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Abstract 

Nanostructured tungsten oxide thin film based gas sensors have been developed by thermal 

evaporation method to detect CO at low operating temperatures. The influence of Fe-doping 

and annealing heat treatment on microstructural and gas sensing properties of these films 

have been investigated. Fe was incorporated in WO3 film by co-evaporation and annealing 

was performed at 400oC for 2 hours in air. AFM analysis revealed a grain size of about 10-15 

nm in all the films. GIXRD analysis showed that as-deposited films are amorphous and 

annealing at 400oC improved the crystallinity. Raman and XRD analysis indicated that Fe is 

incorporated in the WO3 matrix as a substitutional impurity, resulting in shorter O-W-O 

bonds and lattice cell parameters.  Doping with Fe contributed significantly towards CO 

sensing performance of WO3 thin films. A good response to various concentrations (10-1000 

ppm) of CO has been achieved with 400oC annealed Fe-doped WO3 film at a low operating 

temperature of 150oC. 
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1. Introduction 

Tungsten oxide (WO3) is an n-type wide band gap metal oxide semiconductor. Like other 

metal oxides such as SnO2, TiO2, In2O3 and ZnO, WO3 has become a promising material for 

gas sensing devices due to its inherent electrical conductivity and excellent sensitivity and 

selectivity towards various gases such as NO2 [1], NH3 [2], H2S [3], O3 [4], H2 [5] and 

Volatile Organic Compounds (VOC) [6]. However, as for any other metal oxide based gas 



sensor, they operate efficiently only in the temperature range 200oC-500oC [7]. Low 

fabrication costs combined with low power consumption and a promise of high gas 

sensitivity towards specific gases are the driving force behind research on WO3 for improved 

gas sensing properties. Deposition techniques of WO3 films vary from acidic precipitation 

[8], RF sputtering [9], magnetron sputtering [10, 11], hard template route  [12], pulsed laser 

deposition [13], solgel [6] and thermal evaporation [14, 15]. The gas sensing mechanism is 

based on bulk resistance changes of the WO3 film induced by reactions between the target 

gases and the film surface. In air environment, oxygen molecules adsorb onto the surface of 

metal oxide layer to form O2
-, O- and O2- species by extracting electrons from the conduction 

band depending on the temperature [16] and type of metal oxide (n-type or p-type). For n-

type sensor material like WO3 and a reducing gas, the gas reacts with oxygen ions to form 

neutral molecules, leading to electron transfer to the sensor material and a resulting decrease 

in resistance. The microstructural properties of the film have a significant impact on sensing 

performance. The grain size, film thickness, porosity and heat treatment control the sensor 

performance. Film thickness can have significant effect in optimizing sensor selectivity and 

sensitivity [17].  Nanosized materials have a very large surface area which offers more 

surface/gas interaction thereby enhancing the sensing properties. Sensing measurements on 

nanostructured WO3 deposited by thermal evaporation have shown promising performances 

towards sub-ppm concentrations of NO2 [14]. Mesoporous nanostructured WO3 films have 

shown a high sensitivity to NO2 even at low  concentrations [12]. WO3 thin films with 

smaller grain size obtained by rf sputtering have shown enhanced sensitivity to oxidizing 

gases [18]. Annealing of WO3 films after deposition has been reported to improve 

crystallinity and well defined grain boundaries in the film [11, 19, 20]. The addition of metals 

or metal oxides to WO3 film can also enhance the sensor performance. Tungsten oxide co-

loaded with TiO2 shows an enhanced sensing performance to NO and NO2 [21]. 

Microstructural analysis of co-evaporated films of TiO2 and WO3 powders revealed 

nanoporous films with enhanced porosity [15]. The sensing performance for NO2, O3 and 

C2H5OH is also enhanced by using mixed tungsten and iron oxide thin films [9]. Addition of 

La2O3 to WO3 nanoparticles improved the response towards VOC and the highest gas 

response shifted towards low temperature [6]. Improved response towards NO2 by 

introducing Cu as a catalytic additive in WO3 films has also been reported. This was mainly 

attributed to copper segregating at the material surface as Cu(I) [12]. However, there is little 

evidence indicating response of WO3 thin films towards CO in the literature [22]. 



Inclusion of noble metal impurities such as Au, Ag, Pd or metal oxides such as TiO2 in WO3 

thin films have shown an improved sensitivity towards various gases, which is mainly 

attributed to the noble metal catalytic effect on the gas/surface interaction [23, 24]. However, 

gas sensing properties of iron-doped WO3 thin films have not been well documented. In this 

paper, iron has been used to dope the WO3 thin films. Since iron has a similar atomic radius 

(0.64 nm) as W (0.62 nm), it can be introduced as a substitutional impurity in the WO3 crystal 

structure to produce crystal distortions, and its influence on physical, chemical, electronic and 

gas sensing properties can be investigated. Recently, the addition of Fe to electron beam 

evaporated (EBE) films has been shown to improve sensitivity towards NO2 and 

acetaldehyde at 200oC [25, 26]. In this paper, we present the CO sensing performance of iron-

doped thermally evaporated WO3 thin films at a lower operating temperature of 150oC and 

discuss this from a microstructural point of view.  

 
 
2. Experimental 
 
2.1 Sample preparation 
 
Thermal evaporation was used to deposit thin films of tungsten oxide and iron-doped 

tungsten oxide (0.5 at% Fe). WO3 thin films were deposited on silicon substrates with 

interdigitated Pt electrodes (Electronics Design Center, Case Western Reserve University, 

Cleveland, USA). The size of the substrate was 8 mm x 8 mm x 0.5 mm. The electrode 

fingers have a line width and height of 100 μm and 300 nm, respectively. Powders of 

tungsten oxide (99.9% purity, grain size 20 μm) and iron (99.9% purity, grain size 100 μm) 

from Sigma Aldrich Pty Ltd, were used as evaporation sources. Before the deposition, the 

powders were placed in dessicator to avoid any moisture and decontamination.  For the 

purpose of doping, iron was mixed thoroughly with WO3 and the mixture was evaporated. 

A bell jar type PVD unit (Varian Coater with AVT Control System, Australia) was used to 

deposit the WO3 thin films. The substrates were mounted on a substrate holder which was 

placed at a distance of 38 cm in line of sight from the evaporation source. Deposition was 

carried out at 4 x 10-5 mbar. Powder was deposited onto the substrates at a rate of 35 nm per 

second. A quartz crystal film thickness monitor was used to control the thickness of films. 

The film thickness was restricted to 300 nm and the effect of grain size, porosity, crystallinity 

and heat treatment for a given film thickness has been investigated. After the deposition, the 

films were annealed at 400oC for 2 hours in air to improve the microstructural properties and 

relieve any thermal stresses in the films. 



 
2.2 Sample characterization 
 
A JEOL 1200 TEM was used at an accelerating voltage of 120 kV to investigate the size and 

shape of WO3 nanoparticles, crystalline structure and distribution of dopant in the film. An 

NT-MDT P47 Solver Scanning Probe Microscope was used to study the surface morphology 

of the films. The WO3 film surface was scanned by a silicon tip (radius of curvature 10 nm) 

in semi-contact mode over an area ranging from 500 nm2 to 2000 nm2. The mean grain size 

and grain distribution and surface roughness were determined by using the Nova NT-MDT 

Image Analysis Software. The concentration profile of constituent elements in WO3 film was 

determined using RBS analysis. RBS measurements were carried out with a 1.8 MeV He+ 

beam under a vacuum of 7 x 10-6 mbar.   XPS analysis was performed using Kratos AXIS 

Ultra XPS incorporating a 165 mm hemispherical electron energy analyser, and using 

monochromatic Al K X-rays (1486.6 eV) at 150 W (15 kV, 10 mA), incident at 45o to the 

sample surface. Photoelectron data was collected at take off angle of 90o. Survey (wide) scans 

were taken at analyser pass energy of 160 eV and multiplex (narrow) high resolution scans at 

20 eV. Survey scans were carried out over 1200-0 eV binding energy range with 1.0 eV steps 

and a dwell time of 100 ms. Narrow high-resolution scans were run with 0.05 eV steps and 

250 ms dwell time. Base pressure in the analysis chamber was 1.0 x 10-9 mbar and during 

sample analysis 1.0 x 10-8 mbar. Depth profiling of the film was also carried out by etching 

the surface with Ar source at a rate of 10 nm per second. GIXRD analysis was performed on 

PANanalytical XPert Pro Multi Purpose Diffractometer (MPD). A Cu K radiation of 

wavelength 1.540 Å was used. The incident angle was kept at 2o and the 2 range was kept 

between 10o to 85o with a step size of 0.05o. Raman measurements were performed using an 

Oceanoptics QE 6500 spectrometer. A 532 nm line from an argon ion laser was used as the 

excitation source. To avoid local heating of the samples, small power of about 5 mW was 

used on the samples. A raman shift between wavenumbers 200 cm-1 and 1200 cm-1 has been 

measured. The WO3 sensor responses to various concentrations (10-1000 ppm) of CO at 

various operating temperatures (100oC to 300oC) were measured. CO was diluted in synthetic 

air to achieve the desired concentrations. For all the experiments, the total flow was adjusted 

to 200 sccm. The response of the films to reducing gases such as CO denoted as Sreducing is 

defined as the ratio: 

)1(
gas

gasair
reducing R

RR
S


  



where Rair is the resistance in air under stationary conditions and Rgas represents the resistance 

after the sensor is exposed to the target gas during a definite time. Equation 1 can be applied 

for n-type material such as WO3 and reducing gas such as CO. 

The response curve was recorded under a continuous flow of known amount of CO. A 

sequence control computer was utilized to computerize the pulse sequence of the CO 

concentrations. Initially, synthetic air was passed through the chamber at testing temperature 

until the stable baseline resistance was observed. Then a sequence of target gas pulse was 

generated for 10 minutes followed by synthetic air pulse. This procedure was continued until 

a stable baseline was observed after alternate pulses. This was followed by the experimental 

sequence of pulses and data was recorded. Each sensor was tested at temperatures between 

100oC to 300oC at intervals of 50oC under various concentrations of CO, and optimum 

operating temperature was determined. This was followed by two full range tests for each 

sensor and CO at the optimum operating temperature. 

 
3. Results and Discussion 
 
The as-deposited as well as 400oC annealed WO3 films did not show any response to CO in 

the temperature range 100oC-300oC. However, after doping with Fe and subsequent 

annealing, a maximum response towards CO was observed at an operating temperature of 

150oC. Figure 1 shows the dynamic resistance curve and response of 400oC annealed Fe-

doped WO3 film upon exposure to CO. 
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Figure 1: Dynamic resistance curve (a) and response (b) of nanostructured Fe-doped WO3 
films annealed at 400oC for 2 hours in air. 



The film shows a stable response curve with a maximum response of S=20% and a small 

response time of 64s to 1000 ppm CO. The dominant species on the film surface at 150oC is 

O2
-
 [27]. The conduction mechanism is governed by the following equation [28]. 

 

)2(22 22
  eCOOCO  

 

Upon exposure to CO, carbon dioxide is formed with the consequent injection of free charge 

carriers into the conduction band. This causes a drop in film resistance.  

The doping effect of metal additives on gas sensors is usually attributed to the catalytic 

effects of dopants favouring oxygen transfer from chemical aspect and/or electron transfer 

from electronic aspect [29]. In this study, we consider the doping effect of Fe from a 

morphological and crystal structure point of view. 

 
Table 1: Grain size of WO3 and Fe-doped WO3 films before and after annealing at 400oC for 

2 hours in air. 

Film as-deposited WO3 
as-deposited Fe-
doped WO3 

WO3 annealed at 
400oC 

Fe-doped WO3 
annealed at 400oC 

Grain size 13 nm 15 nm 5 nm 10 nm 

 
 
Table 1 shows the grain size information of the films before and after annealing at 400oC for 

2 hours in air, obtained by AFM image analysis software for AFM images and visual 

examination for TEM images. The surface topography of as-deposited WO3 film (Figure 2a) 

shows a nanostructured surface with well defined grains of mean size 13 nm and surface 

roughness of 0.5 nm respectively. The surface of as-deposited Fe-doped WO3 film (Figure 

2b) also reveals well defined grain boundaries with an average grain size of 15 nm. However, 

the grains appear to be densely packed compared to pure WO3 film (Figure 2a). Addition of 

iron also resulted in an increase in roughness to 0.6 nm compared to 0.5 nm for as-deposited 

WO3 film.  

 



 
Figure 2: AFM semicontact mode images of as-deposited (a) WO3 and (b) Fe-doped WO3 

film. 
 
Annealing of WO3 films at 400oC in air for 2 hours resulted in a mean grain size of ~ 5 nm 

(Figure 3a). Porosity is also evident after annealing at 400oC. In the case of Fe-doped WO3 

film, annealing at 400oC reveals a mean grain size of the order of 10 nm (Figure 3b). It can be 

observed that after annealing at 400oC, both the films have smaller grain size. The high 

deposition rate during evaporation resulted in highly amorphous films made up of clusters 

(particles). The nucleation, successive grain growth and coalescence during annealing at 

400oC transformed these clusters into smaller grains.  

 

      
Figure 3: TEM images of (a) WO3 and (b) Fe-doped WO3 films annealed at 400oC for 2 hours 

in air. 
 
Figure 4 shows the RBS spectra of as-deposited WO3 and Fe-doped WO3 films. The spectra 

exhibit a typical staircase structure with each step associated with an element in the sample. 

Well separated and high intensity of W peak from the film is due to the higher mass (atomic 

weight) of W compared to O or other trace elements such as N. Also the He particles are 



scattered with much higher recoil energy in the film than from the substrate (Si) in this elastic 

scattering process. 
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Figure 4: RBS spectra of as-deposited (a) WO3 and (b) Fe-doped WO3 thin films. 
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Figure 5: RBS depth profile of as-deposited WO3 thin films. 

 
The depth profile of WO3 film (Figure 5) indicates the presence of O, N and W. RBS is 

limited by resolution for light elements such as B, C, O, N and poor resolution of elements 

with similar masses. The presence of oxygen can be attributed to adsorbed oxygen from the 

environment in addition to the lattice oxygen within the film.  The depth profile of as-

deposited Fe-doped WO3 film shows O, W, N and Fe (Figure 6a). From RBS analysis, the 

total amount of Fe in the film was found to be only about 0.5 at%. The low concentration of 

Fe (0.5 at%) is shown in the enlarged Y-axis figure (Figure 6b). AFM results have shown that 

addition of Fe resulted in slight increase in grain size to 15 nm. Addition of Fe appears to 

have slightly changed the stoichiometry of the film (change in amount of O and W). 
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Figure 6: RBS depth profile of as-deposited Fe-doped WO3 thin films. 
 

Figure 7 shows the GIXRD patterns of as-deposited and annealed WO3 and Fe-doped WO3 

films. The as-deposited films did not show any diffraction pattern, indicating that these films 

are highly amorphous. However, after annealing at 400oC, significant crystallinity is observed 

in both the films, indicated by appearance of diffraction peaks in GIXRD pattern. For the 

400oC annealed WO3 film, the peaks obtained at 2 = 24.112o, 28.538o, 34.361o, 41.615o, 

49.843o, 55.684o, 61.941o are closely related to monoclinic WO3 phase [30]. It should be 

noted that the lattice parameters of orthorhombic WO3 phase are very similar to monoclinic 

phase, and thus, these two phases cannot be distinguished within the accuracy of GIXRD 

data. It has been reported that the two intense peaks observed at 2=24.278o and 34.117o are 

associated to (2 0 0) and (2 2 0) monoclinic planes of WO3 corresponding to d=3.663o and 

2.626 Å, respectively [31]. The lattice parameters were found to be a = 7.375 Å, b = 7.375 Å 

and c = 3.903 Å and its unit cell volume is about 212.38 Å3. 
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Figure 7: GIXRD spectra of as-deposited and annealed WO3 and Fe-doped WO3 films. 
 
In case of 400oC annealed Fe-doped WO3 film, peaks are observed at 2 = 24.322o, 28.820o, 

34.082o, 41.821o, 49.863o and 55.866o. Similar to the 400oC annealed WO3 film, these peaks 

are also closely related to monoclinic WO3 phase [30]. Moreover, the peak positions of both 

the annealed films match closely. The observed matching of GIXRD pattern of WO3 and Fe-

doped WO3 film can be explained from a crystallographic viewpoint. The ionic radius of W6+ 

(0.62 Å) is similar to that of Fe3+ (0.64 Å). Moreover, the W6+ is octahedrally coordinated 

with O2-. In Iron oxides,  the crystal field stabilization energy of Fe3+ is higher for octahedral 

orientation than for tetrahedral orientation [32]. Therefore, Fe3+ can fulfil the same 

coordination as that of W6+. Consequently, Fe-doped WO3 film shows the same crystal 

structure as that of WO3 film. Similar crystal structures were also observed between pure 

ZnO and Fe-doped ZnO by Han et al [33]. The observed shift in peak positions of annealed 

Fe-doped WO3 film compared to annealed WO3 film, although very little (0.02 Å), can be 

attributed to the small difference between the ionic radii of W6+ and Fe3+. The ionic radius of 

Fe3+ is slightly greater than that of W6+ and this can cause slight distortion in the crystal 

lattice when WO3 is doped with Fe, and consequently a shift in the diffraction peaks. Such 

distortions can also produce a number of defects in the film, making it a better candidate for 

gas sensing. 
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Figure 8: Raman spectra of as-deposited and annealed WO3 and Fe-doped WO3 films. 

 
The Raman spectra of as-deposited and 400oC annealed films are shown in Figure 8. Two 

characteristic Raman bands are associated with WO3. The first band lies between 200-500 

cm-1 and is associated with O-W-O bending vibration modes. The second band lies in the 

range 600-1000 cm-1 and is associated with W-O stretching vibration modes. The as-

deposited WO3 and Fe-doped WO3 films exhibit weak and broad Raman bands centred at 315 

cm-1, 799 cm-1 and 320 cm-1, 804.4 cm-1, respectively. These features are characteristic of 

amorphous materials and are usually assigned to O-W-O deformation modes and O-W-O 

stretching vibration modes of monoclinic WO3 phase, respectively [13]. This is in accordance 

with GIXRD observations. Crystallinity of both the WO3 and Fe-doped WO3 films increased 

after annealing at 400oC, as shown by sharp peaks at 707 cm-1 and 799 cm-1 for WO3 and at 

712.6 cm-1 and 804.4 cm-1 for Fe-doped WO3 film which are characteristic of O-W-O 

stretching vibration modes [34]. Raman results indicate that the annealed films are highly 

crystalline, which is also supported by GIXRD observations.   

 
 
 
 
 



Table 2: Comparison of O-W-O stretching vibration mode peak positions of nanostructured 
WO3 and Fe-doped WO3 films annealed at 400oC for 2 hours in air. 

 
Raman Peak position 

(cm-1) 

WO3 annealed at 400oC 707 799 

Fe-doped WO3 annealed at 400oC 712.6 804.4 

Blue Shift (cm-1) 5.5 5.5 

 

The O-W-O stretching vibration mode peak positions of WO3 and Fe-doped WO3 films 

annealed at 400oC are compared in Table 2. A mean blue shift of about 5.5 cm-1 is observed 

for both the peaks. Such shifts are associated with shortening of O-W-O bonds [35], which 

corresponds to slightly smaller cell parameters of Fe-doped WO3 film as compared to WO3 

film. The GIXRD analysis has shown that the lattice parameters of Fe-doped WO3 film are 

slightly smaller than WO3 film. The GIXRD and Raman analysis indicate that addition of Fe 

to WO3 film resulted in slight distortion of the lattice structure (shortening of O-W-O bonds), 

owing to the slightly larger ionic radius of Fe3+ over W6+, consequently resulting in a slight 

shift in XRD as well as Raman peaks. However, the octahedral orientation of WO3 has been 

retained after doping with Fe, indicating that the preferred oxidation state of Fe is Fe3+. This 

is evident from similar XRD patterns of 400oC annealed WO3 and Fe-doped WO3 films and 

no evidence of any Raman peaks associated with Fe in 400oC annealed Fe-doped WO3 film. 
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Figure 9: XPS high resolution core level (a) W 4f7/2 and (b) O 1s spectra of as-deposited and 

400oC annealed WO3 and Fe-doped WO3 films. 
 



Figure 9 shows the XPS high resolution core level W 4f7/2 and O 1s spectra of as-deposited 

and annealed films. For the as-deposited WO3 film, the core level spectra of W 4f 7/2 is 

observed at binding energy Eb of 35.74 eV , which corresponds well with the literature 

reported W 4f7/2 Eb value of 35.8 eV [36]. The W 4f7/2 peak shapes becomes sharper after 

annealing, which indicates that the surface becomes cleaner due to desorption of surface 

contaminants by annealing. The broadening of the peaks is associated with change in 

stoichiometry of the sample surface, with the formation of different oxides such as WO2 or 

WO [37]. The W 4f7/2 peak of metallic tungsten is located at 31.50 eV [38]. The W 4f7/2 

peaks located at +4.5, +3 and +1.5 from the metallic tungsten W 4f7/2 peak are attributed to 

W6+, W5+ and W4+ electronic states, respectively [39]. Annealing at 400oC resulted in 

lowering of W 4f7/2 binding energy by 0.3 eV, indicating presence of mixed tungsten states 

[40]. For the as-deposited Fe-doped WO3 film, the W 4f7/2 peak is observed at 35.80 eV, 

closely matching with  the literature  reported value [41] . The W 4f7/2 peak in Fe-doped WO3 

film is located at +4.3 eV with respect to the 4f7/2 peak of metallic tungsten located at 31.5 

eV. This indicates formation of mixed W states upon doping with Fe [39]. Compared to pure 

WO3 film (W 4f7/2 peak located at +4.2 eV from metallic tungsten 4f7/2 peak), doping with Fe 

appears to have altered the stoichiometry towards nominal WO3 (+4.3 eV). Annealing this 

film at 400oC resulted in lowering of W 4f7/2 binding energy by about 0.2 eV, indicating 

presence of mixed tungsten states. The downshift of W 4f7/2 peak is attributed to an increase 

in number of oxygen vacancies on the surface [42]. It can be explained by the fact that, if an 

oxygen vacancy exists in the film, the electronic density near its adjacent W atom increases. 

The 4f level binding energy is expected to be at lower binding energy as the screening of its 

nucleus is higher because of increased electronic density [42]. Oxygen vacancies play an 

important role as adsorption sites for gaseous species and eventually, a minor shift of the 

binding energy may imply greatly enhanced gas sensitivity [43]. XPS analysis has shown that 

the annealed films have mixed tungsten states, indicating that these films have high number 

of oxygen vacancies. Changes in band gap values and positions of the valence band 

maximum and the conduction band minimum have been revealed for different phases of WO3 

due to presence of oxygen vacancies [44]. It has been observed that the energy gap shrinks by 

about 0.5 eV if an oxygen vacancy is formed [45]. The effect of doping on band gap shifts of 

WO3 has also been reported in the literature [45, 46]. 

The O 1s core level high resolution spectra shows an Eb of 530.7 eV for as-deposited WO3 

film. Annealing at 400oC lowered the binding energy Eb by 0.3 eV, which is same as the 

downshift observed for W 4f peak after annealing at 400oC. This is most likely a shift of the 



Fermi level, corresponding to band bending due to desorption of surface contaminants during 

annealing at 400oC [11]. A small shoulder centred at about 532.9 eV is observed in the as-

deposited film. This shoulder transformed into a peak when the film was annealed at 400oC. 

Such feature is a characteristic of substoichiometric monoclinic tungsten oxides [47]. The 

formation and increasing intensity of this feature is in the sequence WO3WO2. For the as-

deposited Fe-doped WO3 film, the O 1s binding energy peak is observed at Eb of 530.70 eV, 

which is same as that observed for as-deposited WO3 film. Upon annealing this film at 

400oC, the binding energy of O 1s lowered by 0.3 eV, which is nearly same in magnitude as 

that observed for WO3 film upon annealing at 400oC, attributed to Fermi level shift caused by 

annealing. 

Tungsten oxide commonly operates as gas sensor in the temperature between 200oC-500oC 

[7] and it is widely accepted that pure WO3 thin film based gas sensors are not sensitive to 

carbon monoxide (CO). There is very little evidence of CO sensing performance of pure WO3 

thin films available in literature [22, 48]. In the present study, the as-deposited and annealed 

WO3 films did not show any response towards CO. However, after doping with Fe and 

subsequent annealing at 400oC, the film showed a stable response curve and a good response 

at a low operating temperature of 150oC. XRD and Raman analysis have revealed that Fe is 

incorporated in the host WO3 matrix as a substitutional impurity rather than as a catalyst on 

the film surface. Fe-doping and subsequent annealing at 400oC has resulted in smaller cell 

parameters and shortening of O-W-O bonds. XPS analysis revealed that the annealed films 

contain high number of oxygen vacancies which is highly beneficial for gas sensing. To 

summarize, the optimum response of Fe-doped WO3 thin films to CO at a temperature less 

than 200oC is attributed to a number of factors which include high crystallinity, small grain 

size, porosity, shortening of O-W-O bonds and oxygen vacancies. The optimum physical, 

chemical and electrical properties achieved by iron doping and annealing of WO3 films 

strongly influenced their response towards CO at a low operating temperature. 

 
4. Conclusions 
 
Nanostructured pure and Fe-doped WO3 thin films of (300 nm) and grain size of 10-15 nm 

have been synthesized by thermal evaporation method. The as-deposited films are highly 

amorphous and annealing at 400oC significantly improved the crystallinity without altering 

much the grain size. Analysis has shown that Fe was incorporated in WO3 film as a 

substitutional impurity in the WO3 matrix, rather than as a catalyst on the film surface. Fe 



incorporation resulted in shortening of lattice cell parameters and O-W-O bonds. The film 

also contained mixed tungsten states. This has created a number of defects and ultimately 

high number of oxygen vacancies in the film. By doping with Fe and annealing at 400oC, we 

have been able to achieve a response to CO at a temperature of 150oC. 
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