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Abstract 

Low oxygen pressure (hypoxia) plays an important role in stimulating angiogenesis; there are, 

however, few studies to prepare hypoxia-mimicking tissue engineering scaffolds. Mesoporous 

bioactive glass (MBG) has been developed as scaffolds with excellent osteogenic properties for 

bone regeneration. Ionic cobalt (Co) is established as a chemical inducer of hypoxia-inducible 

factor (HIF)-1α, which induces hypoxia-like response. The aim of this study was to develop 

hypoxia-mimicking MBG scaffolds by incorporating ionic Co2+ into MBG scaffolds and investigate 

if the addition of Co2+ ions would induce a cellular hypoxic response in such a tissue engineering 

scaffold system. The composition, microstructure and mesopore properties (specific surface area, 

nano-pore volume and nano-pore distribution) of Co-containing MBG (Co-MBG) scaffolds were 

characterized and the cellular effects of Co on the proliferation, differentiation, vascular endothelial 

growth factor (VEGF) secretion, HIF-1α expression and bone-related gene expression of human 

bone marrow stromal cells (BMSCs) in MBG scaffolds were systematically investigated. The 

results showed that low amounts of Co (< 5%) incorporated into MBG scaffolds had no significant 

cytotoxicity and that their incorporation significantly enhanced VEGF protein secretion, HIF-1α 

expression, and bone-related gene expression in BMSCs, and also that the Co-MBG scaffolds 

support BMSC attachment and proliferation. The scaffolds maintain a well-ordered mesopore 

channel structure and high specific surface area and have the capacity to efficiently deliver 

antibiotics drugs; in fact, the sustained released of ampicillin by Co-MBG scaffolds gives them 

excellent anti-bacterial properties. Our results indicate that incorporating cobalt ions into MBG 

scaffolds is a viable option for preparing hypoxia-mimicking tissue engineering scaffolds and 

significantly enhanced hypoxia function. The hypoxia-mimicking MBG scaffolds have great 
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potential for bone tissue engineering applications by combining enhanced angiogenesis with already 

existing osteogenic properties. 

 

Key words: hypoxia; mesoporous bioactive glass; bone tissue engineering; VEGF secretion, 

HIF-1α expression 

 

1. Introduction 

The treatment of many bone defects, especially large bone defects due to trauma, infections, tumors 

or genetic malformations, represents a major challenge for clinicians [1,2]. Autologous bone 

grafting is considered the most effective treatment; in practice, however, this approach is limited by 

insufficient amount of donor tissue, coupled with donor site morbidity. Allogeneic or xenogeneic 

bone grafts, on the other hand, have obvious clinical limitations due to immunological reactions in 

the host recipient. Bone tissue engineering approaches has come into focus as an alternative source 

for bone regeneration [3-5] as a substitute for bone grafts in order to repair defects and restore 

normal function [6]. This approach consists of applying a supportive matrix (a scaffold) to support 

osteogenic cells and bioactive molecules for bone reconstruction. A critical problem, implicit in 

using this approach, is that the nutrient supply and cell viability, at the centre of the scaffold, is 

severely hampered since the diffusion distance of nutrients and oxygen for cell survival is limited to 

150–200µm [7]. Indeed, studies have shown that tissue engineered products formed tissue layers no 

thicker than 5 mm on the scaffold surface, and that in the centre of the scaffold, cell density tends to 

be low and necrosis may occur [7]. 

Low oxygen pressure (hypoxia) in vivo plays a pivotal role in coupling angiogenesis with 
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osteogenesis via progenitor cell recruitment, differentiation and angiogenesis [8-11]. Hypoxia 

activates a series of angiogneic processes mediated by the hypoxia inducing factor-1a (HIF-1α) 

transcription factor. HIF-1α initiates the expression of a number of genes associated with tissue 

regeneration and skeletal tissue development and has been shown to enhanced fracture repair. 

Hypoxia can the mimicked artificially by stabilizing HIF-1α expression , such as by the application 

of Co2+ ions, and has been suggested as a potential strategy to promote neovascularization [8,12,13]. 

Co is an essential element in human physiology and an integral part of B12, a vitamine the human 

body is unable to manufacture. Ionic Co2+ is known to chemically induce HIF-1α to promote a 

hypoxia-like response. Cells adapt to hypoxia by expressing a number of genes that are related to 

angiogenesis, mobility, and glucose metabolism, all via the HIF-1α pathway [14].  

Mesoporous bioactive glass (MBG) has attracted significant attention for bone tissue engineering in 

the past several years [15-19]. Compared with non-mesopore bioactive glass (NBG) MBG has 

significantly improved specific surface area and nanopore volume, which is evidenced by greatly 

enhanced in vitro bioactivity and degradation [15,20-22] As a bioactive material, MBG has great 

potential for bone tissue engineering and drug delivery applications [23-25]. Cobalt ions are a 

well-established chemical inducer of HIF-1α which elicits a hypoxia-like response. It is expected 

that Co ions released from scaffolds could inactivate HIF-specific prolyl hydroxylase and 

consequently stabilize HIF-1α in a normoxic environment [26]. We hypothesized that MBG 

scaffolds with controllable Co ion release could mimic hypoxic condition and induce the coupling 

of osteogenesis and angiogenesis, which would be of great interest for applications in bone tissue 

engineering. Previously, although Azevedo, et al. prepared Co-containing bioactive glasses particles 

by high temperature melt method, however, they did not investigate whether Co ion release from 
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biomaterials could induce a hypoxia function [27]. To our best knowledge, no previous studies have 

prepared hypoxia-mimicking tissue engineering scaffolds. Therefore, the aims of this study were to 

prepare Co-containing MBG scaffolds and investigate whether the addition of Co could induce a 

hypoxia function in tissue engineering scaffold system. For this aim, the effect of Co on the 

physicochemical property of MBG scaffolds, and the proliferation, differentiation, VEGF secretion, 

HIF-1α expression, and bone-related gene expression of BMSCs in the scaffolds were 

systematically studied. The drug-delivery properties and anti-bacterial functions of the 

manufactured Co-MBG scaffolds are also investigated with respect to bone tissue engineering 

applications. 

 

2. Materials and Methods 

2.1. Preparation and characterization of porous Co-MBG scaffolds 

Porous cobalt-containing mesopore-bioglass (Co-MBG) scaffolds were prepared by incorporating 

Co (molar: 2 and 5%) into MBG to replace parts of calcium (Ca) using co-templates of nonionic 

block polymer P123 (EO20-PO70-EO20) and polyurethane sponges. P123 is used to produce 

mesoporous structures (mesopore size: several nanometers) and polyurethane sponges are used to 

create large pores (large pore size: several hundred micrometers) as described in our previous 

publications [28,29]. To prepare MBG scaffolds containing of 2% cobalt, typically, 12 g of P123 

(Mw=5800, Aldrich), 20.1 g of tetraethyl orthosilicate (TEOS, 98%), 3.64 g of Ca(NO3)2·4H2O, 

0.31 g of CoCl2 (Aldrich), 2.19 g of triethyl phosphate (TEP, 99.8%) and 3 g of 0.5 M HCl were 

dissolved in 180 g of ethanol (Co/Ca/P/Si/ = 2/13/5/80, molar ratio, named 2Co-MBG) and stirred 

at room temperature for 1 day. The polyurethane sponges (20ppi) were cleaned and completely 
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immersed into this solution for 10 min, then transferred to a Petri dish to allow evaporating at room 

temperature for 12 h. This procedure was repeated for 3 times. Once the samples were completely 

dry, they were calcined at 700oC for 5 h yielding the 2Co-MBG scaffolds. MBG scaffolds without 

cobalt (Co/Ca/P/Si/ = 0/15/5/80, molar ratio, named: MBG) and with 5% cobalt (Co/Ca/P/Si/ = 

5/10/5/80, molar ratio named: 5Co-MBG) were prepared by the same method except for their Co 

and Ca contents.  

The large-pore structure, surface morphology, and inner microstructure of the calcined Co-MBG 

scaffolds were characterized by scanning electron microscopy (SEM), energy dispersive 

spectrometer (EDS), small-angle X-ray diffraction (XRD) and transmission electron microscopy 

(TEM). Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halenda (BJH) analyses were used to 

determine the specific surface area, the nano-pore size distribution and the nano-pore volume by N2 

adsorption-desorption isotherms. 

 

2.2. Ion release of Co-MBG scaffolds in DMEM 

To investigate the ion release and mineralization of Co-MBG scaffolds, Co-MBG scaffolds (5×5×5 

mm) were soaked in Dulbecco’s Modified Eagle’s Medium (DMEM) at 37°C for 1, 3 and 7d, and 

the ratio of the solution volume to the scaffold mass was 200 mL/g. The concentrations of Co2+, 

SiO4
4-, Ca2+ and PO4

3- ions in the DMEM were determined by inductive coupled plasma atomic 

emission spectrometry (ICP-AES).  

 

2.3. Morphology and proliferation of BMSCs on Co-MBG scaffolds 

Isolation and culture of BMSCs were conducted following previously published protocols [30,31].  
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Bone marrow aspirates were obtained from patients (mean age, 60 years) undergoing elective knee 

and hip replacement surgery. Informed consent was given by all patients involved and the research 

protocol had been approved by the Human Ethics Committees of Queensland University of 

Technology and The Prince Charles Hospital.   

BMSCs were cultured on 5×5×5 mm scaffolds placed in 96-well culture plates, at an initial density 

of 1×105 cells/scaffold. The cells were cultured for 1 and 7 days in DMEM culture medium (GIBCO) 

supplemented with 10% FCS, after which the scaffolds were removed from the culture wells, rinsed 

in PBS, and then fixed with 2.5% glutaraldehyde in PBS for 1 hr. The fixative was removed by 

washing with buffer containing 4% (w/v) sucrose in PBS and post fixed in 1% osmium tetroxide in 

PBS. Then the cells were dehydrated in a graded ethanol series (50, 70, 90, 95 and 100%) and 

hexamethyldisilizane (HMDS). The specimens were coated with gold and the morphological 

characteristics of the attached cells determined using SEM. 

To assess cell proliferation, an MTT assay was performed by adding 0.5 mg/mL of MTT solution 

(Sigma-Aldrich) to each scaffold and incubated 37ºC to form formazan crystals. After 4 h, the 

media was removed and the formazan solubilized with dimethyl sulfoxide (DMSO). The 

absorbance of the formazan-DMSO solution was read at 495 nm on a plate reader. Results were 

expressed as the absorbance reading from each well minus the optical density value of blank wells. 

 

2.4. Alkaline phosphatase (ALP) activity of BMSCs on Co-MBG scaffolds 

Osteogenic differentiation was assessed by measuring a time course of alkaline phosphatase (ALP) 

activity of BMSCs grown on the various scaffold types. Scaffolds were placed into 24-well plastic 

culture plates and seeded with 1x105 BMSCs per scaffold. The cells were incubated at 37ºC in 5% 
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CO2 for 7 days and the medium changed every 3 days. On day 7, the samples were removed and 

ALP activity was measured. The scaffolds were irrigated with PBS three times to remove as much 

residual serum as possible and then 0.5 mL of 0.02% Triton® X-100 were placed on the scaffold 

sample to dissolve the cells. The solution was transferred into a 1.5 mL tube, and sonicated after 

which the samples were centrifuged at 14,000 rpm for 15 min at 4°C. The supernatant transferred to 

fresh 1.5 mL tubes to which 100 µL 1 mol/L Tris-HCl, 20 μL 5 mmol/L MgCl2, and 20 μL 5 

mmol/L p-nitrophenyl phosphate was added. After 30 min incubation at 37°C the reaction was 

stopped by the addition of 50 μL of 1N NaOH. Using p-nitrophenol as a standard, the optical 

density was measured at 410 nm with a spectrophotometer. The ALP activity was expressed as the 

changed optical density (OD) value divided by the reaction time and the total protein quantity as 

measured by the BCA Protein assay kit (Thermo Scientific, Melbourne, Australia). 

 

2.5. VEGF secretion and HIF-1α expression 

To measure the VEGF secretion and HIF-1α expression of BMSCs on Co-MBG scaffolds, the 

scaffolds were transferred into 24-well plastic culture plates and a total of 1x106 BMSCs were 

placed onto each scaffold. The cells were incubated at 37ºC in 5% CO2 for 7 days and the medium 

changed every 3 days. The supernatant was collected and the release of VEGF expression was 

quantified using ELISA assay kits (R&D Systems Inc., Bio-Scientific Pty. Ltd., NSW, Australia) 

according to the manufacturer’s instruction. The test was performed in triplicates and results were 

expressed as the amount (pg) of VEGF in per μl supernatant. 

For direct detection of the HIF-1α protein, western blot analysis was performed. Briefly, after 

seeded onto scaffold for one week, whole cell lysates were obtained. 10µg protein from each 
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sample was separated on SDS-PAGE gels. The protein was then transferred onto a nitrocellulose 

membrane (Pall Corporation, East Hills, NY, USA) and blocked in 5% non-fat milk. The 

membranes were incubated with primary antibodies against HIF-1α (1:1000, mouse anti-human, 

Novus Biologicals, Sapphire Bioscience Pty. Ltd., NSW, Australia) and α-tubulin (1:5000, rabbit 

anti-human, Abcam, Sapphire Bioscience Pty. Ltd., NSW, Australia) overnight at 4 oC. The 

membranes were washed three times in TBS-Tween buffer, and then incubated with 

anti-mouse/rabbit HRP conjugated secondary antibodies at 1:2000 dilutions for 1hr. The protein 

bands were visualized using the SuperSignal West Femto Maximum Sensitivity Substrate (Thermo 

Fisher Scientific, VIC, Australia) and exposed on X-ray film (Fujifilm, Stafford, QLD, Australia).  

 

2.6. Reserve transcription and real-time quantitative RT-PCR analysis  

The osteogenic differentiation of BMSCs on Co-MBG scaffolds was further assessed by real-time 

quantitative RT-PCR (RT-qPCR) to measure the mRNA expression of VEGF and osteocalcin 

(OCN). Scaffolds were transferred into 24-well plastic culture plates and a total of 1x106 BMSCs 

were placed onto each scaffold. The cells were incubated at 37ºC in 5% CO2 for 7 days and the 

medium changed every 3 days. On day 7, the samples were removed and total RNA isolated using 

Trizol Reagent® (Invitrogen) according to the manufacturer’s instructions. Complementary DNA 

was synthesized from 1 µg of total RNA using SuperScript III reverse transcriptase (Invitrogen) 

following the manufacturer’s instructions. RT-qPCR was performed in 25 µL reaction volume 

containing 12.5 µL 2X SYBR Green Master Mix (Roche, Castle Hill, NSW, Australia), 2.5 µL each 

of 10 µM forward and reverse primers, 2.5 µL of cDNA template diluted 1:10, and 5 µL of RNase 

free water. All samples were performed in triplicates and the house keeping gene, 18s rRNA, was 
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used as a control. The reaction was carried out using ABI Prism 7000 Sequence Detection System 

(Applied Biosystems). Melting curve analysis was performed to validate specific amplicon 

amplification without genomic DNA contamination. Relative expression levels for each gene were 

normalized against the Ct value of the house keeping gene and determined by using the delta Ct 

method. 

 

2.7. Antibiotics loading and release 

As we have found that 2Co-MBG scaffolds have optional viability and VEGF secretion for BMSCs, 

2Co-MBG scaffolds were selected for further drug delivery and in vitro anti-bacteria test. 

2Co-MBG scaffolds (5×5×5 mm) were soaked in 2mL of 5mg/mL of ampicillin-phosphate buffer 

saline (PBS) solution at 4°C overnight. Then the scaffolds were taken out. The ampicillin-PBS 

solution was centrifuged at 10,000 rpm for 10 min and the supernatant were completely removed. 

The loading amount of ampicillin was determined by UV analysis (at wavelength 230nm) through 

calculating the difference of ampicillin-PBS concentration before and after loading. For ampicillin 

releasing test, the collected ampicillin-loaded Co-MBG scaffolds were soaked into 4mL fresh PBS 

at 37°C for different period of time. At each time point, 2mL of PBS solution was taken out to test 

the released ampicillin and 2mL fresh PBS was added back. The accumulative release of ampicillin 

from scaffolds was calculated. 

 

2.8. In vitro anti-bacteria test 

To test the ampicillin release from 2Co-MBG scaffolds on the anti-bacteria effect, one 

ampicillin-loaded scaffold was mixed with 5mL E.coli (DH5α)-LB culture media (3.5-4.0×104 
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bacteria/mL) and maintained at 4°C for 1, 3 and 7 days. Then 10µL of mixture was plated into a 

10mm culture dish and incubated at 37°C for 12 h. The bacteria without scaffolds (blank) or mixed 

with 2Co-MBG scaffolds (without loading with ampicillin) were used as controls. The test was 

carried out in triplicate for each group and the E.coli colonies on each dish were counted for group 

comparisons. 

 

2.9. Statistical analysis 

All data were expressed as means ± standard deviation (SD) and were analyzed using One-Way 

ANOVA with a Post Hoc test. A p-value < 0.05 was considered statistically significant. 

 

3. Results 

3.1. Characterization of porous Co-MBG scaffolds 

SEM analysis showed that the three Co-MBG scaffold types had a highly porous structure with a 

similarly large-pore size ranging roughly from 300 to 500µm (Fig. 1a, c and e). EDS analysis 

showed that Co had been incorporated into the scaffolds. There was no characteristic peak of Co in 

pure the MBG scaffolds (Fig. 1b). The ratio of Co/Ca in the 2Co-MBG and 5Co-MBG scaffolds 

was 0.14 and 0.49, respectively (Fig. 1d and f). Small-angle XRD patterns for the three Co-MBG 

scaffolds types are shown in Figure 2. There are obvious diffraction peaks around 2θ 1.25-1.30 

degree for the MBG, 2Co-MBG and 5Co-MBG scaffolds.  

TEM analysis reveals that both the 2Co-MBG and 5Co-MBG scaffolds have a well-ordered 

mesoporous channel structure (pore size: around 4.5-5nm) (Fig. 3). The results of N2 

adsorption–desorption analysis of the three Co-MBG scaffold types show a type IV isotherm pattern 
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(Fig. 4a) and pore distribution in the range of 4-5 nm (Fig. 4b), a characteristic typical of a 

mesoporous structure. After incorporating 2 and 5% of Co into MBG scaffolds, the specific surface 

area of MBG scaffolds decreased from 290 to 180 and 127 m2/g, respectively, and the pore volume 

decreases from 0.30 to 0.19 and 0.15 cm3/g, respectively (Table 1). The average mesopore size of 

5Co-MBG scaffolds (4.1nm) was observably smaller than that of pure MBG scaffolds (4.97nm). 

 

3.2. Ion release of Co-MBG scaffolds in DMEM 

Generally, the release of Co2+, SiO4
4- and Ca2+ ions increased commensurate with increased soaking 

time and with a decrease in the concentration of PO4
3- ions in DMEM (Fig. 5). There is a controlled 

release profile of Co2+ ions, in which high Co-containing MBG scaffolds have a quick release of 

Co2+ ions (Fig. 5a). The incorporation of Co into MBG scaffolds did not significantly change the 

release profile of SiO4
4- and Ca2+ ions (Fig. 5b and c).  

 

3.3. Attachment, morphology, proliferation and ALP activity of BMSCs on Co-MBG scaffolds 

BMSCs attachment and morphology on the three Co-MBG scaffold types was examined by SEM 

(Fig. 6). After 1 and 7 days of culture, BMSCs were attached to the surface of the pore walls in all 

three scaffolds types (see arrows). Cells have close contact with the scaffolds by numerous 

filopodia.  

MTT analysis shows that cell number increased on the Co-MBG scaffolds with increased culture 

time (Fig. 7a). The proliferation of BMSCs on 2Co-MBG scaffolds showed no difference with that 

of pure MBG scaffolds, whereas cell proliferation on 5Co-MBG scaffolds was slightly less than that 

on 2Co-MBG and pure MBG scaffolds. Overall the cell proliferation on the three scaffold types was 

significantly lower than that on blank control (cell culture plate) (Fig. 7a), which may be attributed 
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to the difference of 3D (scaffolds) and 2D (blank control) culture environment. The ALP activity of 

BMSCs on the three Co-MBG scaffold types showed no obvious differences (p>0.05) and was 

comparable with that of the blank control (Fig. 7b).  

 

3.4. VEGF secretion, bone-relative gene and HIF-1α expression of BMSCs on Co-MBG scaffolds 

Incorporating 2% of Co into MBG scaffolds significantly enhances the VEGF secretion of BMSCs 

at day 7 (Fig. 8). HIF-1α expression of BMSCs in Co-MBG scaffolds also increased with increased 

Co contents (Fig. 9). Interestingly, both 2Co-MBG and 5Co-MBG scaffolds have significantly 

enhanced bone-related gene expression of VEGF at day 7, compared to pure MBG scaffolds and the 

blank control (Fig. 10a). OCN expression of BMSCs on 5Co-MBG scaffolds was upregulated 

compared to pure MBG scaffolds and the blank controls (Fig. 10b). 

 

3.5. Antibiotics release and in vitro anti-bacteria test 

2Co-MBG scaffolds showed a sustained release of ampicillin over the initial 72 h and the release 

then plateaued (Fig. 11a). Bacterial survival rate fell significantly in the ampicillin loaded scaffolds 

compared to blank controls and non-ampicillin loaded scaffolds (Fig. 11b). 

 

4. Discussion 

In this study, we have successfully prepared hypoxia-mimicking MBG scaffolds with hierarchically 

large pores (300-500µm) and well-ordered mesopores (5nm) by incorporating Co2+ ions into the 

scaffolds. We further investigated the effects of Co on the proliferation, differentiation, VEGF 

secretion, HIF-1α expression, and bone-related gene expression of BMSCs in MBG scaffolds. Our 
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results show that the incorporation of Co2+ ions into MBG scaffolds is a viable way to enhance 

VEGF secretion, HIF-1α expression, and bone-related gene expression of BMSCs; the prepared 

Co-MBG scaffolds had an obvious hypoxia inducing function. In addition to these properties, the 

Co-MBG scaffolds had well-ordered mesopore channel structures, making them well-suited to 

efficiently load and release antibiotics drugs; the sustained release of antibiotics from the scaffolds 

adds an anti-bacterial feature. These results suggest that these hypoxia-mimicking MBG scaffolds 

combine angiogenesis with osteogenesis, as well as an anti-bacterial function for bone tissue 

engineering applications. 

Co-MBG scaffolds were prepared by a typical polymer sponge method, in which some fraction of 

the Ca in the scaffolds was substituted by Co. This resulted in the advantage of the Co-MBG 

scaffolds having a sustained release of Co2+ ions into the liquid medium; the amount released 

depending on the amount of Co incorporated into the scaffolds in the first place. Previous studies 

have indicated that cobalt at high concentrations of may cause cell toxicity [32-34]. A controlled ion 

release system is therefore vital for tissue engineering applications for vascularized bone 

regeneration. With this in mind, in the current study the Co-MBG scaffold system had to satisfy the 

requirement that the Co2+ ions had to have a controlled release by only loading limited amounts of 

Co into the scaffolds. Our results have shown that the concentration of the released Co2+ ions from 

2Co-MBG and 5Co-MBG scaffolds did not exceed 20 ppm, a relatively low concentration. For this 

reason, we found that the manufactured Co-MBG scaffolds supported the attachment and growth of 

BMSCs, with no obvious cytotoxicity. It did appear, however, that 5% Co did have the effect of 

reducing BMSC viability. Incorporating ionic Co into the MBG scaffolds at 2 and 5% did not affect 

ALP activity of BMSCs; ALP is an early cell differentiation marker. Our results, therefore, suggests 
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that Co-MBG scaffolds with Co contents less than 5% can support the normal differentiation of 

BMSCs with no obvious cytotoxic effects. 

It was most encouraging that incorporating Co into MBG scaffolds did, in fact, induce a significant 

hypoxic cascade, including increased VEGF protein secretion, HIF-1α and VEGF gene expression 

in BMSCs. Anginogenesis is directed by a variety of growth factors in a complex multistep process, 

in which VEGF has been identified as a key regulator [35,36]. VEGF activates endothelial cells in 

the surrounding tissue by stimulating their liberation, migration, proliferation, and finally the 

formation of tubular structures [37]. HIF-1α can initiate the expression of a number of genes 

associated with tissue regeneration and skeletal tissue development which are activated in fracture 

repair [13]. The incorporation of ionic Co into MBG scaffolds has scientific merit and is a 

promising strategy with which to induce the hypoxic cascade to promote neovascularization of 

scaffolds for bone tissue regeneration. Previous studies have demonstrated that Co2+ ions are a 

chemical inducer of HIF-1α that triggers a hypoxia-like response by causing an oxygen deficient 

microenvironment [12]. Under conditions of normal oxygen tension (normoxia) HIF-1α is degraded 

by ubiquitination in the proteasome, although it is constitutively expressed. In hypoxic conditions, 

HIF-1α is stabilized due to the lack of oxygen, and binds to DNA at a specific recognition of target 

genes. Although oxygen is present in normoxic conditions, Co ions can inactivate HIF-specific 

prolyl hydroxylases leading to the stabilization of HIF-1α, therefore, mimicking hypoxia conditions 

[26]. There are few reports as to whether Co2+ ion incorporation into tissue engineering scaffolds is 

capable of inducing a hypoxic response. Our study does indicate the induction of hypoxic functions 

is possible by doping Co2+ ions into biomaterials. We are of the view that this is an important study 

as it paves the way to prepare functional biomaterials with improved anginogenesis and 
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osteogenesis capacity.  

In bone reconstruction surgery, osteomyelitis caused by bacterial infection is an everpresent and 

serious complication. Conventional treatments include systemic antibiotic administration, surgical 

debridement, wound drainage and implant removal [38]. These approaches are, however, rather 

inefficient and results in additional surgical interventions for the patient. A new method to solve this 

problem is to introduce system of local drug release system into the implant site. The advantages of 

this treatment include high delivery efficiency, continuous action, reduced toxicity and convenience 

to the patients [38,39]. A 3D scaffold with an in-built drug delivery property would be very useful 

for bone tissue regeneration and can solve the risk of osteomyelitis incidences caused by infection 

of the bone. The incorporation of Co into the MBG scaffolds decreased the specific surface area and 

nano-pore volume. The likely cause of this may be due to the fact that replacing Ca2+ with Co2+ may 

somehow disrupt the ordered orientation of mesopore channels during the self-assembly reaction. 

However, the manufactured Co-MBG scaffolds still maintained well-ordered mesoporous structures, 

as well as a high surface area and nanopore volume, all of which are important for the loading and 

delivery of drugs [31,40,41]. The results from this study suggest that Co-MBG scaffolds are capable 

of being efficiently loaded with an antibiotics drug and then subsequently deliver that drug topically 

at the site of implant. Co-MBG scaffolds, therefore, have potential as a local drug delivery system 

with functional anti-bacterial effect for bone tissue engineering. 

 

5. Conclusions 

Hypoxia-mimicking MBG scaffolds with hierarchically large pores (300-500µm) and well-ordered 

mesopores (5nm) were successfully prepared by substituting parts of the Ca2+ ions for Co2+ ions in 
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the scaffolds. The prepared Co-MBG scaffolds significantly enhance VEGF protein secretion, 

HIF-1α expression, and bone-related gene expression of BMSCs, compared to pure MBG scaffolds. 

The incorporation of Co2+ ions into MBG scaffolds is an efficient way to induce the hypoxic 

cascade. The mesopore structure of the Co-MBG scaffolds gives them capacity for sustained release 

of antibiotics drug and, therefore, had considerable anti-bacterial properties. The study confirms 

that the application of the hypoxia concept to the tissue engineering scaffolds is possible. The 

hypoxia-mimicking MBG scaffolds have potential uses in bone tissue engineering applications as a 

result of a combination of improved hypoxia function, excellent osteogenesis and anti-bacteria 

property. 
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