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Abstract:  

The interaction and relationship between the global warming and the thermal performance 

buildings are dynamic in nature. In order to model and understand this behavior, different 

approaches, including keeping weather variable unchanged, morphing approach and diurnal 

modelling method, have been used to project and generate future weather data. Among these 

approaches, various assumptions on the change of solar radiation, air humidity and/or wind 

characteristics may be adopted. In this paper, an example to illustrate the generation of future 

weather data for the different global warming scenarios in Australia is presented. The sensitivity 

of building cooling loads to the possible changes of assumed values used in the future weather 

data generation is investigated. It is shown that with ± 10% change of the proposed future 

values for solar radiation, air humidity or wind characteristics, the corresponding change in the 

cooling load of the modeled sample office building at different Australian capital cities would 

not exceed 6%, 4% and 1.5% respectively. It is also found that with ±10% changes on the 

proposed weather variables for both the 2070-high future scenario and the current weather 

scenario, the corresponding change in the cooling loads at different locations may be weaker (up 

to 2% difference in Hobart for ±10% change in global solar radiation), similar (less than 0.6% 
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difference in Hobart for ±10% change in wind speed), or stronger (up to 1.6% difference in 

Hobart for ±10% change in relative humidity) in the 2070-high future scenario than in the 

current weather scenario.  

 

 

Keywords: Global warming, building cooling load, building simulation, future weather data, 

sensitivity study 

 

 

1.  INTRODUCTION 

 

The cycling interaction between global warming and the buildings is of dynamic nature (Guan, 

2009). Global warming would generally lead to more uses of air conditioning, which leads to 

more greenhouse gas emissions and then contributes further to global warming process. In order 

to understand this cycling interaction, various approaches have been adopted to obtain both the 

knowledge of how significant the built environment has contributed to the process of global 

warming, and how significant the global warming would impact on building performance.  

 

In order to predict the change of building energy use due to global warming, different approaches 

may be used, ranging from the method of empirical statistic data (e.g. degree-day method) 

(Amato et al, 2005, Cartalis et al, 2001, Mirasgedis et al, 2007, Rosenthal et al., 1995; Ruth and 

Lin, 2006, Sailor, 2001, Sailor and Pavlova, 2003, Zmeureanu and Renaud, 2008) to the more 

fundamental method of building energy simulation models (Aguiar et al., 2002; Crawley, 2003; 

Crawley, 2007; Cullen and Lea, 2001; Degelman, 2002; Frank, 2005; Guan, 2009b; Scott et al., 
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1994; and Sheppard et al., 1997). In both these approaches, a set of future forecast climatic data 

would be necessary. 

 

Different methods have been used to project and generate future weather data, with various 

assumptions embedded. From simple to complex, they may be classified as: extrapolating 

statistical method, imposed offset method, stochastic weather model and global climate models 

(Guan, 2009a). Among these four methods the first two methods (the extrapolating statistical 

method and the imposed offset method) are essentially modified from historically observed 

weather data, while the last two methods (the stochastic weather model and the global climate 

model) are based on fundamental physical models, using the historically observed weather data 

only for the purpose of model calibration. 

 

In this paper, sensitivity of building cooling loads to the assumptions adopted in the weather 

model for the generation of future climatic data is investigated. After this introduction, the 

methodology used in the study is presented. An application of using the effective framework 

(Guan, 2009a) to project future weather data is then demonstrated for eight capital cities in 

Australia. Further sensitivity test of the possible impact of assumptions adopted in the future 

weather data generation on building cooling load are discussed. These include the possible 

changes in air humidity, solar radiation and wind characters.   

 

2. METHODOLOGY  
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In order to investigate the sensitivity of building cooling loads to the assumptions adopted in 

future weather data generation model, the building simulation technique is employed. The 

method of building simulation often involves the selection of building simulation engine, 

selection of sample building model, and the choice of weather data for the study. In addition, the 

study locations covered in this study are also highlighted.  

 

Building simulation tool 

 

The DOE-2.1E building simulation software will be used in this study to model building energy 

performance. DOE-2.1E is a fully dynamic building simulation package developed by Lawrence 

Berkeley National Laboratory in the USA (Winkelmann et al, 1993). It has been through 

extensive verification process and has also been used by many countries for developing their 

national building energy codes (LBNL, 2010). Particularly, DOE-2.1E is able to simulate the 

interactions between the thermal loads in the building and the thermal mass of the building 

structure, and to estimate the dry bulb temperature and heating/cooling load for individual zones 

of modelled building. In this paper, it has been assumed that DOE-2.1E program itself is 

correctly coded and can accurately model the interaction between building and external climate. 

 

Sample building model 

 

The sample building chosen for this study is an air-conditioned, square shape, ten storey office 

tower with a basement carpark, which was recommended by Australian Building Codes Board 

(ABCB) to represent the typical office building found in the central business district (CBD) of 
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the capital cities or major regional centres in Australia (ABCB, 2001). As described in Guan 

(2009b), this is a concrete office building with a footprint dimension of 35 x 35 m² and insulation 

value of R2.0 batts for roof and R1.5 batts for external wall. It is also assumed that window to 

wall ratio is 0.5 and internal load densities are 10 m² per person for occupants, 15 W/ m² for 

lighting and 15 W/ m² for the plug load. The building physical properties used in the hypothetical 

building model are in line with the design parameters used by the ABCB for the study of energy 

modeling of office building for climate zoning, and for the reviewing of the energy saving 

features of buildings in Australia (ABCB, 2002). 

 

Current and future weather data 

 

The approach of using single reference year weather data (i.e. Test Reference Year or TRY 

weather data), which is selected to represent the average weather patterns of multi-year dataset 

for a specific location, is adopted in this study. Based on the predicted climate change scenarios, 

the current TRY weather data are modified by following the effective framework (Figure 1, 

Guan, 2009a) to generate the future weather data for each capital city for Australia. An example 

to illustrate the procedure of this method will be presented in Section 3.  

 

Insert Figure 1 here 

 

Study locations 
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All eight capital cities across Australia, including Adelaide, Brisbane, Canberra, Darwin, Hobart, 

Melbourne, Perth and Sydney, will be considered in this study. These capital cities not only 

possess the majority of Australian office buildings, but also reflect the wide climate conditions of 

hot humid summer, warm winter (e.g. Darwin), warm humid summer, mild winter (e.g. 

Brisbane), hot dry summer with cool winter (e.g. Perth), warm summer with cool winter or 

temperate climate (e.g. Sydney, Melbourne and Adelaide) and mild to warm summer with cold 

winter or cool temperate climate (e.g. Hobart and Canberra). 

 

3. METHOD OF GENERATING THE FUTURE WEATHER DATA 

 

In this section, an example to illustrate the detailed procedures to generate future hourly weather 

data for the different global warming scenarios in Australia is presented. This is achieved by 

following the effective framework shown in Figure 1. It can be seen that in this method, two sets 

of input data are required, i.e. the current reference year weather data and the projected change of 

weather variables due to global warming. The advantages of this method is that depending on the 

provision of information in the prediction of future changes in weather variables, either the 

method of retaining current weather variable unchanged, or imposed offset method or diurnal 

modeling method may be employed to generate the future hourly weather data. That is, the 

current reference year weather data contained in TRY (Test Reference Year) / TMY (Typical 

Meteorological Year) is either used directly, or used as the base for further modification, or used 

for the calibration of diurnal modelling of meteorological parameters. This therefore represents a 

more comprehensive and holistic approach to convert the available weather data and climatic 

information to a format suitable for building simulation study. 
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Input data  

 

Only two sets of input data are required in the current method, including the current reference 

year weather data and the projected change of weather variables due to global warming (e.g. the 

projected temperature increase). In most cases, both of them may be readily available or easily 

accessed. For instance, the typical reference year weather data is often currently available for 

building simulation practice. The projected change of weather variables under climate change is 

also normally available from either the Data Distribution Centre (DDC) of the Intergovernmental 

Panel on Climate Change (IPCC, http://www.ipcc-data.org) or relevant national research 

organizations in each country. However, it is noted that the completeness and resolutions of 

predicted weather variables may be varied with different climate models selected for different 

countries.   

 

 Current reference year weather data 

 

A typical reference year is defined as a whole calendar year, which is intended to represent the 

long term weather patterns at a given location. The effectiveness of a typical reference year, 

however, relies on how it is selected and what sort of data it is based on. Generally, a typical 

reference year may be classified into two categories.  The first type is to use the year selected to 

represent the average weather patterns that would typically be found in a multi-year dataset for a 

particular location. It is a whole natural calendar year data derived from observation at a specific 

location by the national weather service or meteorological office.  

http://www.ipcc-data.org/
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In parallel, the second type of weather data instead consists of linked monthly segments of 

weather data selected from the (different-year) historical meteorological records. The selected 

meteorological data are identified by the closeness of the cumulative distribution functions.  For 

this purpose, Finkelstein-Schafer statistic method, for example, may be used (Levermore, 2006). 

The general view is that selection based on linked months (the second type) has a better chance 

of forming a "year" close to the long term average (Adelard, et al, 2000). It has also been found 

that the careful uses of the representative climate data are particularly important in computer 

simulations of building designs and their resultant energy needs (Degelman, 2007). 

 

In this study, the current TRY weather data for all the state capital cities around Australia are 

supplied by ACADS-BSG, a specialist consulting company based in Melbourne, Australia. The 

weather variables contained in this Australian climatic database include dry bulb temperature 

(DBT), humidity ratio (w), atmospheric pressure (P), wind speed and direction, cloud cover, 

global solar irradiance on a horizontal plane, diffuse solar irradiance on a horizontal plane and 

direct solar irradiance on a plane normal to the beam. 

 

 Projected change of weather variables due to global warming 

 

Methods of predicting climate change have been the subject of intense research in recent years, 

and they are now able to yield reasonable estimates of generalised future values (such as annual 

means) together with the indication of likely future variability (Levermore & Keeble, 1998). 

These predictions are typically based on models of global climate “forced‟ by a presumed finite 
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or continuing change in atmospheric carbon dioxide concentration. Estimations of trends over 

large areas are also generally considered more accurate than those over small areas.  

 

Unlike most other scientific work, such predictions cannot be validated, since they do not relate 

to a currently replicable event. However, for different climate parameters, there are different 

levels of confidence (Table 1). Among them, the projection of change in dry bulb temperature is 

claimed to have the greatest confidence among the other key weather variables considered for the 

building simulation. Indeed, unlike projection of future dry bulb temperature change, which can 

often be seen in many climate change brochures, it is also noted that the projection of possible 

change in air humidity, solar radiation or wind characteristics is limited and much less consistent 

(Sailor, 2001).  

 

Insert Table 1 here 

 

For Australia, the information on the likely future global warming is provided by the 

Government research agency CSIRO (Commonwealth Scientific & Industrial Research 

Organization). The projected seasonal dry bulb temperature change for the years of 2030 and 

2070 is shown in the Figure 2 (CSIRO, 2001), which is also interpreted and tabulated in Table 2. 

The years of 2030 and 2070 are used to represent respectively the short and long term of future 

climate change scenarios. The so-called „Low‟ and „High‟ scenarios for each projected year have 

been used to span the most likely range of possibilities. This is due to the limitation of current 

climate models and the uncertainties of future GHG emissions, which are subject to the future 

population growth, technological change, and social and political behaviour, etc. 
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Insert Figure 2 here 

Insert Table 2 here 

 

Compared with the more recently released CSIRO projections (CSIRO, 2007), it has been found 

that the spatial patterns of temperature change remain similar, but a narrower range of warming 

is predicted by the new updated 2007 model than that determined in 2001. For example, a new 

range of 1 to 5 ºC is now projected in comparison with previous projection of 1 ºC to 6 ºC for 

2070. This is partly attributed to the improved consistency between different models. 

 

Preparation of future hourly weather data  

 

In this study, only the projected change in dry bulb temperature (DBT) is assumed to be 

available, while the possible changes of other weather variables, including air humidity, solar 

radiation and wind characters, are ignored in the first place.  

 

The reasons for this assumption are as follows: 

 The information on the projection of future dry bulb temperature change has relatively high 

confidence and can often be seen in climate change brochures;  

 When the method of empirical statistic data (e.g. degree-day method) is employed, only the 

potential increase in temperature is effectively considered; 

 When the building simulation method is used to predict building performance under future 

climate change, the potential increase in temperature is always the key parameter to be 



  

   11 

considered, while various assumptions may be made for other climatic parameters (Guan, 

2009a).  

 

The imposed offset method as shown in the effective framework (Figure 1) is also chosen for this 

study to generate future hourly DBT data. This means that only the projected temperature change 

is imposed on to the current test reference year (TRY) weather data, while the relative humidity, 

solar radiation and wind speed are assumed to remain at the current level. An example of the 

application of this method to the different global warming scenarios in Australia is also presented 

below. Only the dry bulb temperature (DBT) and relative humidity (RH) are illustrated here. 

 

 Dry bulb temperature 

 

Based on the projected seasonal temperature change shown in Figure 2 and Table 2, the imposed 

offset method, or morphing approach (Belcher et al, 2005) can be used to modify the current test 

reference year (TRY) weather data for each site, through a constant temperature increase for 

every hour within each season as expressed in equation 1: 

 

 Tn(i) = To(i) + ∆T(i) (1) 

 

where 

 Tn – hourly dry bulb temperature for future climate (°C) 

 To – hourly dry bulb temperature at current climate (°C) 

 ∆T – hourly predicted temperature increase (°C) 
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By this way, the projected seasonal temperature changes are incorporated to the current reference 

year weather data to reflect the effect of potential future global warming. For a specific study 

location, as shown in Table 2, ∆T is varied with different seasons and with different future 

climate scenarios. To is the hourly dry bulb temperature from the current test reference year 

which is only varied with different locations. For each site there will be four future climate 

scenarios, called 2030 Low, 2030 High, 2070 Low and 2070 High scenarios. If it is preferred, the 

seasonal prediction could also be converted to monthly prediction using the interpolating 

calculation method (BRANZ, 2007). 

 

The distributions of percentage of hourly outdoor temperature (DBT) for the different climate 

scenarios are shown in Figure 3. It can be seen that using this method, all four future climate 

scenarios would have similar distribution pattern with that of current TRY weather data. This is 

consistent with the comparison between cold and hot years weather data (Guan, 2007). This 

result also indicates that the similar diurnal temperature cycle has been retained in this model. It 

is also noted that the extreme part of temperature (the first and last 10% to 20%) is subject to 

most of the changes for the different future climate scenarios, while for the middle part (20% to 

80%) the distribution lines are closely in parallel, which indicates that a similar distribution 

profile exists between the different climate scenarios. It also seems that for the middle part, there 

is nearly a linear relationship between outdoor dry bulb temperature and the cumulative 

percentage of hours per year. 

 

Insert Figure 3 here 
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 Air humidity 

Since the possible change in air humidity is ignored in this paper, as a first approximation, the 

relative humidity, instead of absolute humidity, may be assumed to remain unchanged to allow 

for the possible increase of evaporation due to global warming (Sturman & Tapper, 2005).  

 

In the test reference year (TRY) weather file, the information regarding to the air humidity is 

typically represented by the humidity ratio (Wo). In order to calculate the future new humidity 

ratio (Wn), the standard meteorological formulas, which can be found in ASHRAE handbook 

(ASHRAE, 2009) and are often used to create psychrometric charts, are used here for the 

conversion between relative humidity (RH) and humidity ratio (W). This procedure may be 

summarized as follows: 

 

First, calculate the existing relative humidity (RHo) at the given dry bulb temperature (To), 

humidity ratio (Wo) and atmospheric pressure (Po) 

 

 RHo(i) = f (To, Wo, Po)i (2) 

 

Because the new relative humidity (RHn) and atmospheric pressure (Pn) are assumed to remain 

unchanged 

 

 RHn(i) = RHo(i) (3) 

 Pn(i) = Po(i) (4) 
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So the new humidity ratio (Wn) can be recalculated as  

 

 Wn(i) = g (Tn, RHn, Pn)i (5) 

 

where 

 Tn – hourly dry bulb temperature for future climate (°C) 

 RHn – hourly relative humidity for future climate, dimensionless 

 Wn – hourly humidity ratio (or absolute humidity) for future climate (kg/kg dry air) 

 Pn – hourly atmospheric pressure for future climate (Pa) 

 To – hourly dry bulb temperature at current climate (°C) 

 RHo – hourly relative humidity at current climate, dimensionless 

 Wo – hourly humidity ratio (or absolute humidity) at current climate (kg/kg dry air) 

 Po – hourly atmospheric pressure at current climate (Pa) 

 

It may be noted from above that atmospheric pressure has also been assumed to remain 

unchanged in this study. This assumption is based on the analysis of ten year historic climatic 

data, which has found that there is no clear correlation between hourly variations of atmospheric 

pressure and air temperature (Guan et al, 2007). By comparing atmospheric pressure between the 

hottest and the coldest years in the ten year period, it has also been found that there is no 

significant change between them (Guan, 2007). This may be because although the air 

temperature and moisture level can alter the atmospheric pressure at any given altitude, the 

altitude still actually exerts the dominant influence.   
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The distribution of percentage of hourly outdoor air humidity ratio for the different climate 

scenarios is shown in Figure 4. It can be seen that the differences of air humidity ratio between 

different climate scenarios has become more significant with the increase of cumulative 

percentage of hours. This indicates that the higher the outdoor air temperature, the more 

seriously the air humidity will be affected by the possible increase of the air temperature. This 

appears to be reasonable, given that the higher the air temperature, the faster the water would 

evaporate and the higher the ability of air to hold water vapor. 

 

Insert Figure 4 here 

 

Using the above future weather data, the energy performance and indoor thermal environment of 

the sample office building have been projected under various future climate scenarios and have 

been reported by Guan (2009b). It was found that if the annual average temperature increase is 

over 2°C, then the risk of current office buildings subject to overheating will be significantly 

increased. In addition, it was also found that for existing buildings designed using current climate 

condition, the increase of building cooling load for Australia is typically 2-3% for 2030 Low 

scenario, 9-14% for 2030 High scenario, 5-8% for 2070 Low scenario and 27-47% for 2070 

High scenario. 

 

4. SENSITIVITY OF BUILDING COOLING LOAD TO THE ASSUMPTIONS  
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Since the sky cloudiness, the rate of water evaporation and wind character could change with 

global warming, the impact of the assumption to retain current level of solar radiation, relative 

humidity and wind speed would therefore need to be investigated. It is noted that only two 

extreme climate scenarios, the current climate and the 2070 High scenario, are used in this 

sensitivity study. It is believed that the behaviour of the other three climate scenarios, called 

2030 Low, 2030 High and 2070 Low, can be estimated from the results of these two extremes. 

Also for this sensitivity study, only the building cooling load is studied. This is because: 

 

 With global warming, the heating load will be reduced and the cooling load will be 

increased. Therefore, cooling energy is the main contributor to the possible increase of 

total energy use in office buildings. 

 Office buildings are typically internal-load dominated. The heat load generated by internal 

load often provides more heat than that an occupied office space would require during 

most time of the year, particularly for temperate climate in Australia. Therefore, the energy 

used to offset the cooling load is often much more significant than that for the heating load. 

 

In total, there are 128 simulation runs performed for this sensitivity study, with 32 for solar 

radiation (8 locations x 2 weather scenarios x 2 cloud cover levels), 64 for relative humidity (8 

locations x 2 weather scenarios x 4 humidity levels), 32 for wind speed (8 locations x 2 weather 

scenarios x 2 wind speeds). 

 

Solar radiation 
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Accurate projection of the changes in solar radiation due to increased cloud cover from 

greenhouse gases is difficult. Changes in cloud cover associated with global climate change, and 

how such cloud-cover changes interact with a change in climate (i.e., cloud feedback), remain 

one of the most challenging aspects of future climate change research (Croke et al, 1999). In 

order to test the sensitivity of building cooling load affected by the solar radiation, in this paper, 

the level of cloud cover is uniformly increased/decreased by one level from the current reference 

year. Through DOE-2 weather processor, the consequent change in global solar radiation (GSR) 

is then calculated. It is found that the resulted change in GSR is varied from the smallest change 

of 8.5% in Perth to the largest change of 19.3% in Hobart. 

 

The effect of change in GSR on the building cooling load for both current and 2070-High 

weather scenarios are shown in Figure 5 (a) and (b) respectively. By comparing the slopes of 

lines for different locations in the same weather scenario and the same location in the different 

weather scenarios in Figure 5, it can be found that the effect of change in GSR on the building 

cooling load would be weaker at a hotter place and greater at a cooler place. This is reasonable 

because if every condition is the same except for air temperature, then for a hotter place the 

portion of solar radiation contributing to the building cooling load would be smaller, which 

would mean that its influence on the percentage of change in total building cooling load would 

be relatively weaker. 

 

Insert Figure 5 here 

 



  

   18 

If the (absolute) change of building cooling load is plotted against the percentage of change in 

GSR (Figure 6), it can be found that there is an extremely good linear correlation between them, 

with R
2
 value (the coefficient of determination) being 0.9952 and 0.9948 for current and 2070-

high weather scenarios respectively. This indicates that the effect of percentage of change in 

GSR on the absolute change in building cooling load is somehow independent of both localities 

and weather scenarios. This is consistent with the phenomenon shown in Figure 5 which 

indicates that the hotter the place, the less percentage change of the building cooling load. The 

comparison of trendlines between the current and 2070-high weather scenarios in Figure 6 shows 

that they are almost overlapped with each other. 

 

Insert Figure 6 here 

 

Relative humidity 

 

Based on an analysis of ten years historic weather data for all the capital cities in Australia, it has 

been found that there is approximately a linear relationship between dry bulb temperature (DBT) 

and air relative humidity (RH) (Guan et al, 2007). With four degree temperature variation, the 

change in air relative humidity may be around 20%. Therefore, the effect of ±10 to 20% of 

variation in RH from the base value is examined in this paper to take account of possible 

dryer/wetter climate around different cities in Australia.  It is noted that the hourly change of RH 

may be limited in the high RH range, as the RH would never go above 100%. When the air 

reaches saturation, the water vapour would start to be condensed out. Therefore, when increasing 
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RH by 10 to 20%, the increase of absolute humidity may be less than 10 to 20%, if the RH for 

current weather scenario has already reached higher than 80%. 

 

The effect of change in relative humidity on the building cooling load is shown in Figure 7. It 

can be seen that there is a nearly linear relationship between the change of RH and its effect on 

the building cooling load. With a decrease of RH, the building cooling load would also decrease. 

It also appears that the effect of change in RH on the building cooling load varies from one place 

to another. The hotter the place, the stronger effect of change in RH on the building cooling 

loads.  

 

Insert Figure 7 here 

 

Compared with the current weather scenario, the difference between different cities becomes 

smaller for the 2070 high weather scenario. It is also interesting to note that although the largest 

effect of RH on building cooling load has almost remained unchanged in Darwin for both 

weather scenarios, the effects in other cities are actually more significant for the 2070-high 

weather scenario than the current weather scenario, getting closer to the effect in Darwin. This 

may indicate that the impact of variation in RH on the building cooling load would become more 

significant with global warming scenarios.  

 

Wind speed 
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It is generally accepted that the influence of wind speed on thermal design load and building 

energy consumption are relatively less important, except for in locations where severe wind 

conditions predominate. The effects of wind data on thermal designs and energy analysis of 

buildings are also difficult to define and quantify (Lam, et al, 2005). Therefore, in this paper, an 

arbitrary ± 10% of change in wind speed is chosen for the sensitivity study of wind speed on the 

building cooling load.  

 

The effect of change in wind speed on the building cooling load is shown in Figure 8. It can be 

seen that there appears to be a good linear relationship between the change in wind speed and the 

change in building cooling load. The greater the wind speed, the less building cooling load would 

be required. This appears to be reasonable, given that the higher the wind speed, the more heat 

would be lost from the building envelope.  

 

Insert Figure 8 here 

 

It is also noted that the effect of wind speed on the building cooling load is quite weak. With 

10% of variation in wind speed, the change in building cooling load would be less than 1.5% for 

the current weather scenario. Compared with the current weather scenario, it is also noted that 

the effect of change in wind speed on the building cooling load would be even smaller for the 

2070 high weather scenario. This may indicate that with the global warming weather scenarios, 

the variation in wind speed would have less impact on the building cooling load than the current 

weather scenario.   
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In contrast with mechanically cooled building as studied in this paper, for natural ventilation 

buildings, the data of both wind direction and speed can be very important and would have a 

significant implication on building design, especially in the calculation of ventilation air 

exchange and the possible infiltration (Guan, 2008). 

 

Overall findings from the sensitivity study 

 

In summary, it has been found from the above sensitivity study that the relationship between 

building cooling load and the changes of the weather variables of solar radiation, relative 

humidity or wind appears to be reasonably linear. By comparing the effect of change in global 

solar radiation (sky cloudiness), air relative humidity and wind speed, it has been found that the 

change in global solar radiation has the greatest effect on the building cooling load, while the 

wind speed the least. With ± 10% change of each weather variable, the change in sample 

building cooling load would be less than 6% for solar radiation, 4% for relative humidity and 

1.5% for wind speed. 

 

It is shown that compared with the current weather scenario, in the 2070-high future scenario, the 

impacts of such changes on sample building cooling load would vary from weak, similar, to 

strong for different weather variables at different locations. At a hotter place, the relative effect 

of change in solar radiation on the building cooling load would be weaker in comparison with 

that at a cooler place. This is in contrast with the effect of relative humidity. The effect of wind 

speed on the building cooling load is rather weak. 
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However, it is also noted that this result may be subject to the influence of the building size and 

type. It would be normally expected that smaller buildings, with their higher surface-to-volume 

ratio, would be more significantly affected by insolation and wind change. Therefore, it is 

stressed here that because the impact of specific weather variable on building performance would 

vary for different types of building design at different locations, individual sensitivity test of the 

implication of each assumption on the study building is needed to show the extent of its possible 

impact on building performance. This is crucial for the success of impact study of climate change 

on a certain type of building design.       

 

5. CONCLUSIONS  

 

Greenhouse gas emissions and associated global warming is a significant concern for the world 

community. In order to conduct quantitative analysis of the impact of global warming on the 

built environment, the provision of suitable forecast weather data are often necessary. In this 

paper, an example to generate future weather data for the different global warming scenarios in 

Australian capital cities has been presented. The sensitivity of building cooling loads to the 

possible changes of assumed values adopted in the future weather data generation is investigated. 

 

It has been shown that with ± 10% change of the proposed future values for solar radiation, air 

humidity or wind characteristics, the corresponding change in the cooling load of the modeled 

sample building is predicted to be less than 6% for solar radiation, 4% for relative humidity and 

1.5% for wind speed. It has also been found that with these ±10% changes on the proposed 

weather variables, the corresponding change in the cooling loads at different locations may be 
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weaker (up to 2% difference in Hobart for ±10% change in global solar radiation), similar (less 

than 0.6% difference in Hobart for ±10% change in wind speed), or stronger (up to 1.6% 

difference in Hobart for ±10% change in relative humidity) in the 2070-high future scenario than 

in the current weather scenario. These results may be subject to the influence of the building size 

and type. 
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Table 1: List of climate and associated scenario variables, ranked subjectively in decreasing 

order of confidence (Hulme and Sheard, 1999). 

Climate variable Confidence 

Atmospheric CO2 concentration High 

Global –mean sea–level  

Global –mean temperature 

Regional seasonal temperature 

Regional temperature extremes 

Regional seasonal precipitation and cloud cover 

Regional potential evapotranspiration 

Changes in climatic variability  

(e.g. E1 Nino, daily precipitation regimes) 
Low 

Climate surprises  

(e.g. disintegration of the West Antarctic Ice Sheet) 

Very low or unknown 
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Table 2: The projected seasonal temperature change for years 2030 and 2070 

 

 

  Summer Autumn Winter Spring 

  2030 2070 2030 2070 2030 2070 2030 2070 

Location Low High Low High Low High Low High Low High Low High Low High Low High 

Adelaide 0.3 1.7 0.8 5.2 0.3 1.7 0.8 5.2 0.3 1.7 0.8 5.2 0.3 1.7 0.8 5.2 

Brisbane 0.3 1.7 0.8 5.2 0.3 1.7 0.8 5.2 0.3 1.7 0.8 5.2 0.3 1.7 0.8 5.2 

Canberra 0.4 2 1 6 0.3 1.7 0.8 5.2 0.3 1.7 0.8 5.2 0.3 1.7 0.8 5.2 

Darwin 0.3 1.7 0.8 5.2 0.4 2 1 6 0.4 2 1 6 0.4 2 1 6 

Hobart 0.3 1.4 0.8 4.3 0.3 1.4 0.8 4.3 0.3 1.4 0.8 4.3 0.3 1.4 0.8 4.3 

Melbourne 0.3 1.7 0.8 5.2 0.3 1.7 0.8 5.2 0.3 1.4 0.8 4.3 0.3 1.7 0.8 5.2 

Perth 0.3 1.7 0.8 5.2 0.3 1.7 0.8 5.2 0.3 1.4 0.8 4.3 0.3 1.4 0.8 4.3 

Sydney 0.4 2 1 6 0.3 1.7 0.8 5.2 0.3 1.7 0.8 5.2 0.4 2 1 6 
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Figure 1: The effective framework to estimate the change of weather variables due to global 

warming (Guan, 2009a) 

 

Imposed  

offset 

method 

Diurnal 

modelling 

method 

Detailed  

Output  

Simple 

Retain to 

current 

condition 

 

No  

Input  

PPrreeddiiccttiioonn  ooff  ffuuttuurree  cchhaannggee  iinn  

wweeaatthheerr  vvaarriiaabblleess    

TTRRYY  //  

TTMMYY  

Current 

weather 

variables  

PPrreeddiicctteedd  ffuuttuurree  hhoouurrllyy  wweeaatthheerr  ddaattaa  



  

   31 

 

Figure 2: Ranges of possible seasonal average warming in Australia, relative to 1990 (CSIRO, 2001) 
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Figure 3: The cumulative frequency of hourly DBT for the different climate scenario. The X-axis 

represents outdoor dry bulb temperature (°C) and the Y-axis represents cumulative percentage of 

hours per year (%) 
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Figure 4: The distribution of percentage of hourly outdoor air humidity ratio for the different 

climate scenario. The X-axis represents air humidity ratio (g/kg dry air) and the Y-axis 

represents cumulative percentage of hours per year (%) 
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b) 2070-High weather scenario 

 

Figure 5: The effect of change in GSR on the building cooling load 
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(b) 2070-High weather scenario 

 

Figure 6: The absolute change of building cooling load due to varied in GSR 
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(b) 2070-High weather scenario 

 

Figure 7: The effect of change in relative humidity on the building cooling load 
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(b) 2070-High weather scenario 

 

Figure 8: the effect of change in wind speed on the building cooling load 


