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Low rank Runge-Kutta methods, symplecticity and

stochastic Hamiltonian problems with additive noise

Kevin Burrage∗, Pamela M. Burrage†

Abstract

In this paper we extend the ideas of Brugnano, Iavernaro and Trigiante in their
development of HBVM(s, r) methods to construct symplectic Runge-Kutta methods
for all values of s and r with s ≥ r. However, these methods do not see the dramatic
performance improvement that HBVMs can attain. Nevertheless, in the case of
additive stochastic Hamiltonian problems an extension of these ideas, which requires
the simulation of an independent Wiener process at each stage of a Runge-Kutta
method, leads to methods that have very favourable properties. These ideas are
illustrated by some simple numerical tests for the modified midpoint rule.

1 Introduction

Runge-Kutta methods have been effective solvers of initial value ordinary differential
equation systems for well over a hundred years. When applied to the problem

y′ = f(y), y(0) = y0, y ∈ <N (1)

an s-stage Runge-Kutta method takes the form

Yi = yn + h

s∑
j=1

aij f(Yj), i = 1, · · · , s

(2)

yn+1 = yn + h

s∑
j=1

bj f(Yj).

This class of methods is often characterised by the so-called Butcher tableau

c A

bT

where A = (aij)i,j=1,··· ,s, b
> = (b1, · · · , bs), c = Ae, e = (1, · · · , 1)>. If the matrix

A is strictly lower triangular then the method is said to be explicit and is suitable
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for nonstiff problems, otherwise the method is implicit and may be suitable for stiff
problems if the method has appropriate stability properties.

Perhaps one of the most important developments in the last thirty or so years
is the recognition that certain classes of implicit Runge-Kutta methods can sat-
isfy algebraic properties that guarantee stable or structure-preserving properties for
general classes of nonlinear problems. A system is said to be dissipative if

〈y − z, f(y)− f(z)〉 ≤ 0 ∀y, z

and is said to be a Hamiltonian problem if

f(y) = J∇H(y), y ∈ <N

where

J =

(
0 IN
−IN 0

)
,

where IN is the Identity matrix and H(y) is the Hamiltonian associated with the
problem.

A dissipative problem has the property

‖y(t)− z(t)‖ ≤ ‖y(s)− z(s)‖, t > s

and so a Runge-Kutta method is said to be B-stable if two numerical solutions
satisfy

‖yn+1 − zn+1‖ ≤ ‖yn − zn‖.
Burrage and Butcher [8] and Crouzeix [10] independently showed that an algebraic
property, called algebraic stability, guarantees B-stability. Thus a Runge-Kutta
method is said to be algebraically stable if bi > 0, i = 1, · · · , s and if M = BA +
A>B − bb> is non-negative definite, where B = diag(b1, · · · , bs).

In the case that M = 0, then for Hamiltonian problems

‖yn+1 − zn+1‖ = ‖yn − zn‖

and the method is said to be symplectic [15]. The concept of symplecticity has
opened up a new field of study called structure-preserving methods [12].

The maximum order of an s-stage Runge-Kutta method is 2s; these methods have
stage order s and quadrature order 2s, so that the weights (bi) and abscissae (ci)
correspond to those associated with the Legendre polynomials that are orthogonal
on [0, 1]. These methods can also be constructed through the technique known as
collocation. These so-called Gauss methods of order 2s are known to be symplectic
[7].

Very recently, Brugnano et al. [1, 2, 3, 4, 5] have developed new classes of
Runge-Kutta methods, that they call Hamiltonian BVMs (HBVMs) that are energy
preserving for canonical Hamiltonian systems. The idea is based on the discretisation
of a local Fourier expansion of the given ODE problem in which different choices of
the basis lead to different classes of methods.

Brugnano et al. [1, 2, 3, 4] have constructed classes of s-stage Runge-Kutta
methods based on generalising the idea of collocating polynomials up to degree r.
These are known as HBVM(s,r) and take the form (2) where

aij = bj

r−1∑
l=0

Pl(cj)

∫ ci

0

Pl(τ)dτ, i, j = 1, · · · , s, (3)
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where P0, · · · , Pr−1 are the shifted Legendre polynomials orthonormal on [0, 1]. If
the quadrature order of the method is q, then HBVM(s, r) has order p = min(q, 2r).
Note that if s = r, and the nodes are placed at the Gauss points, then q = 2s, and
these methods reduce to the Gauss methods of order 2s.

HBVM(s, r) methods with quadrature order 2s based on Gaussian quadrature
are A-stable with the stability region coinciding with the left half plane C− and
have the remarkable property that they are energy conserving for all polynomial
Hamiltonians of degree not larger than 2s/r. Furthermore, since these methods
are of low rank r, the computational efficiency is closer to an r-stage Runge-Kutta
method, rather than an s-stage method, apart for the additional s − r function
evaluations [1, 2, 3].

We will find it useful to write down the general classes of HBVM(s,2) and
HBVM(s,3) methods, respectively. We note that

P1(x) = 2
√

3(x− 1

2
), P2(x) = 6

√
5(x2 − x+

1

6
).

Example 1
i) HBVM(s,2):

A = cbT + 6(c2 − c)(bTC − 1

2
bT ), (4)

ii) HBVM(s,3):

A = cbT + 6(c2 − c)(bTC − 1

2
bT ) + (10c3 − 15c2 + 5c)(6bTC2 − 6bTC + bT ), (5)

where vector operations are component-wise and

C = diag(c1, · · · , cs).

2 Low rank symplectic Runge-Kutta methods

The class of methods given in (4) and (5) have at most orders 4 and 6, respectively.
However, they are only symplectic in the case of HBVM(s,2) if s = 2 and c2−c+ 1

6e =
0 and in the case of HBVM(s,3) if s = 3 and c3 − 3

2c
2 + 3

5c−
1
20e = 0. In these two

cases the methods reduce to the two and three stage Gauss methods of orders four
and six, respectively. In this section we will take a different view to that of Brugnano,
Iavernaro and Trigiante [1, 2, 3] and view the HBVM methods as a particular class
of low rank Runge-Kutta methods. But as a particular feature of these classes of
s-stage, r-rank methods we will require that they be symplectic for all values of s
and r, with s ≥ r. This will constrain them to have a similar but different form
to the HBVM(s, r) methods. We will denote this class of symplectic low rank, r,
s-stage Runge-Kutta methods as SLIRK(s, r) methods.

In what follows we will often write the Runge-Kutta matrix as

A = ĀB, B = diag(b1, · · · , bs).

Clearly the algebraic stability matrix can be written as

M = B(Ā+ ĀT − eeT )B
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and we will let
M̄ = Ā+ ĀT − eeT . (6)

We will construct low rank methods with

Ā =

r−1∑
j=0

ujw
T
j (7)

such that M = 0, so that if B > 0 then these methods will be symplectic.
Let P̄i(c) be the Gauss-Legendre polynomials of degree i, with

P̄1(c) = c− 1
2 , P̄2(c) = 6c2 − 6c+ 1, P̄3(c) = 10c3 − 15c2 + 6c− 1

2 .

Then it is easily shown that if

u0 = c, ui = −P̄i−1(c) + P̄i+1(c), i = 1, · · · , r − 2, ur−1 = −P̄r−2(c)

(8)

wi = P̄i(c), i = 0, · · · , r − 1

then M̄ = 0. A SLIRK(s, s) with B(s) and P̄s(c) = 0, reduces to HBVM(s, s),
namely the symplectic s-stage Gauss methods of order 2s. It is easy to show

Theorem 1. For t = 1, · · · , r−1 quadrature order r+ t−1 implies a SLIRK(r+ t−
1, r) method is order min(r+t−1, 2t+1) with stage order t. In addition, quadrature
order 2r implies order 2r.

SLIRK(s, r) methods can be implemented in an efficient manner, as is the case
of HBVMs [5]. The case r = 2 is easily generalised to r > 2. In the case r = 2

A = cbT − e(bTC − 1

2
bT )

and so

aij = bj(ci − cj +
1

2
), ∀i, j = 1, · · · , s.

Hence

Y1 − yn = h

s∑
j=1

bj(c1 − cj + 1
2 )f(Yj)

Yk − yn = h

s∑
j=1

bj(ck − cj + 1
2 )f(Yj), k = 2, · · · , s

and subtracting gives

Yk − Y1 = (ck − c1)h

s∑
j=1

bjf(Yj)

= (ck − c1)(yn+1 − yn).

Let zn+1 = yn+1 − yn, then

Yk = Y1 + (ck − c1)zn+1, k = 2, · · · , s
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and so the method reduces to

Y1 = yn + h

s∑
j=1

bj(c1 − cj +
1

2
)f(Y1 + (cj − c1)zn+1)

zn+1 = h

s∑
j=1

bjf(Y1 + (cj − c1)zn+1)

yn+1 = zn+1 + yn.

It is easily seen that, apart from additional function evaluations, as long as the
quadrature order three condition B(3) holds then the effective implementation is
that of a two stage method with structure(

c1 −c21 + 1
2c1 −

1
12

1 1
2 − c1

)
which has the same characteristic polynomial, λ2− 1

2λ+ 1
12 , as the two stage Gauss

method. This is easily seen by computing the Jacobian of the nonlinear system
involving Y1 and zn+1.

The basis of this section has been to show that there are other classes of low
rank methods and we have imposed symplecticity for all r and s. However, these
methods do not appear to have the same effect as the class of HBVMs, as for given
r they improve little on the accuracy of the Hamiltonian as s increases. However
because they are symplectic, they do preserve exactly the angular momentum for
all values of s and r. We now turn to the case of efficient methods for stochastic
Hamiltonian problems with additive noise.

3 Stochastic Hamiltonian problems with additive
noise

Newton’s Second Law of Motion relates force to acceleration and so second order
differential equations arise frequently in scientific applications. These differential
equations often contain a parameter known as damping. The stationary density is
independent of damping, but dynamical quantities, and the usefulness, or otherwise,
of numerical algorithms, are strongly dependent on it. In the infinite-damping limit,
the system becomes first order. The limit of zero damping, on the other hand, cor-
responds to Hamiltonian systems where symplectic methods can be applied, which
are capable of preserving geometric or energy-like properties over long time peri-
ods. Thus it is important to derive methods capable of accurately reproducing the
stationary density for all positive values of damping.

We shall consider equations of the following form:

x′′ = f(x)− ηs2(x)x′ + εs(x)ξ(t), (9)

where 〈ξ(t)ξ(t′)〉 = δ(t − t′) and the damping parameter is denoted η. Angled
brackets denote mean over realizations. The second-order stochastic differential
equation (SDE) (9) describes the position of a particle subject to deterministic
forcing f(x) and random forcing ξ(t). The deterministic forcing is related to the
potential function E(x) via f(x) = −E′(x). Thus the particle is said to be moving
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noisily in a potential well. The amplitude of the random forcing, ε, is related to the
temperature T and damping coefficient η by the fluctuation-dissipation relation [11]
ε2 = 2ηKT. This is the so-called Einstein relationship.

We can write (9) as a pair of first-order equations for X and V , the position and
velocity variables:

dX = V dt

dV = −ηs2(X)V dt+ f(X)dt+ εs(X)dW (t), (10)

where W (t) is a Wiener process satisfying 〈W (t)W (s)〉 = min(t, s). If s(x) is not a
constant, the noise amplitude is a function of position and the equation is commonly
said to have “multiplicative noise”. However, because the coefficient of dW in the
SDE for V is a function of X only, there is no difference between the Itô and
Stratonovich forms [11] of (10). The probability density at time t is P (x, v; t),
where

P (x, v; t) =
d

dx

d

dv
Prob (X(t) < x, V (t) < v) . (11)

The stationary density, P∞(x, v), defined as

P∞(x, v) = lim
t→∞

P (x, v; t), (12)

has the following analytical form, independent of η > 0 and s(x) [11]:

P∞(x, v) = N exp
(
−v2/2KT − E(x)/KT

)
. (13)

Thus the late-time statistics of the velocity are Gaussian and uncorrelated with the
position. It is notable that the stationary density has a closed tractable form for
many nonlinear functions f(x) when analytical study of the full evolution is not
possible.

In a slightly more general setting, Soize [17] has shown that for non-linear Hamil-
tonian dissipative systems excited by white noise of the form

y′′ + εf(H)y′ +∇V (τ) = S ξ(t),

which can be written as

dq = p dt

dp = −εf(H) p−∇V (q) + S dW

with

H(q, p) =
1

2
p2 + V (q),

then there exists a unique solution which tends asymptotically as t → ∞ to a
stationary process whose stationary probability density function satisfies

pS = C0 exp

(
− 2ε

S2

∫ H

0

f(x)dx

)
.

If f(H) = 1 then

pS = C0 exp

(
− 2ε

S2
H(q, p)

)
,
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while for the non-linear problem

y′′ + ε
(
1− (y′)2 − y2

)
y′ + T0y = Sξ(t),

pS = C0 exp

(
− 2ε

S2
H(1−H)

)
, H =

1

2
p2 +

1

2
T0q

2.

These classes of problems arise in statistical mechanics as a Langevin formulation in
which a particle is moving under a potential V with a frictional term εf(H)p. For
higher dimensional systems the theory is more complicated, but results are known
for specific cases [17].

Consider now the separable Hamiltonian problem with additive noise, namely

dq = Hp dt

dp = −Hq dt+ σ dW (14)

H(q, p) =
1

2
p2 + V (q).

Using Itô’s Lemma [13], an SDE can be written for which the Hamiltonian is a
solution.

Thus, given the multidimensional Wiener noise Itô SDE,

dy = f(t, y) dt+ g(t, y) dW, y(0) = y0

the SDE for U = h(t, y) is given by

dU =

(
∂U

∂t
+
∑

fi
∂U

∂yi
+

1

2
tr(ggT∇2U)

)
dt+

∑
gi
∂U

∂yi
dWi.

Therefore, from (14), with U = H(q, p) and

f = (Hp,−Hq)T

∇U = (Hq, Hp)T

∇2U =

(
Hqq Hqp

Hpq Hpp

)
,

we find

dH = (
1

2
σ2Hpp) dt+ σHp dW,

and with H of the form in (14) then

dH =
σ2

2
dt+ σ p dW.

Integrating this last equation gives

H(t) = H(t0) +
σ2

2
(t− t0) + σ

∫ t

t0

p(s) dW (s)

and using the expectation property of Itô integrals this gives

E(H(t)) = E(H(t0)) +
σ2

2
(t− t0). (15)

Thus the expected value of the Hamiltonian grows linearly with time.
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4 Numerical methods for additive noise problems

In the case of additive noise problems, we could ask a numerical method to per-
form well in terms of the stationary distribution function and the evolution of the
mean of the underlying Hamiltonian. Schurz [16], for example, showed that the
implicit midpoint rule has the same stationary distribution as a multidimensional
Ornstein-Uhlenbeck process. Burrage et al. [9] extended this analysis and showed
that for linear second order equations with additive white noise and damping, only
the implicit midpoint rule is measure-exact, that is, preserves the position, velocity
and absence of correlation at equilibrium. Not only that, the implicit midpoint rule
seems to be very effective on nonlinear second order equations with damping, al-
though the leapfrog (Verlet) method can also be effective and has the advantage of
being explicit. In terms of considering the evolution of the mean of the Hamiltonian,
Melbo and Higham [14] showed that partitioned approaches can be effective.

We shall illustrate these ideas by considering the evolution of the additive noise
problem, with no friction and H = 1

2 (p2 + q2). We can write this problem as

dy = Qy + ε r dW, (16)

where

Q =

(
0 1
−1 0

)
, r =

(
0
1

)
.

First consider the general additive noise problem

dY = f(Y ) dt+ εr dW,

where Y and r (constant vector) are m × 1 column vectors, and W (t) is a scalar
Wiener process. Let the numerically-generated approximations be denoted by col-
umn vectors yn. Under an s-stage Runge-Kutta method, yn+1 is obtained from yn
as a weighted sum of s evaluations of the function f at intermediate values Yi:

yn+1 = yn +

s∑
j=1

bjf(Yj)h+ ε r∆Wn, (17)

where
∑

j bj = 1. The Wiener increment ∆Wn is sampled from a Gaussian distri-
bution with mean zero and variance h. The column vectors of intermediate values
satisfy

Yi = yn + h

s∑
j=1

aijf(Yj) + ε ci r∆Wn.

Applying our Runge-Kutta method (17) to (16) we find

yn+1 = R(hQ) yn + ε∆Wn S(hQ) r

where
R(z) = 1 + z bT (I −Az)−1 e

and
S(hQ) = (hQ)−1 (R(hQ)− I).

Thus

E[yTn+1 yn+1] = E[yTn R
T (hQ)R(hQ) yn] + ε2hrTST (hQ)S(hQ) r.
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Since QT = −Q, and letting

P (hQ) = R(−hQ)R(hQ),

then

E[yTn+1 yn+1] = E[yTnP (hQ)yn]− ε2hrT (Qh)−2 (P (hQ)−R(−hQ)−R(hQ) + I) r.

In the case of a symmetric Runge-Kutta method of order two or more, P = I and
so

E[Hn+1] = E[Hn] + ε2 h+ ε2 α4 h
3 +O(h5),

where α4 is the coefficient of the z4 term in the expansion of R(z). If the method is
order 4 then α4 = 1

24 and the local error in the mean of the Hamiltonian is O(h3).
But if α4 = 0 (so the method is order 2) then the local error is O(h5). This can be
achieved by a method whose stability function is

R(z) =
1 + 1

2z + 1
8z

2

1− 1
2z + 1

8z
2
.

On the other hand the stationary measure-exact implicit midpoint rule has a local
error of 1

8h
3 in the mean of the Hamiltonian. So there is a trade-off between these

two metrics (order of preservation of the mean of the Hamiltonian and stationary
measure exactness) when designing appropriate numerical methods.

However there is another representation of a Runge-Kutta method for solving
(16) that involves using s + 1 samples of a Wiener process per step. This idea is
in line with the ideas of Brugnano et al. [1, 2, 3]. Consider the general stochastic
differential equation

dy = f(y) dt+ g(y) dW, y(0) = y0.

In integral form this can be written as

y(tn+1) = y(tn) +

∫ tn+1

tn

f(y(s)) ds+

∫ tn+1

tn

g(y(s)) dW (s),

where the stochastic integral is considered in either Itô or Stratonovich form. In the
case of additive noise, see (16), these two forms are the same, and

y(tn+1) = y(tn) +

∫ tn+1

tn

f(y(s)) ds+ ε r

∫ tn+1

tn

dW (s).

In particular for offstep points tn + cih

y(tn + cih) = y(tn) +

∫ tn+cih

tn

f(y(s)) ds+ ε r

∫ tn+cih

tn

dW (s). (18)

Since the Yi should represent an approximation to (18) then a different formulation
for a Runge-Kutta method is

Yi = yn + h

s∑
j=1

aijf(Yj) + ε (W (tn + cih)−W (tn)) r, i = 1, · · · , s

yn+1 = yn + h

s∑
j=1

bjf(Yj) + ε (W (tn + h)−W (tn)) r. (19)

9



However this formula does not take into account that when sampling W (tn + cih)−
W (tn) we should consider this as the sum of Wiener increments

i∑
j=1

(W (tn + cjh)−W (tn + cj−1h)).

Thus let

zi = W (tn + cih)−W (tn + ci−1h) =
√
ci − ci−1 ∆Wi, i = 1, · · · , s+ 1,

where c0 = 0, cs+1 = 1 and ∆Wi are s + 1 independent samples of N(0, h). Thus
the Runge-Kutta formulation is

Yi = yn + h

s∑
j=1

aijf(Yj) + ε

i∑
j=1

zj r

yn+1 = yn + h

s∑
j=1

bjf(Yj) + ε

s+1∑
j=1

zj r. (20)

Let
Z = (z1, · · · , zs)T

and note that z1, z1 + z2, · · · ,
s∑

j=1

zj

T

= V Z,

where V is the s×s matrix whose lower triangular component has ones, and strictly
upper triangular component is zeros. Applying this method to our linear test equa-
tion gives

yn+1 = R(hQ) yn + ε S(hQ) r

where
S(z) = zs+1 + eT Z + z bT (I −Az)−1 V Z.

For example, in formulation (20), the implicit midpoint rule is

Y = yn +
h

2
f(Y ) +

1√
2

∆W1 ε r

yn+1 = yn + h f(Y ) +
1√
2

(∆W1 + ∆W2) ε r (21)

and

R(hQ) = (I − h

2
Q)−1 (I +

h

2
Q)

S(hQ) = z2I +R(hQ) z1. (22)

In this formulation we note that

E[yn+1] = R(hQ)E[yn]

10



and that

E[yTn+1 yn+1] = E[yTnR
T (hQ)R(hQ) yn] + ε2 rT E[ST (hQ)S(hQ)] r. (23)

With QT = −Q then the midpoint rule has the property

RT (hQ)R(hQ) = I

E[ST (hQ)S(hQ)] = E[z21 + z22 ] I = h I.

Thus

E[Hn+1] = E[Hn] +
ε2

2
h (24)

and we have the following result:

Theorem 2. The implicit midpoint rule (21) preserves the expectation of the
Hamiltonian 1

2 (p2 + q2) exactly, that is it preserves (15).

If we define

Ri(z) = 1 + z bT (I −Az)−1
s∑

j=i

ej i = 1, · · · , s+ 1,

where ej is the jth unit vector and, in particular,

R1(z) = R(z), Rs+1(z) = 1

then from (23)

E[yTn+1 yn+1] = E[yTn R(−hQ)R(hQ) yn] + ε2 rT E[S(−hQ)S(hQ)] r. (25)

But from the definition of S(hQ) and Ri(hQ) it is easily seen that

S(hQ) =

s+1∑
i=1

ziRi(hQ).

Furthermore, since the zi are independent and satisfy E[z2i ] = (ci − ci−1)h then

E[S(−hQ)S(hQ)] = h

s+1∑
i=1

(ci − ci−1)Ri(−hQ)Ri(hQ)

and so from (23)

E[yTn+1 yn+1] = E[yTn R(−hQ)R(hQ) yn] + ε2 h rT
s+1∑
i=1

(ci − ci−1)Ri(−hQ)Ri(hQ) r.

(26)
Hence we can use higher order methods in the mean and still obtain good prop-

erties in preserving the mean of the Hamiltonian.
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We can achieve this best by assuming the underlying method has the form for
the stability function

R(z) =
P (−z)
P (z)

.

Then from (26)

E[Hn+1] = E[Hn] +
ε2

2
C hl+1

where

C =

s+1∑
i=1

(ci − ci−1)Di r
T Ql r,

where the integer l and the error constants Di are defined by the expansion

Ri(−hQ)Ri(hQ) = I +Di h
l +O(hl+1).

5 Simulations and Conclusions

We now present some numerical results, demonstrating the behaviour of the Hamil-
tonian in both a linear and non-linear setting.

Firstly we consider the linear SDE given by (16), and apply the implicit midpoint
rule (using a single noise representation in the numerical method (17)). We then
compare the results with those obtained from the alternative formulation (21). The
following figure (Fig 1) shows the average solution vector and the growth of the
Hamiltonian over time, where the integration is carried out for 200 steps with step
size 0.5, noise term ε = 1.0, and initial value y0 = ( 1 1 )T . The simulations
were averaged over 10000 trajectories. In the single noise formulation, max(H(t)) =
48.067804, while for multi-noise, max(H(t)) = 50.995163. The expected value is 51
at t = 100.

Figure 1: single noise (left) and multi-noise (right), for linear SDE (16)
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The second example is a non-linear SDE of the form

dy = f(y) dt+ ε

(
0
1

)
dW

where

f(y) =

(
p

−∇R(q)

)
=

(
p

q − q3
)

with Hamiltonian

H =
1

2
p2 +R(q) =

1

2
p2 +

1

4
q4 − 1

2
q2.

This is also referred to as the Double Well problem. It is expected that the Hamil-
tonian grows over time according to

E[H(t)] = H(t0) +
1

2
ε2 t.

Again the single and multi-noise formulations are compared and due to the non-
linear nature of the problem, we carried out 50000 simulations, over 400 steps with

step size 0.1. The noise term was ε = 0.5, and with initial value y0 =

( √
2√
2

)
, we

would expect H to grow to H(0) + 1
2ε

2 t = 6 at t = 40. For the single noise for-
mulation, max(H(t)) = 5.946045, while for the multi-noise approach, max(H(t)) =
6.022872. Figure 2 shows the average solution y and the Hamiltonian over time.

Figure 2: single noise (left) and multi-noise (right) for the double well problem
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In conclusion, we see that some of the ideas that lead to the class of HBVM
methods, introduced by Brugnano et al. can be applied to the class of additive
noise Hamiltonian problems. This leads to the generation of s+ 1 Wiener processes
per step for an s-stage Runge-Kutta method. In the case of the implicit midpoint
rule this leads to an implementation with two independent Wiener processes per
step and such methods preserve the mean of the Hamiltonian exactly in the case of
linear problems.
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