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ABSTRACT 
Motorcycles are overrepresented in road traffic crashes and particularly vulnerable at 
signalized intersections. The objective of this study is to identify causal factors 
affecting the motorcycle crashes at both four-legged and T signalized intersections. 
Treating the data in time-series cross-section panels, this study explores different 
Hierarchical Poisson models and found that the model allowing autoregressive lag 1 
dependent specification in the error term is the most suitable. Results show that the 
number of lanes at the four-legged signalized intersections significantly increases 
motorcycle crashes largely because of the higher exposure resulting from higher 
motorcycle accumulation at the stop line. Furthermore, the presence of a wide median 
and an uncontrolled left-turn lane at major roadways of four-legged intersections 
exacerbate this potential hazard. For T signalized intersections, the presence of 
exclusive right-turn lane at both major and minor roadways and an uncontrolled left-
turn lane at major roadways of T intersections increases motorcycle crashes. 
Motorcycle crashes increase on high-speed roadways because they are more 
vulnerable and less likely to react in time during conflicts. The presence of red light 
cameras reduces motorcycle crashes significantly for both four-legged and T 
intersections. With the red-light camera, motorcycles are less exposed to conflicts 
because it is observed that they are more disciplined in queuing at the stop line and 
less likely to jump start at the start of green.  
 
 
Keywords: Motorcycle crashes; Four-legged intersections; T intersections; 
Hierarchical models; Bayesian inference 
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1. INTRODUCTION 
Motorcyclists have a poor safety record when compared with other road user groups. 
According to the Singapore Traffic Police annual statistics report for 2006 (Singapore 
Police Force, 2006), motorcycle crashes constitute about 36% of total road traffic 
crashes, even though their share in vehicle population is only about 18%. Moreover, 
motorcyclists account for almost 54% of road fatalities and about 51% of road injuries 
in the year 2006. Furthermore, the fatality and injury rates per registered vehicle 
among motorcyclists are respectively 13 and 7 times higher than that of other motor 
vehicles. 

A substantial portion of motorcycle crashes in Singapore occur at intersections 
controlled by traffic signals. According to Traffic Police Annual Report 2006, 
motorcycles are involved in about 47% of crashes at Signalized intersections. 
Furthermore, while the crash involvement of motorcyclists as a victim of other road 
users is 43% nationwide, the corresponding percentage at signalized intersections is 
higher at 57%. These statistics signify that motorcyclists are more vulnerable at 
signalized intersections. Singapore crash statistics also show that motorcycles are 
involved in about 77% of fatal and about 67% of injury crashes that occurred at 
signalized intersections. Hence, it is worthwhile to study the intersection crashes of 
motorcycles to identify significant factors affecting the occurrence of such crashes. 
 
1.1 Motorcycle Safety Research 
There has been considerable research work on the motorcycle safety in the last two 
decades. A number of researchers (e.g., de Lapparent, 2006; Quddus et al., 2002; 
Shankar and Mannering, 1996) have attempted to quantify the effects of roadway, 
traffic, environmental, human and vehicle factors on motorcyclist injury severity 
while some other (e.g., Pai and Saleh, 2007; Pai and Saleh, 2008) have conducted the 
similar studies at intersections. A number of studies (e.g., Lin et al., 2003; Mannering 
and Grodsky, 1995; Rutter and Quine, 1996) have examined the crash risk based on 
the rider-motorcycle characteristics, while others (e.g., Williams and Hoffmann, 1979; 
Yuan, 2000) have examined the crash risk of motorcycles due to conspicuity related 
issues. These studies generally provide useful information on the crash risk and injury 
of motorcyclists. However, the road geometric and traffic related factors that may 
affect the occurrence of motorcycles crashes at signalized intersections have not been 
well explored. 

The crash occurrence of motorcycles at signalized intersections is affected by 
their risk as well as their exposure. A number of studies (e.g., Hurt et al., 1981; 
Williams and Hoffmann, 1979) have reported that motorcyclists in the traffic stream 
are often overlooked by other drivers. This explains why the motorcyclists are 
overrepresented in right-of-way violation crashes in which vehicles from the 
conflicting stream encroach into the path of an approaching motorcycle (Clarke et al., 
2007; Hurt et al., 1981). Moreover, drivers tend to over-estimate the motorcycle 
arrival times approaching to the intersection, hence increasing the possibility of a 
collision (Caird and Hancock, 1994). 

On the other hand, the over-exposure of motorcycles at signalized 
intersections seems to increase their vulnerability to crashes. Haque et al. (2008) 
reported that motorcycles are over exposed at signalized intersections because they 
tend to accumulate near the stop-line during the red phase to facilitate an earlier 
discharge during the initial period of green. They have also showed that approaches 
with a wider lane width or with an exclusive right turn lane offer more freedom for 
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motorcyclists to accumulate near the stop-line. Thus more exposed to the conflicting 
stream red light running vehicles. 

Furthermore, the crash involvement characteristics of motorcycles are likely to 
different from other motor vehicles. Mannering and Grodsky (1995) have described 
several reasons why to differentiate the characteristics of the motorcycle crashes from 
those of other road user groups. Firstly, they claimed that “automobile drivers tend to 
be inattentive with regard to motorcyclists and have conditioned themselves to look 
only for other automobiles as possible collision of dangers”. Secondly, the motorcycle 
riding is a complex task which requires excellent motor skills, physical coordination 
and balance. Motorcycle riding also requires counterintuitive tasks such as counter-
steering, balanced application of front and rear wheel brakes and opening the throttle 
while negotiating turns. 

A number of studies regarding traffic crashes at intersections have been 
mainly concerned with all vehicle crashes. Those have used frequency models which 
can model the number of crashes to the intersection related factors for examining the 
safety effects of such factors. For example, Chin and Quddus (2003) have examined 
traffic crashes at signalized intersections in Singapore; Vogt and Bared (1998) have 
conducted similar analysis at Minnesota and Washington; Poch and Mannering (1996) 
have examined intersection crashes at Bellevue, Washington. However, analyzing all 
intersection crashes together may not reflect the crash occurrence process and their 
influencing geometric and traffic related factors for a specific crash type or a specific 
road user group. 

Realizing the importance of segregate analysis for a specific road user group 
or crash type, a number of researchers has also studied the crash occurrence process 
from this perspective. For example, Mitra et al. (2002) have studied intersection 
crashes by maneuver types; Abdel-Aty and Radwan (2000) have examined the arterial 
traffic crashes by segregating crashes by driver age and gender; Wang and Abel-Aty 
(2008) have modeled the left-turn crashes at signalized intersections by further 
separating conflicting patterns; Wang and Abdel-Aty (2006) have examined only rear 
end crashes at signalized intersections; Miaou (1994) has investigated the relationship 
between truck crashes and geometric design of road sections. However, the 
occurrence of motorcycle crashes at signalized intersections has not been well studied. 

 Moreover, motorcycles crash occurrences (as described earlier) at 
intersections may be different from other road user groups. Furthermore, intersection 
crashes could be more severe to the motorcyclists as injurious crashes such as angle 
collisions commonly take place at intersections (Pai and Saleh, 2007). Therefore, 
more extensive research on this area, especially motorcycle crashes at intersections, is 
highly justified. 
 
1.2 Research Objective 
The objective of this research is to explore the intersection-related factors on 
motorcycle crashes by establishing a more robust statistical relationship correlating 
motorcycle crash frequencies with intersection geometries and traffic characteristics 
at signalized intersections. The study examines four-legged and T signalized 
intersections separately. 
 
2. METHODOLOGY 
This section describes different statistical models considered for modeling motorcycle 
crashes at signalized intersections. The Bayesian inference which has been used for 



5 
Haque et al. 

model calibration and assessment is briefly described and followed by the description 
of model selection criteria. 
  
2.1 Model Development 
Starting with the basic Poisson gamma model, several hierarchical models like 
Hierarchical Poisson Gamma, Hierarchical Poisson Lognormal, and Hierarchical 
Poisson Autoregressive lag-1 model have been explored to model motorcycle crash 
frequencies at signalized intersections. The framework and theoretical backgrounds of 
those models are presented here. 
 
A significant number of traffic safety studies has been conducted to investigate the 
appropriateness of various count models that explore the relationship between 
geometric and traffic characteristics and the associated crash risk. The Poisson 
regression model is the basic count model which can describe discrete, random, non-
negative and sporadic crash data. Since traffic crash data generally are over-dispersed, 
Poisson Gamma or Negative Binomial (NB) model has been developed from the 
Poisson model by introducing a stochastic component to relax the mean-variance 
equality constraint of the Poisson model (e.g., Miaou, 1994; Poch and Mannering, 
1996; Lord, 2006). 
 
Let, Yit is the number of crashes at ith entity and tth time period is Poisson distributed 
and independents over all entities and time periods such as: 
 

)(~| ititit PoissonY µµ  i = 1, 2,……, I  and  t = 1, 2,.., T 
 
where µit is the crash mean for ith entity and tth time period. 
 
Model 1: Poisson Gamma Model 
The Poisson-Gamma or Negative Binomial model has been formulated to account for 
the over-dispersion in crash data by introducing a stochastic component to the mean 
of the standard Poisson model as follows (Lord, 2006): 
 

)exp( ititit εµ +′= βX      (1) 
 

where ),.....,,1( ,1, ′= kititit XXX  is a vector of covariates representing the site-specific 
attributes, ),.....,( 0 ′= kβββ is a vector of unknown regression parameters, itε  is the 
model error independent of all covariates. In the Poisson-Gamma model, it is assumed 
that )exp( itε  is gamma distributed ( ),(~ φφGamma ) with mean 1 and a variance 
φ/1  for all i and t (with 0>φ ). The inverse dispersion parameter, φ  allows 

accommodating extra variations of the crash data. 
The over-dispersion can be caused by various factors, such as omitted 

variables, uncertainty in exposure and covariates, data clustering, unaccounted 
temporal correlation, model misspecification etc. In particular, the Poisson-Gamma 
model may not be appropriate for time-series cross-section panel data as data contain 
location specific effect and likely to be serially correlated. It is presupposed that 
distributions of crash occurrences for sites with similar observed characteristics are 
the same and crash counts for a specific location in different time periods are assumed 
to be independent with each other. Indeed, some unobserved features may necessarily 
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exist between traffic sites and hence crash occurrences for a specific site may often be 
correlated serially. Consequently, without appropriately accounting for the location 
specific effects and potential serial correlations, the standard error estimations of 
regression coefficients may be underestimated and inferences from the estimated 
model may be misleading. 

To explicitly model those structured heterogeneities introduced by data 
collection and clustering process, hierarchical or random effect models have been 
found to be better alternative in several recent traffic safety studies (e.g., Miranda-
Moreno et al., 2007; Wang and Abdel-Aty, 2006; Chin and Quddus, 2003). These 
models can deal with the over dispersion problem due to unobserved heterogeneities 
as well as allow to incorporate the site-specific effects and complex variations, e.g., 
time and/or space patterns in the data. To introduce the hierarchical specification in 
the Poisson Gamma model the error term ( itε ) of the equation 1 can be replaced by a 
location specific random effect iα . The gamma distribution assumption on )exp( iα  
leads to the Hierarchical Poisson Gamma specification as follows (Miranda-Moreno 
et al., 2007): 
 
Model 2: Hierarchical Poisson Gamma Model 
 

)exp( iitit αµ +′= βX      (2) 
   )exp( ii αδ =  
   ),(~ ϕϕδ Gammai  

 
An alternative hierarchical specification may be the Hierarchical Poisson Lognormal 
Model which may be more suitable for modeling crash rates with a heavier-tailed 
distribution than the Gamma. The specification of this model is as follows: 
 
Model 3: Hierarchical Poisson Lognormal Model 
 

)exp( iitit αµ +′= βX      (3) 

   iα = ),0(~|)log( 22
αα σσδ Normali  

 
Hierarchical regression models here assume that the site-specific effects can explain 
the over-dispersion in the crash data. The random effect introduced by hierarchical 
models establishes that the effect of covariates on crashes at each site is the same but 
the intercept is different across the sites. Hence, the site-specific effect iα  induces a 
correlation among observations obtained at the same site. The underlying assumption 
is that the observations within an entity are exchangeable and hence the correlation is 
constant between any two observations within a site. 

However observations in different time periods for a specific site may be 
serially correlated which means that disturbances associated with observations in one 
time period are dependent on disturbances from prior time periods. Serial correlations 
may exist in the crash dataset due to the effect of omitted variables, correlation over 
time, and a consequence of the nature of the phenomenon under study (Washington et 
al., 2003). In the context of this study, exogenous regressors in the longitudinal crash 
datasets seldom vary. Roadway geometrics and other design variables are practically 
constant with the exception of traffic volumes. Much of the dynamics in the 
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longitudinal crash datasets arises from overlapping heterogeneity effects captured by 
the error term a “group of omitted variables” effect. If the omitted variables are 
correlated with the exogenous regressors, parameter bias is highly likely. Hence, 
treating serial correlations in the motorcycle crash count context would mitigate the 
potential for parameter bias. 

Furthermore, the serial correlation may cause the estimated standard errors to 
be biased and hence may result in misleading inference on parameter estimates. Thus, 
an alternative specification may be the autoregressive lag 1 (AR-1) dependence 
specification in the errors to assess the possible autocorrelation. It weighs the 
correlation between two observations for a site by their separated gap (order of 
measure). As the periodical distance between observations within a site increases, the 
correlation decreases. The AR-1 model can be developed by adding a serial variation 

itω  in the basic Poisson model which will allow modeling of lag-1 dependence in the 
errors (see Congdon, 2003 for detail). The specification of this model, with ρ  as an 
autocorrelation coefficient, is given as follows: 
 
Model 4: Hierarchical Poisson (AR-1) Model 
 

)exp( ititit ωµ +′= βX      (4) 

 ))1/(,0(~ 22
1 ρσω ω −Normali  

  ),(~ 2
1, ωσρωω −tiit Normal , for t > 1 to T 

 
The aforementioned models can incorporate various structured heterogeneities 

in different way according to the specific type of crash data structures. Since the 
choice of one model over the other is not always clear, the appropriate model should 
be selected by comprehensive model diagnostics on the subject dataset. In this study, 
those above safety performance models will be employed to study the motorcycle 
crashes at signalized intersections and the suitable model will be selected from those 
based on the proper model selection criteria. 
 
2.2 Bayesian Inference 
Bayesian analysis is a process of fitting a probability model to the dataset and 
summarizing the posterior probability distribution on model parameters and on 
unobserved quantities. Instead of producing maximum likelihood estimates for 
unknowns totally based on the sample data, Bayesian methods explicitly use the 
probability for quantifying uncertainty in inferences based on the statistical data 
analysis. In Bayesian models, given model assumptions and parameters, the 
likelihood of the observed data is used to modify the prior beliefs of the unknowns, 
resulting in the updated knowledge in the form of posterior distributions (see 
Congdon, 2003 for detail). 

 
Bayesian inference allows the flexibility in explicitly modeling hierarchical 

models. However, one of the common problems in the Bayesian hierarchical models 
is that the posterior distributions may not tractable algebraically in many cases, as the 
hierarchical models considered in this study. Moreover, posterior densities for the 
hierarchical models often lead to nonstandard densities. To overcome such analytical 
limitations, sampling-based estimation methods have been used. Markov Chain 
Monte-Carlo (MCMC) methods (Gilks et al., 1996) using Gibbs sampler and the 
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Metropolis-Hastings algorithm are widely applied to generate a large number of 
samples from posterior distributions. Any distribution summary (such as mean, 
median or quantiles) of the posterior distributions of model parameters or unknowns 
can then be approximated by their sample analogue. 
 
2.3 Model Selection 
Some commonly used model selection criteria are Akaike Information Criterion 
(AIC), Bayesian Information Criterion (BIC), and Deviance Information Criterion 
(DIC). A model assessment using the AIC or BIC requires the specification of the 
number of parameters in the model. However in complex hierarchical models whose 
parameters may outnumber the observations, these methods cannot be directly 
applied. Therefore for model evaluation, the Deviance Information Criterion (DIC), 
proposed by Spiegelhalter et al. (2003) is used. The DIC provides a Bayesian measure 
of model complexity and fit that can be used to compare models of arbitrary structure. 
Specifically, DIC is defined as: 
 

DD PDPDDIC +=+= )(2)( θθ      (5) 
 

where )(θD  is the deviance evaluated at the posterior means of estimated unknowns 
)(θ , and )(θD  is the posterior mean deviance that can be taken as a Bayesian 

measure of fit or “adequacy”. DP  represents a complexity measure for the effective 
number of parameters in a model, as the difference between )(θD and )(θD , i.e., 
mean deviance minus the deviance of the means. As a generalization of AIC, DIC can 
thus been considered as a Bayesian measure of fit or adequacy, penalized by an 
additional complexity term DP . As with AIC, models with lower DIC values are 
preferred.  

While the DIC is used for the model selection, it is also necessary to justify 
whether the model fit the crash data well. In order to assess the fitness of the 
motorcycle crash data to the proposed models, the Predictive Loss Criteria, PLC 
(Gelfand and Ghosh, 1998) has been used. Let, Yit be the observed data, ψ  be the 
parameters, )|( yψπ be the posterior distribution, and Zit be the predicted new data 
sampled from )|( ψZf  such as 

 
   ∫= ψψπψ dyZfyZf )|()|()|(       (6) 

   
Suppose, itξ  and itς  are the mean and variance of Zit, then  
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where w is the weight factor. A Large value of w puts more weight on the match 
between the predicted and observed data. In this study, an infinite value for w is used 
to calculate the Predictive Loss Criteria. 
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2.4 Parameter Effects 
In order to interpret the effect of explanatory variables included in the model, 
incidence rate ratios (IRR) have been computed for those variables. IRR provides an 
estimate of the impact of an explanatory variable on the expected crash frequency for 
one unit change in that variable. For observed crashes itY  and a given set of 
explanatory variables itX , the expected number of crashes can be expressed as, 
 

)exp()......exp()exp(),|( 110 kkkitit xxxYE βββ=X    (8) 
 
where, kx is the variable of interest to calculate IRR. If kx changes by one unit, then 
 

)1*exp()exp()......exp()exp()1,|( 110 kkkkitit xxxYE ββββ=+X  (9) 
 
Therefore, IRR for the variable kx , the factor change in the expected crash count for a 
change of one unit in kx , can be calculated as,  
 

)exp(
),|(

)1,|(
k

kitit

kitit

xYE
xYE

IRR β=
+

=
X

X
               (10) 

 
Hence, IRR for a variable is the exponential of its parameter estimate. The 
interpretation is that if IRR of a given variable is much less than 1.0 then an increase 
in value of the variable is associated with a significant reduction of motorcycle 
crashes (i.e., improvement on motorcycle safety). Conversely if IRR of an 
explanatory variable is much greater than 1.0, an increase in value of the variable 
results a significant decline on motorcycle safety. Otherwise, the variable has no 
effect on motorcycle safety (Olmstead, 2001; Chin and Quddus, 2003). 
 
3. DATA PREPARATION 
To establish an appropriate statistical model that examines the relationship between 
motorcycle crash frequencies and geometric and traffic characteristics, a total of 270 
four-legged and 101 T signalized intersections from different parts of Singapore have 
been used. These account for about 19% of signalized intersections in Singapore and 
they are chosen because they have relatively high motorcycle activities. Note that 
Singapore is a city-state small island (700 km2) country and fully urbanized. 

In order to conduct the temporal analysis, the necessary data, including 
intersection geometric design features, traffic characteristics, and crash data for the 
same intersections, need to be collected over the study period. However, it is difficult 
to obtain all this information over a long period of time, and therefore data for the 
recent four years (2003 to 2006) have been used for the analysis. The intersection 
geometric features and traffic characteristics were provided by a consultancy 
company in Singapore. 

Detailed records of motorcycles crashes at the selected sites were provided by 
the Singapore Traffic Police. A total of 1948 and 400 motorcycle crashes respectively 
at four-legged and T signalized intersections were recorded over that time period for 
those selected intersections. On an average each year respectively 1.80 and 0.99 
motorcycle crashes have been found to occur at selected four-legged and T signalized 
intersections. 
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In crash frequency modeling on traffic crashes, data preparations have been 
conducted in several ways, i.e., approach level, roadway level or intersection level. 
For example, Poch and Mannering (1996) have fitted intersection crash frequency 
models at the approach level (i.e., four observations per intersection per year); Chin 
and Quddus (2003) have fitted an intersection traffic crash frequency model at the 
roadway level (i.e., two observations per intersection per year); Wang and Abdel-Aty 
(2006) have fitted crash frequencies at the intersection level (i.e., one observation per 
intersection per year). Wang and Abdel-Aty (2007) have investigated right-angle 
crashes at signalized intersections by modeling at the intersection, roadway, and 
approach levels. The data preparation for modeling by those different levels 
(intersection, roadway, or approach) has been elaborately discussed by Wang and 
Abdel-Aty (2007). 

Analysis at approach and roadway level may better relate traffic crashes to 
characteristics of specific approach and/or roadway. However, such disaggregation of 
crashes may give rise to “site correlation” and cause excess zeros. To avoid excess 
zeros, Wang and Abdel-Aty (2007) might have aggregated the crashes over the study 
period of six years when modeling right-angle crashes at roadway and approach 
levels. However, such aggregation may not be able to account the temporal 
correlation of the crash data. Moreover, it may be difficult to assign traffic crashes of 
a particular vehicle group to any approach or roadway of an intersection if the exact 
point of collision is unknown and/or the fault assignment is complex. For simplicity 
as well as avoiding the problem of excess zeros, an intersection level crash analysis 
has been adopted in this study. Based on annual crash counts at 270 four-legged and 
101 T signalized intersections over a four year period, a total of 1080 and 404 
observations respectively have been obtained for model input for four-legged and T 
signalized intersections. 

The roadway variables includes: (1) number of lanes, (2) presence of one way 
road, (3) presence of uncontrolled left-turn lane, (4) presence of exclusive right-turn 
lane, (5) presence of wide median, (6) presence of pedestrian crossing, (7) presence of 
red light camera, (8) speed limit, and (9) traffic volume. Those explanatory variables 
which represent the presence or absence of a geometric or traffic feature have been 
coded as dummy variables. It is worth mentioning that most intersection related 
variables are first inputted at the approach level. Since the intersection level analysis 
has been adopted, those approach level variables are aggregated into the roadway 
level (major and minor roadway). The roadways are defined as major and minor based 
on traffic volume. The explanatory variables of major and minor roadways for four-
legged and T signalized intersections are shown in Table 1. 

 
4. ESTIMATION OF RESULTS 
This section illustrates the model calibration process and model diagnostic results for 
selecting the most appropriate model. The significant variables affecting motorcycle 
crashes at four-legged signalized intersections are explained and followed by the 
discussions of significant variables for T signalized intersections.  
 
4.1 Model Estimation 
The safety performance models are calibrated by the freeware software package 
WINBUGS 1.4 (Spiegelhalter et al., 2003) using the Markov Chain Monte Carlo 
(MCMC) algorithm (Gilks et al., 1996). The priors for regression coefficients β  are 
assumed to have non-informative distributions such as Normal distribution (0, 1000). 
The hyper-parameters of the disturbance term of each of the models are also assigned 



11 
Haque et al. 

a vague or non-informative prior. An inverse gamma distribution (0.001, 0.001) are 
assumed for φ/1 , ϕ/1 , 2

ασ , and 2
ωσ  in the Poisson Gamma, Hierarchical Poisson 

Gamma, Hierarchical Poisson Lognormal, and Hierarchical Poisson (AR-1) model, 
respectively. All of the eight models, four models for each type of intersection, have 
been estimated by using three chains for MCMC up to 15,000 simulation iterations. 
The model convergence has been obtained after about 3000 iterations producing trace 
plots with a good degree of mixing and the convergence has been assured by the 
Gelman-Rubin statistics (Brooks and Gelman, 1998) below 1.2. After ensuring 
convergence, 5000 samples from each chain have been discarded as adaption and 
burn-in iterations. From rest samples, one in every tenth samples have been retained 
to reduce autocorrelation. This forms a total of 3000 samples for each of the 
parameter estimate. 

Statistics of both model selection criteria, i.e., DIC and Predictive Loss 
Criteria, for all models are presented in Table 2. In all cases, the hierarchical models 
are found to be better than the standard Poisson Gamma model. This is expected as 
hierarchical structures exist extensively in the traffic crash data because of the data 
collection and clustering process. Among hierarchical models, the hierarchical 
Poisson Gamma and the hierarchical Poisson Lognormal are found to be competitive. 
For four-legged signalized intersections the Hierarchical Poisson (AR-1) model is 
found to be superior to other models based on both DIC with 3614.2 and PLC with 
3912.3. For T intersections, though the Hierarchical Poisson (AR-1) model produces a 
slightly lower DIC (=928.2), the DIC values for all three hierarchical models have 
been found to be very similar (945.5 or 943.7). However, the Hierarchical Poisson 
(AR-1) model also shows an improved fit than other hierarchical models based on 
PLC (746.5 vs. 783.3 or 773.9). Hence, for both type of the intersections the 
Hierarchical Poisson (AR-1) model is found to be better than others. Moreover, the 
autocorrelation coefficient ρ , as shown in Table 3 and Table 4, is 0.567 and 0.916 for 
four-legged and T intersections respectively and both of them are also found to be 
significant. This further confirms that there exists strong structured temporal serial 
correlation effect in motorcycle crashes at signalized intersections and further justifies 
the appropriateness of this model. 

Parameter estimates for motorcycle crashes by all candidate models for four-
legged and T signalized intersections are presented in Table 3 and Table 4, 
respectively. To obtain the most parsimonious model, preliminary multicollinearity 
tests and backward stepwise method have been employed in selecting covariates. The 
insignificant variables have been dropped from the model one by one based on their 
significance level. The 95% Bayesian Credible Interval (BCI) have been used to 
interpret the significance of variables. Specifically, those coefficient estimations are 
significant whose 95% BCI do not cover zero. Furthermore, to interpret the effect of 
variables on the motorcycle safety, the Incidence Rate Ratio (IRR) has also been 
calculated. In Table 3 and Table 4, IRR of the explanatory variables have been 
reported only for the best fit model, i.e., Hierarchical Poisson (AR-1) model. 
 
4.2 Interpretation of Significant Variables at Four-legged Intersections 
An examination of Table 3 shows a number of factors to be significantly associated 
with motorcycle crashes at four-legged signalized intersections. For the major 
roadway, they are (1) number of lanes, (2) presence of uncontrolled left-turn lane, (3) 
presence of wide median, (4) presence of red light camera, (5) speed limit, (6) traffic 
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volume. For the minor roadway, they are (1) number of lanes, (2) presence of red light 
camera, (3) traffic volume. The effects of these variables are discussed below. 
 
4.2.1 Number of Lanes 

The number of lanes along the major roadway of four-legged signalized 
intersections has been found to be significantly (95% BCI (0.01, 0.25), IRR 1.13) 
associated with motorcycle crashes. The IRR for this variable indicates that all other 
things being equal, a roadway with one additional lane increases the motorcycle 
crashes by about 13%. This may be because of several reasons. Firstly; a higher 
number of lanes allow more opportunities for motorcycles to move in between the 
traffic queue and accumulate in front of the stop line. This will increase the exposure 
of motorcyclists to the conflicting stream. Secondly; the number of the conflict points 
increases with the number of lanes. Thirdly; red light running propensity at 
intersections is higher on roads with higher number of lanes (Porter and England, 
2000) and this is made worst because motorcycles are overexposed due to a higher 
likelihood of them forming up at the stop line (Haque et al., 2008).  

For the minor roadway, the number of lanes has also been found to have a 
positive (95% BCI (0.001, 0.34), IRR 1.19) association with motorcycle crashes. The 
reasons are similar to those for the major roadway as discussed in the previous 
paragraph. Results show that an additional lane in the minor roadway increases the 
motorcycle crashes by about 19%. This higher value than the one for the major 
roadway is obvious as high number of lanes at the minor roadway is mainly for large 
intersections where the exposure problem of motorcyclists is likely to be higher. 
 
4.2.2 Presence of Wide Median (>2 meter) 
The presence of wide median in the major roadway of a four-legged signalized 
intersection is associated with higher motorcycle crashes (95% BCI (0.006, 0.44), 
IRR 1.20). Compared to roads without a wide median, roads with a wide median 
increase the motorcycle crashes by about 20%. There may be several reasons for the 
increase of motorcycle crashes due to the wide median. Firstly; a wide median often 
block the driver’s views during the unprotected right-turn1 green phase (Yan and 
Radwan, 2007). Moreover, the motorcycles approaching the junction are less likely to 
be perceived by the drivers compared to approaching cars (Crundall et al., 2008). 
Hence, less conspicuous motorcycles coupled with restricted driver’s views in 
presence of a wide median are likely to increase the motorcycle crashes. Secondly; a 
wide median allows greater degree of spatial freedom for right-turning vehicles. Chin 
and Quddus (2003) have argued that wider median width may also create more 
conflicts between the interacting vehicles near the stop line as movements of through 
vehicles are less channelized. Thirdly; while crossing the intersection with a wide 
median, vehicles from the conflicting stream need a longer clearance time thus 
increasing the likelihood of crashes with motorcycles discharging early in the green 
(Haque et al., 2008). 
 
 
 
 
 
 
Footnote: 1 In Singapore, driving is on the left side of the road 
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4.2.3 Presence of Uncontrolled Left-turn Lane 
The presence of uncontrolled left-turn lane at the major roadway of an intersection is 
associated with higher motorcycle crashes (95% BCI (0.042, 0.40), IRR 1.23) and it 
increases such crashes by about 23%. The uncontrolled left-turn lane at signalized 
intersections allows left-turn vehicles to merge into the cross traffic stream. Chin and 
Quddus (2003) have reported that the presence of uncontrolled left-turn lane increases 
traffic crashes while Mitra et al. (2002) have reported that the presence of such lane 
increases head-to-side crashes. Hence motorcyclists may involve in head-to-side 
crashes for the traffic operations with the use of such a lane at signalized 
intersections. This type of crash involvement of motorcyclists may be due to several 
reasons. Firstly; motorcyclists tend to weave forward (Haque et al., 2008) and may 
queue to the left of the front vehicle, obvious that the driver may not know its 
presence while making the merge. Secondly; this queuing arrangement also makes the 
motorcycles invisible to the vehicles in the cross traffic. Thirdly; as suggested by 
Crundall et al. (2008), motorcycles from the cross traffic may be less perceived by 
drivers waiting for merging as motorcycles are less conspicuous. Fourthly; the arrival 
times of motorcycle from the cross traffic are likely to be misjudged by drivers (Caird 
and Hancock, 1994) waiting for merging and increase the possibility of collisions 
during merging. 
 
4.2.4 Presence of Red Light Camera 
The presence of red light camera (RLC) at the major roadway has been found to be 
effective in reducing motorcycle crashes (95% BCI (-0.66, -0.26), IRR 0.63). The 
corresponding reduction of motorcycle crashes is about 37% compared to roads 
without the RLC. Moreover, the presence of red light cameras at the minor roadway 
is also found to reduce motorcycle crashes (95% BCI (-0.54, -0.06), IRR 0.75) with 
the corresponding reduction of about 25%. Previous studies have shown that RLC is 
very effective in curbing red light violations (e.g., Chin 1989; Lum and Wong 2003) 
and hence potential right-angle crashes (Huang et al. 2006). 

From a field study, Chin and Haque (in press) have reported that motorcycles 
are less disciplined in queuing behind the stop line where there is no red light camera 
(see Figure 1). They will discharge early in the green interval thus becoming more 
exposed to red-runners from the conflicting traffic stream. In the presence of a RLC, 
motorcyclists are reluctant to queue beyond the stop-line, so that there are fewer 
motorcycles in the front of the queue. Since weaving spaces become blocked by the 
motorcycles in front, the weaving opportunities for motorcyclists behind also reduce. 
Consequently, less motorcycle is discharging from the head of the queue as well as 
their start up is delayed due to waiting behind the stop line. Hence they are less 
exposed during the initial period of green which may reduce their not-at-fault crash 
involvements. Indeed, Haque et al. (2009) have reported that the presence of red light 
cameras reduce the not-at-fault crash involvement of motorcyclists. Hence RLC 
improves the safety to motorcyclists by not only reducing violations due to red light 
running but also motorcycle exposure due to a less accumulation in the front of the 
queue as well as a later start up. 

The reduction of motorcycle crashes is higher when the RLC installs at the 
major roadway of four-legged intersections. This higher reduction is due to reduction 
in violations and exposure of motorcycles on the major road where the motorcycle 
traffic is likely to be higher than on the minor road. 
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4.2.5 Speed Limit ≥ 50 Km/h 
Compared to roads with lower speed limits, higher-speed major roads are associated 
with the higher motorcycle crashes (95% BCI (0.27, 1.37), IRR 2.19). Previous 
studies, as reviewed by Aarts and van Schagen (2006), have also shown that roads 
with higher speed limits have the higher crash potential. Specifically, these roads may 
give rise to more rear-end crashes at the intersection (Poch and Mannering, 1996; 
Wang and Abdel-Aty, 2006). A rear-end collision at signalized intersections 
commonly happen when the leading vehicle chooses to stop at the onset of amber but 
the following vehicle decides to cross or fails to stop. Quddus et al. (2002) have 
argued that motorcyclists are less able to respond when the leading vehicle stops 
suddenly. This is worse on high-speed roads.  
 
4.2.6 Traffic Volume 
Traffic volume on the major roadway has been found to have a positive association 
(95% BCI (0.005, 0.051), IRR 1.024) with motorcycle crashes. Higher traffic on the 
minor roadway has also been found to show a positive effect (95% BCI (0.004, 
0.030), IRR 1.015) on motorcycle crashes. 
 Exposure of crashes is likely to depend on the traffic volume. Available gaps 
for the right-turn opposing as well as the left-turn merging traffic are likely to reduce 
with the higher volume. Hence riders or drivers may more willing to take risk when 
making turn. Moreover, traffic volume has a significant correlation with the frequency 
red light running (Bonneson et al. 2001) in which motorcycles is particularly 
vulnerable. 
 
4.3 Interpretation of Significant Variables at T Intersections 
On T signalized intersections, (1) the presence of one way road, (2) presence of 
uncontrolled left-turn lane, (3) presence of exclusive right-turn lane, (4) presence of 
red light camera, (5) traffic volume at the major roadway and (1) the number of lanes, 
(2) presence of exclusive right-turn lane, (3) presence of red light camera, (4) speed 
limit of the minor roadway are found to be significantly associated with motorcycle 
crashes (See Table 4). The effects of those variables are discussed below. 
 
4.3.1 Presence of One Way Road 
Motorcycle crashes at T signalized intersections have been found to reduce 
significantly (95% BCI (-1.67, -0.22), IRR 0.40) if the major roadway is a one way 
road. The corresponding reduction of motorcycle crashes is about 60%. In a T 
configuration where only two movements per approach, the number of conflicting 
streams is greatly reduced when the major road way is a one way road. Specifically T 
intersections with one-way major road have only two conflicting groups while two-
way major roads have five conflicting groups. Hence reduction of conflicting streams 
decreases motorcycle crashes significantly. 
 
4.3.2 Presence of Uncontrolled Left-turn Lane 
The presence of the uncontrolled left-turn lane on the major roadway is associated 
(95% BCI (0.01, 0.74), IRR 1.40) with the higher motorcycle crashes and it increases 
motorcycle crashes by about 40%. Generally, the provision of a left-turn lane creates 
more merging conflicts. In the T configuration, the uncontrolled left-turn at the major 
roadway allows vehicles to merge with right-turning vehicles from the oncoming 
traffic. This may result in a higher likelihood of a crash, perhaps sideswipe and head-
to-side types which are more serious by nature. Moreover, with the difficulties to 
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detect the motorcycles or to perceive correctly their speed, the likelihood of 
motorcycle crashes during merging by the uncontrolled left-turn lane will increase. 
 
4.3.3 Presence of Exclusive Right-turn Lane 
The presence of exclusive right-turn lanes in the major roadway has been found to 
increase (95% BCI (0.27, 1.58), IRR 2.50) motorcycle crashes by about 2.5 times 
over roads without exclusive right-turn lanes. Haque et al. (2008) reported that 
motorcyclists use the exclusive right-turn lane as a bypass if it is not fully utilized. In 
general, the utilization of the straight-through lanes and right-turn lanes are not 
balanced. Motorcyclists tend to utilize the unused lanes to maneuver to the front of 
the queue. Hence the presence of the right-turn lane gives more opportunity for 
motorcyclists to form up at the stop line, thus increasing the exposure to the traffic 
from the conflicting stream. Furthermore the vehicles in the exclusive right-turn lane 
may turn during the unprotected green phase making it hazardous to motorcyclists for 
several reasons: (1) right-turning drivers may not pay attention to motorcyclists 
around them (e.g., Hurt et al., 1981; Mannering and Grodsky, 1995), (2) turning 
drivers may be less able to perceive motorcycles from the opposing stream (Crundall 
et al., 2008), (3) drivers may over estimate the arrival time of motorcycles from the 
opposing stream (Caird and Hancock, 1994) and, (4) motorcycles are less 
conspicuous (e.g., Williams and Hoffmann, 1979). 
 The presence of exclusive right-turn lanes in the minor roadway has also been 
found to have a positive association (95% BCI (0.007, 0.99), IRR 1.60) with 
motorcycle crashes and the corresponding increase is about 60%. The right-turning 
vehicles from the minor roadway of a T intersection have potential conflicts with the 
through traffic from the major roadway. As right tuning vehicles from the minor 
roadway may take longer time to clear the T intersections, early discharging behavior 
of motorcyclists from the major roadway may increase the crash likelihood of 
motorcycles. 
 
4.3.4 Presence of Red Light Camera 
The presence of red light camera (RLC) along the major roadway also shows a 
decreasing effect on the motorcycle crashes (95% BCI (-1.27, -0.32), IRR 0.45) with a 
reduction of about 55% over the case of without a camera. The safety impact of RLC 
on motorcycle safety at T intersections is similar to that of four-legged intersections 
as discussed in the previous section. 
 
4.3.5 Number of Lanes 
Number of lanes on the minor roadway of T signalized intersections is found to have a 
positive association (95% BCI (0.01, 1.09), IRR 1.73) with motorcycles crashes. 
Lanes on the minor roadway of T configuration are used for either left turning or right 
turning. Hence turning lanes on the minor roadway of T signalized intersections 
appear to cause more motorcycle crashes. One additional lane on the minor roadway 
increases motorcycle crashes by about 73%. Higher number of lanes may increase 
two types of exposure. Firstly; weaving opportunities of motorcycles increase with 
higher number of lanes and thus accumulate in front of stop line and increase 
exposure of motorcyclists to the traffic from the major roadway. Secondly; the 
exposure of right-turning vehicles from major roadway increase with higher number 
of lanes at minor roadway as the crossing distance increases and hence lead to high 
number of crashes (Wang and Abdel-Aty, 2008). 
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4.3.6 Speed Limit ≥ 50 Km/h 
The higher speed limit along the minor roadway is also found to have a positive 
association with motorcycle crashes (95% BCI (0.19, 2.49), IRR 3.57). Bonneson and 
Zimmerman (2004) have reported that the red-light violations increase for the roads 
with higher speed limit as the degree to which a driver underestimates his/her speed 
increases with speed. As motorcycles are highly exposed to the conflicting stream, 
high-speed roads with potentially higher red light violations are likely to increase the 
motorcycle crashes. 
 
4.3.7 Traffic Volume 
Motorcycle crashes have also been found to increase with the traffic volume (95% 
BCI (0.003, 0.015), IRR 1.008) on the major roadway of T intersections. Interactions 
between vehicles increase with the higher traffic volume and hence increase the 
likelihood of crashes. Moreover, higher traffic volume on major roadway will offer 
fewer available gaps for merging of left turning traffic from the minor roadway in 
case of operating priority controlled left turning and motorists may accept a smaller 
gap and hence higher risk.   
 Traffic volume on the minor roadway also shows a positive effect (95% BCI 
(0.002, 0.014), IRR 1.006) on the motorcycle crashes at T signalized intersections. 
The traffic from the minor roadway of T intersection is mainly turning vehicles. 
Hence increasing the volume of turning vehicles is likely to increase motorcycle 
crashes.  
 
5. CONCLUSION 
This study attempts to model the motorcycle crashes at four-legged and T signalized 
intersections in Singapore. The models have been employed to take care of 
unobserved heterogeneities as well as location-specific effects and/or serial 
correlations in the time of the crash counts. By treating the data in time-series cross-
section panels, the Hierarchical Poisson (AR-1) model has been found to be superior 
in modeling motorcycle crashes at both four-legged and T signalized intersections. 
The further application of this model in hot spots or black spots identification may be 
promising.  

Signalized intersections, being locations where there are many instances of 
speed differential between vehicles and conflicts between directional movements. 
While the severity of motorcycle problem may also be affected by the vulnerability of 
motorcycles, the study shows that there are a number of site-related factors which are 
linked to high motorcycle crash potential.  

The presence of red light cameras reduces motorcycle crashes significantly for 
both four-legged and T intersections. It has been observed that the red light camera 
induces more disciplined queuing of motorcycles at the stop line hence reducing jump 
starts as well as less red-running on the conflicting approaches.  

Higher imposed speed limits also affect motorcycle crashes at signalized 
intersections; increasing crashes for higher speed limit at major roadway of four-
legged intersections but at minor roadway for T intersections. The presence of a wide 
median at major roadway of four-legged intersections has a positive association with 
high motorcycle crashes. 

The number of lanes and presence of turning lanes have been found to affect 
motorcycle crashes for both types of intersections. The number of lanes is mainly 
found to have a significant influence on motorcycle crashes for four-legged 
intersections while the presence of turning lanes mainly influence crashes at T 
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intersections. Four-legged intersections with more lanes at both major and minor 
roadways are linked to higher motorcycle crashes. However, higher number of lanes 
at minor roadways, i.e. turning lanes, of T signalized intersections is associated with 
higher motorcycle crashes. The presence of uncontrolled left-turn lane at the major 
roadway of both four-legged and T signalized intersections is associated with high 
motorcycle crashes. For T intersections, exclusive right-turn lanes on both major and 
minor roadways increase motorcycle crashes significantly. As a follow up to this 
study, further field work is now being carried out to understand the interactions 
between motorcycles and other vehicles operating during the turning phases.  

Given these findings, more care should be exercised when designing 
intersections on high speed roads with multi-lanes and with exclusive right and left 
turn facilities, where a high proportion of motorcycles are expected in the traffic 
stream. One mitigating measure may be to install red light cameras on such sites.  
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Table 1: Descriptive Statistics of Variables Included in Models for Four-legged 
and T Signalized Intersections 

 
Variables 

Four-legged Intersection T Intersection 
Mean SD Min Max Mean SD Min Max 

Number of motorcycle crashes per 
year for intersection 1.804 1.690 0 10 0.990 1.270 0 7 

Major Roadway         
Traffic Volume ADT in Thousand 18.431 4.285 5.70 37.52 15.489 4.599 4.80 30.27 
Presence of One Way Road 0.104 0.305 0 1 0.099 0.299 0 1 
Number of Lanes 4.222 0.800 2 6 3.624 0.688 2 5 
Presence of Uncontrolled Left-
turn Lane 0.722 0.448 0 1 0.554 0.498 0 1 

Presence of Wide Median (>2m) 0.922 0.268 0 1 0.970 0.170 0 1 
Presence of Exclusive Right-turn 
Lane1 0.930 0.256 0 1 0.881 0.324 0 1 

Presence of Pedestrian Crossing 0.441 0.497 0 1 0.347 0.476 0 1 
Presence of Red Light Camera 0.348 0.477 0 1 0.653 0.476 0 1 
Speed Limit >= 50 Km/h 0.978 0.147 0 1 0.970 0.170 0 1 
Minor Roadway         
Traffic Volume ADT in Thousand 14.509 4.549 2.85 31.27 10.447 3.438 2.55 25.01 
Presence of One Way Road 0.119 0.323 0 1 0.079 0.270 0 1 
Number of Lanes 3.330 0.865 1 5 2.168 0.599 1 4 
Presence of Uncontrolled Left-
turn Lane 0.770 0.421 0 1 0.574 0.495 0 1 

Presence of Wide Median (>2m) 0.870 0.336 0 1 0.624 0.485 0 1 
Presence of Exclusive Right-turn 
Lane 0.885 0.319 0 1 0.822 0.383 0 1 

Presence of Pedestrian Crossing 0.422 0.494 0 1 0.366 0.482 0 1 
Presence of Red Light Camera 0.163 0.370 0 1 0.119 0.324 0 1 
Speed Limit >= 50 Km/h 0.938 0.167 0 1 0.911 0.285 0 1 
1 In Singapore, driving is on the left side of the road 
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Table 2: Model Comparison Criteria 
 

Criteria Intersection 
Type 

Poisson 
Gamma 

Hierarchical 
Poisson Gamma 

Hierarchical Poisson 
Lognormal 

Hierarchical 
Poisson (AR-1) 

DIC Four-legged 3711.21 3653.04 3654.07 3614.18 
T 992.94 945.51 943.67 928.18 

PLC Four-legged 4401.98 4322.46 4303.74 3912.27 
T 822.95 783.29 773.92 746.50 
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Table 3: Model estimates of significant variables for four-legged signalized intersections 
 
Explanatory Variables 

Poisson Gamma Hierarchical Poisson Gamma Hierarchical Poisson Lognormal Hierarchical Poisson (AR-1) 
Mean (SD) 95% BCI Mean (SD) 95% BCI Mean (SD) 95% BCI Mean (SD) 95% BCI IRR 

Major Roadway          
Number of Lanes 0.126, (0.0544) (0.014, 0.232) 0.135, (0.0635) (0.013, 0.231) 0.122, (0.0625) (0.011, 0.243) 0.125, (0.0624) (0.012, 0.246) 1.133 
Presence of Wide Median 
(>2m) 0.182, (0.1091) (0.008, 0.414) 0.177, (0.1298) (0.007, 0.437) 0.189, (0.131) (0.005, 0.445) 0.184, (0.1299) (0.006, 0.441) 1.202 

Presence of Uncontrolled 
Left-turn Lane 0.214, (0.0922) (0.042, 0.403) 0.205, (0.1060) (0.038, 0.398) 0.199, (0.1063) (0.036, 0.395) 0.210, (0.1059) (0.042, 0.402) 1.234 

Presence of Red Light 
Camera -0.417, (0.0880) (-0.588, -0.243) -0.44, (0.1017) (-0.642, -0.247) -0.474, (0.1030) (-0.680, -0.277) -0.459, (0.1019) (-0.661, -0.257) 0.632 

Speed Limit >= 50 Km/h 0.782, (0.2452) (0.324, 1.282) 0.778, (0.2763) (0.257, 1.316) 0.779, (0.2762) (0.253, 1.33) 0.786, (0.2767) (0.272, 1.371) 2.195 
Traffic Volume in ADT 0.027, (0.0125) (0.003, 0.052) 0.027, (0.0146) (0.007, 0.056) 0.025, (0.0147) (0.006, 0.055) 0.023, (0.0142) (0.005, 0.051) 1.024 
Minor Roadway          
Number of Lanes 0.175, (0.0771) (0.020, 0.321) 0.159, (0.0867) (0.001, 0.331) 0.155, (0.0903) (0.001, 0.332) 0.171, (0.0875) (0.001, 0.340) 1.186 
Presence of Red Light 
Camera -0.278, (0.1043) (-0.481, -0.071) -0.285, (0.1187) (-0.515, -0.051) -0.307, (0.1210) (-0.549, -0.067) -0.294, (0.1210) (-0.535, -0.060) 0.746 

Traffic Volume in ADT 0.014, (0.0063) (0.005, 0.025) 0.013, (0.0079) (0.003, 0.276) 0.011, (0.0077) (0.002, 0.026) 0.015, (0.0081) (0.004, 0.030) 1.015 
Intercept -1.017, (0.3356) (-1.68, -0.373) -0.98, (0.3807) (-1.72, -0.255) -1.054, (0.3860) (-1.818, -0.308) -1.093, (0.3888) (-1.848, -0.349)  
Variance1 0.219, (0.0355) (0.151, 0.291) 0.138, (0.0262) (0.09, 0.191) 0.139, (0.0263) (0.093, 0.195) 0.152, (0.0393) (0.079, 0.234)  
rho       0.567, (0.1070) (0.354, 0.793)  
Number of Observations 1080  1080  1080  1080   
1 φ/1  for Poisson-Gamma, ϕ/1  for Hierarchical Poisson Gamma, 

2
ασ  for Hierarchical Poisson Lognormal, and 

2
ωσ  for Hierarchical Poisson (AR-1) model 
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Table 4: Model estimates of significant variables for T signalized intersections 
 
Explanatory Variables 

Poisson Gamma Hierarchical Poisson Gamma Hierarchical Poisson Lognormal Hierarchical Poisson (AR-1) 
Mean (SD) 95% BCI Mean (SD) 95% BCI Mean (SD) 95% BCI Mean (SD) 95% BCI IRR 

Major Roadway          
Presence of One Way 
Road -0.863, (0.2847) (-1.465, -0.326) -0.917, (0.357) (-1.646, -0.222) -0.903, (0.3642) (-1.641, -0.203) -0.914, (0.3687) (-1.671, -0.219) 0.401 

Presence of Uncontrolled 
Left-turn Lane 0.310, (0.1516) (0.004, 0.608) 0.332, (0.2026) (0.012, 0.732) 0.319, (0.2029) (0.007, 0.733) 0.333, (0.2035) (0.013, 0.735) 1.395 

Presence of Exclusive 
Right-turn Lane 0.831, (0.2511) (0.365, 1.360) 0.907, (0.3268) (0.287, 1.557) 0.905, (0.3324) (0.272, 1.587) 0.916, (0.3343) (0.271, 1.578) 2.500 

Presence of Red Light 
Camera -0.599, (0.1663) (-0.913, -0.278) -0.707, (0.2307) (-1.173, -0.276) -0.833, (0.2408) (-1.317, -0.376) -0.794, (0.2422) (-1.275, -0.323) 0.452 

Traffic Volume in ADT 0.005, (0.0028) (0.001, 0.012) 0.006, (0.0038) (0.001, 0.013) 0.007, (0.0037) (0.001, 0.014) 0.008, (0.0039) (0.003, 0.015) 1.008 
Minor Roadway          
Number of Lanes 0.510, (0.1946) (0.118, 0.898) 0.557, (0.2709) (0.022, 1.086) 0.508, (0.2688) (0.013, 1.074) 0.548, (0.2776) (0.005, 1.086) 1.729 
Presence of Exclusive 
Right-turn Lane 0.421, (0.1826) (0.059, 0.787) 0.533, (0.2501) (0.043, 1.054) 0.458, (0.2428) (0.03, 0.972) 0.473, (0.2583) (0.007, 0.998) 1.604 

Speed Limit >= 50 km/h 1.121, (0.4890) (0.259, 2.166) 1.225, (0.5468) (0.240, 2.423) 1.268, (0.5576) (0.198, 2.556) 1.272, (0.5750) (0.188, 2.490) 3.568 
Traffic Volume in ADT 0.004, (0.0021) (0.001, 0.009) 0.005, (0.0028) (0.001, 0.012) 0.005, (0.0029) (0.001, 0.011) 0.006, (0.0031) (0.002, 0.014) 1.006 
Intercept -3.294, (0.6463) (-4.64, -2.087) -3.666, (0.8064) (-5.315, -2.153) -3.771, (0.8843) (-5.603, -2.158) -3.796, (0.8428) (-5.574, -2.223)  
Variance1 0.254, (0.0966) (0.076, 0.456) 0.359, (0.1022) (0.193, 0.592) 0.387, (0.1123) (0.210, 0.646) 0.06, (0.0438) (0.005, 0.178)  
rho       0.916, (0.0627) (0.759, 0.994)  
Number of Observations 404  404  404  404   
1 φ/1  for Poisson-Gamma, ϕ/1  for Hierarchical Poisson Gamma, 

2
ασ  for Hierarchical Poisson Lognormal, and 

2
ωσ  for Hierarchical Poisson (AR-1) model 
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Figure 1: Effect of Red Light Cameras on the Queuing Pattern of Motorcyclists 
(Source: Chin and Haque, in press) 

 
 


