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ABSTRACT 26 

Ultrafine particles (UFPs, <100 nm) are produced in large quantities by vehicular combustion 27 

and are implicated in causing several adverse human health effects.  Recent work has 28 

suggested that a large proportion of daily UFP exposure may occur during commuting.  29 

However, the determinants, variability and transport mode-dependence of such exposure are 30 

not well-understood.  The aim of this review was to address these knowledge gaps by 31 

distilling the results of ‘in-transit’ UFP exposure studies performed to-date, including studies 32 

of health effects.  33 

 34 

We identified 47 exposure studies performed across 6 transport modes:  automobile, bicycle, 35 

bus, ferry, rail and walking.  These encompassed approximately 3000 individual trips where 36 

UFP concentrations were measured.  After weighting mean UFP concentrations by the 37 

number of trips in which they were collected, we found overall mean UFP concentrations of 38 

3.4, 4.2, 4.5, 4.7, 4.9 and 5.7 × 104 particles cm-3 for the bicycle, bus, automobile, rail, 39 

walking and ferry modes, respectively. The mean concentration inside automobiles travelling 40 

through tunnels was 3.0 × 105 particles cm-3.   41 

 42 

While the mean concentrations were indicative of general trends, we found that the 43 

determinants of exposure (meteorology, traffic parameters, route, fuel type, exhaust treatment 44 

technologies, cabin ventilation, filtration, deposition, UFP penetration) exhibited marked 45 

variability and mode-dependence, such that it is not necessarily appropriate to rank modes in 46 

order of exposure without detailed consideration of these factors.  Ten in-transit health effects 47 

studies have been conducted and their results indicate that UFP exposure during commuting 48 

can elicit acute effects in both healthy and health-compromised individuals.  We suggest that 49 

future work should focus on further defining the contribution of in-transit UFP exposure to 50 
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total UFP exposure, exploring its specific health effects and investigating exposures in the 51 

developing world.    52 

 53 

Keywords: air pollution; transport modes; acute health effects; travel; public transport  54 

 55 

1. INTRODUCTION 56 

The study of commuter exposure to traffic-related air pollutants is not a particularly new field 57 

of research.  Among the first researchers to recognise its significance was Professor Arie 58 

Haagen-Smit, who is best-known for his pioneering and enduring work related to 59 

characterising photochemical smog and ozone.  In 1966, he performed a series of carbon 60 

monoxide measurements on heavily trafficked Los Angeles roads (Flachsbart, 2007; Haagen-61 

Smit, 1966).  Given population growth and increased motor vehicle use since that time, 62 

coupled with the high degree of proximity to vehicle emissions when commuting, the issue of 63 

‘in-transit’ exposure to air pollutants is of equal if not greater relevance 45 years later.    64 

 65 

Previous reviews of in-transit pollutant exposure, of which there are few, have focussed on 66 

CO inside vehicles (El-Fadel and Abi-Esber, 2009), particle mass concentrations and 67 

composition in metro (subway) systems (Nieuwenhuijsen et al., 2007) and various pollutants 68 

in multiple transport modes (Weisel, 2001).  Only the work of Kaur et al. (2007) included a 69 

review of ultrafine (<100 nm) particle (UFP) concentrations in several transport modes. 70 

 71 

At present, although gaseous pollutants are still the focus of numerous in-transit exposure 72 

studies, UFPs are beginning to attract significant attention.  They are produced in large 73 

quantities by fuel combustion, and have been identified as a causal component of various 74 

negative health effects in humans (Knol et al., 2009; Hoek et al., 2010).  UFPs typically 75 
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constitute ~90% or more of particle number count (PNC) in areas influenced by vehicle 76 

emissions (Morawska et al., 2008), and we use UFP to describe PNC throughout this article. 77 

  78 

The primary aim of this review is to distil the results of work performed to-date in order to 79 

improve understanding of the measurement, characteristics and determinants of in-transit 80 

exposure to UFPs, prior to a discussion of gaps in knowledge and suggestions for future 81 

research.  Here, we extend the work of Kaur et al. (2007) by confining our focus to UFPs and 82 

incorporating the substantial body of relevant work that has appeared in the 4 years since its 83 

publication, which now constitutes the large majority of available literature.  Like Kaur et al. 84 

(2007), we restrict our investigation to UFP exposure concentrations, rather than average or 85 

integrated exposure for a given time period.  We note that dose assessment, which is a 86 

complementary yet distinct concept to that of exposure (Ott, 1985), is not the main focus of 87 

this review. 88 

 89 

This review begins with an overview of the nature of commuter travel prior to a description 90 

of the general characteristics of UFPs.  This is followed by a detailed analysis of in-transit 91 

UFP exposure studies, a discussion of determinant factors, health effects, and suggestions for 92 

future research. 93 

 94 

1.1 Commuting in modern society 95 

The nature of modern society in many countries both affords and expects a high degree of 96 

personal mobility.  Time-activity patterns define how people apportion their time across a 97 

range of environments, and are a keystone of effective exposure analyses. Time-activity 98 

pattern studies of varying magnitude performed in different regions have reported that time 99 

spent in-transit typically constitutes between about 5 and 10% of the day (Klepeis et al., 100 
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2001), depending on location.  The transport microenvironment(s) within which this time is 101 

spent varies more substantially between regions than the occupancy time, and has a greater 102 

dependence on local factors, such as the availability and desirability of various transport 103 

options.   104 

 105 

In general, there are scant 24 hour time-activity pattern data for developing countries.  106 

Saksena et al. (2007) reported that time spent travelling among 4311 Delhi residents ranged 107 

from 0.8 to 10% of the day, and varied markedly depending on age, sex and occupation, as 108 

did the mode of transport used.  It is likely that the time-activity patterns of people in rural 109 

areas differ significantly from those of their urban counterparts. 110 

 111 

1.2 Children’s and adult’s travel choices 112 

Children are particularly susceptible to negative health effects caused by exposure to air 113 

pollutants (Gauderman et al., 2004; Brugge et al., 2007; Ashmore and Dimitroulopoulou, 114 

2009), and many millions are required to commute between home and school each weekday.  115 

The choice of which transport mode school children utilise is normally at the discretion of 116 

others.  Whilst children and young people have been reported to possess informed and 117 

responsible opinions regarding transport choices and a clear ideal towards cycling and 118 

walking, their parent’s choices are guided primarily by safety concerns, and place substantial 119 

reliance on private automobiles (Lorenc et al., 2008).   120 

 121 

Unlike children, adults generally make their own travel choices.  A recent survey of 745 122 

employed adults in Queensland, Australia, found that while about half of respondents felt that 123 

exposure to air pollutants in-transit negatively affected their overall health and increased their 124 

risk of cardiovascular disease, only 13% indicated that exposure to pollutants was a barrier to 125 
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their adoption of walking or cycling to work, and that other factors were more responsible for 126 

their high level (82%) of dependence on private transport (Badland and Duncan, 2009).  127 

Furthermore, Badland and Duncan (2009) found that adults who were better educated and 128 

lived in urban areas were most cognisant of the negative health effects of air pollutant 129 

exposure during transit.  Marshall et al. (2009) reported that the optimum balance between 130 

high walkability and low pollution was identified sporadically and typically in higher income 131 

neighbourhoods in urban Vancouver (Marshall et al., 2009).  Evidently, there may be a 132 

significant socio-economic component involved in air pollution exposure during transit, 133 

particularly for active transport modes, and this may reflect wider socio-economic and 134 

environmental inequalities reported for several traffic pollutants (Marshall, 2008; Tonne et 135 

al., 2008; Su et al., 2009).  It should be noted that both children and adults in developing 136 

countries are unlikely to be afforded the luxury of a travel choice, per se, and a relatively 137 

high degree of dependency on walking and public transport may result from this (Saksena et 138 

al., 2007).    139 

 140 

2. CHARACTERISTICS OF ULTRAFINE PARTICLES 141 

2.1 General 142 

UFP concentrations reflect the contribution of anthropogenic processes to a pre-existing 143 

background concentration (Morawska et al., 2008).  Background concentrations are ascribed 144 

to natural processes, such that in most environments free from the immediate influence of 145 

anthropogenic activities, UFPs are present and their concentrations readily measured.  146 

Despite the numerous natural sources of UFPs, vehicular fossil fuel combustion has 147 

repeatedly been shown to be their dominant source in urban areas, with heavy-duty diesel 148 

powered vehicles making a disproportionately large contribution to UFP concentrations 149 

(Morawska et al., 2008). 150 
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 151 

An important distinction is between primary and secondary UFPs.  The primary variety are 152 

emitted from their source as particles, whilst secondary particles are formed following 153 

homogenous nucleation of gases (Koutrakis and Sioutas, 1996; Jacobson, 2002).  This occurs 154 

when a gas, or gases, nucleate in the absence of a pre-existing surface (Jacobson, 2002). 155 

 156 

UFPs from vehicles can be emitted as primary particles or generated as a secondary aerosol, 157 

often following homogenous nucleation of SO2, NH3 and NOx into SO −2
4 , NH +

4  and 158 

NO −
3 (Koutrakis and Sioutas, 1996; Morawska et al., 2008).  The ratio of primary to 159 

secondary particles varies substantially according to fuel type and operating and 160 

environmental conditions, but nucleation mode particles can comprise approximately 90% or 161 

more of UFPs in diesel exhaust (Kittelson, 1998).  However, more recent research indicates 162 

that the number of nucleation mode particles in diesel exhaust can be reduced to 40-50% 163 

when ultra-low sulphur diesel fuel is used (Ristovski et al., 2006), which is more 164 

representative of modern vehicle fleets in many countries.  165 

 166 

2.2 Typical concentrations 167 

Morawska et al. (2008) performed a meta-analysis of 71 UFP studies performed across a 168 

diverse range of environments.  They found mean concentrations of 2.6, 4.8, 7.3, 10.8, 42.1, 169 

48.2, 71.5 and 167.7 × 103 particles cm-3 for clean background, rural, urban background, 170 

urban, street canyon, roadside, on-road and tunnel environments, respectively.  This indicates 171 

that greater proximity to vehicles is associated with increased UFP concentrations, and 172 

underscores their importance as a UFP source.   173 

 174 
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2.3 Health significance 175 

Once inhaled, UFPs can reach with the alveolar region of the human lung with greater 176 

efficiency than larger particles due to their smaller size, and can deposit in alveoli with 177 

greater efficiency as a consequence of their rapid diffusion (Daigle et al., 2003; Phalen et al., 178 

2006; Frampton, 2007).   Due to their content of reactive oxygen species (ROS) and large 179 

combined surface area, UFPs from vehicle emissions have the potential to damage pulmonary 180 

cells (Delfino et al., 2005).  Transition metal components in UFPs are believed to play a role 181 

in producing ROS, along with pro-oxidative organic hydrocarbons (Li et al., 2003). 182 

Additionally, target cells, such as airway epithelial cells and macrophages, produce ROS 183 

during biologically catalysed redox reactions occurring in the mitochondria in response to 184 

UFP uptake (Li et al., 2003; Nel, 2005). UFPs can evade alveolar macrophage clearance from 185 

the lung and enter lung cells, the interstitium and possibly the vascular bed (Geiser et al., 186 

2005; Frampton, 2007), and can travel from the lung via blood and lymphatic circulation to 187 

other organs (Elder et al., 2006; Samet et al, 2009). UFPs are more proatherogenic than larger 188 

particles due to their greater bioavailability of reactive compounds, content of redox-active 189 

compounds, high number concentration and increased lung retention (Aruajo et al., 2009).    190 

 191 

Epidemiologic investigations of UFPs have been constrained by the scarcity of UFP 192 

monitoring sites and the substantial spatial heterogeneity of concentrations (Brook et al., 193 

2010).  Studies performed to-date in Erfurt, Germany, have indicated that UFP effects on 194 

daily mortality may be of comparable magnitude to, yet independent of, those of fine 195 

particles (i.e. PM2.5), albeit with greater time lag between UFP concentrations and their 196 

effects (Wichmann and Peters, 2000).  More recent results from the same long-term study 197 

have shown statistically significant associations between UFP concentrations and both total 198 

and cardio-respiratory daily mortality with a four day lag period (Stölzel et al., 2007).  199 
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Interestingly, this study found no association between PM2.5 mass concentration and 200 

mortality.  Mortality from stroke amongst aged residents of Helsinki during summer was 201 

associated with both PM2.5 and UFP concentrations on the previous day, and effects were 202 

mostly independent (Kettunen et al., 2007).  203 

 204 

The effects of UFP concentration on mortality and morbidity due to various causes are less 205 

well understood than those of larger particles.  A recent elicitation of European experts found 206 

that short-term UFP exposure was rated to variously possess a medium to very high 207 

likelihood of causality for all-cause mortality, and a low to high likelihood for cardiovascular 208 

and respiratory hospital admissions (Knol et al., 2009).  Long-term UFP exposure was 209 

generally rated to possess a slightly lower likelihood of causality for all-cause mortality, 210 

owing mainly to the lack of long-term studies (Knol et al., 2009).  The same group of experts 211 

estimated that a permanent decrease in annual average UFP concentration of 1000 particles 212 

cm-3 across Europe would lead to median decreases of 0.3%, 0.2% and 0.16% in all-cause 213 

mortality, and cardiovascular and respiratory hospital admissions, respectively (Hoek et al., 214 

2010).  The relatively small number of epidemiological studies (14) and absence of long-term 215 

studies, however, resulted in most experts indicating a substantial degree of uncertainty in 216 

their estimates (Hoek et al., 2010). 217 

 218 

3. STUDIES OF UFP CONCENTRATION IN TRANSPORT MODES 219 

3.1 Methods 220 

We searched combinations of the terms “ultrafine particle”, “transport mode”, “commuter”, 221 

“exposure” “public transport”, “microenvironment”, “vehicle”, “car”, “automobile”, “bus”, 222 

“cyclist”, “bicycle”, “train”, “metro”, “subway” on PubMed, ISI Web of Knowledge and 223 

Google Scholar until October, 2010.  The reference lists of studies identified by this method 224 
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were reviewed for links to additional literature.  Furthermore, the authors’ own literature 225 

collections were utilized.  226 

 227 

We restricted our investigation to studies that presented numeric values of UFP 228 

concentrations, and identified 47 that fulfilled this requirement.  Tables S1-S7 in the 229 

Supplementary Information file contain detailed information on the various studies.  These 230 

spanned 6 distinct transport modes: automobile, bus, cycling, ferry, rail and walking.  Some 231 

studies dealt with multiple transport modes, whilst others focussed on a single mode.  Of the 232 

studies we identified, only 7/47 (15%) had previously been reviewed by Kaur et al. (2007), 233 

which highlights the rapid progression of research related to in-transit UFP exposure since 234 

publication of their work. 235 

   236 

The mean concentrations extracted from the studies identified were weighted by the 237 

corresponding number of trips taken, and overall trip-weighted mean UFP exposure 238 

concentrations were calculated for each transport mode (see tables S1-S7 in the 239 

Supplementary Information file).  The overwhelming majority of studies (93%) reported the 240 

number of trips associated with a given mean; the means reported by those that did not report 241 

trip number were weighted by a conservative factor of 1 trip.  Most studies reported 242 

arithmetic mean UFP concentration, while several reported geometric mean and one gave 243 

median values.  Where possible, data were disaggregated to permit analyses of the effect of 244 

variables such as fuel type, presence of exhaust-treatment devices and route.    245 

 246 

Given the range of conditions under which they were collected, we did not assess the 247 

statistical significance of differences in measured mean UFP concentrations between modes, 248 
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and instead sought to identify general trends in the data.  This is discussed further in sections 249 

4 and 5.       250 

 251 

3.2 Results 252 

Across all modes, we identified approximately 3000 individual trips where UFP 253 

measurements were performed.  There was an uneven distribution of measurement trips; very 254 

few have been performed in ferry (13) and rail (49) modes, while a substantial number have 255 

been undertaken in bus (505), walking (524), cycling (599) and automobile (1310) modes.  256 

The automobile mode was split into non-tunnel (977) and tunnel (333) trips, as previous 257 

results indicate that tunnels are a discrete UFP exposure microenvironment distinct from open 258 

air roadways (Kaminsky et al., 2009; Knibbs et al., 2010).   259 

 260 

Figure 1 shows the trip-weighted mean UFP concentrations for each mode, and the number of 261 

trips on which they were based.  Error bars indicate the trip-weighted standard deviation 262 

(Bland and Kerry, 1998).  The range of mean UFP concentrations spanned one order of 263 

magnitude, with the lowest measured whilst cycling and the highest in automobiles during 264 

tunnel travel; 3.4 × 104 (s.d. = 1.8 × 104) and 3.0 × 105 (s.d. = 2.6 × 105) particles cm-3, 265 

respectively.  Means and standard deviations calculated for the automobile (non-tunnel), bus, 266 

ferry, rail and walk modes were 4.5 (3.3), 4.2 (3.1), 5.7 (0.5), 4.7 (4.1) and 4.9 (3.2) × 104 267 

particles cm-3, respectively. 268 

 269 

FIGURE 1 TO BE INSERTED HERE 270 

 271 

4. COMPARISON BETWEEN MODES 272 
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Considering the diversity of studies from which they were drawn, the trip-weighted 273 

concentrations measured in automobile (non-tunnel), cycle, bus, rail and walking modes 274 

exhibited notable coherence, with a maximum to minimum ratio (walk:cycle) of 1.5.   A 275 

limited number of studies that measured concentrations in different modes simultaneously or 276 

near-simultaneously have been reported, and Briggs et al. (2008) found a walk:automobile 277 

ratio of 1.4, which is higher than the value of 1.1 presented here.  Boogaard et al. (2009) 278 

found an automobile:cycle ratio of 1.05, whilst we found a value of 1.3, which was also 279 

higher than the value of approximately 1.0 reported by Int-Panis et al. (2010). 280 

 281 

While the above studies highlighted the relative concentrations encountered in each mode in 282 

the absence of bias due to fluctuating UFP concentrations, observed inter-mode contrasts 283 

were specific to the conditions of the study (e.g. the ventilation settings in an automobile, or 284 

the proximity to traffic on a bike route) and are should therefore not be extrapolated beyond 285 

the conditions under which they were collected without appropriate caution.   286 

 287 

In studies that measured UFP concentrations in multiple modes non-simultaneously, the 288 

mode in which highest concentrations were recorded vacillated between automobiles and 289 

buses, whilst those in other modes were markedly lower (Levy et al., 2002; Kaur et al., 290 

2005b; Weichenthal et al., 2008; Cattaneo et al., 2009; Kaur and Nieuwenhuijsen, 2009; 291 

Pattinson, 2009; Shrestha, 2009; Knibbs and de Dear, 2010).  It is therefore noteworthy that 292 

our analysis found that UFP concentrations in buses and automobiles (non-tunnel) were 293 

relatively low.  We pooled a large number of reported UFP measurements performed under a 294 

wide range of conditions, and while the ability to differentiate the observed differences is 295 

limited by the level of detail given by the various studies, such an approach is indicative of 296 

mean values and general trends.  However, the mode in which highest exposures are 297 
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experienced depends strongly on the determinant factors discussed in the following two 298 

sections, and generalisation of results may be of limited value (Int-Panis et al., 2010); that is, 299 

within mode variability is likely to be substantial.   300 

 301 

5.  DETERMINANTS OF UFP CONCENTRATION IN-TRANSIT 302 

Despite the convenience it may provide, it is not necessarily appropriate to rank transport 303 

modes in order of UFP exposure without certain caveats.  For example, figure 1 shows the 304 

trip-weighted mean UFP concentration in an automobile is higher than the equivalent for 305 

cycling.  However, an occupant of a relatively air-tight automobile in which air is recirculated 306 

and filtered will likely experience markedly lower exposure concentrations than a cyclist on a 307 

high traffic route.  Disentangling the relative roles of determinant factors, their interactions 308 

and variability in each mode is a key element required to advance understanding of in-transit 309 

UFP exposure.  The data reviewed here suggest that while the relationship between UFP 310 

concentration and its determinants is often mode-dependent, exposure in all mode types is the 311 

result of interplay between multiple factors.  These can be viewed as comprising two stages:  312 

the first determines the outdoor or on-road UFP concentration, and the second determines 313 

what proportion of this is able to come into contact with a commuter.  These factors are 314 

addressed, in turn, in the following sections.   315 

 316 

5.1 Meteorological variables 317 

Temperature has been variously reported to be positively and negatively correlated with UFP 318 

concentrations, although in vehicle-dominated areas the correlation is more likely to be 319 

negative due to condensation of volatile compounds in emissions (Morawska et al., 2008).  320 

In-transit studies that assessed this relationship uniformly found a negative correlation 321 

between temperature and UFP concentration (Krausse and Mardaljevic, 2005; Vinzents et al., 322 
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2005; Thai et al., 2008; Weichenthal et al., 2008; Kaur and Nieuwenhuijsen, 2009; Pattinson, 323 

2009; Laumbach et al., 2010).  Among studies that reported correlation coefficients, those 324 

measured for cycling studies (Vinzents et al., 2005; Thai, 2008) were quite high (-0.62 and -325 

0.76, respectively).  Multi-mode and automobile studies reported correlations of -0.77 and -326 

0.37, respectively (Kaur and Nieuwenhuijsen, 2009; Laumbach et al., 2010).     327 

 328 

Wind speed, which affects dilution and transport of vehicle emissions, was also found to be 329 

negatively correlated with UFP concentration in-transit (Krausse and Mardaljevic, 2005; 330 

Vinzents et al., 2005; Briggs et al., 2008; Thai et al., 2008; Weichenthal et al., 2008; Kaur 331 

and Nieuwenhuijsen, 2009; Pattinson, 2009; Srestha, 2009; Knibbs and de Dear, 2010), 332 

which is in agreement with results reported for various outdoor locations (Morawska et al., 333 

2008).  However, the results were not always statistically significant, indicating that 334 

temperature may be more consistently and strongly correlated with UFP concentrations.  335 

Correlations observed for active transport modes were -0.20 (walk), -0.52 (cycle) and -0.81 336 

(cycle) (Briggs et al., 2008; Vinzents et al., 2005; Thai et al., 2008).  Multi-mode and 337 

automobile studies reported correlations of -0.14 to -0.49 (Briggs et al., 2008; Kaur and 338 

Nieuwenhuijsen, 2009; Knibbs and de Dear, 2010).   339 

 340 

For both temperature and wind speed, stronger correlations were generally observed for 341 

cycling compared to non-active modes, perhaps reflecting reduced influence of other factors 342 

on exposure concentrations encountered when cycling (and walking).  The strength of the 343 

association between UFP concentration and both temperature and wind speed appears to be 344 

mode and location-dependent, and its variability is not well characterised. 345 

 346 
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While temperature and wind speed are the most frequently reported, other meteorological 347 

parameters may affect UFP concentration.  The depth of the mixed layer within the 348 

atmosphere was found to be negatively correlated with in-transit UFP concentration 349 

(Weichenthal et al., 2008), which reflects the tendency of a shallow mixed layer to 350 

concentrate pollutants.  351 

 352 

5.2 Traffic volume and composition 353 

Very few studies have reported the relationship between traffic volume and in-transit UFP 354 

concentrations.  Fewer still have examined the effect of traffic composition (i.e. gasoline 355 

vehicles, diesel vehicles).  Briggs et al. (2008) observed statistically significant correlations 356 

between car and truck density and UFP concentrations encountered while walking (r = 0.41 357 

to 0.48) or in an automobile (r = 0.43 - 0.47) in London.   In their London-based study, Kaur 358 

and Nieuwenhuijsen (2009) similarly found a significant correlation (ρ = 0.27) between total 359 

traffic count and UFP concentrations in automobile, bus, cycle, taxi and walking modes.  360 

Krausse and Mardaljevic (2005) reported road link end description (e.g. signal, left turn, right 361 

turn etc.) was a significant determinant of total UFP exposure of car occupants. On-road 362 

studies have shown strong associations (R2 ~0.85) between heavy diesel traffic volume and 363 

UFP concentrations (Fruin et al., 2008; Knibbs et al., 2009b).  Other studies have reported 364 

more qualitative assessments of traffic effects; for example, that mean in-transit UFP 365 

concentrations increased on high traffic routes and vice-versa (Zhu et al., 2007; Thai et al., 366 

2008; Strak et al., 2010; Zuurbier et al., 2010).   367 

 368 

Vehicle emissions are the dominant source of UFPs in urban areas, and heavy diesel vehicles 369 

make a contribution that is disproportionate to their volume (Morawska et al., 2008).  370 

Coupled with the limited but consistent findings of in-transit studies, this suggests that traffic 371 
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parameters (volume, density) and composition (gasoline vehicles, heavy diesel vehicles) are 372 

an important determinant of in-transit UFP exposure.  It should be considered, however, that 373 

effects are likely to depend on mode, and that short-term traffic patterns not represented in 374 

hourly or daily average data, such as the impact of passing traffic, may be important (Fruin et 375 

al., 2008; Boogaard et al., 2009).   376 

 377 

5.3 Route choice: active transport modes 378 

There are generally fewer mode-specific variables that may affect pedestrians and cyclists 379 

compared to other transport modes; that is, traffic and meteorological conditions may be of 380 

greater importance as determinants.  Most cycling studies were performed on or proximate to 381 

major urban roads, however, some studies compared measurements on high and low traffic 382 

routes, with the latter typically comprised of a dedicated cycle path.  Separating the data into 383 

these two categories revealed that 18% of trips were undertaken on low traffic routes, and 384 

mean UFP concentrations were 2.6 × 104 particles cm-3.  The mean for high traffic routes was 385 

3.5 × 104 particles cm-3, suggesting that route selection, within the context of the few studies 386 

to address it, can affect cyclist UFP exposure (Pattinson, 2009; Strak et al., 2010; Zuurbier et 387 

al., 2010).     388 

 389 

Route choice, as a proxy for traffic volume, is likely to be an important determinant of 390 

exposure (McCreanor et al., 2007; Hertel et al., 2008), and personal factors (e.g. walking or 391 

cycling patterns) may also exert an effect (Kaur et al., 2007).  Microscale variations in UFP 392 

concentration proximate to roadways may result in higher exposures on the road side of the 393 

sidewalk/footpath compared to the building side (Kaur et al., 2005a).  Also, the effect of 394 

roadway factors on pollutant dispersion (i.e. whether open to the environment or prone to trap 395 

pollutants due to geometry of urban canyons) has been shown to be a statistically significant 396 
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determinant of UFP exposure concentrations encountered when walking (Briggs et al., 2008).  397 

Further work focussed on evaluating the effects of these local and microscale route 398 

phenomena on UFP exposure is required. 399 

 400 

5.4 Cabin ventilation 401 

Ventilation rates, whether driven by fans, natural leakage or open windows (Ott et al., 2008; 402 

Knibbs et al., 2009a), describe how rapidly outdoor air is capable of entering passenger 403 

cabins.  Evidence suggests that ventilation is a key determinant of in-cabin UFP 404 

concentrations in automobiles, buses (Hammond et al., 2007; Rim et al., 2008; Knibbs and de 405 

Dear, 2010; Zhang and Zhu, 2010), ferries (Hill et al., 2007; Knibbs and de Dear, 2010) and 406 

rail modes (Hill et al., 2007; Cheng et al., 2009; Knibbs and de Dear, 2010).  Quantitative 407 

studies support these observations, but are scarce and limited to automobiles (Xu and Zhu, 408 

2009; Knibbs et al., 2010).   409 

 410 

Knibbs et al. (2009a) found that air exchange increased linearly with vehicle speed in a group 411 

of six test automobiles operating under four distinct ventilation settings, which was in 412 

agreement with results obtained by Ott et al. (2008) based on tests performed in four vehicles.  413 

Knibbs et al. (2009b; 2010) found that the primary determinant of on-road UFP concentration 414 

in a tunnel bore was hourly heavy diesel vehicle volume (R2 = 0.87) , and that cabin 415 

ventilation rates explained 81% of the variation in the proportion of on-road UFPs reaching 416 

the occupants of 5 automobiles.  The proportion reaching the cabin varied from 0.08 417 

(recirculation) to ~1.0 (non-recirculation) depending on vehicle and ventilation setting.  Thus, 418 

ventilation rates controlled the extent to which in-cabin exposure concentrations reflected on-419 

road levels in the tunnel bore, which were largely determined by heavy diesel vehicle 420 

volume.  Xu and Zhu (2009) reported that cabin ventilation and leakage were predominant 421 
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factors in their model-based analyses of variables affecting in-cabin/on-road (I/O) ratios, and 422 

explained up to ~60% of on-road UFP ingress.  I/O ratios when windows are open can reach 423 

1 due to higher air exchange, and such conditions may also occur when windows are closed 424 

but ventilation fan settings are high (Ott et al., 2008; Knibbs et al., 2009a).  425 

 426 

Some investigators have successfully performed in-cabin UFP size distribution measurements 427 

during transit in automobiles (Zhu et al., 2007) and buses (Zhang and Zhu, 2010).  These 428 

studies have shown that while in-cabin particle size distributions follow the general shape of 429 

those on-roads, the ability of on-road particles to reach the cabin is dependent on particle size 430 

and ventilation settings (Zhu et al., 2007).  Particle penetration is discussed in section 5.6.      431 

 432 

5.5 Filtration 433 

Where a vehicle is fitted with a cabin air filter, its efficiency is a key determinant of what 434 

proportion of on-road UFPs reach the cabin, and efficiency varies substantially amongst the 435 

filters available.  Standard automobile cabin filters afford single-pass UFP reductions of 436 

between approximately 30 and 60% (Pui et al., 2008; Qi et al., 2008), while this can 437 

increased by employing more advanced filtration technologies (Burtscher et al., 2008).  It 438 

should be noted that filtration efficiency is affected by the ventilation rate; as filter face 439 

velocity increases with mechanical or natural ventilation rates, filtration efficiency decreases 440 

due to the reduced time available for particle diffusion inside the filter (Pui et al., 2008; Qi et 441 

al., 2008).  When air is recirculated in an automobile, Qi et al. (2008) found that UFP 442 

concentrations decayed most rapidly in a vehicle capable of filtering recirculated air (single 443 

pass efficiency = 46%) than in a vehicle lacking this feature, where UFP removal efficiency 444 

without a filter was 27% per recirculation of cabin air.  In the former and latter cases, on-road 445 

UFP concentrations were reduced to those typical of an office building (4000 particles cm-3) 446 
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in 3 minutes and 9-10 minutes, respectively, indicating the value of recirculation as a simple 447 

exposure minimisation mechanism.  However, some older, less-airtight vehicles are 448 

characterised by outdoor air exchange rates up to 47 hr-1 when air is recirculated (Knibbs et 449 

al., 2009a), and the benefit of recirculation in such cases can be substantially diminished 450 

(Knibbs et al., 2010).  451 

 452 

5.6 UFP penetration and deposition 453 

The penetration of UFPs through automobile envelopes is dependent on their size, the 454 

number and geometry of cracks, and the pressure difference across these and other ingress 455 

pathways (Xu et al., 2010).  A recent study reported that penetration efficiency close to 100% 456 

was observed for diesel exhaust particles between 100 and 287 nm, and declined to ~70% for 457 

10 nm particles due to diffusion; although penetration of 10 nm particles increased to ~90% 458 

when pressure differentials reached 200 Pa (Xu et al., 2010).  No difference was observed in 459 

penetration efficiency amongst different materials.  460 

 461 

Given the high surface to volume ratios of many automobile cabins, deposition can be an 462 

important UFP removal mechanism, especially under low ventilation conditions (Gong et al., 463 

2009).  Gong et al. (2009) found in-cabin deposition rates in automobiles exceed those of 464 

indoor environments by a factor of 3 to 20.   465 

 466 

Studies describing UFP filtration, penetration and deposition in bus and rail modes are scarce 467 

and the limited data to-date is strongly skewed towards automobiles.  Future studies 468 

addressing this knowledge gap will be of considerable value. 469 

 470 

5.7 Fuel type and presence of an emission control device 471 
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Automobile: The effect of fuel type on UFP concentration in automobiles was assessed by 472 

Zuurbier et al. (2010), who found no significant difference in mean levels in diesel and 473 

gasoline-powered vehicles (diesel:gasoline concentration ratio = 0.96) based on 14 474 

simultaneous trips under a standard ventilation setting.  Their study focussed only on newer 475 

vehicles (< 6 months) and its relevance to the wider passenger vehicle fleet is unknown.  476 

Additionally, it is difficult to separate the effects of fuel type from those due to differences in 477 

ventilation under a standard setting between vehicles of different manufacturer (e.g. Knibbs 478 

et al., 2009a).  Further studies involving test vehicle groups more representative of the 479 

heterogeneity present in wider vehicle fleets are required.  480 

 481 

Bus: Due to their frequency of door opening and the ‘stop-start’ nature in which they travel, 482 

buses have a tendency to self-pollute (Behrentz et al., 2004; Hill et al., 2005; Rim et al., 483 

2008; Liu et al., 2010; Zhang and Zhu, 2010; Zuurbier et al., 2010).  Accordingly, the 484 

variables most frequently reported by UFP exposure studies were fuel type and the presence 485 

of an exhaust or crankcase emission control device.  We therefore disaggregated bus trips 486 

into 8 categories: diesel, biodiesel, compressed natural gas (CNG), electric, diesel with 487 

oxidation catalyst (DOC), diesel with diesel particulate filter (DPF), diesel with crankcase 488 

filtration system (CFS), and diesel with combined control (i.e. any combination of two or 489 

more of DOC, DPF, CFS and ultra low sulphur diesel).  About 70% of trips were performed 490 

in diesel buses, with the remainder approximately evenly distributed across the other 491 

categories. Five percent of bus trips (26/505) were excluded due to lack of detailed data on 492 

fuel type or control device.   493 

 494 

Figure 2 shows the trip-weighted mean UFP concentrations for each category.  The lowest 495 

mean (1.7 × 104 particles cm-3; SD = 0.8 × 104) was recorded in CNG-powered buses, and the 496 
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highest (4.9 × 104 particles cm-3; SD = 2.6× 104 ) was measured in diesel buses fitted with a 497 

CFS, although the latter result was based on a very limited number of trips (13).  A similar 498 

mean was recorded in diesel buses with no control device (4.8 × 104 particles cm-3; SD = 3.2 499 

× 104).   Means and standard deviations calculated for the biodiesel, combined control, DPF, 500 

DOC and electric categories were 1.7 (-), 2.0 (1.8), 2.4 (0.9), 2.8 (2.0) and 2.9 (0.8) × 104 501 

particles cm-3, respectively.  With the exception of the electric bus category, lowest 502 

concentrations were measured in buses powered by alternative fuels.  Concentrations inside 503 

diesel-powered buses were generally lower when fitted with an emission control device.      504 

 505 

FIGURE 2 TO BE INSERTED HERE 506 

 507 

Differentiating the effects of self-pollution from those of other factors on in-bus UFP 508 

concentrations is challenging.  Previous work has shown that self-pollution can be the 509 

dominant source of vehicle emissions in the cabin when windows are closed, and constituted 510 

0.01 to 0.3% of air in the cabins of 1975 through 2002 model school buses (Behrentz et al., 511 

2004).  Liu et al. (2010) found that self-pollution contributed an overall average of 1.8 × 104 512 

particles cm-3 in two school buses (2000 and 2003 model); the average contribution when 513 

windows were closed (1.0× 104 particles cm-3 ) was less than that when they were open (2.6 × 514 

104 particles cm-3).  However, this trend was not in keeping with their results for other 515 

measured pollutants, and was attributed to UFP fluctuations due to unidentified non-vehicle 516 

sources on the low-traffic routes they studied.  Generally, if on-road concentrations are low 517 

relative to those in-cabin, open windows will dilute self-pollution (Liu et al., 2010).  The 518 

reverse can exacerbate its effects.   519 

 520 
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The relatively small number of trips taken in most categories we analysed and the lack of 521 

specific information regarding other possible determinants limits the conclusions that can be 522 

drawn, and precluded detailed statistical analyses.  However, the results generally suggest 523 

that UFP concentrations are greatest in diesel-powered buses, and that reductions may be 524 

possible through use of alternative fuels or emission control devices, with best results 525 

achieved for diesel buses when two or more of the latter are combined. 526 

 527 

Rail: In most rail studies we identified, trips were undertaken in vehicles driven by electricity.  528 

About 29% of trips were taken in diesel-powered trains, and the weighted mean UFP 529 

concentration during these was 9.0 × 104 particles cm-3.  The mean during travel in electric-530 

powered vehicles was 3.0 × 104 particles cm-3.  Based on the limited data available, the power 531 

source of the rail vehicle therefore appears to affect UFP exposure concentrations.  Moreover, 532 

in diesel trains, the position of the locomotive relative to the passenger compartments can 533 

markedly affect UFP concentrations; when a locomotive was located in front of passenger 534 

cabins, its emission plume can reach the cabin ventilation system intake, and vice-versa (Hill 535 

et al., 2007). 536 

 537 

There was insufficient data to investigate the effect of underground and above ground travel 538 

on UFP concentrations.  Whilst there are numerous mechanical processes that can generate 539 

and resuspend particulate matter in electric-powered subway/metro systems, these are more 540 

likely to elevate levels of particle mass rather than UFP number count (Nieuwenhuijsen et al., 541 

2007).  The limited number of studies reporting UFP measurements on underground 542 

platforms tend to support this (Aarnio et al., 2005; Seaton et al., 2005; Raut et al., 2009; 543 

Cheng et al., 2009; Nystrom et al., 2010).       544 

   545 
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6. CORRELATION WITH OTHER AIR POLLUTANTS 546 

Several in-transit studies measured UFPs and other pollutants simultaneously.  A summary of 547 

these is provided in Table S8 in the Supplementary Information file.  The correlation between 548 

UFP and PM2.5 concentrations is generally reported to be positive, weak and not statistically 549 

significant, although stronger associations have been observed; correlation coefficients range 550 

from -0.07 to 0.69 (Aarnio et al., 2005; Kaur et al., 2005a,b; Seaton et al., 2005; McCreanor 551 

et al., 2007; Zhu et al., 2008; Berghmans et al., 2009; Boogaard et al., 2009; Knibbs and de 552 

Dear, 2010; Laumbach et al., 2010).  Although correlation in the rail mode is moderate and 553 

relatively consistent across studies, in general there is no clear relationship between the 554 

strength of correlation and transport mode.   The results are likely to be somewhat location-555 

dependent, in keeping with those for outdoor environments, and the generally poor 556 

correlation reflects differences in the sources of particle number and mass and temporal 557 

scales involved in their dynamics (Morawska et al., 2008).   558 

 559 

Black carbon (BC) and elemental carbon (EC) are often well-correlated with UFP 560 

concentrations in urban air, given their shared provenance in vehicle emissions and the large 561 

extent to which BC and EC contribute to UFP chemical composition (Morawska et al., 2008). 562 

On-road and subway platform studies have shown very good correlation between UFPs and 563 

BC; 0.88 and 0.84, respectively (Aarnio et al., 2005; Westerdahl et al., 2005).  Correlations 564 

were relatively weak in automobile and bus studies (mean = 0.1 to 0.2), although in-bus 565 

relationships were strongly dependent on window position, and mean correlation improved 566 

(mean = 0.62) when windows were kept open, which the authors ascribed to self-pollution 567 

under the closed window setting (Zhu et al., 2008; Zhang and Zhu. 2010). Very good 568 

correlations between UFPs and EC (0.70 and 0.84) have been reported in walking studies 569 

(Kaur et al., 2005a; McCreanor et al., 2007).   570 
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 571 

The correlation between UFP concentrations and those of NOX vary extensively from -0.33 to 572 

0.90, and no clear relationship with transport mode is apparent (Westerdahl et al., 2005; 573 

McCreanor et al., 2007; Zhu et al., 2008; Laumbach et al., 2010).  The relationship with CO 574 

concentrations is similarly variable; -0.16 to 0.70 (Kaur et al., 2005a,b ; Westerdahl et al., 575 

2005; McCreanor et al., 2007; Zhu et al., 2008; Laumbach et al., 2010).  The specifics of the 576 

measurement location in terms of local emission sources are likely to explain the observed 577 

variation, and it is important to consider that in-transit measurements of particle and gaseous 578 

pollutants may exhibit poor temporal correlation due to the varying emission strength of 579 

proximate vehicles (Morawska et al., 2008; Zhu et al., 2008).   580 

 581 

In summary, the relationship between in-transit UFP concentrations and those of other 582 

pollutants is generally inconsistent.  Mode, location and environmental factors may all 583 

contribute to the observed variability, and the results gathered here from the limited pool of 584 

available studies require further validation in order to develop a more complete understanding 585 

of the associations.  Currently, there is no data to support prediction of UFP concentrations 586 

from those of other pollutants, and such an approach is likely to be insufficient.  587 

 588 

7. RELATIONSHIP WITH FIXED SITE MONITORS 589 

Since the 1970s (Ott and Eliassen, 1973; Cortese and Spengler, 1976), numerous studies have 590 

investigated the ability of fixed site pollutant monitoring stations to estimate personal and 591 

commuter exposure.  Generally, the ability of fixed site monitors to represent the substantial 592 

spatial and temporal variability of in-transit exposures has been sub-optimal, and carries with 593 

it numerous attendant limitations, the most important of which is underestimation of exposure 594 

(Kaur et al., 2007).  UFPs are not a regulated pollutant, and are therefore not routinely 595 



25 

 

monitored outside of research studies.  Some investigators have assessed the association 596 

between fixed site UFP concentrations and those measured concurrently in-transit.  597 

 598 

Aarnio et al. (2005) reported good correlation (R2 = 0.59) between UFP concentrations in 599 

subway stations and those measured at an urban background site, while Seaton et al. (2005) 600 

found that the ratio of UFP concentrations measured on London Underground platforms to 601 

those above ground ranged from 0.38 to 0.68.   These results are likely to reflect the absence 602 

of strong local UFP sources in subways (Aarnio et al., 2005).  For above ground transport 603 

microenvironments, however, this is unlikely to be the case.  Vinzents et al. (2005) reported a 604 

moderate correlation (r = 0.49) between UFP measurements performed at a fixed roadside 605 

location and those measured while cycling, but found that the only significant variables in a 606 

linear mixed effects model to predict cyclist exposure were temperature and concentrations of 607 

CO (R2 = 0.60) and NO2 (R2 = 0.74) measured at urban background and roadside stations, 608 

respectively.  Asmi et al. (2009) found that the ratio of UFP concentration in the driver’s 609 

cabin of buses to that measured at an urban background site varied from 1.2 to 6.9 and was 610 

dependent on the age of the bus, time of day and route.  Zuurbier et al. (2010) systematically 611 

evaluated the relationship between bus, car and bicycle UFP exposures and urban background 612 

concentrations in Arnhem, the Netherlands.  They reported median mode to background 613 

ratios of 1.6 (diesel car, electric bus) to 2.5 (diesel bus) and correlations between 0.01 (diesel 614 

bus) and 0.87 (bicycle on low-traffic route).   615 

 616 

The limited data available to-date indicates that fixed-site monitors may offer some ability to 617 

estimate UFP exposure of commuters in areas less affected by vehicle emissions, such as 618 

those using subways or low-traffic bike paths.  However, depending on location, such persons 619 

are likely to constitute only a minor proportion of the commuting population.  In the absence 620 
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of widespread UFP monitoring networks, the utility of routinely monitored particle and 621 

gaseous pollutants or individual UFP monitors to represent in-transit UFP exposure appears 622 

significantly constrained (Krausse and Mardaljevic, 2005; Vinzents et al., 2005).  623 

 624 

8. HEALTH EFFECTS OF IN-TRANSIT UFP EXPOSURE 625 

Studies of health effects due to commuter UFP exposure are summarised in Table S9 in the 626 

Supplementary Information file.   627 

 628 

8.1 Healthy Individuals 629 

Nystrom et al. (2010) showed that while a cellular response in the airway epithelium was not 630 

elicited, minor biological responses such as increased systemic markers of inflammation and 631 

signs of lower airway irritation were observed in 20 healthy individuals exposed to subway 632 

air (mean UFP concentration 1.1 × 104 particles cm-3) for 2 hours while alternating between 633 

exercising on a bicycle ergometer and resting.  However, road tunnel air (median UFP 634 

concentration 1.1 × 105 particles cm-3) elicited an inflammatory response in the lower airways 635 

and elevated levels of T-lymphocytes and alveolar macrophages in brochoalveolar lavages 636 

from 16 healthy individuals who followed the same protocol (Larsson et al., 2007).  The 637 

particle mass concentrations that subjects were exposed to in the two above studies were 638 

similar, while UFP and NOX concentrations were an order of magnitude higher in the road 639 

tunnel study than in the subway study due to the presence of proximate vehicle emissions.  640 

Although it is not possible to ascribe the disparity in the results of the two studies to 641 

differences in UFP concentration alone, the results are suggestive of a causative role for UFP 642 

and NOX in airway inflammation observed following exposure to vehicle emissions.    643 

 644 



27 

 

Thirty-eight healthy volunteers who cycled parallel to a major traffic corridor for 20 minutes 645 

(mean UFP concentration  2.9 × 104 particles cm-3 ) experienced a minor increase in blood 646 

inflammatory cell distribution compared to cycling in a clean air environment, although the 647 

role of UFPs as distinct from PM2.5 was not clear (Jacobs et al., 2010). UFP and EC exposure 648 

in 12 healthy non-smoking individuals cycling in traffic (mean UFP concentration 2.8 to 4.1 649 

× 104 particles cm-3) for 1 hour was weakly associated with acute effects; decreased lung 650 

function and increased exhaled NO (as a marker of airway inflammation) were observed 6 651 

hours post-exposure (Strak et al., 2010). Oxidative DNA damage observed in 15 healthy 652 

subjects was positively correlated with cumulative UFP exposure, to which 1.5 hours of 653 

cycling during rush hours (mean UFP concentration  3.2 × 104 particles cm3) contributed 654 

substantially and resulted in greater damage compared to indoor cycling on an ergometer 655 

(Vinzents et al., 2005).  Concentrations of other pollutants (PM10, NOX, CO) measured at 656 

fixed-sites were not associated with oxidative DNA damage.  657 

 658 

UFP exposure resulted in modest effects among 34 healthy subjects that commuted by 659 

automobile, bus or bicycle for 2 hours (median UFP concentration 2.7 to 4.4 × 104 particles 660 

cm-3); peak expiratory flow decreased slightly and airway resistance increased immediately 661 

following exposure, and a significant increase in exhaled NO was observed 6 hours post-662 

exposure for automobile and bus commuters, but not cyclists (Zuurbier et al., 2011).  663 

 664 

As the respiratory minute ventilation of cyclists is 2 to 4.5 times that of automobile and bus 665 

passengers (Zuurbier et al., 2009; Int Panis et al., 2010), the potential dose of inhaled UFPs 666 

received during active transport may be significantly higher than that in non-active modes, 667 

and recent health effects studies have already begun to adopt a more dose-oriented approach 668 

to reflect this (Zuurbier et al., 2011). 669 
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 670 

8.2 Health-compromised Individuals 671 

Asthmatics: Asthma exacerbations can be triggered due to oxidative stress and inflammation 672 

caused by UFPs in the lungs of susceptible individuals (Weichenthal et al., 2007).  673 

Reductions in lung function and increased daily symptoms in asthmatics and COPD patients 674 

attributable to elevated UFP concentrations have been observed in epidemiologic studies, 675 

with more immediate effects seen first in the respiratory system, and a delayed response of 676 

cardiovascular effects (Wichmann et al., 2000; Ibald-Mulli et al., 2002).    677 

 678 

Consistent asymptomatic reductions in lung function (FEV1, FVC) and increases in both 679 

inflammatory biomarkers and airway acidification were observed in 60 persons with mild or 680 

moderate asthma who walked for 2 hours along a busy London street affected by diesel 681 

exhaust (median UFP concentration 6.4 × 104 particles cm-3) (McCreanor et al., 2007).   The 682 

effects were more frequently associated with UFP and EC concentrations than those of PM2.5 683 

and NO2.  Significantly reduced respiratory effects were observed when subjects walked 684 

along a route less affected by traffic emissions (median UFP concentration 1.8 × 104 particles 685 

cm-3).   686 

 687 

Fourteen mild asthmatics exposed to road tunnel air (median UFP concentration 2.3 × 105 688 

particles cm-3) for 2 hours while alternating between exercising on a bicycle ergometer and 689 

resting experienced no changes in bronchial responsiveness and most lung function 690 

parameters, although peak expiratory flow decreased, and minor indications of inflammation 691 

were measured in nasal lavages, but not blood samples (Larsson et al., 2010). 692 

 693 

 694 
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Diabetics: Exposure to pollutants (median UFP concentration 4.3 × 104 particles cm-3) during 695 

1.5 to 1.8 hour automobile highway trips made by 21 type 2 diabetics was shown to elicit a 696 

decrease in high-frequency heart rate variability the day after exposure, which was more 697 

associated with the interquartile range of UFP concentration compared to those of PM2.5, NO2 698 

and CO, albeit not significantly (Laumbach et al., 2010).  An increased low frequency to high 699 

frequency heart-rate variability ratio was observed immediately post-exposure that was not 700 

consistent with other observations, although confounding effects not present in the 701 

aforementioned finding may have influenced this result.      702 

 703 

Elderly Persons: Nineteen elderly subjects that were exposed to unfiltered and filtered air 704 

during 2 hour automobile trips on Los Angeles freeways (mean unfiltered UFP concentration 705 

0.78 to 1.1 × 105 particles cm-3) experienced a 20% decrease in the incidence of atrial ectopic 706 

heartbeats and 30% decrease in cardiopulmonary stress biomarkers under the filtered 707 

compared to the unfiltered condition (Cascio et al., 2009; Hinds et al., 2010).  Other 708 

measured parameters (lung function, indicators of inflammation, blood pressure) did not vary 709 

significantly between the two conditions.  The observed atrial arrhythmia was ascribed to 710 

increased intra-atrial pressure, and was associated with UFP concentrations rather than gases 711 

or particle mass (Cascio et al., 2009; Hinds et al., 2010).  The significance of such events is 712 

related to their role in causing more sustained arrhythmias. 713 

  714 

8.3 Summary   715 

Commute-time exposure to traffic and attendant pollutant emissions, noise and stress has 716 

been associated with increased risk of serious adverse health effects such as myocardial 717 

infarction (Peters et al., 2004).  The specific role of UFPs as a causative agent of such effects 718 

is not clear, and the findings of the limited number of health effects studies addressing 719 
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commuter exposure to vehicle emissions are mixed.  However, some initial trends are 720 

emerging.  While it is inherently difficult to separate the effects of UFPs from those other 721 

pollutants within the real-world exposure scenarios employed by the studies described above, 722 

the observed health effects were generally associated most strongly with UFP concentrations.  723 

Furthermore, the use of filtered air exposure scenarios in the Los Angeles freeway study 724 

(Cascio et al., 2009; Hinds et al., 2010) reduced particle concentration by >95% compared to 725 

the unfiltered condition but did not affect the level of gaseous pollutants, yet there was a  726 

marked difference in the cardiac effects observed between the two scenarios.  The effects 727 

observed by McCreanor et al. (2007) were greater in those with moderate compared to mild 728 

asthma, and the degree to which this is true of other susceptible groups (i.e. increasing effects 729 

with increasing disease severity) is unclear.  The 10 commuter health effects studies 730 

performed to-date have yielded valuable information, however, it is clear that further studies 731 

are required in order to better elucidate the role of UFPs.     732 

 733 

9. MODELLING EXPOSURE 734 

9.1 Approaches employed to-date  735 

The ability to accurately model in-transit UFP exposure concentrations has numerous 736 

attractive applications in urban planning, transport and policy development.  The majority of 737 

published studies that developed models employed a multivariate regression approach that 738 

incorporated meteorologic, traffic or other pollutants as independent variables (Krausse and 739 

Mardaljevic, 2005; Vinzents et al., 2005; Weichenthal et al., 2009; Boogaard et al., 2009; 740 

Kaur and Nieuwenhuijsen, 2009).  Given the potential for variability in the strength of 741 

associations between the independent variables and measured UFP concentrations discussed 742 

in sections 5, the external validity of these models is unknown.    However, the models were 743 

of the explanatory type, and were developed in order to assess the effect of various 744 
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parameters on UFP concentration measured in a specific location.  Their ability to predict 745 

exposure concentrations varied from fair (R2 = 0.35) to very good (R2 = 0.74).  The influence 746 

of mode-dependent parameters like ventilation were either included in a qualitative sense 747 

(e.g. ventilation setting or window position) or not included at all.  This limitation was raised 748 

by both Briggs et al. (2008) and Weichenthal et al. (2008).  749 

 750 

Several recent studies (Pui et al., 2008; Xu and Zhu, 2009; Knibbs et al., 2010) have sought 751 

to overcome the limitations described above by adopting a more mechanistic, mass-balance 752 

modelling approach for automobiles.  This has been based on measurements of the effects of 753 

cabin ventilation, filtration, particle penetration or deposition on in-cabin concentrations (Qi 754 

et al., 2008; Gong et al., 2009; Knibbs et al., 2009a; Xu et al., 2010).  These studies have 755 

generally shown very good results when validated with experimental data.  The main 756 

limitation of such approaches is that they require the input of an initial on-road or in-cabin 757 

UFP concentration.  Therefore, there is a clear need to couple models capable of predicting 758 

outdoor or on-road concentrations with those focussed on predicting what proportion of these 759 

concentrations reach occupants, and how particle dynamics will affect concentrations through 760 

time. Moreover, further refinement of models for predicting exposure in active transport 761 

modes will be of significant utility.  In summary, there is both substantial need and scope for 762 

development of models capable of accurate prediction of UFP exposure concentrations in-763 

transit.   .        764 

 765 

9.2 Spatial and temporal aspects of exposure  766 

Efforts to improve understanding of the spatial and temporal nature of UFP exposures during 767 

transit have benefited greatly from the use of Global Positioning Systems (GPS) and 768 

Geographic Information Systems (GIS), usually at the measurement and analytical stages, 769 
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respectively.  Gulliver and Briggs (2005) described the development and use of a GIS-based 770 

model for predicting exposure to PM10 (particles < 10 µm) during transit, however, the 771 

application of spatial technologies to UFPs has to-date been limited to a handful of in-transit 772 

studies (Hvidberg, 2006; Thai, 2008; Berghmans et al., 2009; Boogaard et al., 2009; 773 

Pattinson, 2009; Int-Panis et al., 2010).  Synchronised video recordings have been included in 774 

some studies (Kaur et al., 2006; Berghmans et al., 2009), which affords an additional 775 

perspective from which analyses can be performed.  776 

 777 

Given the good level of spatial data quality obtainable from even the more basic mobile 778 

telephones at present, the integration of such data into exposure studies will assist data 779 

interpretation and help to form a more complete and accurate assessment of pollutant 780 

exposure and dose for large study populations (Jerrett, 2010).  The appropriateness and 781 

capability of mobile telephones to record spatial data and photographs during commuting has 782 

already been established by Pooley et al. (2010), and Pattinson (2009) collected such data in 783 

addition to UFP measurements when commuting by bicycle. 784 

  785 

Land use regression (LUR) is an application of GIS that is gaining momentum as a tool with 786 

which to predict exposure to a variety of pollutants (see Hoek et al., 2008).  The utility of 787 

LUR techniques to predict UFP concentrations and spatial variability is not well-established 788 

due to absence of extensive UFP monitoring networks; other (mainly gaseous) pollutants 789 

have been the focus of most work performed to-date.  However, a recent study has reported 790 

reasonable performance of LUR when applied to UFP concentrations in Amsterdam, and 791 

comparable predictive utility was observed between the LUR model for UFPs and those for 792 

other pollutants (Hoek et al., 2011).  LUR is an emerging technology that will increasingly 793 

find applications in prediction of personal exposure to a range of pollutants, albeit with an 794 
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attendant need for validation based on measurements (Hoek et al., 2008).  This highlights the 795 

need for high-quality databases of concomitant in-transit UFP and spatial measurements.  796 

 797 

10. FURTHER RESEARCH NEEDS 798 

10.1 In-transit contribution to daily exposure 799 

The significance of in-transit UFP exposure is highly dependent on personal, demographic 800 

and occupational context.  UFP concentrations encountered on the commute to and from 801 

work will exert much greater influence on the total daily exposure of a non-smoking office 802 

worker than a smoker or someone who experiences high occupational exposure.  Likewise, 803 

the health effects of the same exposure on an adult and child are likely to vary.  Without 804 

better understanding of the characteristics of 24 hour UFP exposure for numerous 805 

demographic groups, knowledge of in-transit exposure alone is of reduced utility.  However, 806 

it is useful to be able to determine, for a given location, the transport mode in which highest 807 

concentrations occur and the factors that determine this.  Such information has numerous 808 

valuable planning and policy applications.  809 

 810 

A handful of studies have estimated the influence of measured in-automobile UFP 811 

concentrations on total exposure.  Two were based on Los Angeles residents (Zhu et al., 812 

2007; Fruin et al., 2008), and their estimates ranged from 10 to 50% and 33 to 45%, 813 

respectively.  Wallace and Ott (2011) measured UFP concentrations in a wide range of 814 

microenvironments in two US cities and estimated the in-automobile contribution to total 815 

exposure to be 17%, which they attributed to the relatively low density of traffic and diesel 816 

trucks on the roadways they measured compared to LA.  In all cases, the time spent in 817 

automobiles was assumed to be about 90 minutes per day.  The applicability of the estimates 818 

reached by these studies to other regions is unknown, but they have established a range 819 
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within which automobile commutes in urban areas may be expected to contribute to daily 820 

UFP exposure.  These estimates have flagged this topic as one requiring further investigation, 821 

preferably including several transport modes.   822 

 823 

It is important to consider the distinction between UFP concentration and exposure (Krausse 824 

and Mardaljevic, 2005).  A high concentration experienced for a brief duration can result in a 825 

lower exposure than a low concentration for a longer period.  This underscores the need for 826 

both accurate time-activity pattern data across broad demographic groups and representative 827 

UFP measurements within the various microenvironments in which time is spent.  Until more 828 

expansive UFP exposure studies that follow large groups of people of varying time-activity 829 

patterns are completed, the ability to discern the range of commute-time’s specific 830 

contribution to total exposure is constrained.  831 

 832 

10.2 High exposure professions 833 

The magnitude of UFP exposures incurred by people whose occupation requires them to 834 

spend extended period in-transit is poorly understood.  Professional drivers, bicycle couriers, 835 

police officers and other groups whose work day is constituted by long periods in transport 836 

microenvironments may all be at risk of substantially elevated exposure compared to the 837 

general population.  Riediker et al. (2004) reported the negative health effects of in-vehicle 838 

PM2.5 exposure on young and healthy police officers during 9 hour shifts in patrol cars.  839 

Similar studies focussed towards UFPs are required.     840 

   841 

10.3 Exposure-health effects link 842 

Various acute human health effects caused by UFP exposures have been investigated in 843 

controlled exposure studies using a range of subject groups.  However, their relevance to in-844 
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transit exposures is unclear.  There have been precious few studies that measured the effects 845 

of in-transit exposures on health end points, and these were described in section 8.  There is a 846 

significant need for further studies in this area, as they will serve to bolster the link between 847 

exposure and health effects, and this will have implications across policy, planning and 848 

public health arenas (de Nazelle and Nieuwenhuijsen, 2010).  Furthermore, given the 849 

substantial variability in minute ventilation between occupants of different modes (Zuurbier 850 

et al., 2009; Int-Panis et al., 2010), the transition from an exposure to dose-oriented approach 851 

is likely to yield data of greater relevance to studies of health effects. 852 

 853 

10.4 Data from the developing world 854 

A striking feature of the English language literature we searched is the almost complete 855 

absence of studies performed in developing regions; with the exception of only the cycling 856 

study performed in Bogota, Columbia by Fanara (2003) and cited by Kaur et al. (2007), no 857 

other studies from developing countries were identified.  This shortcoming is compounded by 858 

the generally poor air quality experienced in these regions (Han and Naeher, 2006) and their 859 

large populations and urban density.  The effect of this combination of factors is that very 860 

high UFP exposures are likely to occur for large numbers of people, but the magnitude of 861 

such exposures is unknown.  Studies of commuter exposure to particulate mass (RSP, PM10) 862 

performed in Delhi and Hanoi have reported exceptionally high concentrations (Saksena et 863 

al., 2007; Saksena et al., 2008).  Moreover, in addition to walking, the most popular modes of 864 

transport, such as bicycles, scooters, motorcycles and 3-wheelers (tuk-tuks, auto-rickshaw 865 

etc), are unlikely to afford significant protection from the emissions of proximate traffic, 866 

which can include a substantial proportion of high emitting two-stroke vehicles.  There is a 867 

clear need to redress the scarcity of research in this area.    868 

 869 
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10.5 Other needs 870 

Major needs in future in-transit UFP exposure studies have been outlined above, and 871 

numerous other aspects requiring additional research have been suggested throughout this 872 

review.  Further investigation of the variability inherent in the determinants of exposure 873 

discussed in section 5 is required to permit better appreciation of their effects.  There is also 874 

an obvious need for improved modelling techniques, incorporating GIS, and for further 875 

comprehensive assessments of the health risk-benefit balance for active transport modes (de 876 

Nazelle et al., 2009; de Hartog et al., 2010).     877 

 878 

11. CONCLUSIONS 879 

In our analysis of 47 studies comprising approximately 3000 trips undertaken in 6 transport 880 

modes, we found that highest trip-weighted mean concentration occurred in automobile 881 

cabins during tunnel travel (3.0 × 105 particles cm-3 ), and the lowest whilst cycling (3.4 × 104 882 

particles cm-3).  Mean concentrations in bus, automobile (non-tunnel travel), rail, and walk 883 

modes were generally comparable.  However, UFP exposure (and dose) during time spent in-884 

transit is strongly dependent on a range of mode-specific and more general determinants, 885 

including, but not limited to, the effects of: meteorology, traffic parameters, cabin ventilation, 886 

filtration, deposition, UFP penetration, fuel type, exhaust treatment technologies, respiratory 887 

minute ventilation, route and microscale phenomena.  Therefore, direct comparison of 888 

concentrations measured in different modes highlights general trends, but should not be 889 

extrapolated without detailed consideration of the above factors.  Characterising the 890 

variability in the effects of these determinants will be an important aspect of future work.       891 

 892 

There is preliminary evidence to suggest that time spent in-transit can contribute substantially 893 

to total daily exposure, and future studies require comprehensive assessment of 24 hour UFP 894 
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exposures across a broad demographic spectrum.  Moreover, the range and variability of 895 

acute health effect associated with in-transit exposures are not well understood, and further 896 

studies are required to supplement the findings of the limited number performed to-date. 897 

 898 

Transport is a ubiquitous component of life, and initial evidence suggests that UFP exposures 899 

incurred during this time can contribute substantially to daily exposure and be associated with 900 

adverse health effects in susceptible and healthy persons.  Further research to better define 901 

this link is therefore well-justified, and will be of considerable benefit to urban planning, 902 

policy development and public health. 903 
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Figure 1.  Trip-weighted mean UFP concentrations in each transport mode, shown as bold 1304 

numbers.  The number of trips taken in each mode is shown in brackets.  Error bars denote 1305 

the trip-weighted standard deviation.  The studies from which the data were extracted are 1306 

listed in the Supplementary Information file.  1307 
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 1309 

Figure 2.  Trip-weighted mean UFP concentrations measured in buses of different fuel type 1310 

and emission control device.  The number of trips taken in each category is shown in 1311 

brackets.  Error bars denote the trip-weighted standard deviation.  See text for abbreviations.  1312 
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