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Abstract In topological mapping, perceptual aliasing

can cause different places to appear indistinguishable to

the robot. In case of severely corrupted or non-available

odometry information, topological mapping is difficult

as the robot is challenged with the loop-closing prob-

lem; that is to determine whether it has visited a par-

ticular place before.

In this article we propose to use neighbourhood in-

formation to disambiguate otherwise indistinguishable

places. Using neighbourhood information for place dis-

ambiguation is an approach that neither depends on a

specific choice of sensors nor requires geometric infor-

mation such as odometry. Local neighbourhood infor-

mation is extracted from a sequence of observations of

visited places.

In experiments using either sonar or visual observa-

tions from an indoor environment the benefits of using

neighbourhood clues for the disambiguation of other-

wise identical vertices are demonstrated. Over 90% of

the maps we obtain are isomorphic with the ground

truth. The choice of the robot’s sensors does not im-

pact the results of the experiments much.

Keywords Autonomous mobile robots · topological

mapping · colour histograms · sonar · neighbourhood

NICTA is funded by the Australian Government as represented

by the Department of Broadband, Communications and the Dig-
ital Economy and the Australian Research Council through the
ICT Centre of Excellence program.

Felix Werner (B) · Joaquin Sitte · Frederic Maire

Faculty of Science and Technology, Queensland University of
Technology, 2 George Street, Brisbane, QLD 4000, Australia

and NICTA Queensland Research Laboratory, Staff House Road,

St Lucia, QLD 4072, Australia
E-mail: {f.werner, j.sitte, f.maire}@qut.edu.au

information · perceptual aliasing · stochastic local

search · particle filter

1 Introduction

Successful navigation in its environment is an essen-

tial capability for an autonomous mobile robot to ac-

complish its mission. In robotics, successful navigation

means reaching a destination from a starting location.

In order to navigate sucessfully, robots commonly use a

map as an internal representation of the spatial layout

of its environment. Using a map enables a robot to plan

and follow a trajectory into areas which are beyond its

perception range at its current position. Autonomously

building maps as spatial representations of the envi-

ronment from sensor data is considered as one of the

most important problems in the quest to build truly

autonomous robots (Thrun, 2002).

Two major approaches to represent a robot’s envi-

ronment have emerged: metric and topological (Burgard

and Hebert, 2008; Meyer and Filliat, 2003). The former

models the surroundings using a metric map which pre-

serves the relative spatial distances between the objects

in the environment. The metric representation is par-

ticularly well suited for geometrically accurate continu-

ous localisation and precise trajectory planning with

respect to the map’s coordinate system (Filliat and

Meyer, 2003; Meyer and Filliat, 2003).

Topological maps are graphical models which repre-

sent the topology of an environment in an abstract and

concise manner. According to Remolina and Kuipers

(2004) there is no consensus about what exactly topo-

logical maps are and how they should be built. However,

most of the topological map descriptions share common

elements such as the representation of the environment

through discrete key places and the connectivity rela-

tions among the places contained in the map (Marinakis

and Dudek, 2010). A place is described with a feature

vector derived from sensory data called a fingerprint.

In this article, we define a place as a small connected

region on the ground where the robot’s perceptions are

essentially similar.

One of the key challenges in inducing topologi-

cal maps is to deal with the perceptual aliasing prob-

lem (Thrun, 2002) which is an instance of the data as-

sociation problem (Ranganathan et al., 2006), also var-

iously known as closing the loop (Hähnel et al., 2003)

or the revisiting problem (Stewart et al., 2003). Per-

ceptual aliasing arises if different places in the environ-

ment produce the same sensory perception and hence

appear indistinguishable to the robot; hence it is un-

certain whether sensor measurements taken at different

points in time correspond to the same physical location.
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Typically, perceptual aliasing is caused by measurement

uncertainties inherent to robot perception, limited field

of view (aperture problem) and repeated structures in

the environment.

In this article we suggest to deal with the percep-

tual aliasing problem in topological mapping by using

neighbourhood information. By the neighbourhood in-

formation we mean a window in sequence of visited

places around a particular place. The novel idea here

is inducing spatial adjacencies around places in a topo-

logical map that is represented as a connected graph by

exploiting adjacency information from the sequence of

visited places. Such neighbourhood information helps

to distinguish places that appear identical to the robot.

Using neighbourhood information for place disambigua-

tion is a general approach which is neither bound to a

specific choice of sensors nor requires geometric infor-

mation.

We present two methods for topological mapping

from a sequence of observations that integrate our

method for place disambiguation. The first method em-

ploys a stochastic local search algorithm (Hoos and

Stützle, 2004) for map induction and assumes a se-

quence of deterministic (noise free) observations of

places. Using discrete, noise-free labels we assess the

success rate in obtaining correct topological maps by

using neighbourhood information. Second, a probabilis-

tic map induction method is described that expresses

neighbourhood information of places in terms of a like-

lihood. We show that integrating neighbourhood infor-

mation into a probabilistic framework provides a power-

ful mechanism to induce purely topological maps from

sequences of sonar measurements alone or sequences of

visual perceptions alone in highly ambiguous environ-

ments.

The remainder of this article is organised as follows:

Section 2 reviews previous work. Section 3 defines terms

used in the rest of this article. In Section 4 we describe

a stochastic local search algorithm for map induction

and evaluate the proposed approach using artificially

created random graphs. Section 5 describes a proba-

bilistic map induction method from a sequence of noisy

measurements and presents results from experiments

using sonar data and visual data.

2 Related Work

Research in mapping has for the most part been con-

cerned with the perceptual aliasing problem due to

limited sensor capabilities. Many approaches to the

mapping problem use Extended-Kalman-Filter (EKF)

based mapping algorithms, often as part of the simul-

taneous mapping and localisation (SLAM) task (e.g.

Leonard and Durrant-Whyte, 1991; Dissanayake et al.,

2000, 2001; Milford and Wyeth, 2008; Thrun and

Leonard, 2008). In an EKF the motion model and ob-

servation noise are assumed to be independent: the sen-

sory noise is a function of the sensor physics, and is

independent of the robot’s motion noise. These tech-

niques have mainly been implemented in conjunction

with geometric maps, or topological maps that capture

geometric components, as the EKF requires the motion

model of the robot to be known.

Various approaches have been proposed to solve the

correspondence problem using highly distinct finger-

prints for easing place recognition (e.g. Tapus et al.,

2004; Tapus and Siegwart, 2005; Valgren et al., 2007;

Ramisa et al., 2009). The currently most successful ap-

proach for loop closure detection using visual data as-

sociation is FAB-MAP which employs a probabilistic

approach for image matching based on a bag-of-words

model for performing localisation on trajectories up to

100km in length (Cummins and Newman, 2008, 2009;

Posner et al., 2009). However, in many real world en-

vironments, such as office spaces or corridors, it is not

always possible to generate distinctive fingerprints for

different places because of the similarities inherent to

the physical structure.

A common strategy in topological robotic mapping

is to detect loop closures by combining place recogni-

tion with geometric trajectory information (e.g. Choset

and Nagatani, 2001; Lamon et al., 2003; Angeli et al.,

2008; Amigoni et al., 2009; Maddern et al., 2011; Ran-

ganathan and Dellaert, 2011). Another strategy is to

obtain topological maps by decomposing a previously

generated geometric map into key areas (Choi et al.,

2011) or extracting key places (Thrun, 1998; Mozos and

Burgard, 2006). However, for both approaches the map-

ping process may be inaccurate or not successful with-

out geometric trajectory information. In cases where

no accurate model of the effect of robot motion is avail-

able, there is significant benefit not having to depend

on it. In particular aerial robots, legged robots and un-

der water robots cannot access odometry information

and therefore require other mechanisms for coping with

the loop-closure problem. The method for topological

mapping we introduce in this article does not require

geometric information or information about the robot’s

actions. However, such information could be integrated

and exploited if available.

Approaches using behaviour-based control for

exploration-based topological map induction have also

been proposed. For generating a topological map

Mataric (1990) combines boundary-following and goal-

directed navigation behaviours with qualitative land-

mark identification. Pierce and Kuipers (1997) pro-
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posed a complete behaviour-based topological and met-

ric map learning system from low-level sensorimotor

control to topological environment representation us-

ing the spatial semantic hierarchy (Kuipers, 2000).

Ranganathan et al. introduced the idea of proba-

bilistic topological maps, which is a sample-based rep-

resentation that approximates the posterior distribu-

tion over topologies given the available sensor mea-

surements. Mapping is performed through the use of

Markov-Chain Monte Carlo based Bayesian inference

over the space of all possible topologies (Ranganathan

and Dellaert, 2011; Ranganathan et al., 2006; Ran-

ganathan and Dellaert, 2005, 2004). While probabilis-

tic topological maps are a general approach for mapping

they are not capable of dealing with perceptual aliasing

that occurs due to repeated structures in the environ-

ment unless geometric information is incorporated.

Other approaches incorporate a sequence of obser-

vations and actions to generate an automaton which

corresponds to a topological map of the environ-

ment (Rivest and Schapire, 1990; Dean et al., 1993;

Basye et al., 1995). Also, a strategy has been proposed

to build a collection of candidate topologies and prune

this collection to find the map which is most feasible ac-

cording to a sequence of actions and observations (Re-

molina and Kuipers, 2004). These methods exploit the

knowledge of the actions of the agent to disambiguate

otherwise perceptually identical places. For example,

two look-alike hotel rooms at each end of a corridor

can be distinguished using the agent action history, as

it needs to travel forward or backward towards one of

the rooms. In contrast, our approach distinguishes the

look-alike rooms using their neighbours as one room

may be located next to a lobby whereas the other one

is adjacent to a staircase.

Marinakis and Dudek (2010) recently proposed an

approach for an extreme case of the loop-closing prob-

lem where the robot neither has the ability to obtain

meaningful odometry measurements nor is it able to

associate a unique label with any vertex or edge. In or-

der to obtain useful topological maps, a robot is able

to assign a relative ordering to the edges, leaving a ver-

tex with reference to the edge by which it arrived. In

order to obtain useful topological maps the relative or-

dering of edges is exploited through an exploration tree

of plausible world models.

The problem we consider in this paper is similar,

however, in our case, the robot neither is able to order

nor to label travelled edges. Instead, the robot only ex-

ploits adjacency information from the sequence of vis-

ited places for building a topological map.

3 Notations and Definitions of Key Terms

In this section we formalise the problem of mapping

with neighbourhood information for place disambigua-

tion (Werner et al., 2008) and introduce notations and

key terms.

A topological map is defined as a labelled graph G =

(V,E,L) where the vertices V represent places and the

edges E define the connectivity between places. The

set L of vertex labels is a set of discrete symbols that

abstract sensor readings through some processing like

quantisation or clustering. Each vertex is mapped to a

label L(v).

Perceptual aliasing occurs when two or more ver-

tices are mapped to the same label.

Definition 1 Vertices x and y ∈ V are called aliases

iff L(x) = L(y).

We denote the graph which represents the true topol-

ogy of the environment by Genv (environment graph)

and the map constructed by the robot by Gmap (map

graph). The environment graph is unknown to the agent

and the only available information about the envi-

ronment is a finite sequence of labels called history.

The history is obtained by traversing the environment

graph Genv. Hence H1:T = l 1, ..., l T and l t ∈ Lenv for

t ∈ [1, T ]1.

3.1 Adjacency Information: n-Grams

Our method exploits the neighbourhoods of vertices to

disambiguate aliases. The history H contains some in-

formation about the neighbourhoods of Genv. Consec-

utively visited vertices correspond to consecutive labels

in the history and, reciprocally, consecutive labels in

the history correspond to adjacent vertices in Genv. In

order to access the information about the neighbour-

hoods in Genv we use a set H of continuous slices of

fixed length n (n = 1, 3, 5, 7, ...).

Definition 2 An n-gram is a sequence of n labels.

Using n-grams is very popular for statistical pre-

diction and categorisation in speech and language pro-

cessing (Brill, 2003) as well as in bioinformatics (Man-

soori et al., 2009) but has not been used in the context

robotic mapping. In the following we explain how n-

grams can be exploited for topological mapping.

Definition 3 The set of all n-grams which can be ex-

tracted from a history H is denoted Grams(H,n).

1 We use the notation a:b to denote the sequence of integers

from a to b.
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(a) Floor layout.

A B C

AED

1 32

5 4 6

(b) Environment graph.

A B C

ED

1 32

5 4

(c) Possible map graph.

Fig. 1 (a) Artificial environment example. The labels A,B,C,D and E denote the view the robot perceives in a particular room.
(b) Topological map of this environment. The vertices are labelled with letters which denote the label (sensor view) of the vertex. The

subscript number of each circle denotes the index of the corresponding vertex. Note the two aliases, labelled A (vertices 1 and 4).

The set Grams(H,n) is a feature derived from the his-

tory H. A history of length m induces at most m−n+1

distinct n-grams.

Given a topological map Gmap, we can generate a

history by traversing the map. The set of all possible

n-grams that can be obtained by traversing Gmap cor-

responds to a feature space on the map. The maximum

number of distinct n-grams that are derivable from a

graph is |L|n.

Definition 4 The set Grams(G, n) denotes the set of

all n-grams that can be obtained by traversing a topo-

logical map G.

To keep the notation simple, we will use Grams(X,n)

also when X is a history.

An example environment graph is shown in Fig-

ure 1(b). A possible history obtained from travers-

ing this environment graph and, the extracted 3-grams

from this history are shown in Table 1.

3.2 n-Consistency

Ideally, a topological map induced by an agent should

be isomorphic to an environment graph Genv. However,

Genv is unknown and the only available information

about the environment graph are local neighbourhood

history: H =< A, B, C, A, E, D, A, B, E, A, C, B, E, D, A, B, C >

Grams(H, 3) =
{<A,B,A>,<A,B,C>,<E,B,A>, <A,D,A>,<E,D,A>,<B,A,B>,

<D,A,B>,<B,C,B>,<A,C,B>, <B,E,B>,<D,E,B>,<B,E,A>,
<C,B,C>,<C,B,E>,<C,A,C>, <C,A,E>,<D,A,D>,<D,E,D>,

<A,E,D>,<E,B,E>,<E,D,E>, <E,A,E>,<A,C,A>,<A,E,A>}

Table 1 An example of a possible history H that could be ob-
tained from the environment graph in Figure 1(b) and the set of
3-grams extracted from the history. Note, we allow the robot to

perform U-turns.

structures contained in the set of n-grams from the his-

tory. Consequently, we propose to measure the consis-

tency of a map and a history by comparing the sets of

n-grams that they generate.

Definition 5 A map Gmap and a history H are n-

consistent, iff Grams(Gmap, n) = Grams(H, n).

The parameter n denotes the length of the grams, that

is considered for the consistency measure. For example,

the graphs shown in Figure 1(b) and Figure 1(c) are

1-consistent as they induce the same set of 1-grams.

The difference between these two graphs is not captured

by 1-grams, as 1-grams do not contain any adjacency

information. However, considering 3-consistency reveals

the difference between the two graphs: the graph in

Figure 1(c) induces 3-grams such as C-A-D, which are

not contained in the 3-grams (shown in Table 1) of the

graph in Figure 1(b).

4 Topological Mapping from a History of

Deterministic Place Labels

This section demonstrates the discriminatory power of

neighbourhood information for place disambiguation in

topological mapping. For that purpose, we describe a

method for inducing a topological map from a set of

n-grams that are obtained by traversing an environ-

ment graph with discrete, noise free labels. We begin

with introducing constraints that we wish the topologi-

cal map graph to satisfy and then describe a stochastic

local search method for topological map induction. The

section is concluded with a discussion on the benefits

and drawbacks of using neighbourhood information for

place disambiguation on the basis of results from ex-

periments on artificial environment graphs with deter-

ministic labels.
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4.1 Mapping Constraints

The aim of mapping in robotics is to generate a repre-

sentation of the environment that is congruent with the

real environment. Hence, in our case, the n-consistency

requirement expresses a hard constraint that the map

graph must satisfy.

A frequent problem in topological mapping is that

the number of vertices is not known in advance. Even

if we knew the number of vertices in advance, disam-

biguation would still be difficult unless every vertex is

mapped to a distinct label (i.e. no aliasing).

A map graph, that is obtained by mapping each ob-

servation to a distinct vertex in a bijective manner, is

n-consistent according to Definition 5, as the mapping

method disregards multiple visits of the same place.

However, if there are aliases, this map graph contains

too many vertices and does not capture the connectiv-

ity of the environment appropriately and is therefore

inappropriate for navigation. We propose to resolve this

dilemma according to Occam’s razor principle2 by con-

structing a small map, minimising the number of ver-

tices while maintaining consistency with the observa-

tions. Ideally, we would like to find the smallest map

that explains the observed history. The objective of

minimising the number of vertices is formulated as a

soft constraint.

4.2 Map Induction using a Stochastic Local Search

The task of topologically mapping an environment is

identical to the problem of partitioning the set of

recorded labels such that each subset of the partition

contains exactly those labels that were recorded at a

particular place. That means, labels of places that were

visited several times need to be assigned to the same

subset of the partition. In general, this is a difficult

task, as the number of different topologies over M ob-

servations is identical to the number of disjoint set par-

titions of the M -set. This number is called Bell num-

ber bM = 1
e

∑∞
i=0

iM

i! and grows hyper exponentially

with M (Nijenhuis and Will, 1978).

The combinatorial complexity motivates the use of

a stochastic local search (SLS) which is a popular ap-

proach for solving difficult combinatorial optimisation

problems (e.g. Richter et al., 2007). SLS algorithms

have been successfully applied to NP -complete prob-

lems such as satisfiability and constraint satisfaction.

Local search algorithms move from solution to solution

2 ”Entia non sunt multiplicanda praeter necessitatem” or ”En-
tities should not be multiplied unnecessarily”. William Occam

(1285-1349).

Algorithm 1 Algorithm for inducing a map

graph Gmap given a set of n-grams Grams(H, n). The

algorithm is explained in detail in Section 4.2.
Require: Γ = Grams(H, n)

1: Gmap ← ∅
2: repeat

3: select arbitrary γ ∈ Γ
4: try to merge γ with Gmap such that

1. Grams(Gmap, n)⊆Grams(H, n)

2. Least number of new vertices are introduced

5: if merge successful then

6: Γ← Γ \Grams(Gmap, n)

7: end if
8: until Γ = ∅ or maximum number of trials exceeded.

9: if Γ 6= ∅ then

10: return failure
11: else

12: return Gmap

13: end if

in the space of candidate solutions (the search space)

until a solution deemed good enough is found or a time

limit has elapsed (Hoos and Stützle, 2004).

4.2.1 Constraint Based Map Induction

In order to build a topological map Gmap from a his-

tory H, the set Γ = Grams(H, n) of n-grams is ex-

tracted from the history. The extracted n-grams are

then incrementally re-merged such that a map graph

is obtained which satisfies the mapping constraints. Al-

gorithm 1 lists the pseudo-code for the proposed algo-

rithm.

The mapping process starts with an empty map

graph Gmap ← ∅ and the set Γ initially contains all

the n-grams extracted from the history. In the main

loop, Algorithm 1 selects an arbitrary n-gram γ ∈ Γ

and tries to merge (line 4) the n-gram with the current

map graph (lines 2-8).

A merge of an n-gram γ with a map graph may

introduce new edges and vertices such that γ can be

derived from the extended map graph. Often, there

are several possibilities to merge an n-gram with map

graph. Hence, the merge option that satisfies the map-

ping constraints best is selected. According to the map-

ping constraints described in Section 4.1, the partic-

ular merge is selected that results in a map that is

n-consistent with the history and requires fewest new

vertices.

The n-grams that are accounted for by the newly

created edges are removed from Γ. That is, the n-grams

that remain for merging are those which are not induced

by the map graph yet (line 6). The mapping process is

successfully finished when all n-grams are accounted

for. That is, when Γ = ∅ (lines 8 and 12). It may oc-
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AED

1 32
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Fig. 2 A map graph is shown in black. Two possibilities to merge

the 3-gram C-A-E are shown in dotted red and dashed blue. The
dotted red option requires fewer vertices as only new connectivity

is induced. However, the resulting map graph would violate the

mapping constraints as it would be possible to observe the 3-
gram E-A-B which does not appear in the extracted set of 3-grams

from the history as shown in Table 1. Thus, the option which is

displayed in dashed blue is selected.

cur that it is not possible to merge an n-gram with a

map graph as only inconsistent mappings are obtained.

Hence, after a maximum number of unsuccessful merge

trials, the mapping process is terminated (lines 8) and

a failure status is returned (line 10).

The merging relates the local adjacency information

contained in the n-grams and the adjacencies of the ver-

tices in the map graph. For example, Figure 2 shows two

possibilities (shown in dotted red and dashed blue) to

merge the 3-gram C-A-E to a map graph. Clearly, the

possible edge addition shown in red dots requires fewer

vertices. However, traversing the resulting map graph,

we can obtain the 3-gram E-A-B which is not supported

by the history thus the consistency constraint is vio-

lated. Hence, the merge shown in dashed blue is exe-

cuted.

The proposed mapping method simultaneously de-

termines the number of vertices, assigns appropriate la-

bels to the vertices, and induces the connectivity of the

vertices of the map graph.

4.2.2 Local Extrema and Search Restarts

Algorithm 1 aims to induce a map graph which is n-

consistent with the set of n-grams extracted from a

given history. However, an unfortunate order of selec-

tions of n-grams from Γ (line 3) can result in large

graphs or make further valid merges impossible. We do

not know how to find the optimal order efficiently in

advance.

Our approach to solve the problem of finding the op-

timal order of merges is to restart the entire mapping

process several times. Due to the arbitrary selections

of n-grams different results may be obtained. We even-

tually keep the map graph which requires the smallest

number of vertices.

4.3 Results from Experiments using Deterministic

Labels

For the evaluating the stochastic local search algorithm

for topological mapping we use artificial random graphs

with discrete, noise free labels. Thus, we can consider

the problem of different places that appear to be the

same to the robot without additional complications

such as measurement noise.

4.3.1 Artificial Random Graphs

For the following evaluations, environment graphs are

created with 25, 36, 49 and 100 vertices arranged

and (possibly) connected in a rectangular grid. That

means, the maximum degree of a vertex is four. We

have chosen a grid layout to ensure planarity; most of

the environments robots traverse are planar. On the

grid, we simulate different edge densities: a fully con-

nected grid, a grid with half of the edges of a fully

connected grid and a minimally connected grid where

each vertex has at most degree 2. The vertices of each

graph are arbitrarily labelled with elements from a set

of labels whose size was half, three quarters and the

same size as the set of vertices. Reducing the size of the

set of labels naturally increases the number of aliases

in a graph. We assume, every environment graph is ex-

plored exhaustively such that the robot has collected

all n-grams that are obtainable by traversing the envi-

ronment graph.

4.3.2 Quality of the Topological Maps

A good indication of the benefit of using neighbour-

hood information for place disambiguation in topolog-

ical mapping is the quality of the obtained topological

maps. Ideally, we would like a map that is isomorphic

with the corresponding environment graph. Here, this

can be decided because Genv is known.

Figure 3 shows a quality analysis of the proposed

approach for inducing a topological map from a his-

tory. Clearly, for graphs with unambiguous labelling,

all mappings are isomorphic (white bars). As expected,

increasing the degree of ambiguity by reducing the size

of the set of labels (grey and black bars), results in fewer

isomorphic mappings. However, our method yields a

high percentage of isomorphic mappings even for graphs

with many ambiguous labels.

In comparison with the degree of aliasing, the edge

density seems to have minor impact on the quality of

the resulting maps. We can observe a slight tendency to

fewer isomorphic mappings with decreasing edge den-

sity. This may be a consequence of fewer neighbours for
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(a) Mapping with respect to 3-consistency.
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(b) Mapping with respect to 5-consistency.

Fig. 3 Each chart shows the statistics of the resulting maps of 700 environment graphs using different edge densities (fully connected,

half connected and minimally connected) and varying numbers of labels as described in Section 4.3.1. The top row shows mappings
with respect to 3-consistency and the bottom row mappings with respect to 5-consistency. The white bars refer to mappings where

each vertex is assigned a distinctive label (no ambiguity), the grey bars refer to mappings with an increased degree of ambiguity (size of

the set of labels is 75% of the size of the set of vertices) and the black bars refer to mapping with high a high degree of ambiguity (the
size of the set of labels is half the size of the set of vertices).
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(c) Mapping of an environment graph with 100 vertices accord-

ing to 3-consistency.
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(d) Mapping of an environment graph with 25 vertices according

to 5-consistency.

Fig. 4 Histograms of the first isomorphic map found out of 100 mapping trials for 2160 environment graphs with 25 vertices (a)-(b)

and 100 vertices (c)-(d) with different numbers of edges and labels created according to the described schemata.

each vertex and hence less neighbourhood information

for disambiguation.

The parameter that most impacts the quality of the

mapping is the length n of the n-grams. Mapping with

respect to 5-consistency yields more isomorphic map-

pings than mapping with respect to 3-consistency. This

effect occurs as larger n-grams contain more informa-

tion and hence are more discriminative than shorter

n-grams.

The results demonstrate that using neighbourhood

information is very beneficial for place disambiguation

in topological mapping. The constraint of n-consistency

between a history and the corresponding map graph

governs the map building process in a manner that

most ambiguities can be resolved and mostly isomor-

phic mappings are obtained. Note that our mapping

method does not require any geometric information

such as odometry. However, incorporating further in-

formation such the trajectory of the robot may increase

the number of successful place disambiguations.

4.4 Mapping Performance

Because of the random selection of n-grams in the

stochastic local search, we may obtain different maps

in multiple runs of our mapping algorithm. Hence, it is
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Fig. 5 The average size of the set of n-grams of the environment

graphs used for the experiments are shown for n ∈ {3, 5, 7, 9, 11}.
Note, the logarithmic scaling of the y-axis.

important to examine how many mapping trials our al-

gorithm requires to execute until a map graph is found

that is isomorphic with the environment graph. Thus,

for each environment graph, we run the mapping pro-

cess 100 times and analysed when the first isomorphic

map graph was found.

The evaluations displayed in Figure 4 show, that

an isomorphic mapping is usually found very quickly

after a few trials. It seems, the mapping constraints

tightly guide the mapping process so that mostly iso-

morphic mappings are obtained. Moreover, the results

show that mapping larger graphs requires more trials

on average. A possible reason for that occurrence may

be that large environment graphs are more complicated

to map as they contain more repeated structures than

small environment graphs.

Mapping with respect to 5-consistency usually re-

quires fewer trials to find an isomorphic map graph than

mapping with 3-consistency as 5-grams contain more

information for disambiguation than 3-grams. However,

a trial in 5-consistency mapping requires more time

than mapping with respect to 3-consistency.

The complexity of the proposed method mainly de-

pends on the length n of the n-grams. As mentioned

in Section 3.1 the size of the set of n-grams grows lin-

early with the number of labels of a graph but hyper-

exponentially with n. Figure 5 supports that analysis

on data from the experiments.

5 Induction of Topological Maps from an

History of Noisy Measurements

In this section we present an approach for topological

map induction from an history of noisy sensor read-

ings. We describe a method for inducing a topological

map using a Bayesian filter technique which integrates

the disambiguation using neighbourhood information

as proposed in Section 4.

As in Section 4 we assume the robot has collected all

n-grams that are obtainable by traversing the environ-

ment graph. From a recorded history H1:T = l 1, ..., l T

of noisy fingerprints of visited places, the set Γenv =

Grams(H1:T , n) of n-grams is computed after the explo-

ration. The map is then inferred in a SLAM-like fashion

by replaying the history with in addition Γenv as back-

ground knowledge.

5.1 Bayesian Inference for Map Likelihood Estimation

Bayes filters recursively estimate a dynamic system’s

state from noisy observations (Arulampalam et al.,

2002) and are widely used in robotic mapping and local-

isation (Fox et al., 2003). Here, the system state st =

{Gt
map, p

t} comprises the topological map Gt
map and

the place pt the robot is located at time t. We

are interested in recursively estimating the posterior

PDF (probability density function) P (st|H1:t) over the

states at time step t given the measurements H1:t using

Bayes’ rule

P (st+1|H1:t+1) = P (st+1|Ht+1,H1:t) (1)

=
P (Ht+1|st+1,H1:t)P (st+1|Ht:1)

P (Ht+1|Ht:1)
(2)

∝ P (Ht+1|st+1,H1:t)P (st+1|Ht:1). (3)

The transition PDF from the tth timestep to the t+1th

P (st+1|H1:t)=
∑
v

P (st+1, st=v|H1:t) (4)

=
∑
v

P (st+1|st=v,H1:t)P (st=v|H1:t) (5)

depends only on the positions pt and pt+1 the robot

visits, hence

P (st+1|st,H1:t) = P (st+1|st = v). (6)

Putting everything together, we have

P (st+1|H1:t+1) = P (Ht+1|st+1)∑
v

P (st+1|st = v)P (st = v|H1:t) (7)

where we exploit the conditional independence

P (Ht+1|st+1,H1:t) = P (Ht+1|st+1). (8)

For map likelihood estimation, we recursively solve

Equation 7 using a particle filter which is a sequen-

tial Monte-Carlo method used for Bayesian model in-

ference (Arulampalam et al., 2002). In order to induce

a topological map, we recursively compute the prob-

ability distribution P (st|H1:t) at each time step. This

distribution is obtained, recursively, in two stages: pre-

diction and update.
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5.1.1 Prediction Phase

Recall that st represents a pair made of a candidate map

and the location of the robot within this map. To sam-

ple the set of pairs of (candidate map, robot location),

we use a simplified motion model of the robot. Nor-

mally, the new location pt+1 of the robot is predicted us-

ing a conditional probability P (st+1|st,ut) where ut de-

notes the control command at time t. In the context of

topological mapping with no information about the mo-

tion of the robot, the control command ut is unknown.

Therefore, we rely only on the probability P (st+1|st) to

predict the robot motion.

We estimate the PDF P (st+1) with a particle sys-

tem. For each particle in generation t , we create K+ 1

new particles. Each new particle represents a robot’s

predicted position in the map graph Gt
map. The K+1st

particle is special; it represents the robot at a new

place (added vertex) in the map. Indeed, we have to

accommodate the possibility that the robot could be en-

tering a place that it has never visited so far. Therefore,

the size of the population of particles grows to N(K+1)

before being resampled down to N particles. An edge

is added between the vertex the robot currently visits

and the vertex the robot is predicted to visit next if

that particular link does not exist yet.

To introduce a preference bias for small maps that

explain the history, we set the model transition proba-

bility

P (st+1|st) =

{
1 if |Vt+1| = |Vt|
ψ if |Vt+1| > |Vt| (9)

to favour small number of vertices (ψ ∈ [0, 1]).

5.1.2 Update Phase

In the update phase a measurement model is used

to incorporate information from the sensors to ob-

tain the posterior PDF P (st+1|H1:t+1). The measure-

ment model is given in terms of a measurement likeli-

hood P (Ht+1|st+1
i ). In particle filters, the measurement

likelihood is computed by weighing the samples. In our

algorithm a sample’s weight comprises the similarity of

the label lk of vertex vk and the observation Ht+1 (k

denotes the vertex that represents the predicted loca-

tion pt+1
i ) as well as the n-consistency of the current

map graph estimate Gt+1
i and the history H1:t+1). Re-

call from Definition 5 that the n-consistency is mea-

sured by comparing the set of n-grams Γt+1
i that can

be derived from the predicted map estimate and the

set of n-grams Γenv derived from the history. Thus, a

particle’s weight is computed with

wt+1
i ∝P (Ht+1|st+1

i )∝ exp

(
−
(
||Ht+1 − lk||

σl

)2
)

exp

(
−
(
dH(Γenv,Γ

t+1
i )

σc

)2
)
.

(10)

whereby the parameters σl and σc denote the standard

deviations of the Gaussian distributions. The novel as-

pect here is performing a consistency check in every

update step and including the consistency of history

and map into the sample’s weights.

However, it is not possible to perform a consis-

tency check by testing whether Grams(Gmap, n) =

Grams(H, n) as suggested in Definition 5 because the

elements are not discrete and free of measurement noise.

For noisy data we suggest to measure the degree of n-

consistency of two sets of n-grams Γ0 and Γ1 using the

Hausdorff distance

dH(Γ0,Γ1) = max(max
α∈Γ0

min
β∈Γ1

d(α, β),max
β∈Γ1

min
α∈Γ0

d(β, α)).

(11)

The smaller the Hausdorff distance the more n-

consistent are Γ0 and Γ1. The distance of two n-grams α

and β is computed using the maximum norm

d(α, β) = ||α− β||∞ = max
k=0,...,n−1

(|αk − βk|). (12)

Thus, the distance between two sets of n-grams is com-

puted by the largest distance of two fingerprints that

are associated with the same vertex in a map.

The posterior distribution on topological maps is

computed by drawing N samples from the proposal dis-

tribution.

5.1.3 Localisation

The place pt that the robot occupies is implicitly es-

timated whenever the map graph is updated with a

new observation. The vertex whose label is updated

or added using the observation indicates the new lo-

cation of the robot. If a new vertex is introduced the

robot is by construction located at the place which cor-

responds to that vertex. The location, in turn, is used to

guide the mapping process by introducing adjacencies

between the current and the previous place occupied.
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CMU Wean Hall Floor 6

0 1 2 3 4
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78910

Fig. 6 The floor plan of Wean Hall Floor 6 at Carnegie Mellon

University. Embedded is the topological graph (vertices and their

connectivity) that reflects the ground truth of the topological
map. The circles show the distance measure from the locus point

to the closest obstacles which we use as fingerprints of the places.

5.2 Experiments

We demonstrate the generality of our approach for place

disambiguation by presenting results from histories of

solely sonar range measurements in Section 5.2.2 and

histories of solely visual observations in Section 5.2.3.

5.2.1 Experiment Setup and Data Acquisition

Our experimental set up covers an indoor office environ-

ment area of about 20,000 square meters (Wean Hall at

Carnegie Mellon University), see Figure 6. Our robot

uses an ultrasonic sensor array and a panoramic cam-

era to acquire information about the environment.

The robot traverses the environment using the Gen-

eralised Voronoi Graph (GVG) strategy as developed

by Choset and Nagatani (2001). The GVG navigation

method is based on the Voronoi diagram which is a

skeleton graph of the environment. The points of the

Voronoi diagram locally maximise the minimum dis-

tance to any obstacle. In indoor environments nodes of

Voronoi diagram naturally to T-junctions or intersec-

tions of corridors as shown in Figure 6. We consider

the Voronoi nodes as key places in the environment.

Thus, once a locus point is identified, a sonar reading

and a panoramic image are taken.

5.2.2 Map Induction from Sonar Readings

We have conducted several explorations and recorded a

total of 105 sonar-based fingerprints of places (see Ta-

ble 2). The sonar-based fingerprint of a place may be

interpreted as the radius of the largest obstacle free disc

that can be drawn around the locus points of Voronoi

nodes. Clearly, such very simple fingerprints of places

entail numerous topological ambiguities. Considering

the means of each of the recorded fingerprints of par-

ticular places in Table 2, it is difficult to identify 11

distinguishable categories, resulting in a challenge for

topological mapping and localisation algorithms. For

example, places 2 and 3 appear similar to the robot as

do places 3 and 4 or places 1, 4, 5, 6 and 9.

Given the database of recorded fingerprints of places

and the ground truth environment graph, we can sim-

ulate random traversals of the environment. The robot

starts at an initial vertex and selects an arbitrary ad-

jacent vertex as next place. According to the vertex

the robot occupies, a random observation from the

database is sampled. For the following evaluations,

200 paths of length 100 were generated. Each path rep-

resents an exhaustive exploration of the environment.

The posterior distribution on topological maps in the

particle filter was approximated using 10 particles. Be-

cause of the severe level of ambiguities in our environ-

ment, we maintain 5-consistency between an history

and the induced map as suggested from the results in

Section 4.3.2.

Our approach aims at inducing a topological map

which is consistent with the information given in the

history. The consistency is measured through the Haus-

dorff distance (Equations 11 and 12) between the sets of

n-grams which are derived from an history and the in-

duced map graph. Figure 7(b) shows a histogram of the

5-consistencies of the obtained maps of the simulated

random traversals. For most of the induced maps the 5-

consistency error between the map and the underlying

history is small and can be explained with the inherent

uncertainties associated with sensory perception.

As mentioned earlier in this paper, the map that

contains a vertex for every observation is a non-

desirable topological map despite the fact that this map

maximises the consistency between the induced map

and the history. In order to escape such maps, we aim

for small maps in terms of vertices. Figure 7(a) shows

the number of vertices of the resulting topological maps.

The clear peak of the histogram shows that most of the

maps induced by our algorithm have eleven vertices,

which is the same as the ground truth (see Figure 6).

The algorithm does not induce smaller maps as they

would violate the consistency criterion and hence have

id Recordings Mean [m] Var

0 13 1.1713 0.0121

1 11 1.3600 0.0069

2 11 2.1641 0.0179

3 9 2.1624 0.0077

4 9 1.3350 0.0107

5 7 1.2695 0.0255

6 8 1.3104 0.0008

7 7 1.4983 0.0024

8 10 1.6768 0.0134

9 10 1.3537 0.0009

10 10 1.1606 0.0110

Table 2 Database of sonar readings recorded from several
traversals of the experimental environment. The indices of the

places correspond to Figure 6.
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Fig. 7 The number of vertices (a) and the consistency (b) are

shown for the simulated histories of sonar readings. The consis-

tency is denoted by the Hausdorff distance between the sets of
n-grams from the histories and the the induced induced maps.

The clear peak at 11 vertices indicates that most obtained maps
contain as many vertices as the environment graph (see Figure 6).

Moreover, most of the induced maps have only small consistency

errors caused by measurement noise.

low probability. Larger maps may occur if an obser-

vation is mapped to an inappropriate vertex because

measurement noise unbalances the competing goals of

maintaining consistency while minimising the number

of vertices in the map.

Moreover, the sampling of new map candidates from

a posterior distribution can sample map candidates

which are not optimal and hence create larger maps. In

general, reducing the strength of the minimisation con-

straint (by increasing ψ in Equation 9) results in larger

maps whereas strengthening minimisation decreases the

map size but may result in inconsistencies. Also, by

reducing the penalty for adding vertices, the resulting

map usually contains more vertices as the method is less

robust against measurement noise. Reciprocally, using

a strong penalty for adding vertices may result in dis-

torted connectivities as places with different views may

be mapped to the same vertex.

In experiments using shorter grams, that means

maintaining 3-consistency or 1-consistency between the

map and the history, we have obtained maps with small

consistency error, however, fewer vertices than the num-

ber of places contained in the environment. That oc-

curs as 3-grams contain less adjacency information than

5-grams and therefore less information for place dis-

ambiguation is available during the mapping process.

Using 1-grams does not consider any adjacency infor-

mation between places thus the mapping process does

nothing else than clustering history similar to the work

of Ranganathan et al. (2006).

5.2.3 Visual Appearance based Map Induction

We have conducted similar experiments as described in

the previous section using panoramic images in order

to demonstrate that using neighbourhood information

for place disambiguation is a general method and not

(a) Place 2 (b) Place 4 (c) Place 5

(d) Place 7 (e) Place 9 (f) Place 10

Fig. 8 Example image recordings from the identified places using

the GVG method in Wean Hall at Carnegie Mellon University.

It is apparent that due to the structure of the building several
physically different places appear visually similar to the robot.

bound to a specific choice of perception. Using the GVG

exploration method, our robot has recorded a database

of 45 panoramic images of places. In some areas of our

experimental environment bright ceiling lights are in-

stalled whereas some other areas have wall lights. As a

result, the images the robot takes at each place suffer

from loss of clarity of visual information within shadows

or near strong lights (over and under exposed regions).

We use a method proposed by Vonikakis and Andreadis

(2007) to enhance the acquired images by lightening un-

der exposed regions and darkening over exposed regions

without affecting the correctly exposed ones.

We use colour histograms as fingerprints of places

as they represent the visual appearance of places in a

compact manner, are easy and fast to compute and

are rotation invariant for panoramic images. Usually,

a colour histogram is computed by calculating an N -

bin histogram for each of the R,G and B colour bands.

Unfortunately, this type of colour histogram loses the

3D spatial information of the RGB tuples in colour

space. In order to retain the 3D spatial information,

histograms in 3D RGB space, where the histogram con-

sists of N3 equally sized bins (Werner et al., 2007). In

order to retain the 3D spatial information, we use his-

tograms in 3D RGB space, where the histogram con-

sists of N3 bins. Using N = 5 keeps the system fast de-

spite potentially large sets of n-grams. In comparison,

a single standard SIFT feature as suggested by Lowe

(2004) is represented through a 128 dimensional vec-

tor, whereby thousands of such features may be iden-

tified in a single image. Figure 9 shows a distance ma-

trix of the fingerprints from the enhanced images. It

is apparent that the environment contains numerous

topological ambiguities when using colour histograms

as fingerprints of the places.
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(a) Distance matrix of the data

set using standard colour his-

tograms with 3×256 bins.

(b) Distance matrix of the data

set using colour histograms in

3D colour space with 125 bins.

Fig. 9 Distance matrix of the colour histogram-based finger-

prints of places (see Figure 6). It is apparent that using 3D infor-

mation increases the discrimination of colour histograms com-
pared to standard colour histograms. However, fingerprints of

some different places remain indistinguishable. According to the

colour bar, blue denotes small distance of fingerprints. The his-
tograms are normalized so the maximum distance of two his-

tograms is 1.
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Fig. 10 The number of vertices (a) and the consistency (b) of the

induced maps are shown for the simulated histories of colour his-

tograms. The consistency is denoted by the Hausdorff distance
between the sets of n-grams from the histories and the the in-

duced induced maps. Similarly to the results of sonar-based fin-

gerprints of places, most of the induced maps have small consis-
tency error and 11 vertices which corresponds to real environ-

ment.

We have simulated random traversals using the

database of colour histograms and the ground truth.

For the following evaluations, 200 paths of length 100

were generated. The results shown in Figure 10 are sim-

ilar to the experiments using sonar-based fingerprints

of places. The consistency error of most histories and

corresponding topological maps is small and explain-

able through measurement noise. Moreover, we found

all map graphs (193, or 97%) with the same number of

vertices as the environment graph to be isomorphic to

the environment graph. Rarely, larger maps may occur

if an observation is not mapped to the proper vertex

because of measurement noise.

6 Conclusion

In this paper we have addressed the problem of topolog-

ical mapping in the extreme case where a single robot

neither has the capability to obtain odometry measure-

ments nor it is able to acquire unique fingerprints of

places. Thus, several places in an environment may ap-

pear indistinguishable to the robot.

Many recent approaches to the topological mapping

problem in robotics do not fully address the problem

of indistinguishable places of real environments. On

the contrary, most methods try to avoid these ambi-

guities by using highly discriminative fingerprints of

places or incorporating geometric information for place

disambiguation. The method we introduced in this ar-

ticle complements existing approaches in that it still

works when some places cannot be distinguished based

only on sensor data. These places can be indistinguish-

able because they are inherently similar or because the

discriminative power of the sensors is too weak. Our

method achieves this distinction between places with-

out the need for additional geometric information. To

demonstrate this capability, we have integrated our ap-

proach for place disambiguation into a method for map

induction by place recognition and show the comple-

mentary benefits.

We have shown that even in the case of highly am-

biguous fingerprints of places it is possible to induce

spatial adjacencies around places in a topological map

that is represented as a connected graph by exploit-

ing sequential neighbourhood information (n-grams)

from the sequence of visited places. Our approach in-

fers topological maps that are consistent with the adja-

cency information obtained from the history and aims

for small maps based on the principle of Occams’s ra-

zor. We have demonstrated in experiments using sonar

readings or visual information that using neighbour-

hood information for place disambiguation is a viable

and general approach which is neither bound to a spe-

cific choice of sensors nor requires geometric informa-

tion.

Our method requires the selection of the length n

of the n-grams. The parameter n captures the relevant

size of the neighbourhood of the places. If the adjacent

places (3-grams) are not sufficient to distinguish two

or more ambiguous places, one has to consider larger

neighbourhoods (i.e. the neighbours of a place’s neigh-

bours (5-grams), or even bigger neighbourhoods). How-

ever, increasing the size of the neighbourhood entails

an increase of the computational effort of the mapping

process. We do not have a solution for deciding on the

size of the neighbourhood. Our experiments have shown

that even in environments with severe ambiguities, we

obtain topological maps that are isomorphic with the

environment.

Using neighbourhood information only for place dis-

ambiguation it is not possible to truly map symmetric
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environments. However, including further information

such as odometry, the degree of vertices, order of trav-

elled edges or even clues on whether the robot has con-

ducted a U-turn during exploration may help to prop-

erly map even symmetric environments.

It was not the purpose of this paper to discuss the

properties of geometric information in robotic mapping

but to demonstrate the great benefits of using neigh-

bourhood information for place disambiguation for in-

ducing a topological map from a sequence of observa-

tions. Indeed, including further sensory information it

may be possible to relax the strong consistency con-

straint so one can adapt our method to map only par-

tially explored environments.
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