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Abstract  

Purpose: To study the effect of the size of the surface-coated polycaprolactone (PCL) 

microparticle carriers on the aerosolization and dispersion of Salbutamol Sulfate (SS) from 

Dry Powder Inhaler (DPI) formulations.  

Methods: The microparticles were fabricated using an emulsion technique in four different 

sizes (25, 48, 104 and 150 µm) and later coated with Magnesium stearate (MgSt) and leucine. 

They were characterized by laser diffraction and SEM. The Fine Particle Fraction (FPF) of SS 

from powder mixtures was determined by a Twin Stage Impinger (TSI).  

Results: As the carrier size increased from 25 µm to 150 µm, the FPF of the SS delivered by 

the coated PCL particles increased approximately four fold. A linear relationship was found 

between the FPF and Volume mean Diameter (VMD) of the particles over this range. 

Conclusions: The dispersion behaviour of SS from PCL carriers was dependent on the 

inherent size of the carriers and the increased FPF of SS with increased carrier size probably 

reflects the higher mechanical forces produced due to the carrier-carrier collisions or 

collisions between the carrier particles and the internal walls of the inhaler during 

aerosolization. 

Keywords:  Dry Powder Inhaler, Polycaprolactone, Carrier Size, Biodegradable polymers, 

Microspheres 
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Abbreviations 

d  Diameter 

DPI   Dry Powder Inhaler  

DCM  Dichloromethane 

ED   Emitted Dose 

FPF   Fine Particle Fraction  

HPLC   High Performance Liquid Chromatography 

MgSt  Magnesium stearate 

MW   Molecular Weight 

N  Particle Number 

PCL   Polycaprolactone 

PVA   Polyvinyl Alcohol  

RD   Recovered Dose 

SEM   Scanning Electron Microscope 

SS   Salbutamol Sulfate 

SX  Salmeterol Xinafoate 

S1  Stage one 

S2  Stage two 

TSI   Twin Stage Impinger 



4 

 

UV   Ultraviolet  

VMD   Volume Median Diameter 



5 

 

1. Introduction 

Dry Powder Inhaler (DPI) formulations for pulmonary drug delivery comprises of the 

micronized drug (<5 µm) and an inert coarse carrier which is usually incorporated in these 

systems to reduce the cohesive forces among the micron sized particles thereby improving the 

flowability and the dispersion of the powders. The addition of carrier particles also acts as a 

diluent for the drug and allows reproducible metering of the dose of the drug (1-2). The major 

factors influencing the aerosolization of the drug from the carrier surfaces includes particle 

size and size distributions, shape and surface properties such as surface roughness, geometry 

of contact and adhesional forces (1-4). Any changes in the physico-chemical or surface 

properties of powders in DPI formulations affect the drug detachment and subsequent 

dispersion from the formulation which finally affects the therapeutic performance of the drug 

(5-7). 

Lactose is the traditional carrier employed in all the currently available DPI formulations. Due 

to the low efficiency of drug dispersion from lactose, researchers have explored the use of the 

modified counterparts of lactose to improvise the drug delivery. These studies have focused 

on improving dispersion of the drugs by optimizing the carrier size (6), smoothing the carrier 

surface (7), mixing different grades of carriers (8), and using lactose carriers with smooth and 

rough surface morphologies (7, 9). Alternatively, modification of the lactose surfaces has 

been reported by blending it with fine lactose, magnesium stearate (MgSt) or leucine (10-13) 

to improve the dispersibility of the drug from the carrier surface. Other sugars such as 

glucose, sorbitol and xylitol have also been explored as carriers in DPI formulations but they 

have not able to efficiently generate the desirable Fine Particle Fraction (FPF) of the drug 

which has been attributed to their hygroscopic nature (14).  
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The size of the carrier in DPI formulations plays an important role in the dispersion of the 

drug from DPI formulations as it is one of the factors which affect the detachment of the 

drugs and ultimately the FPF reaching the lungs. Researchers have carried out studies with 

various carriers to study the effect of carrier size on the FPF of the drug. There is no clear 

consensus in the literature on the relationship between carrier size and FPF; some groups have 

observed an increase in FPF with increasing carrier size (15-17) while others have reported a 

decrease in the FPF of the drug (6, 18-23).  

Podczeck reported the effect of the size, shape and surface roughness of ten different grades 

of lactose monohydrate on the dispersion of Salmeterol Xinafoate (SX) (22). The author 

found that the smaller size of the lactose carrier was efficient in obtaining higher FPF of the 

drug. Steckel et al demonstrated that a carrier size of <32µm resulted in the highest FPF of 

Budesonide  when compared with carriers in the size range of 63-90 µm and 125-180 µm (6). 

Louey et al determined the dispersion of SS from 10 different grades of lactose and a similar 

trend was observed; the FPF of the carrier increased with the decreasing carrier diameter (4 

µm to 190.8 µm) (20). Similarly, an increased dispersion of SS was observed with decreasing 

size of lactose (8.60 µm and 20.10 µm) (23). Recently Ooi et al have demonstrated the use of 

different sizes of polystyrene spheres as the carriers for the aerosolization of SS. They also 

found that as the size of the carrier was increased (80 µm, 250 µm and 500 µm) the aerosol 

performance was decreased (21). Hence in most of the studies increased dispersion of the 

drugs from the interactive mixtures was observed with the decreased carrier size (10, 24-26). 

Islam et al also found an inverse relationship between the size (10 µm to 157.6 µm) and the 

dispersion of SX from lactose carrier (18). They demonstrated that the drug dispersion from 

these mixtures is complicated by the fact that the FPF is not solely dependent on the size of 

the lactose carrier but is also dependent on the presence a certain amount of fine particles of 
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lactose (<5 µm) associated with large carriers or added as ternary components which affects 

the deagglomeration of drug-fine lactose agglomerates (19).  

Other parameters such as morphology, surface roughness, surface area and surface energy of 

the carrier particles also play a significant role in controlling the dispersion of the drug from 

DPI formulations (9, 27-28). Donovan et al reported the effect of size (32-300 µm) and 

surface roughness of the lactose carriers on the FPF of Budesonide (29). They found that the 

FPF of Budesonide decreased as the size of the anhydrous lactose was increased (32-300 µm) 

but in case of granulated lactose the opposite trend was observed for a similar size range. This 

difference in the dispersion performance of the lactose was attributed to its surface roughness. 

Granulated lactose exhibited more surface roughness than the anhydrous lactose and hence it 

led to increased FPF from increasing size of lactose due to the difference in the carrier 

morphology. 

Similarly, in a study by Byron et al, a higher respirable fraction of terbutaline sulfate was 

obtained from coarser lactose (53-105 µm) as compared to fine particles of lactose (0-53 µm) 

(30). Hamishehkar et al found increased aerosolization properties of insulin-loaded PLGA 

microcapsules with increasing size (14.1 µm to 167.4 µm) of the sieved mannitol used as a 

carrier. This occurred due to the presence of larger surface discontinuities on the surface of 

the mannitol carrier. These surface discontinuities provided the active site on the surface of 

the carrier for deagglomeration of PLGA microcapsules and their deposition on the carrier 

surface (16). Recently Hassan et al demonstrated that increase in the size of pollen-shape 

hydroxyapatite carrier particles (26.6 µm to 45.9 µm), significantly increased the FPF of the 

Budesonide (17). This occurred because the larger carrier size has increased surface area per 

unit weight of the carrier particles. This trend of increased FPF at higher sizes was observed 

when the carrier to drug ratio was varied (2:1, 10:1 and 45:1) and at different flow rates of 30 

L/min and 60 L/min which caused increased detachment of the drug from the carrier surfaces.   
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It is evident from the above discussion that the contradictory results reported in the literature 

reveal no clear relationship between the effect of the carrier size and the dispersion of various 

drugs from DPI formulations. A confounding factor is the irregular geometry of lactose and 

other sugar particles as well as wide variation in surface roughness and aspect ratio of the 

particles. This problem is eliminated if the carrier is a smooth spherical synthetic 

biodegradable polymer of controlled diameter. Polymers have been investigated widely in 

pulmonary drug delivery to sustain the release of drugs, but they have not been exploited as 

carriers in DPIs. Very recently, we have reported the use of biodegradable PCL polymer as 

alternative carriers to lactose for DPI formulations (31). PCL microspheres which were coated 

with MgSt and leucine were used as carriers to improve the dispersion of Salbutamol Sulfate 

(SS) from the surface of the PCL microspheres. In the absence of these coatings no FPF could 

be detected in the TSI reflecting the high adhesion of SS to PCL (31).  

In this context we studied the influence of the particle size of spherical PCL carrier with 

reproducible surface on the dispersion of SS particles from the binary drug-polymer powder 

mixture. The relationship between the carrier size and FPF was determined by fabricating 

microspheres of PCL of four different approximate sizes with the average VMD of 25, 48, 

104 and 150 µm and then determining the dispersion of SS from them using the TSI.  

2. Materials and Methods 

2.1 Chemicals 

Micronized Salbutamol Sulfate (SS) of inhalation grade (Volume Median Diameter [VMD] 

5µm) was obtained from GlaxoSmithKline, Australia. Polycaprolactone (Mw 80,000 Da), 

polyvinyl alcohol (87-89% hydrolyzed, Mw 85,000-124,000 Da) and L-leucine were from 

Sigma Aldrich. MgSt was obtained from PCCA, Australia. Tween 80 and ammonium acetate 
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were purchased from Ajax Chemicals, Australia. HPLC grade methanol (LiChrosolv®) was 

supplied by Merck, Germany. 

2.2 Preparation of Polycaprolactone microspheres 

2.2.1 Using an overhead stirrer 

The microspheres were prepared by oil in water (o/w) solvent evaporation method (32). The 

polymer PCL was dissolved in 3mL of dichloromethane (DCM) at 10% and 15% 

concentration. This polymer solution was added dropwise into 40 mL of 1% w/v aqueous 

Polyvinyl Alcohol (PVA) solution. The emulsion was stirred with an overhead stirrer (IKA® 

RW 20 digital Labtek, Model RW20D) for 40 minutes under ambient pressure at 2000 rpm. 

Later the stirring was continued for further 20 minutes under reduced pressure on a rotary 

evaporator (Rotavapor R-210, BUCHI, Switzerland). Finally the microspheres were washed 

with deionized water, collected by filtration, and dried in a vacuum desiccator at room 

temperature. 

2.2.2 Homogenization 

The same emulsion technique was employed to prepare the microspheres as described above. 

The PCL polymer solution at 10% concentration was dissolved in DCM and this solution was 

added in the aqueous phase (1% PVA solution). This emulsion was stirred initially at a very 

high speed (≈8000 rpm or ≈15000 rpm) using a homogenizer (Heidolph DIAX 900, 

Germany) for 5 minutes. Then the stirring was continued using an overhead stirrer (IKA® 

RW 20 digital Labtek, Model RW20D) at 2000 rpm for 4 hours until all the DCM was 

evaporated from the emulsion. The hardened microspheres were later collected by filtration, 

washed with deionized water and dried in desiccator at room temperature. 
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2.3 Coating of microspheres 

Solution coatings of MgSt and leucine on polymer microspheres were carried out according to 

the procedure described in our recently published article (31). Briefly ethanolic solution of 

MgSt (1% and 2% w/v) was prepared with the aid of heat and the aqueous solution of leucine 

(1% and 2% w/v) was prepared in milliQ water. 10 mL of MgSt or leucine solutions were 

used to coat 4.0 g of polymer microspheres by stirring it for a period of 24 hours. Finally the 

coated microspheres were collected by filtration and dried in a vacuum desiccator at room 

temperature. 

2.4 Particle size measurement 

The particle size of the different batches of PCL microspheres was measured using the laser 

diffraction instrument (Malvern Mastersizer, Malvern Instruments Ltd, UK). The PCL carrier 

particles (400 mg) were dispersed with the aid of sonication in 5 mL of water along with 

Tween-80 for 5 minutes. This sonicated sample was added dropwise to the sample cell of a 

small volume dispersion unit containing 100 mL of distilled water. The sample was added 

until an obscuration between 15-30% was obtained. The size distributions and average 

particle size were measured from five replicates of the sample. The Volume Mean Diameter 

(VMD) determined from the output of the laser diffraction particle sizing was used as the size 

parameter to characterize the carrier size distributions. 

The average surface area of PCL microspheres was calculated, assuming a spherical 

geometry, from the VMD of particles determined by laser diffraction.  

 

2.5 Scanning electron microscopy (SEM)  

For surface morphological studies of the carrier particles and the drug-carrier mixture, 

samples were adhered onto aluminium stubs using double-sided carbon sticky tape and 
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sputtered with gold (BIORAD SC-500 Sputter coater). Several photomicrographs of the 

samples were taken at different magnifications using a SEM (FEI Quanta 200). 

2.6 Drug-Carrier mixture 

The interactive mixtures of SS (2.5%) and PCL microspheres in 5.0 g batches were prepared 

by a validated hand mixing method (33). The SS powder was placed between two layers of 

PCL powder in a glass test tube along with three ceramic beads of ca. 10 mm in diameter. The 

test tube was vigorously shaken by hand for 5 minutes to ensure proper mixing. The ceramic 

beads aids in the breaking up the agglomerates formed during mixing by providing a ball 

milling effect. The homogeneity of these mixtures was confirmed and later they were 

subjected to in vitro aerosol deposition tests. 

2.7 Homogeneity tests 

The homogeneity of each drug-carrier mixture prepared in Section 2.6 was determined by 

assaying for SS content. 20 x 20 mg samples were taken from the drug-carrier mixtures and 

dissolved in 10 mL of water. The UV absorbance of the samples was done in triplicate and the 

amount of SS in each mixture was quantified. The UV spectrum of SS in water was analyzed 

over a wavelength range of 190-400nm by a UV spectrophotometer to measure the 

wavelength of maximum absorbance (λmax). The Beer-Lambert calibration curve was prepared 

at 276 nm using concentrations ranging from 0-500 µg/ mL.  

2. 8 In vitro aerosol deposition 

Using a Rotahaler® (Glaxo Wellcome) DPI device, in vitro aerosol deposition of the powder 

formulations was determined by a TSI (Copley, UK). 7 mL of water was placed in stage one 

(S1) and 30 mL in stage two (S2) of the TSI. The air flow was drawn through the TSI using a 

vacuum pump (D-63150, Erweka, Germany) and the air flow rate was adjusted to 60±5 L/min 

at the mouthpiece, prior to each measurement. 
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The powder formulations were loaded (about 20.0 mg) into hard gelatin capsules (size 3, 

Fawns and McAllan Pty Ltd.; Australia). The filled capsule was inserted into the Rotahaler 

which was placed into a moulded mouthpiece attached to the TSI. The Rotahaler was twisted 

to release the powder into the body of the device and an air volume of 5 L (5 seconds at 60 

L/min) was drawn for each measurement. Each section (Inhaler, S1 and S2) was rinsed with 

water and the liquid was collected and volume was adjusted to 100 mL. The SS content was 

measured by HPLC analysis. Five replicates of each mixture were performed for TSI 

measurement. 

The recovered dose (RD) was the total amount of drug collected from the inhaler, S1 and S2. 

The emitted dose (ED) was the fraction of the RD delivered from the inhaler expressed as a 

percentage: 

100
21

RD

SS
ED  

The fine particle fraction (FPF) was defined as the fraction of the recovered dose deposited in 

the lower stage of TSI expressed as a percentage of RD. 

100
2

RD

S
FPF  

2.9 High Performance Liquid Chromatography (HPLC) 

Salbutamol Sulfate was analyzed by HPLC (Agilent HP1100) using a C18 column 

(µBondapak®, 3.9x300mm, Waters) and an UV Diode Array detector (Agilent) at a 

wavelength of 276 nm. A mixture of methanol and 0.2% w/v ammonium acetate solution 

(40:60) was used as a mobile phase at a flow rate of 1.0 mL/min by a HPLC pump (Quat 

pump, Agilent). An injection volume of 100µl was used. The retention time of SS was found 
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to be 4.3 minutes. An HPLC calibration curve was prepared from the peak area determined by 

integration over a concentration range of 0-100 µg/ mL.  

2.10 Statistical Analysis 

Comparison between different groups of FPF was performed by one-way analysis of variance 

(ANOVA) to ascertain statistical significance; p<0.05 was considered to be statistically 

significant.  

3. Results and Discussion 

3.1 Particle size and Morphology 

3.1.1 Salbutamol Sulfate (SS) 

The average VMD of the SS powder was found to be 4.5 ± 0.04 µm (Figure 1). The 

distribution showed that about 70% of the particles are below the size of 5µm. The SEM 

images showed that SS particles are flat and elongated and exists as cohesive powder (Figure 

2). Laser diffraction particle sizing has been used for measuring particle size based on the Mie 

theory which assumes that the particles are perfect spheres. However for non-spherical 

particles (i.e., SS particles), a feature of the actual particle is compared to the imaginary 

spherical particle (projected volume) referred to as “equivalent spheres”. Thus, to measure the 

size of a non-spherical/irregular shape, the technique of laser diffraction measures the 

projected volume of this particle and determines the diameter of an imaginary particle that is 

equivalent in volume. 

3.1.2 PCL microspheres 

PCL microspheres were fabricated using the oil-in-water emulsion technique. The PCL 

microspheres were prepared in four different sizes by varying the concentration of the 

polymer and the speed of the stirring (Table I). The PCL microspheres were coated with MgSt 
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and leucine.  The particle size distribution of the PCL microspheres is shown in Figure 3. The 

average VMD of the PCL microspheres were found to 25.5 ± 0.2µm, 48.2 ± 0.1µm, 104.4 ± 

0.4 µm and 150.3 ± 0.4 µm (We will refer to these samples as 26 µm, 48 µm, 100 µm and 150 

µm for brevity). The surface morphology of the PCL microspheres coated with MgSt and 

leucine was studied using SEM which showed that the PCL microspheres were spherical in 

shape and had irregular surface morphology (Figure 4 and Figure 5). Some crystals of MgSt 

appeared on the microparticles (Figure 4) are from the solution of 1% MgSt coating. The 

concentration of MgSt and Leucine in the particles shown in Figures 4 and 5, respectively is 

1%. It was expected  that MgSt would form a continuous thin layer on the surface of the 

microspheres; however, MgSt deposited in the form of crystals on the carrier surface (Figure 

4) due  to the evaporation of the ethanol solvent which was used to dissolve MgSt. However, 

with 1.0% leucine solution, the coatings were found to be uniform as opposed to the MgSt 

coatings (Figure 5). It is important to note that the crystallization of MgSt occurred more from 

2% MgSt solution coating compared to that of 1% MgSt solution (SEM data not shown in this 

paper). 

3.2 Interactive mixtures of SS and PCL carrier 

The coated PCL microspheres were dry-mixed with SS and the homogeneity of the mixtures 

was confirmed using the procedure described in Section 2.7. All the drug-carrier mixtures 

were found to be homogenous with accuracy greater than 99% and % Coefficient of Variation 

<1%. The drug-loaded PCL microspheres were characterized using SEM imaging which 

further confirmed that the drugs are adhered onto the surface of the coated PCL carrier 

(Figure 6 and Figure 7).  As can be seen in the SEM images, as the carrier size increased, 

there was increased number of the SS particles on the surface of the PCL carrier. This can be 

explained by the concept of particle number (N) which gives the number of particles per unit 

weight of the sample and is expressed by the following equation.  
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where, N is the particle number, d is the diameter of the spherical particle and ρ is the density 

of PCL (1.145 gm/cm
3
).  

It can be seen in Table II, as the size of the carrier particle increases, the particle number 

decreases. For each sizes of the carrier microspheres, the drug-carrier ratio was maintained 

constant (2.5%w/w). Hence for a fixed mass of drug, the mass of SS particles per unit area of 

carrier particles is more in larger size as compared with the small sized microspheres due to 

the reduction in the carrier particle number. Thus as the carrier size increases the mass of SS 

particles per unit area on the carrier surfaces also increases, which influenced the dispersion 

of SS from the carrier surface that has been explained in the sections below. 

3.3 Effect of carrier size on drug dispersion 

3.3.1 In vitro TSI deposition of SS from PCL carrier 

Four different sizes of the MgSt coated and leucine coated PCL microspheres were used as 

carriers to prepare homogenous mixtures with 2.5% w/w SS. The microspheres had different 

particle size distributions with VMD ranging from 25 to 150 µm. The FPF from these 

interactive mixtures was found to increase as the carrier size is increased. As the VMD 

increased from 25 to 150 µm, the FPF values increased from 3.6% to 13.1% for 1% MgSt 

coated PCL microspheres and from 5.3% to 20.4% for 2% MgSt coated PCL microspheres 

(Table II). Similarly, the FPF of the SS from leucine coated microspheres also increased 

ranging from 2.8% to 13.4% for 1% leucine coated microspheres and 3.2% to 13.9% for 2% 

leucine coated microspheres (Table II). The recovered dose of SS in the TSI was found to be 

85% to 98% and the emitted dose was found to range from 65% to 75%. The observed 

deposition of SS in Rotahaler (mouthpiece/adapter) was on an average 45% - 50% and 
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approximately 25% - 35%, for 25 µm and the higher sizes (50, 104, 150 µm) carriers, 

respectively. Thus the FPF of SS was found to be greater with the highest particle size of the 

carrier.  

The relationship between the FPF of SS from 1% and 2% MgSt coated PCL microspheres and 

the size of the microspheres is depicted in Figure 8. It can be seen very clearly that as the size 

of the carrier increased there is an increase in the FPF of the drug from both 1% and 2% MgSt 

coated PCL microspheres. The reason behind this has been explained extensively in Section 

3.3.2. There is also significant difference in the FPF of SS amongst the two concentrations of 

MgSt coatings (p<0.05, n=5). Similarly, the FPF of the drug from both 1% and 2% leucine 

coated PCL microspheres increased with the increase in the carrier size (Figure 9); however 

there was no significant difference in the FPF of SS amongst the two concentrations of 

leucine coatings suggesting that the FPF of SS is independent of the concentration of the 

leucine coatings (over the values studied of 1% and 2%, p>0.05, n=5). 

From Figures 8 and 9 it is seen that the FPF increases linearly with the particle size, d. A 

parameter that also increases linearly with d is the mass per unit area of the particles, given by 

ρd/6. A commonly measure parameter for particles is the specific surface area which is 6/ρd 

so the FPF scales inversely with specific surface area. 

 

where, k has units of cm
2
/g and is the slope of the plots in Figures 8 and 9.  

This gives a simple way of tailoring the performance of the dispersion system, by working 

with the particles having the lowest possible specific surface area. 
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3.3.2 Influence of inherent carrier size on dispersion 

It was observed that as the size of the carrier increased, there was a concurrent increase in the 

FPF of the drug. This occurs because of a potential difference in the mechanism in the way 

the drug detaches from the larger carriers as compared to the small sized carriers. 

There are two major mechanisms which govern the detachment of drug from the carrier 

surface i.e. detachment by the flow stream (fluid forces) and detachment by impaction 

(mechanical forces) (29, 34-35). When the flow stream has unobstructed path to access and 

remove the drug from the carrier surface, then the mechanism is called detachment by the 

flow stream (fluid forces). This mechanism occurs mostly on a relatively flat carrier surface 

with minimal asperities. Detachment by mechanical forces occurs when the collisions occurs 

between the carrier particles and the inhaler walls and in between the carrier particles. The 

geometry of the inhaler device has been reported to affect the extent of collisions occurring 

between the inhaler wall and the carrier particles. Collisions with the device or with other 

particles result in sudden acceleration of the large particles or agglomerates and these can be 

large enough to result in better drug dispersion. The DPI design parameters, which influence 

the effective dispersion of drug from the formulation include the geometry and the length of 

device mouthpiece, and the geometry and sizing of turbulence generating meshes (36-37). In 

this study a capsule based device, Rotahaler® has been used and it is well established that due 

to the design of this device the part of the capsule containing the drug powder experiences 

rotational motion in the airstream, which causes deagglomeration/dislodgement of particles 

after impacting on the turbulence grid for dispersion. The presence of the capsule in the 

Rotahaler was found to improve the FPF of drug by promoting the collision between the 

powder formulation and capsule (38). Thus the formulation containing large PCL 

microcarriers and SS particles might have experienced the collision and improved SS 

dispersion was observed.  
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Due to the collisions, there is a transfer of momentum which leads to the detachment of the 

drug from the surfaces. The momentum of any particle is dependent on the mass and the 

velocity of the carrier and as the larger particles will have greater mass there will be greater 

momentum transfer. The force of mechanical detachment will be directly proportional to the 

cube of carrier particle diameter (Force = Mass * Acceleration, Mass = Density * Volume and 

Volume = 4/3πr
3
). The larger particles will have greater mass, which will in turn lead to 

generation of dominant detachment forces due to high impaction. Hence as the magnitude of 

the detachment forces increases with the carrier size, there is more detachment of drugs from 

the carrier surface and consequently increase in the FPF of the drug. Therefore the larger 

carriers will increase the mechanical detachment forces due to the stronger particle-inhaler 

and particle-particle collisions (29) for the same flow velocity. This was further confirmed in 

a study by Concession et al (39) who demonstrated the relationship between the impact forces 

and particle detachment. They found that as the diameter of the carrier particles (lactose or 

maltodextrin) decreased, greater magnitude of forces were required to separate the SS 

particles from the surface (39).  From the SEM images (Figures 6C, 6D, 7C and 7D), it has 

been seen that drug agglomerates have adhered to the large carriers probably due to increased 

interactions between drug particles on reduction in surface area.  The drag forces encountered 

by the larger drug particles or drug-drug agglomerates adhered on the larger carriers in the 

turbulent air stream and particle-particle or particle-device wall collision might have  

contributed to  significant detachment force (21, 40), which in turn contributed to the better 

performance of the larger PCL carriers in terms of FPF as compared to their smaller 

counterparts. The larger drug particles or drug agglomerates may experience the strong drag 

force due to the differential velocity between the airflow and the higher mass of large carriers.  

Although the surface free energy of different sizes PCL carriers was not determined, it can be 

assumed that the surface energy of carriers has an impact on the adhesional properties and the 
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detachment of SS particles from the carrier, based on research on lactose particles (41)(Traini 

and Young, 2008; Drug Development and Industrial Pharmacy, 34: 992-1001). We are 

undertaking further studies using inverse gas chromatography to determine the effect of 

surface energy on FPF in PCL carriers. . The increase in surface energy results in higher 

adhesive forces between drug and carrier particles. As the particle size decreases, cohesive 

and frictional resistance both increase due to more points of contact arising from the increase 

in surface area-to-volume ratio (42). In addition, a large surface area with decreased particle 

size renders the particles subject to greater potential for charging and moisture uptake. 

Moreover, the strong van der Waals forces  (43-44) between drugs and carriers influenced the 

drug detachment from the carrier surface and led to a decrease in drug dispersion from the 

smaller PCL microparticles. . Hence all these factors might have contributed to the decreased 

detachment of the drug from the smaller carrier as compared to the larger carrier. Thus as the 

mechanical forces increased with the larger carrier particles, the role of the size of the carrier 

particles was confirmed in improving the dispersion performance of the drug from the carrier. 

We found that increasing the size of PCL carrier increased the aerosol performance of the SS 

particles. The maximum particle size employed in this study was 150 µm and it is not known 

whether the particle size higher than 150 µm will further improve the drug delivery. Further 

work is being carried out on the use of carrier sizes greater than 150 µm to determine the 

optimum carrier size and the subsequent dispersion of SS from the carriers with increased 

sizes and the outcome is under the consideration for another publication. As the carrier mass 

continues to increase it will encounter reduced velocity due to its increasing mass which can 

hamper the drug dispersion. As a consequence, it is speculated that further increase in the size 

of the microspheres may inhibit the dispersion of drug from the carrier which requires further 

investigations.  
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4. Conclusion 

The work presented here emphasized the importance of the inherent size of the spherical PCL 

carrier in the dispersion of the SS from the carrier surface in DPI formulations. A clear 

relationship between the carrier size and drug dispersion from the interactive mixtures was 

observed. The smaller size of the carrier resulted in lower FPF which was increased up to 

four-fold by increasing the carrier size. The SS dispersion from a number of formulations 

containing various sizes of PCL carriers mixed with a fixed amount (2.5%w/w) of SS was 

measured. As the size of the PCL carrier increased, the number of the particles decreased. 

Thus for a fixed mass of drug particles in a formulation, the mass of SS particles per unit area 

of PCL carriers is higher in formulations containing the larger size carriers compared with the 

formulation containing smaller sized PCL carriers. This leads to an increase in the mass of SS 

particles per unit area of larger carriers which produced higher FPF of SS. In addition, as the 

carrier size increased, there was an increased mechanical force, which resulted in efficient 

detachment of the SS particles from the carrier surfaces leading to significant increase in the 

FPF of SS.  
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Table I Parameters for fabrication of microspheres of various sizes 

Volume median Diameter 

(VMD) (µm) 

Concentration of polymer 

(% w/v) 

Speed of stirring 

(rpm) 

25  10 15,000 

48 10 8000 

104 10 2000 

150 15 2000 
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Table II % FPF of SS from 1% and 2% MgSt-coated and leucine-coated PCL 

microspheres of four different sizes having different surface areas 

 

VMD of PCL 

microspheres 

(µm) 

 

Surface 

Area 

(cm
2
) 

 

Particle 

number 

(N) 

(in 0.020 

gm) 

 

Mass of SS 

particles per 

unit area of 

PCL 

particles 

(mg) 

 

% FPF 

 

1%  

MgSt 

coated 

 

2%  

MgSt 

coated 

 

1% 

Leucine 

coated 

 

2% 

Leucine 

coated 

 

25 1.9 x 10
-5

 2.4 x 10
6
 0.011 

 

3.6 ± 0.3 

 

5.3 ± 0.9 

 

2.9 ± 0.3 

 

3.2 ± 0.3 

 

48 7.2 x 10
-5

 3.0 x 10
5
 0.023 

 

4.9 ± 0.3 

 

7.2 ± 2.1 

 

4.7 ± 0.8 

 

4.6 ± 0.3 

 

104 3.4 x 10
-4

 2.9 x 10
4
 0.050 

 

11.4 ± 1.0 

 

15.4 ± 1.6 

 

11.3 ± 1.1 

 

11.3 ± 0.8 

 

150 7.0 x 10
-4

 9.8 x 10
3
 0.072 

 

13.1 ± 0.8 

 

20.4 ± 2.7 

 

13.4 ± 0.5 

 

13.9 ± 1.4 
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Figure 1 Particle size distribution of SS, n=5 

 

 

 

Figure 2 SEM images of SS powder 
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Figure 3 Particle size distribution of four different batches of PCL microspheres, n=5 
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Figure 4 SEM images of PCL microspheres coated with MgSt of various sizes: (A) 25 µm, 

(B) 48 µm, (C) 104 µm and (D) 150 µm 
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Figure 5 SEM images of PCL microspheres coated with leucine of various sizes: (A) 25 µm, 

(B) 48 µm, (C) 104 µm and (D) 150 µm 
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Figure 6 SEM images of interactive mixtures of 2.5% SS and PCL microspheres coated with 

MgSt of various sizes: (A) 25 µm, (B) 48 µm, (C) 104 µm and (D) 150 µm 
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Figure 7 SEM images of interactive mixtures of 2.5% SS and PCL microspheres coated with 

leucine of various sizes: (A) 25 µm, (B) 48 µm, (C) 104 µm and (D) 150 µm 
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Figure 8 The relationship between the FPF of SS and the size of the PCL microspheres 

coated with 1% and 2% MgSt solution respectively, n=5 
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Figure 9 The relationship between the FPF of SS and the size of the PCL microspheres 

coated with 1% and 2% leucine solution respectively, n=5 

 


