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Abstract 

The electrical performance of indium tin oxide (ITO) coated glass was improved 

by including a controlled layer of carbon nanotubes directly on top of the ITO 

film. Multi-wall carbon nanotubes (MWCNTs) were synthesized by chemical 

vapor deposition, using ultra-thin Fe layers as catalyst. The process parameters 

(temperature, gas flow and duration) were carefully refined to obtain the 

appropriate size and density of MWCNTs with a minimum decrease of the light 

harvesting in the cell. When used as anodes for organic solar cells based on 

poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester 

(PCBM), the MWCNT-enhanced electrodes are found to improve the charge 

carrier extraction from the photoactive blend, thanks to the additional percolation 

paths provided by the CNTs. The work function of as-modified ITO surfaces was 

measured by the Kelvin probe method to be 4.95 eV, resulting in an improved 

matching to the highest occupied molecular orbital level of the P3HT. This is in 

turn expected to increase the hole transport and collection at the anode, 
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contributing to the significant increase of current density and open circuit voltage 

observed in test cells created with such MWCNT-enhanced electrodes. 

 

Keywords: carbon nanotubes, indium tin oxide, organic photovoltaics, electrode, 

Kelvin probe. 

 

Introduction 

Following the original proposal of creating plastic solar cells [1], many research 

efforts have been recently directed to improve their power-conversion efficiency 

(PCE), in order to make these cells commercially viable [2]. The most promising 

active materials for organic cells are semiconducting polymers and fullerene 

derivatives, whose mixtures result in the formation of an interpenetrated phase 

consisting of nano-scaled bulk-heterojunctions [1]. High theoretical performance 

has been predicted for these devices, which are characterized by low processing 

costs and mechanical flexibility [3], making them particularly attractive in 

comparison to those based on crystalline silicon and on other expensive inorganic 

semiconductors.  

At present, the most successful and widespread blend for organic photovoltaics is 

based on a composite of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric 

acid methyl (PCBM) [4, 5]. In this cell architecture the polymer acts as an 

electron donor and the fullerene derivative acts as an electron acceptor [6]: the 

holes move in the polymeric phase towards the anode, while the electrons hop 

along the fullerenes and eventually reach the cathode. Since the diffusion length 

of the exciton in the polymers is very low, recombination is highly probable, 

unless the electron is quickly injected into the carbon (acceptor) phase. 



Unfortunately, the concurrence of a low electrical mobility (due to the hopping 

mechanism) with a small exciton diffusion length increases the likelihood of 

charge recombination, ultimately affecting the overall PCE of the cells [7]. Many 

approaches have been proposed in order to overcome such fundamental issues and 

to improve the performances of P3HT:PCBM solar cells. In particular, very 

promising advances can be gained by increasing the nano-scale ordering of the 

polymer/fullerene composite: different means have been proposed, such as 

thermal [8] and solvent annealing [9], or the use of additives in the blend 

preparation [10]. 

Along with fullerenes, carbon nanotubes (CNTs) have been also suggested as 

promising materials to boost solar cell PCE, thanks to their excellent electrical 

properties and to a favorable aspect ratio [11]. In fact, CNTs were initially 

suggested as a replacement for fullerene [12], because of their ability to create 

percolation paths through the heterostructure, while providing electron-hole 

dissociation sites. Being the electron mobility in fullerenes rather low [13-15], the 

initial motivation for the replacement of PCBM with CNTs was an expected 

increase in electron mobility due to ballistic transport in the CNT phase. Besides, 

microscopic studies proved that in a mixture of P3HT and CNTs, the polymer 

self-assembles and wraps the carbon nanostructure, generating a bulk 

heterojunction with a large interface area where a strong electric field would lead 

to a high probability of exciton dissociation [16]. However, the lack of control on 

the selection of the CNTs has made their integration with polymers quite 

unsuccessful so far [17], as recently suggested by photoluminescence studies [18]. 

In fact, when P3HT is mixed with both semiconducting and metallic CNTs, the 

latter tend to create Schottky barriers [16, 19] at the polymer-CNT interface, 



which can favor the electron-hole recombination and thus decrease the short 

circuit current. This has been also confirmed by Valentini et al. [20], who were 

able to attain a marked increase in the short circuit current of the cell by 

depositing only semiconducting CNTs on the ITO surface. Nevertheless, this 

situation is still under debate, since efficient electron-hole separation has been 

recently observed in P3HT mixed with metallic and semiconducting CNTs [21], 

suggesting that both kinds of nanotubes could ultimately act as hole acceptors. 

Whatever is the solution to this puzzle, including MWCNTs in a blend of P3HT 

and PCBM matches the key objective of achieving large interfacial areas within a 

bulk donor-acceptor heterojunction mixture, as proposed by Berson et al. [22]. As 

metallic conductors, MWCNTs are expected to lower the electrical percolation 

threshold even at minimal concentrations, due to their high electron conductivity 

and their shape. Following this line, Sun [2] proposed to build a cell containing a 

network of vertically aligned CNTs separated by vertical polymer layers. This 

idea would grant a major increase in conductivity at the electrode (thanks to the 

interpenetrating structure of vertically aligned nanotubes), but has not been 

completely exploited so far, because of its intrinsic complexity. Nonetheless, as a 

first attempt in this direction, Miller et al. [23] reported the synthesis of CNTs 

directly on ITO glass by chemical vapor deposition (CVD). Although successful 

in terms of CNT yield, their method did not provide a specific control on the 

assembly of the CNTs, whose high density rendered the ITO electrode almost 

opaque. Conversely, in this paper we present the first evidence of controlled 

growth of MWCNTs on ITO electrodes, obtained by a fine tuning of the CVD 

parameters, such as temperature, gas-flow and duration. By selecting the optimal 

combination of these parameters it is possible to create MWCNT mats with the 



required size and density on the ITO coated glass surface. Such CNT-enhanced 

electrodes are found to show advantages in terms of work function (WF) matching 

and electrical properties in comparison with pristine ITO electrodes, contributing 

to significantly advance the overall PCE of the solar cell. 

2. Results and discussion 

After preliminary tests in CVD, SEM and EDX analysis indicated that the range 

of temperature of 550-600 °C has to be avoided for the application of the ITO-

substrates as electrodes, since the ITO layer undergoes severe disruption at such 

high temperatures, becoming no longer conductive. The growth time has also 

been inspected, determining an optimal CNT synthesis time of 30 min. Successful 

growth of MWCNTs were obtained on Sample A, B and C, treated in CVD for 30 

min at 550, 525 and 500°C respectively (Fig. 1). 

 

Fig. 1 - SEM images of MWCNTs grown on ITO coated glass by CVD at: (a) 

550°C, (b) 525°C, (c) 500°C. 

The transmittance and the resistivity of each electrode were measured and are 

reported in Table 1. The density distribution of the tubes is found to scale 

considerably with the deposition temperature. On Sample A (550°C), a dense and 

thick layer of MWCNTs covers the entire ITO area. Due to the CNT density, the 

substrate looks almost black and is therefore no longer transparent. In addition, 

the sheet resistance of the ITO layer increased to 40 Ω/sq (almost three times 



higher than pristine ITO). When heated in air at 550°C, the polycrystalline ITO 

layer is known to degrade, leading to the segregation of Sn into clusters hundreds 

of nm in diameter [24], and also to increased inter-diffusion between the substrate 

and film [25].  Both effects can reduce the film conductivity by up to 50%, as 

reported elsewhere [26]. 

In our case, the interaction of the ITO film with the CVD process gases at 550°C 

is expected to deteriorate even more strongly the conductivity of the electrode. 

This is partly supported by the formation of micro-balls of indium on the ITO 

film, as observed by SEM and EDX (not shown). Similarly to what reported by 

Lan et al. [27], we suggest that the exposure of the ITO film to a hydrogen 

atmosphere at 550°C (and the probable creation of atomic hydrogen coming from 

the dissociation of either H2 or C2H2, perhaps enabled by the metal catalyst layer) 

enables the formation of small clusters of metallic indium, which coalesce during 

the CVD to form spherical particles with typical size > 2 µm. As a consequence, 

the film surface would segregate and change its chemical ratio. The film 

conductivity will in turn significantly decrease, as will the optical transmittance, 

on the account of a stronger light absorption and scattering caused by those 

metallic micro-spheres. 

  



Sample  Growth 

T  [°C] 

R [Ω/sq]  ITO film Transmittance 

at 510 nm [%] 

Glass - - 89 

Glass/ITO - 15 81 

Sample C 

(Glass/ITO+CNT) 
500 25 75 

Sample B 

(Glass/ITO+CNT) 
525 33 45 

Sample A 

(Glass/ITO+CNT) 
550 40 0 

Table 1 - Growth parameters and properties for the 3 CNT-enhanced electrodes 

compared to pure glass and to ITO/glass sample. 

In contrast, at 525°C (Sample B) and 500°C (Sample C), the degradation is not as 

severe and the conductivity of the film is still acceptable (25-30 Ω/sq). In these 

two cases the nanotubes nucleate with a lower density and the substrates show a 

transmittance at 515 nm of 45% and 75% respectively. Fig. 2 illustrates the 

optical transmittance of these two samples in the wavelength range of 350-750 

nm, taking also in consideration the absorption spectrum of the P3HT:PCBM 

blend. 



 

Fig. 2 - Transmittance spectra of the electrodes (left Y axis), compared to the 

absorption spectrum of the P3HT:PCBM blend (right Y axis). 

Although on Sample B the density of the CNT carpet is well higher than on 

Sample C, for the present purpose, an optimal condition is reached with the latter 

sample. When using a temperature of 500°C, the short sparse tubes (average 

density: 10 tubes/µm2) that grow do not form bundles or thick aggregates, 

allowing more light to pass through the electrode and to reach the active layer of 

the cell. SEM images taken in various sites of Sample C (as the one in Fig. 3a) 

were analyzed to calculate the average dimensions of the grown MWCNTs. The 

average length of the tubes is 100 nm and the diameter 40 nm, as confirmed by 

TEM analysis (Fig. 3b). Due to the low synthesis temperature the tubes structure 

is very defective and residual allotropes of carbon, such as diamond-like and 

amorphous carbon, are found around the nanotube walls (confirmed also by 

Raman spectroscopy, not shown). 



 

Fig. 3 - (a) SEM image showing the surface of Sample C, on which a low density 

mat of  MWCNTs is grown after CVD at 500°C for 30 min. (b) TEM 

image of CNTs from Sample B (grown in CVD for 30 min at 525°C). 

In our context, the presence of defects in the tubular structure could be an 

advantage in terms of conductivity, because it can induce cross-linking between 

the inner shells (walls) of the tubes via sp3 bond formation, facilitating charge 

carrier hopping to inner shells [28]. Such inter-shell bridging provides additional 

charge carrier transport pathways, offsetting the effect of defect scattering-

induced conductivity decrease.  

By measuring various areas of the sample, a mean distribution of 10 

MWCNT/µm2 has been estimated, being the average dimensions of nanotubes: 

100 nm in length, 30 nm in diameter and 58 m2/g of specific surface area [29]. 

Such values would entail an increase of 10% in the overall surface area of the 

CNT/ITO electrode in comparison with the planar ITO film. We believe that such 

three-dimensional and nano-structured electrodes, made of metallic nanotubes 

[30], will be able to penetrate the P3HT:PCBM blend and ease the extraction of 

holes to the external circuit. 



Using Sample C, we measured the WF of the as-created electrode. Kelvin Probe 

and ultraviolet photoelectron spectroscopy (UPS) are the techniques usually 

employed to this purpose; however, there are substantial differences in how the 

WF is measured. The Kelvin Probe method measures in air the difference in WF 

between a millimetric probe and the sample, which can undergo surface reactions 

with species adsorbed from the environment. Conversely, UPS measures in Ultra 

High Vacuum the lowest WF of a small portion of the surface, usually a few 

microns in diameter. WF values measured by the Kelvin Probe method are often 

higher than those measured by UPS [31], due to the influence of the ambient 

gases and to the fact that the probe size typically covers a few mm2 area. 

Therefore, we chose to use the Kelvin Probe method as it is able to measure the 

electrode WF in its working environment, just before the cell is built. 

After a fine calibration with a reference tantalum foil, the WF of an untreated and 

clean ITO substrate is found to be 4.80 eV. We then measured a value of 4.95 eV 

in the case of our CNT-enhanced electrode, that is an increase of 0.15 eV. 

Although this value is in good in agreement with the WF of MWCNTs reported 

by Shiraishi et al. [32], we have to make two considerations: i) our substrate is not 

fully covered by a continuous mat of dense nanotubes; ii) when measuring by 

Kelvin Probe method, the electrode under test is the whole structure CNT/ITO, 

not only the CNT over-layer; iii) a thin layer of Fe is also present between the ITO 

and the CNT layer, even if during the CVD it should become segregated in small 

particles, giving rise to the tubes nucleation. 

All these occurrences, instead of the sole CNT contribution, would partake in 

establishing the WF measured for the ITO+CNT electrode (as depicted in Fig. 4). 

Nevertheless, this increase in WF is strongly beneficial because it brings the 



electrode WF closer to that of the photoactive blend. Thus we anticipate a 

reduction in the hole-injection barrier at the anode interface, as a result of the 

highest occupied states of ITO+CNT lying lower than those of ITO.  

 

Fig. 4 - WF levels for cells with ITO (left) and ITO+CNT (right) electrode. (All 

reported values are in eV and negative). 

A similar kind of band alignment is almost achieved in the standard cell 

architecture by the insertion of a layer of poly(3,4-ethylene 

dioxythiophene):(polystyrene sulfonic acid) (PEDOT:PSS).  This polymer is used 

to improve the contact (and reduce the mismatch in energy level) between the ITO 

and the P3HT, although it is also known to shorten the device lifetime [33]. Being 

slightly acidic, the PEDOT:PSS is in fact able to etch the ITO and causes interface 

instability through indium diffusion into the polymer active layer. In our case 

instead, we believe that using a MWCNTs mat as a functional buffer layer for 

ITO should guarantee an increase in both the charge collection and in the lifetime 

of the device. 



In order to test the last statement, test organic solar cells were built with two of 

our CNT-enhanced anodes: Sample C (whose characterization have been 

presented and discussed above) for Cell C, and Sample C1 (treated with the same 

CVD conditions of Sample C but for a shorter time of 15 min instead of 30 min) 

for Cell C1. The I-V curve and the output power generated by the cells made with 

our electrodes are reported in Fig. 5a, in comparison with the data obtained for a 

reference cell made with a standard ITO coated glass anode (without addition of 

PEDOT:PSS). The I-V characteristic of a standard 

ITO/PEDOT:PSS/P3HT:PCBM/Al cell is also reported in Fig. 5b, for a full 

understanding of the experimental results. 



 

Fig. 5 - Current-voltage characteristic and output power of P3HT:PCBM solar 

cells: (a) Cell C and Cell C1, compared to a reference cell made with bare 

ITO coated glass; (b) classic ITO/PEDOT:PSS/P3HT:PCBM/Al cell 

manufactured in our labs.  

All the numeric values are reported in Table 2, along with the respective PCEs. 

  



Cell  Voc  [mV] Jsc [mA/cm2] FF [%] η [%] 

ITO/P3HT:PCBM/Al 100 -1.2 23 0.03 

ITO+MWCNTs/P3HT:PCBM/Al 

(Cell C) 

140 -1.7 24 0.06 

ITO+MWCNTs/P3HT:PCBM/Al 

(Cell C1) 

272 -1.1 29 0.09 

Table 2 - Organic solar cell characteristics: open-circuit voltage (Voc), short-

circuit current density (Jsc), fill factor (FF) and power conversion 

efficiency (η). 

As a preliminary remark, it has to be pointed out that the overall PCE of the 

experimental cells suffers from the lack of those beneficial effects that are 

acknowledged by the inclusion of a PEDOT:PSS layer between the ITO and 

active blend, particularly an advantageous interface morphology [34] that enables 

higher Jsc and fill factor (FF). On the other hand, the comparison between 

experimental devices made with pristine and CNT-enhanced ITO-glass 

demonstrates the substantial improvement that the addition of CNTs guarantees to 

the electrical properties of the electrode. 

By analyzing the I-V graphs, one can readily notice how the two CNT-enhanced 

electrodes dramatically contribute to increase the open circuit voltage (Voc) of the 

cell. Remarkably, in the case of Cell C1, Voc reach 272 mV, that is almost three 

times higher than the value showed by the reference cell made with bare ITO 

(~100 mV). Such a consistent improvement in Voc is owed to the optimal 

alignment of the energy levels between the CNT-modified ITO WF (~4.95eV) 

and the P3HT HOMO (~ 5eV), on the account of a fostered hole collection at the 

anode/polymer interface. Besides, by taking in consideration an equivalent circuit 



diagram for a bulk-heterojunction solar cell (Fig. 6), we highlight that the CNTs 

could be also responsible of a quenched recombination both at the dissociation 

sites (e.g donor/acceptor interfaces) and near the anode (as result of an increase of 

the shunt resistor Rsh), with a further positive effect on the Voc. 

 

Fig. 6 - Equivalent circuit of the ideal organic solar cell. 

Moreover, we propose that our electrode could contribute to reduce the series 

resistor Rs of the cell by means of the addition of shorter and direct paths for 

charge collection, which are on average provided by the MWCNTs (having 

intrinsically a very high aspect ratio). This helps overcoming the low mobility of 

the holes, now able to travel more quickly than in the pure P3HT phase, and 

implies a corresponding increase in Jsc. Particularly, the Jsc is expected to benefit 

from the numerous  percolation paths created by the CNTs, which can effectively 

drive away the free carriers generated from the dissociation of the excitons at the 

dispersed heterojunctions. 

We observe however that the Jsc has a noteworthy 40% increase in case of Cell C, 

but it does not vary much for Sample C1. This different behavior for two 

electrodes prepared with the same procedure has to be explained in terms of the 

only parameter varied, i.e. the CVD time. Consistently with the widely-known 



CNT growth mechanism, the shorter CVD time used for Sample C1 (15 min) 

leads to a shorter length of the grown CNTs: as a result, we speculate that the 

occurrence of short circuits between the two electrodes should be less likely in 

this case. Hence, the Voc is expected to augment correspondingly, while the 

charge collection and then the Jsc are less enhanced by the shorter transport paths. 

Conversely, the formation of an extra blocking contact (e.g for holes at the ITO 

electrode) can be the reason for the small FF values found, which increases only 

of ~5% in case of Sample C1. This could be considered in the equivalent circuit 

with the insertion of a counter diode D2 or by another shunt Rsh that directly 

connects the two electrodes. 

As already stated, the absolute efficiency of our cell is not as relevant in the 

present work as the comparison with the bare ITO cell is. Even without the good 

ohmic contact provided by PEDOT:PSS, our devices show major improvement in 

electric performance. In fact, the overall increase in PCE is still more noticeable if 

considering the lower transparency (due to the CNTs layer) and the higher 

resistivity of the treated ITO film (due to thermal and chemical degradation). 

Nonetheless, CNT-enhanced electrodes might be used in conjunction with a layer 

of PEDOT:PSS to further advance the PCE of OSCs; or, once the process will be 

refined, they could become a suitable replacement for PEDOT:PSS, aiming at 

improving the interface morphology without compromising the long term stability 

of the cell. To this end, more research should be devoted to obtain a more uniform 

and ohmic contact between the CNTs and the P3HT.  

Our method can be further improved by exploring very low CVD temperatures 

(down to 350°C), which have been reported unexpectedly suitable for CNT 

synthesis from Fe films [35]. 



Conclusion 

We presented experimental evidence of the superior electrical behavior of CNT-

enhanced ITO-glass electrodes in comparison to pristine ITO ones. When 

implemented in experimental P3HT:PCBM solar cells, such electrodes provide a 

40% increase in PCE, in spite of the slight reduction of the cell transparency. We 

have grown a low density carpet of MWCNTs by using a very thin film of Fe 

catalyst on ITO coated glass. By investigating the effect of the growth 

temperature on the nanotube yield and on the ITO layer we have selected the 

optimal CVD conditions for the use of such substrates as anodes for P3HT:PCBM 

solar cells. These process conditions address three of the biggest hindrances that 

affected the PCE of polymer cells made with similarly treated electrodes, because 

in our case: 1) the sheet resistance of the electrode undergoes a limited increase 

during the low temperature CVD; 2) the light transmittance of the ITO glass do 

not reduce much, thanks to the low nanotube density obtained with an ultra-thin (2 

nm) layer of catalyst; 3) the occurrence of short circuits with the counter-electrode 

is limited by the short length of the CNTs. By using this set of parameters, we 

built a 3D nano-structured electrode that improved the performance of the cell 

both in terms of Voc (40%) and Isc (30%). 

Experimental methods 

MWCNTs were grown by CVD on borosilicate glass substrates coated by ITO 

stripes (Kintec Company, 15 Ω/sq, 100 nm thick). The substrates were cleaned by 

ultrasonic baths in acetone, ethanol and de-ionized water. Thin layers of Fe (~ 3 

nm) were deposited as catalyst by thermal evaporation. After the metal deposition, 

the substrates were loaded into a ceramic furnace for ambient pressure CVD. The 

synthesis occurred in a range of temperature of 500-600°C, while keeping a 



constant flow of 10% C2H2 in H2 (15:150 sccm). After CVD, the substrates were 

analyzed by SEM and EDX (FEI - Quanta 3D 200). Transmittance values of as-

prepared electrodes were acquired with a UV-Vis spectrophotometer (Shimadzu 

UV-2550). Nanotube morphology was also investigated by TEM (Jeol 1011 

TEM). 

Bulk-heterojunction solar cells were built in a nitrogen atmosphere glove-box by 

using two of our CNT-enhanced ITO substrates as anodes (Fig. 7). A solution 

(1:0.7) of regio-regular poly(3-hexylthiophene) (P3HT, from Sigma-Aldrich) and 

phenyl-C61-butyric acid methyl ester (PCBM, from Solenne BV) was diluted in 

ortho-dichlorobenzene and spin-coated at 400 rpm on a CNT-enhanced ITO 

coated glass, which had been previously cleaned with acetone and isopropyl 

alcohol in ultrasonic-baths. A 100 nm thick Al cathode was then thermally 

evaporated in high vacuum (~ 210-6mbar), by using a shadow-mask with 3 mm 

wide stripes. The final device had an active area of 25 mm2. Reference cells with 

bare ITO coated glass were also made for comparison with the same procedure. 

The current-voltage (I-V) characteristics under 1 sun (AM1.5G) were measured 

with an Agilent E5262A source-meter. 

 



Fig. 7 - Schematics of the preparation of a P3HT:PCBM  solar cell with CNT-

enhanced ITO. 
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