are satisfied:

h� 2 2

ffiffiffiffiffiffiffi
js
cpq

r
þ a�1

� �
; (3a)

h� l; (3b)

where j is the thermal conduction coefficient of the metal, s
is the duration of the plasmonic pulse, cp is the specific heat

of the metal per unit mass at constant pressure, q is the den-

sity of the metal, and l is the typical distance along the

wedge within which the temperature varies significantly in

the absence of heat conduction (i.e., where j¼ 0).

Condition (3a) represents the situation where the time

that it takes for the heat to diffuse across the wedge (to

ensure approximately uniform distribution of the temperature

across the wedge) is much smaller than the pulse duration.

The factor 2 appears in front of the parentheses because both

the wedge sides are heated equally by the symmetric plas-

mon, which makes the heat diffuse toward the middle of the

wedge simultaneously from both its sides. Condition (3b)

ensures that during the time required to establish a uniform

temperature and heat distribution across the wedge (i.e.,

along the z axis, Fig. 1), heat conduction does not have

enough time to noticeably redistribute the heat along the

wedge (i.e., along the y axis, Fig. 1).

Under conditions (2) or (3a) and (3b), i.e., reasonably

close to the tip, heat conduction in the nanofocusing wedge

can approximately be reduced to a one-dimensional problem

with a distributed heat source that is uniform across the

wedge, i.e., z independent. Note that this approximation is

correct only if the wedge is surrounded by vacuum or air (or

any other material whose thermal conduction can be

neglected). We also assume that there are no significant heat

radiation losses from the heated wedge, which is correct for

the not very high temperatures considered.

C. One-dimensional heat conduction equation

In the discussed approximation, the wedge can be

replaced by an effective medium with the y-dependent ther-

mal conductivity:

jeff ¼ 2jy tan c=2ð Þ; (4)

where c is the taper angle (Fig. 1). In this case, the one-dimen-

sional Fourier’s law of heat conduction can be written as

Q ¼ �jeff@T=@y; (5)

where Q is the heat flow in the wedge (or the heat flux in the

effective medium) along the y axis (Fig. 1), calculated per

unit length of the x axis.

Energy conservation gives

@Q=@y ¼ Qg � qeffcp@T=@t; (6)

where Qg is the heat source in the wedge: Qg¼ dW/dy, dW is

the amount of heat generated by the surface plasmon within

FIG. 1. (Color online) Tapered metal wedge with metal permittivity em sur-

rounded by vacuum with the permittivity ed¼ 1. A symmetric film plasmon

with the wave vector q propagates in the direction normal to the tip of the

wedge.
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the section of the wedge of length dy per 1 s and per unit

length along the x axis, and

qeff ¼ 2qytan c=2ð Þ: (7)

Substituting Eq. (5) in Eq. (6), we obtain:

@

@y
�jeffðyÞ

@T

@y

� �
¼ Qg � qeffðyÞc

@T

@t
: (8)

Taking into account Eqs. (4) and (7) gives

2j tanðc=2Þ @T

@y
þ 2jy tanðc=2Þ @

2T

@y2

¼ Qg þ 2qyc tanðc=2Þ @T

@t
: (9)

Equation (9) is the one-dimensional thermal conduction

equation describing temperature evolution in a nanofocusing

metal wedge. It is different from the conventional parabolic

thermal conduction equation by the presence of the addi-

tional term on the left-hand side with the first-order deriva-

tive of the temperature with respect to y. This term can be

neglected only if it is much smaller than the term with the

second-order derivative of T with respect to y:

@T

@y

����
����� y

@2T

@y2

����
����: (10)

It is clear that if the derivative of the temperature with respect

to the y coordinate is not equal to zero near the tip of the

wedge, then condition (10) is not satisfied at small values of y.

In this case, this condition can only be satisfied at sufficiently

large distances from the tip. Therefore, the correct analysis of

thermal effects near the tip of a nanofocusing wedge requires

the analysis of the derived equation (9), rather than the con-

ventional parabolic equation of heat conduction.

The term with the first-order y derivative of T on the

left-hand side of Eq. (9) is physically related to the fact that

relative variations of the local wedge thickness within a

given distance dy increase with decreasing distance from the

tip. As a result, the difference between the values of jeff at

the wedge cross-sections y and yþ dy increases with decreas-

ing y, i.e., with decreasing distance to the tip. This means

increased difference between the heat flows through these

cross sections, which is caused by varying jeff. This is only

when condition (10) is satisfied that this effect can be

neglected and jeff in Eq. (8) can be assumed to be approxi-

mately constant.

Equation (8) is the general equation describing one-

dimensional heat conduction and temperature evolution in

any medium with continuously varying thermal conductivity,

density, and/or specific heat. For example, Eq. (8) is also cor-

rect for the consideration of heating effects in a sharp metal

cone with plasmon nanofocusing, which is surrounded by

vacuum or air. However, in this case, the equations for the

effective thermal conductivity [Eq. (4)] and effective density

[Eq. (7)] should, respectively, be replaced by the following:

jeff ¼ 4pjy2 tan2 c=2ð Þ; (11)

qeff ¼ 4pqy2 tan2 c=2ð Þ; (12)

where c is the taper angle of the metal cone. Later in this pa-

per we will focus on the numerical analysis of Eq. (9) for

nanofocusing metal wedges.

D. Further approximations and boundary conditions

In our analysis, we will mainly focus on the determina-

tion of temperature variations in a wedge within short time

intervals (typically �0.1–10 ns). On the one hand, this will

give the rates of temperature increase in nanofocusing

wedges on the indicated time scale during nanofocusing of

cw plasmons. On the other hand, these temperature varia-

tions will approximately correspond to the heating effects

during nanofocusing of rectangular plasmonic pulses with

the respective duration of �0.1–10 ns. However, the con-

ducted analysis is only an approximation for the actual plas-

monic pulses, as it neglects their spectral composition

(which is reasonable at the considered pulse lengths) and any

effects associated with the propagation of the front and rear

of the pulse along the wedge. The latter assumption is typi-

cally well satisfied for pulses whose spatial length is much

larger than the length of the nanofocusing wedge:

s� loptneff=c; (13)

where c is the speed of light, neff is the typical effective re-

fractive index for the localized symmetric plasmon in the

wedge, and lopt is the optimal length of the wedge (which is

typically �1 lm).26,28 Because the right-hand side of condi-

tion (13) is �10�14 s for nanofocusing wedges, this condi-

tion is well satisfied for picosecond and nanosecond pulses.

We also assume that the metal permittivity does not

change as the wedge temperature increases. Obviously, such

an assumption is only correct if the temperature variations

are not very large. If this condition is not satisfied, the imagi-

nary part of the metal permittivity typically increases with

increasing temperature, which enhances dissipative effects

(see the following for the analysis of the typical temperature

distribution patterns depending on values of the imaginary

part of the metal permittivity).

Because in the approximation of continuous electrody-

namics with local response nanofocused symmetric plas-

mons experience infinite enhancement and localization at an

infinitely sharp tip of a wedge, the numerical finite-differ-

ence time-domain analysis of the one-dimensional heat con-

duction equation was conducted within a computational

window whose boundary was at a finite (though small) dis-

tance from the tip. At this boundary, i.e., at the computa-

tional point that is the closest to the tip, we assume the

second-order derivative of the temperature with respect to

the y coordinate to be the same as at the next closest point:

ðT1 � T2Þ � ðT2 � T3Þ
Dy2

¼ ðT2 � T3Þ � ðT3 � T4Þ
Dy2

; (14)

where T1,2,3,4 are the temperature values at the first, second,

third, and fourth computational points from the boundary of

the computational window near the tip of the wedge, and Dy
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is the spatial separation between the neighboring computa-

tional points. This boundary condition near the tip of the

wedge ensures the approximately correct heat flow into the

computational window from the regions closer to the tip,

thus allowing solution of the problem in the approximation

of the continuous electrodynamics, local dielectric response,

and infinitely sharp tip of the wedge (with no reflections of

the plasmon from the tip).

The boundary condition at the other edge of the compu-

tational window, i.e., far away from the tip, is not important

as this boundary can be moved arbitrarily far from the region

where temperature distribution is sought, so that this condi-

tion has a negligible influence on the calculation results

within the region of interest.

III. ZERO THERMAL CONDUCTIVITY

The simplest situation occurs where heat conduction along

the wedge (i.e., along the y axis—Fig. 1) is assumed to be zero.

This approximation adequately describes the situation where

the temporal length of a plasmonic pulse or the time interval

within which the temperature variations are determined is

s� l2cpqeff

4jeff

; (15)

where l is the distance along the wedge (along the y axis,

Fig. 1) within which the temperature changes significantly.

Let us assume that condition (15) is satisfied and the

metal wedge has a uniform initial temperature of 20 �C. In

this case, the energy released at each point of the metal wedge

does not have enough time to be redistributed along the wedge

by means of heat conduction, and thus causes only local tem-

perature to increase. The resultant typical temperature distri-

butions in the nanofocusing wedges are presented in Fig. 2 for

different structural and material parameters.

It can be seen from Fig. 2 that the typical temperature dis-

tributions along the metal wedge are of two distinct types

depending on the level of dissipation losses. If the dissipation

is not too strong, i.e., e2 is smaller than a critical value e2c, the

temperature increases rather monotonically and significantly

toward the tip of the wedge (curves 1 and 3 in Fig. 2). This

can be explained by the following three mechanisms.

First, as the symmetric plasmon propagates toward the tip

of the metal wedge, it experiences progressively increasing

localization near the wedge and reduction of its group and

phase velocities.16,26,28 As a result, a greater fraction of the

plasmon energy propagates within the metal, which leads to

stronger dissipative losses and associated heating effects near

the tip. Second, as the plasmon propagates toward the tip of

the wedge, it experiences strong local field enhancement.16,26

As a result, the plasmon field amplitude in the metal increases,

which also leads to an enhancement of local dissipative effects

in the metal, and thus to an increased rate of local heating.

Third, as the plasmon propagates toward the tip, the increased

release of the heat energy (related to the two above-mentioned

mechanisms) occurs in progressively thinner sections of the

metal wedge. This means that the amount of the material

(metal) that is heated by the thermal energy release caused by

plasmon dissipation in the wedge reduces with approaching

the wedge tip, which means even higher local temperatures in

the considered approximation of zero heat conduction.

However, this typical heating pattern occurs only where

dissipation is not too strong, so that a significant amount of

plasmon energy can reach the regions in the immediate prox-

imity of the tip of the wedge. If dissipation in the metal is sig-

nificantly increased, i.e., if e2> e2c, then the temperature

initially increases with reducing distance to the tip, goes

through a maximum, and then monotonically decreases in the

immediate proximity to the tip (curve 4 in Fig. 2). This pattern

of the temperature distribution is explained by the fact that

strong dissipation in the metal (large values of e2) results in a

rapid reduction of the plasmon energy as it propagates toward

the tip of the wedge. As a result, the amount of plasmon

energy reaching the regions near the tip of the wedge is drasti-

cally reduced, resulting in a significant reduction of local heat-

ing (and thus reduction in temperature—curve 4 in Fig. 2).

It follows from here that there is a critical regime of

nanofocusing where the local temperature in the wedge

reaches a maximum in the form of a plateau at the tip of the

wedge (curves 2 and 5 in Fig. 2). This critical regime corre-

sponds to a critical value of dissipation e2¼ e2c in the metal,

which should obviously depend upon taper angle c of the

wedge. The analysis of the obtained numerical results sug-

gests that the critical imaginary part e2c of the metal permit-

tivity in the wedge can be related to the material and

geometrical parameters of the structure by means of the fol-

lowing simple empiric equation:

e2c ¼ e2
1c= #edð Þ; (16a)

where the empiric constant # � 113.8, and ed is the permit-

tivity of the dielectric medium surrounding the wedge (in the

considered case this medium is vacuum: ed¼ 1).

Equation (16a) is easy to understand from a physical

point of view. Increasing magnitude of the real part of the

metal permittivity e1, or reducing the dielectric permittivity

of the surrounding medium, results in a decreasing fraction

FIG. 2. Typical temperature distributions along the metal wedges with the

taper angles c¼ 2� (curves 1–4), and c¼ 1.5� (curve 5), at the vacuum wave-

length kvac¼ 632.8 nm and zero thermal conductivity jeff¼ 0. The metal

permittivities are: (1, 5) em¼�9.3þ 1.12i; (2) em¼�9.3þ 1.52i, (3)

em¼�16þ i, (4) em¼�16þ 8i. The real parts of the metal permittivities

correspond to gold (Refs. 35 and 36) (curves 1, 2, and 5; q¼ 19320 kg/m3,

cp¼ 128 kJ/kg �C) and silver (Refs. 35 and 36) (curves 3 and 4; q¼ 10490

kg/m3, cp¼ 235 kJ/kg �C). The energy of the plasmon pulses for all the

curves was assumed to equal 10 lJ/m (per 1 m of the x axis) at the optimal

distance lopt from the tip of the wedge (Ref. 26), i.e., at the point where the

plasmon amplitude is minimal.
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of the plasmon energy propagating within the metal wedge.

This leads to a decrease of the overall plasmon dissipation,

and thus shifts the temperature distribution toward the first

distinct pattern with the monotonic increase of the tempera-

ture toward the tip of the wedge (curves 1 and 3 in Fig. 2).

This means that the critical value of the imaginary part e2c of

the metal permittivity must increase, which also follows

from Eq. (16a). Increasing taper angle c also results in reduc-

ing the overall dissipative losses in the metal wedge.26,28 As

a result, increasing c must also shift the temperature distribu-

tion toward the first distinct pattern and also result in increas-

ing e2c—again in agreement with Eq. (16a).

It can also be said that, for the fixed material parameters

of the structure, Eq. (16a) can be rewritten as an equation

determining the critical angle cc:

cc ¼ e2#ed=e2
1: (16b)

If the wedge taper angle c> cc, then the temperature in the

wedge monotonically increases toward the tip (the first dis-

tinct pattern of the temperature distribution—curves 1 and 3

in Fig. 2). If the taper angle c< cc, then the temperature in the

wedge goes through a maximum at some distance from the tip

and then starts to decrease closer to the tip (the second distinct

pattern of the temperature distribution—curve 4 in Fig. 2).

As demonstrated by Fig. 2, the achievable temperature

variations and local heating significantly depend on material

and geometrical parameters of the structure. The typical var-

iations of the achievable local temperatures vary by hundreds

of degrees. Somewhat counterintuitive is the fact that larger

local temperatures can be achieved at weaker dissipation in

the metal, because in this case larger fraction of the plasmon

energy can reach the regions in the immediate proximity to

the tip, where local rates of dissipative losses are the largest

and the amount of the material to be heated is the smallest.

The presented distinct patterns and typical temperature

variations in a nanofocusing metal wedge have so far been

considered in the approximation of zero thermal conductivity

(i.e., at jeff¼ 0).

IV. NONZERO THERMAL CONDUCTIVITY

The results obtained in the previous section are valid only

for sufficiently short plasmonic pulses [condition (15)]. If con-

dition (15) is not satisfied, heat conduction in the y direction

results in a significant temperature redistribution along the

wedge, and the numerical solution of Eq. (9) is required. Simi-

lar to the previous case, the metal wedge is assumed to have a

uniform initial temperature of 20 �C. Figure 3(a) shows the

temperature distributions along a gold metal wedge sur-

rounded by vacuum for several different lengths of the plas-

monic pulse. In particular, it can be seen that, as the pulse

length is increased, the temperature maximum at around

�600 nm from the tip is smoothed out by the heat transfer,

leading to a significant temperature redistribution near the tip

of the wedge [compare the curves in Fig. 3(a)].

Figure 3(b) illustrates the effect of the taper angle and

dielectric permittivity of the metal on the obtained typical

temperature distributions in a nanofocusing metal wedge. For

example, increasing taper angle results in increasing tempera-

ture near the tip [compare curves 1 and 2 in Fig. 3(b)]. This is

because increasing taper angle results in decreasing the effect

of dissipation in the metal (as the plasmon needs to propagate

smaller distance toward the tip). Therefore, more plasmon

energy reached the regions in the immediate proximity to the

tip, where dissipative losses (and thus the heating effects) are

the strongest. Similarly, increasing the real part of the metal

permittivity and decreasing its imaginary part also results in

decreased dissipation losses in the metal, and again a larger

fraction of the plasmon energy reaches the region near the tip

with the strongest dissipation, thus enhancing local heat dis-

charge in the vicinity of the tip. These results once again high-

light the somewhat counterintuitive finding of this analysis

that stronger heating effects near the tip of a nanofocusing

wedge occur for the wedges with weaker dissipation in the

metal. In the presence of heat conduction, this effect is

reduced by the occurring heat redistribution along the wedge,

but it is typically quite significant for the structures typically

required for plasmon nanofocusing [Fig. 3(b)].

Another important aspect demonstrated by Fig. 3(b) is

related to the rate of temperature decay away from the tip of

a nanofocusing wedge. This rate determines the degree of

localization of the heat discharge near the tip of the structure:

the larger the rate of the temperature decay, the stronger the

localization of the heat discharge near the tip. Thus, increas-

ing taper angle and decreasing dissipation in the metal result

in increasing localization of the heat discharge near the tip

[Fig. 3(b)]. This aspect will be important for the design of ef-

ficient structures for highly targeted and localized delivery

of the heat energy to nanoscale structures. For example, to

ensure strong and highly localized heat discharge on the

FIG. 3. (a) Temperature distributions along the gold wedges (Refs. 35 and

36) with the permittivity em¼�9.3þ 1.52i and taper angle c¼ 1.5� for four

different lengths of the heating plasmonic pulses; q¼ 19320 kg/m3, cp¼ 128

kJ/kg �C, j¼ 315 W/m �C. (b) Temperature distributions along the gold

(Refs. 35 and 36) (curves 1 and 2; q¼ 19320 kg/m3, cp¼ 128 kJ/kg �C,

j¼ 315 W/m �C) and silver (Refs. 35 and 36) (curve 3; q¼ 10490 kg/m3,

cp¼ 235 kJ/kg �C, j¼ 428 W/m �C) metal wedges for c¼ 2� (curves 1 and

3) and c¼ 1.5� (curve 2), at kvac¼ 632.8 nm and the pulse length s¼ 5 ns.

The metal permittivities (Ref. 36) for gold and silver are em¼�9.3þ 1.12i
and em¼�16þ i, respectively. The energy of the plasmon pulses for all the

curves was assumed to equal 10 lJ/m (per 1 m of the x axis) at the optimal

distance lopt from the tip of the wedge (i.e., at the point where the plasmon

amplitude is minimal—Ref. 26).
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nanoscale, we need to ensure that the increase of the temper-

ature occurs within a region with as small dimensions as pos-

sible. From this point of view, it will be beneficial to use

nanofocusing structures with the least dissipative effects in

the metal—only in this case is the local heat discharge near

the tip maximally localized [Fig. 3(b)].

Importantly, this tendency is rather general and will typ-

ically also apply to nanofocusing structures in a heat-con-

ducting environment, where the tip is surrounded by a

dielectric medium, for example, in water, or in a biological

specimen, etc. Certainly, the typical pulse lengths at which

the considered highly localized heat discharge and subse-

quent heating effects take place will be different from

(smaller than) those obtained earlier in this paper for a free-

standing wedge in vacuum or air. At the same time, the gen-

eral tendencies and typical patterns will remain the same, as

long as the pulse length is small enough to prevent heat

transfer into the environment within distances significantly

larger than those typical for the heating patterns in the free-

standing wedges (Figs. 2 and 3).

Because the heating effect in the nanofocusing structures

are typically the strongest near the tip (Figs. 2 and 3), it is use-

ful to further investigate the temperature dependencies near

the tip on taper angle and vacuum wavelength (frequency) of

the propagating plasmon. Figure 4(a) shows such dependen-

cies on taper angle at a small distance from the tip of the

wedge, corresponding to the local wedge thickness h¼ 2 nm,

for the two silver wedges with different levels of dissipation

(imaginary parts of the metal permittivity). Both the curves

display significant temperature maximums demonstrating the

existence of a T-optimal taper angle that increases with

increasing dissipation in the metal [compare curves 1 and 2 in

Fig. 4(a)]. The terminology “T-optimal”is used here to distin-

guish the optimal taper angle at which the temperature near

the tip is maximal from the optimal taper angle resulting in

the maximal local field enhancement near the tip.13,17

If the taper angle is very small (smaller than the T-opti-

mal angle), then the plasmon travels large distances before

reaching the regions near the tip, which means that its energy

has been significantly diminished, thus leading to lower heat

discharge and reduced temperatures near the tip [Fig. 4(a)].

If the taper angle is larger than the T-optimal angle, more

energy of the plasmon reaches the regions near the tip, which

should lead to larger local heat discharge. However, simulta-

neously, the efficiency of heat conduction and its transfer

away from the tip also increases with increasing taper angle,

as jeff increases more rapidly away from the tip with increas-

ing c [Eq. (4)], and the temperature gradient also increases

due to more rapidly changing plasmon propagation parame-

ters. The competition of these two opposing mechanisms

results in a T-optimal taper angle at which the temperature

near the tip is maximal [Fig. 4(a)].

Similarly, Fig. 4(b) shows that there is a T-optimal

wavelength at which the temperature near the tip of a nano-

focusing wedge is maximal. Increasing taper angle results in

decreasing T-optimal wavelength (increasing optimal fre-

quency) of the plasmon at which the temperature maximum

is achieved near the tip (compare curve 1 with curve 3 and

curve 2 with curve 4).

V. CONCLUSIONS

The results obtained in this paper demonstrate that both

the regimes of nanofocusing—with and without strong heat-

ing effects in a sharp metal wedge—can be achieved for rea-

sonable structural and material parameters and an

appropriate reasonable choice of the energy and length of the

incident plasmonic pulse. Thus, on the one hand, the

obtained results establish the framework for the applicability

of the previously developed theory of plasmon nanofocusing

in sharp metal wedges.26,28 On the other hand, we have also

demonstrated that significant local heating effects may be

achieved near the tip of the wedge, so that heat energy can

be released on the nanoscale within regions with dimensions

as small as dozens of nanometers. This effect opens unique

applications of plasmon nanofocusing related to highly tar-

geted and fast local heating of nanostructures and their im-

mediate environment for the investigation and testing of

their local heat response and/or heat modification and local

treatment of nanoscale structures and materials.

The length of the plasmonic pulse appears to be an im-

portant parameter that allows efficient manipulation and

adjustment of the temperature distribution and local heating

in the considered nanofocusing structures. Interesting tem-

perature distribution patterns with a significant temperature

maximum at some distance from the tip of the nanofocusing

wedge are shown to exist for sufficiently small pulse lengths

FIG. 4. (a) The dependencies of temperature on taper angle of the silver (Refs.

35 and 36) wedges (q¼ 10490 kg/m3, cp¼ 235 kJ/kg �C, j¼ 428 W/m �C,

kvac¼ 632.8 nm, and s¼ 2 ns) at the points where the local thickness of the

metal wedge h¼ 2 nm for the two different values of the metal permittivity (1)

em¼�16þ i, and (2) em¼�16þ 1.5i. The energy of the plasmonic pulses at

the optimal distance lopt from the tip is 10 lJ/m. (b) The dependencies of tem-

perature on plasmon wavelength kvac in silver (Ref. 35) (curves 1 and 3;

q¼ 10490 kg/m3, cp¼ 235 kJ/kg �C, j¼ 428 W/m �C) and gold (Ref. 35)

(curves 2 and 4; q¼ 19320 kg/m3, cp¼ 128 kJ/kg �C, j¼ 315 W/m �C) wedges

with the taper angles c¼ 2� (curves 1 and 2) and 5� (curves 3 and 4) at the

points where the local thickness of the metal wedge h¼ 2 nm. The pulse length

s¼ 2 ns, the frequency-dependent permittivities of the metal are taken from

Ref. 36, and the energy of the plasmonic pulse is equal to 10 lJ at the fixed

distances of 2810 nm (curve 1), 1750 nm (curve 2), 1410 nm (curve 3), and

1130 nm (curve 4) from the tip of the wedge; these distances correspond to the

optimal distances (optimal wedge lengths—Ref. 26) lopt at kvac¼ 632.8 nm.
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and sufficiently strong dissipative effects in the metal. A

somewhat counterintuitive and important outcome has been

obtained demonstrating that stronger local heating near the

tip of a nanofocusing structure can be achieved at weaker

dissipation in the metal. Simultaneously, stronger localiza-

tion of the heat discharge and local heating can also be

achieved with decreasing dissipation in the metal.

Possible temperature rise by hundreds of degrees can

easily be achieved in the considered structures near the tip,

which raises a possibility of significant thermal self-influence

of the propagating plasmons with the achievable nonlinear

response within at least picoseconds. The ultimate case of

such self-influence would be heat destruction of the nanofo-

cusing structure near the tip—the effect that may place the

propagating (and heating) plasmonic pulses into a radically

different condition with possible major nonlinear effects and

variations of their propagation parameters. Such heat

destruction of the structure near the tip will be facilitated by

the possibility of a significant reduction of the melting tem-

perature of a metal in nanoscale structures. For example, for

gold metal tip with thickness as small as �2–4 nm, the melt-

ing temperature can be reduced below �500 �C,37,38 which

is certainly within easy reach for the considered structures.

The existence of heat conducting environment around a

nanofocusing wedge or any other nanofocusing structure will

significantly reduce the typical plasmonic pulse lengths that

are required for achieving the predicted temperature incre-

ments near the tip. However, the typical temperature distri-

butions and the observed counterintuitive and important

tendencies (including the temperature maximum near the tip

of a nanofocusing wedge with sufficiently strong dissipation

in the metal) will remain largely the same, as long as the

thermal conductivity in the environment is much smaller

than that of the metal wedge.

The obtained results of this paper will be important for the

practical design of metallic nanofocusing structures, the devel-

opment of new optical sensors and measurement techniques,

near-field microscopy and spectroscopy, as well as the possi-

bility of highly targeted delivery of thermal energy to regions

with nanoscale dimensions, including in the nanobiophotonics

(for example, to selected regions of a living cell), etc.
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