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Abstract- This paper presents a three-dimensional numerical analysis of the electromagnetic forces 

within a high voltage superconducting Fault Current Limiter (FCL) with a saturated core under short-

circuit conditions. The effects of electrodynamic forces in power transformer coils under short-circuit 

conditions have been reported widely. However, the coil arrangement in an FCL with saturated core 

differs significantly from existing reactive devices. The boundary element method is employed to perform 

an electromagnetic force analysis on an FCL. The analysis focuses on axial and radial forces of the AC 

coil. The results are compared to those of a power transformer and important design considerations are 

highlighted. 
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I. INTRODUCTION 

FAULT Current Limiters act as high-voltage surge protectors for power grids, increasing system reliability and 

efficiency and enabling cost-efficient grid expansion, including the integration of distributed generation sources 

[1], [2]. High Temperature Superconductor (HTS) fault current limiting concepts have recently been receiving a 

lot of attention [2-6]. The successful implementation of an HTS saturated core FCL was reported in [7]. Figure 1 

shows the basic arrangement of the saturated core HTS FCL. It consists of two iron cores with conventional 

copper AC coils wound on the cores and a superconductor DC coil wound around them. The circuit that needs 

to be protected is connected in series with the AC coils of the FCL. An HTS DC coil enclosing both cores is 

used to bias the cores into saturation under normal operating conditions, thereby providing a low steady-state 

inductance. Under a fault condition, the biasing by the HTS DC coil is reduced in response to the increased 

current in the load, thus causing the cores to become unsaturated. The inductance of the HTS FCL changes 
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instantly to a high value, thereby limiting the fault current to a prescribed maximum.  A two coil-core structure 

per phase is needed to limit the AC current. When the AC fault current is positive, the first coil-core structure 

limits the current. On the other hand, the fault current is restricted by a second coil-core structure wound in the 

opposite direction when the AC current is negative. Table 1 and Figure 2 show the fault current with and 

without an FCL under short-circuit conditions used by ZenergyPower Ltd Pty [8]. The peak of the fault current 

is reduced significantly. 

 

Figure 1 The basic saturating reactor HTS fault current limiting concept diagram 

Parameter Value 

Rated voltage 11.3 kV 

Line frequency 50 Hz 

Prospective unlimited peak fault current  17 kA peak 

Peak limited current (with FCL) 13.25 kA peak 

Prospective unlimited symmetrical fault current 6.2 kA rms 

Limited symmetrical current (with FCL) 5 kA rms 

Table 1 Circuit design parameters 
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Figure 2 Prospective and limited fault current. 

 Electromagnetic forces can be very severe in high voltage applications. A power-transformer under short circuit 

condition has to withstand significant internal forces, caused by the high currents in the transformer windings. 

These electromagnetic forces present as radial and axial forces [9-11]. Analysis of electromagnetic forces within 

a power-transformer is well established [9-19]. It was shown that such forces are potential sources for damage. 

The windings are subjected to hooping stress, buckling, tilting, axial or radial bending. Techniques to mitigate 

the electrodynamic stresses in power transformers have been proposed in [9, 11]. The fundamentals of these 

techniques (spacers, wrapping, CTC dimension) can be extrapolated to the coils in an FCL, since the 

construction and manufacturing of the coil is very similar.  

For different applications, the design of an FCL has to be considered individually to ensure that the structure is 

able to withstand the effects of the high forces.  The problem  faced when applying the models used in the 

analysis of power transformer on FCL design is that transformer models are generally based on round core-coil 

arrangement [9-19], whereas FCL cores and coils often have different geometries. Since fault current limiting 

for high voltage applications is a relatively new technology, the effects of electromagnetic forces in HTS FCL 

coils have never been reported. The purpose of this paper is to analyse these forces and to compare results with 
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those in round coils of power transformers under short-circuit conditions. Commercial software based on the 

Boundary Element Method (BEM) is used for this purpose. 

II. ELECTROMAGNETIC FORCES IN TRANSFORMER WINDINGS 

The distribution of electromagnetic forces (Lorentz Forces) is a function of the current density in the conducting 

regions and magnetic flux density in the same region. Mathematically, this can be represented as [11]    

                                                                                                                                                                (1) 

where  is the force density vector. Due to the cross product relation, the direction of the force will be 

perpendicular to both the current density and the flux density vectors. 

In order to get a better understanding of the electromagnetic forces in an FCL, it is necessary to consider these 

forces within a power transformer. Under a short-circuit conditions, the electromagnetic forces exerted in the 

windings of a power transformer reach a maximum and may cause severe damage to the structure. The main 

forces are axial (compression) and radial (hooping and buckling) [9]. Several authors have developed 

formulations to compute the average and maximum values of these forces in round-core power transformers. 

Both the analytical formulations [9],[10],[12] and the 3D numerical analysis Finite-Element-Method analysis 

[15, 20, 21] obtained similar force patterns within the windings of a power transformer. 

In this paper, the boundary element method (BEM) is used to conduct the force analysis. In BEM, the 

differential equation formulation for the electric potential is not solved directly. An equivalent source is sought 

which will sustain the field as prescribed by an appropriate set of boundary conditions applied to a specific 

function (called the Green function) which relates the location and effect of the source to any point on the 

geometry. This approach has the advantage over the finite element method in that it is not constrained by 

conventional domain dividing grids. This allows greater accuracy with geometrical representation. Once the 

source has been determined, the potential or derivatives of the potential can be calculated at any point. The 

commercial software calculates the magnetic vector potential A due to an arbitrarily oriented surface current 

density J  from [21-23]  

                                                                  ,  ,                                                          (2) 

where G is the Green function, given by              

              ,
| |

  .                                                                            (3)                  
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In the case of a magnetostatic field, the magnetic flux density is determined from  

                                                                            .                                                                                 (4) 

For comparison, a 3D model of a simple concentric winding power transformer was created and analysed. In 

order to make a comparison between the power transformer and the HTS FCL, the following assumptions were 

made: 

 Both systems have the same sizes in terms of core height, coil height, coil radial dimensions and main 

clearances (see Table 2).  

 Both systems are configured for a 3-phase circuit and are modelled in three dimensions. 

 Both systems have nonlinear cores with a saturation flux density of Bsat=1.82 T at Hsat =800 A/m. 

 Both systems are simulated without an oil tank. 

Parameter PT Value FCL Value 

AC magnetomotive force (mmf)    500 kAT 

DC magnetomotive force (mmf)   250kAT 

AC magnetomotive force (mmf)  High Voltage (HV) 500kAT  

AC magnetomotive force (mmf)  Low Voltage (LV) 250kAT  

Nominal current value 1170Arms 1170Arms 

Core height 2.1m  

AC coil height  2m  

Core Area 0.84m2  

Table 2 Model design parameters 

 Figure 3 shows a partial image of the magnetic leakage field of simple concentric windings in a power 

transformer. The resultant force will depend on the flux direction. Hence the force will be vertically oriented 

(axial) at the top and bottom of the coil and horizontal (radial) at the centre. 

 

Figure 3 Magnetic leakage flux within a standard three-phase power transformer.  
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Figure 4 shows the axial and radial force behaviour within the winding of a typical power transformer during a 

fault. The x-axis refers to the normalised longitudinal position along the coil, that is, 0 is the bottom of the coil 

and 1 is the top of the coil. 

 

Figure 4 Electromagnetic forces within a standard three-phase power transformer under short-circuit conditions. 

In a power transformer, the radial forces are low at the ends of the winding and very high at the centre of the 

winding, as shown in Figure 4. This force is expressed in terms of radial pressure in Figure 4. The maximum 

pressure observed is 27 kN/m2 at the centre of the coil. On the other hand, the axial force is very high at the ends 

of the winding and zero in the turns located at the centre. Figure 4 also shows the axial cumulative force, which 

is the integral of the axial force distribution. The axial cumulative force therefore increases rapidly at the ends of 

the windings and is stable at the centre, resulting in a maximum compression of the coil of 15 kN. 

III. ELECTROMAGNETIC FORCES IN FAULT CURRENT LIMITERS 

The aim is to determine the peak force in the AC coils that a High Voltage FCL has to withstand when a short-

circuit fault occurs. In order to perform this static analysis, a short-circuit condition is simulated. The greatest 

force is expected at the peak of the asymmetric fault current. Hence a current peak of 13.25 kA is applied to the 

AC coils. Radial forces and axial forces are studied in the different parts of the AC coils. The AC coils are 
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wound in opposite directions. The fields of the coils will interfere, thus affecting the resultant force. It is 

therefore important to differentiate between the different parts of the coil arrangement. 

 

Figure 5 General geometry of the HTS FCL. 

The geometry of the HTS FCL is shown in Figure 5. The example considered is an open core FCL designed by 

ZenergyPower Ltd Pty. This design has DC superconductors around the AC coils, as explained in Figure 1. The 

superconducting DC coil is divided in two parts. This FCL model is designed to reduce a three phase fault. It 

therefore has six cores, since two cores-AC-coils per phase are required (Phase A-A', B-B' and C-C'). Each core 

is therefore independent and unconnected through a yoke, as shown in Figure 5. The total magnetic field within 

the FCL is driven by the three phases. The influence of every phase thus needs to be taken into account in the 

calculation of the total magnetic flux. 

The saturated core FCL with HTS DC bias coil was analysed using 3D BEM. Figure 6 shows a partial image of 

magnetic leakage field pattern in the FCL. The current in the DC coils give rise to magnetic flux around them.  



8 
 

 

Figure 6 Magnetic leakage flux within the FCL.  

The magnetic flux created by the DC coils boosts the magnetic flux in the AC coil where it faces a DC coil. This 

results in an increase in the radial force, as shown in Figure 7(a). 

Figure 7 represents the radial volumetric forces on the surface of the AC coil. Figure 7(a) represents the FCL 

with the DC coils activated while Figure 7(b) shows the force with the DC coils disabled. The maximum 

volumetric force (red area) is located in the area facing the DC coils. Positive values of force represent an 

expansion force, while negative values indicate compression forces. 

 

Figure 7 Magnetostatic image of the volumetric radial force in the AC coils of the HTS FCL 
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Figure 8 shows the radial force distribution plotted against position along the AC coil. The maximum peak 

occurs in the AC coil area facing the DC coil when the AC current is flowing in the same direction as the DC 

current (positive AC current). In this case, the magnetic fields due to the DC and AC coils are in the same 

direction, and therefore interfere constructively. The analysis was conducted for the two windings belonging to 

Phase 1. 

 

Figure 8 Radial force distribution along the AC coil. 

A positive pressure implies expansion, which cause a hooping effect in the winding. On the other hand, negative 

pressure implies compression, which causes buckling stresses in the winding.  

The axial force analysis was also conducted to determine the compression forces in the coils and the clamping. 

Figure 9 shows the axial volumetric force distribution on the surface of the AC coil. The maximum volumetric 

force occurs on the edges at the bottom and the top of the AC coils.  
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Figure 9 Volumetric axial force in the AC Coils of the HTS FCL 

For the axial force analysis, the same face division was made (inner face and outer face), but in this case, the 

inner face was also separated into two different parts: Inner Face 1 and Inner Face 2 (see Figure 10). Inner Face 

1 faces a coil with magnetic flux flowing in the same direction and Inner Face 2 faces an AC coil with flux 

going in the opposite direction. This distinction has a significant influence on the resulting forces, as can be seen 

in Figure 10 and Figure 11.  

 
Figure 10 Axial force distribution along the AC coil of the HTS FCL 
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In order to gain a better understanding of the axial forces, a plot of the cumulative axial force is required. This is 

shown in Figure 11, which is the integral of the results of the axial force distribution across the length of the AC 

coils. Negative cumulative axial force implies compression and positive cumulative axial force implies 

expansion. 

 

Figure 11 Cumulative axial force along the AC coil of the HTS FCL 

 

IV. COMPARISON AND DISCUSION 

The results achieved in this paper show significant differences between the radial forces exerted in the windings 

of an HTS FCL compared to those of a power transformer. When the current in AC and DC coils are flowing in 

the same direction (AC current positive), the magnetic field and associated radial forces in the AC coils are 

increased. The effect is more pronounced in positions close to the DC coils. The DC coils boost the magnetic 

field, resulting in the two peaks in expansion force shown in Figure 7(a) and a peak in the radial force of 130 

kN/m2 shown in Figure 8. On the other hand, when the current in AC and DC coils is flowing in opposite 

directions (AC negative current), the radial forces decrease and even change direction at the top and bottom of 

the coil. Hence, the DC coils are driving the magnetic field to the opposite direction at the top and the bottom of 

the coil. The currents in the AC coils are attempting to expand them, while the DC coils cause them to 

compress, resulting in a buckling effect at the ends of the coil. Under a short-circuit condition, each AC coil will 

therefore suffer a compression-expansion effect. However, the maximum stress will be due to expansion. When 
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the DC coils are disabled (see Figure 7(b)) the force is lower in the coils and its pattern in the FCL is similar as 

the one in the power transformer. 

Axial forces present the most significant differences between power transformers and HTS FCLs.  In the power 

transformer, the axial forces are compressing the winding longitudinally. The axial force only undergoes a 

single change in direction at the centre along the coil, as shown in Figure 4. The negative axial force in the top 

half of the coil implies that the force is exerted downwards, while the positive force in the bottom half exerts an 

upward force.  In the FCL, the axial force for Inner Face 2 shows results similar to those of a power transformer. 

However, the axial forces on the Outer Face and Inner Face 1 respectively undergo three and five direction 

changes along the length of the coil, as shown in Figure 10. Figure 11 shows that the Outer Face expands in the 

centre (positive value of the force) and is subject to compression at the ends of the coil (negative value of force). 

The net effect will be expansion. The cumulative axial force within Inner Face 1 is changing from expansion to 

compression along the coil. These phenomena are caused by the magnetic flux originating from the 

neighbouring coil, where leakage magnetic flux is affecting the resultant force. The resultant force is therefore 

unbalanced in many turns of the AC coil, because in the same turn the force at the outer face is pushing upwards 

while the force at the inner face is pushing downwards. This phenomenon is critical for the design of the FCL. 

Due to its special arrangement, the electromagnetic forces within a high-voltage FCL have to be analysed in 

detail in order to manufacture a robust device capable of withstanding short-circuit faults. 

 

VI.   CONCLUSION 

In this paper, electromagnetic forces in power-transformers and HTS FCLs were compared. There are 

significant differences between the force distribution in a power-transformer and an HTS FCL. These 

differences will need to be taken into consideration when designing FCLs. 

The two peaks in the radial forces shown in Figure 8 necessitate reinforcement of the winding in the affected 

areas, because an even distribution of support based on the average radial force would no longer be valid. Axial 

forces also affect design of FCL coils and supports. In power transformers, the spacers which support and 

distribute the axial forces between the turns of the coil are evenly distributed. In a high-voltage FCL, special 

consideration is required for the distribution of the spacers to compensate for the imbalance in the axial forces. 

In the studied example, reinforcement with fibre-belts around AC coils in positions where the radial force peak 

occurs would be required in order to avoid buckling and hooping. Special distribution of the spacers would also 

be needed to balance the axial force. 
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In conclusion, high voltage FCLs require special considerations which need to be analysed thoroughly and 

independently. Each different configuration in the FCL arrangement will results in unique force distributions, 

which need to be taken into consideration during the design stage to manufacture a robust device capable of 

withstanding short-circuit faults.   
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