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Summary 34 

 35 
Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most 36 

devastating diseases of banana (Musa spp.). Apart from resistant cultivars, there are 37 

no effective control measures for the disease. We investigated whether the transgenic 38 

expression of apoptosis-inhibition related genes in banana could be used to confer 39 

disease resistance. Embryogenic cell suspensions of the banana cultivar, ‘Lady Finger’, 40 

were stably transformed with animal genes that negatively regulate apoptosis, namely 41 

Bcl-xL, Ced-9 and Bcl-2 3’ UTR, and independently transformed plant lines were 42 

regenerated for testing. Following a 12 week exposure to Foc race 1 in small-plant 43 

glasshouse bioassays, seven transgenic lines (2 x Bcl-xL, 3 x Ced-9 and 2 x Bcl-2 3’ UTR) 44 

showed significantly less internal and external disease symptoms than the wild-type 45 

susceptible ‘Lady Finger’ banana plants used as positive controls. Of these, one Bcl-2 3’ 46 

UTR line showed resistance that was equivalent to that of wild-type Cavendish 47 

bananas that were included as resistant negative controls. Further, the resistance of 48 

this line continued for 23 weeks post-inoculation at which time the experiment was 49 

terminated. Using TUNEL assays, Foc race 1 was shown to induce apoptosis-like 50 

features in the roots of wild-type ‘Lady Finger’ plants consistent with a necrotrophic 51 

phase in the lifecycle of this pathogen. This was further supported by the observed 52 

reduction of these effects in the roots of the resistant Bcl-2 3’ UTR transgenic line. This 53 

is the first report on the generation of transgenic banana plants with resistance to 54 

Fusarium wilt. 55 

 56 
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Introduction 57 

Fusarium wilt, also known as Panama disease, has been and continues to be a major 58 

constraint and serious threat to banana (Musa spp.) production worldwide (Ploetz and 59 

Pegg, 2000). The disease is caused by the soil-borne fungal pathogen Fusarium 60 

oxysporum forma specialis (f. sp.) cubense (Foc) of which four physiologically distinct 61 

“races” (referred to as races 1-4) have been identified based on their variation in 62 

virulence to specific host cultivars. Races 2 and 3 are not considered economically 63 

important, as they do not infect commercially relevant banana cultivars. Foc race 1, 64 

however, infects commercially important cultivars such as Gros Michel (Musa spp. AAA 65 

group) and ‘Lady Finger’ (AAB). In the mid 1950’s, Foc race 1 decimated the major 66 

export cultivar (Gros Michel) in South and Central America, essentially eliminating its 67 

use and leading to the adoption of the race 1-resistant Cavendish subgroup of cultivars 68 

(AAA) as the dominant export commodity. Foc race 4 infects all race 1-susceptible 69 

cultivars as well as the Cavendish cultivars and, until relatively recently, only affected 70 

bananas in subtropical climates (and was therefore designated subtropical race 4 71 

(SR4)). More recently, a newly discovered Foc variant called tropical race 4 (TR4) has 72 

been identified which affects Cavendish cultivars, and other locally important types 73 

such as the plantains, growing in tropical regions. This variant is apparently spreading 74 

and has been responsible for significant plantation losses is Southeast Asia, particularly 75 

Malaysia, China, Philippines and Indonesia as well as northern Australia (Ploetz and 76 

Pegg, 2000; Ploetz, 2006).  77 
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There are currently no effective methods available for controlling Foc. Chemical 78 

control is ineffective, and Fusarium chlamydospores remain viable in the soil for 79 

several decades rendering infested ground unsuitable for growing susceptible banana 80 

cultivars. It is generally accepted that the only option for controlling the disease is 81 

through the use of genetically resistant cultivars generated by conventional breeding 82 

or genetic modification. Although sources of resistance to Foc have been identified in 83 

wild bananas (Ploetz, 2006), the exploitation of these “resistance genes” by 84 

conventional breeding has been hampered by the extremely low fertility of 85 

commercial banana cultivars, which essentially do no set seeds, thus precluding 86 

traditional breeding strategies. As such, genetic modification is generally regarded as 87 

the most viable strategy for developing bananas with enhanced agronomic traits, 88 

particularly with the recent availability of efficient and reliable banana transformation 89 

protocols (Becker et al., 2000; Khanna et al., 2004). 90 

Different forms of programmed cell death (PCD), including apoptosis and 91 

autophagy, occur in plants during normal growth and development as well as in 92 

response to environmental stresses and pathogen attack (Greenberg, 1996; Lenz et al., 93 

2011). We have previously shown that the extensive cell death observed in banana cell 94 

suspensions exposed to Agrobacterium tumefaciens was accompanied by several 95 

features characteristic of apoptosis, including DNA laddering and fragmentation and 96 

the formation of apoptotic-like bodies (Khanna et al. 2007). Further, these cellular 97 

responses were shown to be inhibited in cells expressing the anti-apoptosis genes Bcl-98 

xL, Bcl-2 3′ UTR and Ced-9. The transgenic modification of pathways controlling PCD in 99 

plants has indicated that engineering resistance to biotic stresses in plants is a valid 100 
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strategy (Dickman et al., 2001). Dickman et al. (2001) showed that the constitutive 101 

expression of various anti-apoptotic Bcl-2 gene family members (including Bcl-xL, Ced-102 

9 and Bcl-2 3’ UTR) in transgenic tobacco plants resulted in high levels of resistance to 103 

a broad range of necrotrophic fungi. Since Fusarium oxysporum is a necrotrophic 104 

fungus (Vajna, 1985; Trusov et al., 2006) that kills host cells prior to infection through 105 

the predicted deployment of toxins and enzymes that induce cell death, we 106 

hypothesized that transgenic expression of anti-apoptosis genes would confer 107 

resistance to Foc. In this paper, we provide proof-of-principle that anti-apoptosis 108 

transgenes do confer resistance against Foc race 1 in banana.  109 

Results 110 

Generation and characterization of transgenic plants 111 

Binary vectors were generated containing the anti-apoptosis genes Bcl-xL, Ced-9 and 112 

Bcl-2 3’ UTR, all under the control of the maize polyubiquitin (Ubi-1) constitutive 113 

promoter. Embryogenic cell suspensions (ECS) of the banana cultivar ‘Lady Finger’ 114 

were transformed with each of the constructs using an Agrobacterium-mediated 115 

transformation protocol from Khanna et al. (2004) and transgenic lines were 116 

regenerated. Thirty-one independently transformed lines (7 x Bcl-xL, 11 x Ced-9, 13 x 117 

Bcl-2 3’ UTR) were identified based on PCR and Southern analysis and these were 118 

selected for further study. 119 

To determine whether transgene expression resulted in any deleterious 120 

phenotypic effects, each of the transgenic lines was multiplied and 10 plants from each 121 

line were acclimatised and grown in the glasshouse for eight weeks. Plants from three 122 
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Bcl-xL lines, two Ced-9 lines and five Bcl-2 3’ UTR lines displayed a range of mild 123 

phenotypic abnormalities which included stunting as well as altered leaf morphology 124 

and phyllotaxy. In most cases, the abnormal phenotype was present in every replicate 125 

of a given line. None of the cell control lines displayed abnormalities. Phenotypic 126 

abnormalities have previously been reported in plants expressing high levels of anti-127 

apoptosis genes (Dickman et al. 2001); however, abnormal phenotypes, or ‘off-types’, 128 

also occur naturally in non-transgenic tissue-cultured banana due to somaclonal 129 

variations (Côte et al., 1993; Israeli et al., 1996; Reuveni et al., 1996). It is not known 130 

whether the abnormalities observed in some transgenic plants generated in this study 131 

were the result of naturally occurring somaclonal variations or transgene expression or 132 

both. However, the observation that (i) all but one of these abnormalities were off-133 

types commonly observed associated with somaclonal variation in tissue-cultured, 134 

non-transgenic banana plants (Israeli et al., 1991) and (ii) none of the abnormalities 135 

were typical of those previously associated with anti-apoptosis transgene expression 136 

(Dickman et al. 2001), suggested that they were unlikely to be transgene-related.  137 

Glasshouse trials 138 

Two independent “small-plant” bioassay glasshouse trials were conducted to assess 139 

the transgenic banana lines for resistance to Foc race 1. The first trial (T1) included 15 140 

independently transformed banana lines (6 x Bcl-xL, 5 x Ced-9 and 4 x Bcl-2 3’ UTR) 141 

while the second trial (T2) included the most promising line/s from trial 1 plus an 142 

additional 16 independently transformed banana lines (1 x Bcl-xL, 6 x Ced-9 and 9 x 143 

Bcl-2 3’ UTR). For each of the trials, 10 plants of each transgenic line were inoculated 144 
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while 10 plants of both wild-type susceptible ‘Lady Finger’ and resistant Cavendish cv 145 

'‘Grand Naine’' plants were included as controls. Two plants from each transgenic and 146 

wild-type line were also included as non-inoculated controls. Twelve weeks post-147 

inoculation, the external (yellowing, wilting, stem-splitting) and internal symptoms 148 

(corm discoloration) of Fusarium wilt infection were assessed. In the second trial, a 149 

subset of plants was evaluated at 23 weeks post-inoculation to assess the potential for 150 

long term resistance to Fusarium wilt in the glasshouse. 151 

In both trials, typical external disease symptoms first appeared on the 152 

susceptible ‘Lady Finger’ wild-type positive control plants within 3 to 5 weeks. At 12 153 

weeks post-inoculation (Figure 1a), these plants showed mean yellowing and wilting 154 

scores of 2 and 2.2, respectively (on a scale of 1-5), and mean stem-splitting scores of 155 

2.8 (on a scale of 1-3) in T1 and scores of 2.6, 2.9 and 2.6, respectively, in T2 (Table 1). 156 

When the internal symptoms were assessed, an average of 44.9% and 50.6% corm 157 

discoloration was observed in trials 1 and 2, respectively (Table 1 and Figure 2a). As 158 

expected, plants from the resistant ‘Grand Naine’ wild-type line treated with Foc race 159 

1 displayed no symptoms of wilting and stem-splitting, with corm discoloration at 2.8% 160 

and 0.1% in trials 1 and 2, respectively (Table 1 and Figure 2a). For the ‘Grand Naine’ 161 

controls, the average wilting and stem-splitting ratings were significantly less than the 162 

‘Lady Finger’ controls; however, the average yellowing ratings were not, suggesting 163 

this symptom was not a reliable disease indicator in small plant assays. None of the 164 

non-inoculated wild-type plants of either cultivar showed external or internal signs of 165 

infection (Figures 1 and 2b). 166 
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Seven transgenic lines (2 x Bcl-xL (15 and 30), 3 x Ced-9 (1, 4 and 6) and 2 x Bcl-167 

2 3’ UTR (6 and 17)) identified from both trials had significantly lower disease ratings 168 

than the wild-type susceptible ‘Lady Finger’ control banana plants. For line Bcl-xL-15 169 

and line Ced-9-6, only the stem-splitting rating and percentage corm discoloration 170 

were significantly lower than the susceptible controls while for line Bcl-xL-30, the 171 

wilting and stem-splitting ratings and percentage corm discoloration were significantly 172 

lower (Table 1 and Figure 2). For two Ced-9 lines (Ced-9-1 and Ced-9-4) and two Bcl-2 173 

3’ UTR lines (Bcl-2 3’ UTR-6 and Bcl-2 3’ UTR-17), all external symptom ratings and the 174 

amount of vascular discoloration were significantly lower than the susceptible controls 175 

(Table 1, Figures 1b,c and 2).  176 

Since all of the external symptom ratings for Ced-9-4, Bcl-2 3’ UTR-6 and 17 in 177 

trial 2 were significantly lower than the susceptible controls, one replicate for each line 178 

was not sacrificed for evaluation of internal symptoms at week 12, but was instead 179 

kept in the glasshouse for an additional 11 weeks. Non-inoculated wild-type ‘Lady 180 

Finger’ plants were also kept as controls. At 23 weeks post-inoculation, the external 181 

and internal symptoms were assessed. The Bcl-2 3’ UTR-17, Ced-9-4 and Bcl-2 3’ UTR-182 

17 plants had increased external symptom ratings over that additional 11 weeks 183 

period along with an increase in the amount of corm discoloration. In contrast, none of 184 

the external symptom ratings of the Bcl-2 3’ UTR-6 plant increased over that period 185 

nor did the amount of vascular discoloration. 186 

Further characterisation of the most resistant plant lines 187 
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To determine whether there was any correlation between the expression of the anti-188 

apoptosis transgenes and the level of disease resistance, the seven most promising 189 

transgenic lines were analyzed by semi-quantitative RT-PCR and/or Western analysis. 190 

Due to a lack of suitable antibodies against Ced-9, Western analysis could only be done 191 

on the 2 x Bcl-xL (15 and 30) lines. For the 3 x Ced-9 (1, 4 and 6) and 2 x Bcl-2 3’ UTR (6 192 

and 17) lines, RT-PCR was used to assess transcript levels. Both RT-PCR and Western 193 

analyses revealed that higher transcript/protein levels were correlated with the 194 

resistance phenotype. For example, the amounts of Ced-9 and Bcl-2 3’ UTR-specific 195 

transcripts were found to be highest in the most resistant lines, Ced-9-1 and Bcl-2 196 

3’UTR-6 (Figure 3a), respectively. Similarly, Western analysis revealed that higher 197 

amounts of Bcl-xL were present in line Bcl-xL-30 than in line Bcl-xL-15 (Figure 3b), with 198 

the former line also displaying a higher level of disease resistance. An unexpected 199 

observation was the cross-reactivity of the anti-Bcl-xL antibodies with a lower 200 

molecular weight protein present in all wild-type and transgenic lines tested.  201 

Apoptotic response of banana roots to Foc  202 

Foc is considered to be a necrotrophic pathogen. Since necrotrophic pathogen appear 203 

to induce PCD during the course of infection (Dickman et al., 2001), we examined 204 

whether Foc could induce PCD-like features in banana roots and, if so, whether these 205 

effects could be prevented/reduced in the resistant transgenic banana line Bcl-2 3’ 206 

UTR-6. The terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling 207 

(TUNEL) assay is commonly used to detect two characteristic features of PCD 208 

associated with apoptosis, namely DNA fragmentation and the formation of apoptotic 209 
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bodies, which occur from coalescence of specifically cleaved DNA. The assay relies on 210 

the presence of specific nicks in the DNA which can be identified by terminal 211 

deoxynucleotidyl transferase, an enzyme that catalyzes the addition of dUTPs that are 212 

secondarily labelled with a marker (fluorescein).  213 

Roots from three wild-type susceptible ‘Lady Finger’ plants and three wild-type 214 

resistant ‘Grand Naine’ plants, as well as three clones of the transgenic banana line 215 

Bcl-2 3’ UTR-6, were initially incubated separately in a solution of sugar-free liquid 216 

rooting medium without Foc as controls. Root tissue samples taken at 48 h were 217 

analysed by TUNEL assays and all samples contained largely intact nuclei with very few, 218 

if any, green (TUNEL-positive) apoptotic cells indicating that experimental conditions 219 

were not causing any background apoptotic effects (Figure 4a(i), b(i), c(i)). In contrast, 220 

DNase-treated roots included as positive controls displayed a relatively large number 221 

of green, apoptotic cells (Figure 4a(iii), b(iii), c(iii)).  222 

When roots from wild-type ‘Lady Finger’ banana plants were incubated with an 223 

Foc spore suspension, TUNEL-positive nuclei were observed as early as 6 h post-224 

inoculation (Figure 4a(v)) with the incidence of TUNEL-positive cells increasing to a 225 

maximum at 48 h (Figure 4a(vii), (ix), (xi)). At 48 h post-inoculation, a slight 226 

necrosis/browning type cell death was observed in the root tissue, at which time 227 

distorted nuclei and apoptotic-like bodies containing fragmented DNA were also 228 

observed. In comparison, roots from the Bcl-2 3’ UTR-transgenic plants exposed to Foc 229 

contained very few TUNEL-positive nuclei, like the non-exposed controls, and these 230 

were only detected after 12 and 24 h exposure to Foc (Figure 4b(v), (vii)). In addition, 231 
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the tissue browning phenotype previously noted in Foc-exposed wild-type plants was 232 

not observed.  233 

As a further control, the roots from the wild-type ‘Grand Naine’ plants, which 234 

are known to show field resistance to Foc race 1, were exposed to an Foc race 1 spore 235 

suspension. TUNEL assays (Figure 4c(vii)) revealed that only a small number of positive 236 

cells, similar to non-exposed controls, were present in roots of the ‘Grand Naine’ 237 

cultivar primarily after 24 h exposure. These results indicate that (i) DNA 238 

fragmentation and cell browning observed in the wild-type ‘Lady Finger’ banana roots 239 

following exposure to Foc is a consequence of PCD which, in the case of the Bcl-2 3’ 240 

UTR-transgenic plants, could be reduced via expression of anti-apoptosis genes and (ii) 241 

the lack of PCD in banana root cells following exposure to Foc is correlated with a 242 

resistance phenotype. 243 

Discussion 244 

The transgenic modification of pathways regulating PCD in plants is emerging as a 245 

promising strategy for engineering broad-spectrum resistance to both biotic and 246 

abiotic stresses in plants (Dickman et al., 2001; Lincoln et al., 2002; Li and Dickman, 247 

2004). Such a strategy is particularly suited for generating disease resistant bananas as 248 

there are limited options for genetic improvement of this crop. In this study, we have 249 

provided proof-of-principle that anti-apoptosis genes can be used in banana to confer 250 

resistance against Foc race 1. Of the 31 transgenic ‘Lady Finger’ banana lines 251 

challenged with Foc race 1 in small-plant glasshouse bioassays, two Bcl-xL, three Ced-9 252 

and two Bcl-2 3’ UTR-transgenic lines exhibited significantly less external and internal 253 
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disease symptoms than wild-type susceptible ‘Lady Finger’ control plants after a 12 254 

week exposure to the pathogen. Of these lines, the transgenic line Bcl-2 3’ UTR-6 255 

showed a level of resistance similar to the ‘Grand Naine’ cultivar. Importantly, further 256 

monitoring of the line Bcl-2 3’ UTR-6 transgenic showed that the resistance continued 257 

for at least 5 months after inoculation.  258 

Despite limited published evidence, Foc is considered to be a necrotrophic 259 

pathogen. Such pathogens, by definition, require dead cells for nutrition, growth and 260 

development. A characteristic feature associated with many necrotrophs is the 261 

appearance of host PCD during the course of infection. Dickman et al. (2001) reported 262 

apoptotic responses in plants infected with several different necrotrophic fungi, 263 

including Sclerotinia sclerotiorum, Botrytis cinerea and Cercospora nicotianae, and 264 

concluded that apoptosis-like PCD occurs in compatible plant-necrotrophic pathogen 265 

interactions. In this study, we used TUNEL assays to demonstrate that an apoptotic-like 266 

cell death is triggered in susceptible wild-type banana root cells as early as 6 hours 267 

post-exposure to a suspension of Foc spores. Further evidence suggesting that the 268 

observed DNA fragmentation was apoptotic in nature was provided from TUNEL assays 269 

on roots from a Foc race 1-resistant Bcl-2 3’ UTR-transgenic line in which these effects 270 

were significantly attenuated or absent. These results provide further evidence that 271 

Foc race 1 is a necrotrophic pathogen or at least has a necrotrophic stage in its life 272 

cycle. 273 

Little is known regarding the molecular mechanisms underlying Foc infection 274 

and PCD induction in banana. Toxins produced by many necrotrophic fungi, including 275 

oxalic acid from Sclerotinia sclerotiorum, AAL from Alternaria alternata, Fumonisin B1 276 
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from F. verticillioides and victorin from Cochliobolus victoriae, induce characteristic 277 

hallmarks of apoptosis in plants (Abbas et al., 1995; Navarre and Wolpert, 1999; Kim et 278 

al., 2008). Further, in Fusarium species such as F. verticillioides and F. moniliforme, 279 

several secondary metabolites, including fumonisins, are produced during infections 280 

and act as powerful elicitors of PCD (Wang et al., 1996; Stone et al., 2000). Based on 281 

what is known about other F. oxysporum f. sp, Foc is predicted to produce mycotoxins 282 

which may be involved in stimulating cell death in the host and facilitating fungal 283 

growth. However, whether this and/or other mycotoxins are responsible for the PCD 284 

observed in Foc-infected ‘Lady Finger’ banana cells is unknown.  285 

The mechanism(s) by which anti-apoptosis genes confer protection against 286 

necrotrophic fungi is still unclear. Cytological studies on tobacco transformed with Bcl-287 

xL and Ced-9 revealed that these proteins localized to mitochondria and other 288 

organelles including the vacuole and chloroplast (Chen and Dickman, 2004). Based on 289 

these observations, it was suggested that the proteins might improve the overall 290 

function of organelles by assisting in the generation of ATP in the mitochondrion or 291 

photorespiration to prevent ROS production in the chloroplast under stress conditions 292 

(Chen et al., 2003; Chen and Dickman, 2004; Li and Dickman, 2004). By analogy, Bcl-xL 293 

and/or Ced-9 may prevent cell death and enhance plant resistance characteristics by 294 

contributing to the maintenance of organelle homeostasis (Qiao et al., 2002). The 295 

mechanism/s by which Bcl-2 3’ UTR confers resistance to plant cells is also unknown. 296 

However, the Bcl-2 3’ UTR transcript is thought to interact with pro-apoptotic proteins 297 

at the RNA level (Dickman et al., 2001) to mediate their degradation via the 298 

ubiquitin/proteasome pathway (Martin Dickman, unpublished).  299 
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The generation of ‘Lady Finger’ banana plants with resistance to Foc race 1 is 300 

significant considering the serious economic and social impact caused by Fusarium wilt 301 

and the fact that no sustainable control strategy currently exists for this disease. The 302 

glasshouse tested resistant lines described here are very promising, however, testing 303 

of the transgenic plants under field conditions will ultimately be required, preferably 304 

through at least two crop cycles as symptoms of Foc infection can sometimes take up 305 

to 12 months to appear. Although the concentration of Foc in naturally infested soils is 306 

typically unknown, it is likely that the Foc inoculum pressure in the field sites would be 307 

dramatically lower than that of the very high, confined inoculum load used in our 308 

small-plant glasshouse assays. As such, the number of transgenic plants resisting 309 

infection to Foc race 1 in the field might be considerably higher than that observed in 310 

glasshouse trials.  311 

A further important next step will be to test the transgenic banana lines 312 

generated in this study for resistance to Foc race 4, and particularly Foc TR4 which is 313 

emerging as a major threat to the global banana industry (Ploetz, 2006; Buddenhagen, 314 

2009; Dita et al., 2010). Since the apoptosis-related genes used in this study have been 315 

previously shown to generate broad resistance to a diversity of necrotrophic 316 

pathogens in other plants, it is possible that the transgenic banana generated in this 317 

study will also show resistance to the necrotrophic fungal disease black Sigatoka, 318 

caused by Mycosphaerella fijiensis, which also threatens the international viability of 319 

the crop. Assessment of plants for developmental and agronomic qualities under field 320 

conditions is also required, as well as evaluation of any increased susceptibility to 321 

biotrophic banana pathogens such as viruses.  322 
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Experimental procedures 323 

Transformation constructs 324 

Binary vectors pPTN254, pPTN261, pPTN396 and pPTN290 containing the maize 325 

polyubiquitin-1 (Ubi-1) promoter controlling the expression of anti-apoptosis genes 326 

Bcl-xL, Ced-9, Bcl-2 3’ UTR and the UidA reporter gene encoding -glucuronidase 327 

(GUS), respectively, were as described previously (Khanna et al., 2007).  All genes were 328 

fully sequenced in their original vector prior to transformation to verify the presence 329 

and integrity of the coding sequences and the promoter/gene and gene/terminator 330 

borders.  331 

Transformation of banana and molecular characterization of transgenic plants  332 

Embryogenic cell suspensions (ECSs) of the banana cultivar ‘Lady Finger’ (Musa spp. 333 

AAB group) were initiated, maintained and transformed as described previously 334 

(Khanna et al., 2004). The molecular analysis of transgenic plants was essentially done 335 

as previously described by Khanna et al. (2007). RNA was extracted from 50 mg of 336 

fresh leaf tissue using an RNeasy Plant Mini kit (Qiagen, Valencia, CA, USA) following 337 

the manufacturer’s instructions, and was treated with RNase-free DNase (Promega, 338 

Madison, WI, USA). RT-PCR was done using a Titan One Tube RT-PCR Kit (Roche 339 

Diagnostics Australia Pty Ltd, Castle Hill, NSW, Australia), with each reaction containing 340 

10 ng DNase-treated total RNA and the appropriate gene-specific primers. For Western 341 

analysis, crude plant protein extract (20 g) from 100 mg of leaf tissue was separated 342 

on a 10% denaturing SDS polyacrylamide gel and transferred to nitrocellulose 343 

membrane. The membrane was incubated with rabbit monoclonal anti-Bcl-xL (BL804) 344 
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(Bethyl Laboratories, Inc., Montgomery, TX, USA) primary antibody (diluted 1/1000 in 345 

blocking solution) for 16 h at 4°C. Following a subsequent incubation in HRP-346 

conjugated secondary antibody in blocking solution for 1 h at 4°C, the SuperSignal 347 

West Femto (Pierce Biotechnology, Inc., Rockford, IL, USA) substrate was used for 348 

signal detection at 4°C until the desired intensity was achieved. 349 

Fungal cultures and inoculum preparation 350 

Fusarium oxysporum f. sp. cubense race 1 (VCG 0124/5) isolate was obtained from the 351 

Department of Employment, Economic Development and Innovation (DEEDI) 352 

herbarium, Indooroopilly Research Centre, Australia. The fungus was grown on 1/4 353 

strength potato dextrose agar (PDA) supplemented with 50 mg/L streptomycin and 354 

incubated for 3 to 5 days at 25°C.  The inoculum used for small-plant bioassays was in 355 

the form of Foc-colonized Japanese millet (Echinochloa esculenta) grain (Smith et al., 356 

2008). For in vitro root assays, spore suspensions were used as inoculum. These were 357 

prepared by inoculating 100 mL of Fusarium liquid growth medium-A (without yeast 358 

extract and supplemented with 20.6 g/L tri-sodium citrate) (Ahamed and Vermette, 359 

2009) with two 7 mm diameter plugs of PDA-grown Foc. After shaking at 120 rpm for 360 

three days at 25°C, the medium was filtered through three layers of cheesecloth, 361 

centrifuged at 3850 g for 5 min and the pelleted conidia (a mixture of macroconidia 362 

and microconidia) were resuspended in 5 mL distilled water. Spore concentration was 363 

calculated using a haemocytometer before dilution to 105 spores/mL in sugar-free 364 

liquid rooting medium M5 (Côte et al., 1996). 365 

Small-plant bioassays 366 
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Tissue-cultured transgenic plants of the ‘Lady Finger’ cultivar and wild-type banana 367 

plants of ‘Lady Finger’ and Cavendish cv ‘Grand Naine’ were acclimatised and 368 

transplanted into 100 mm diameter pots in soil (Searles Premium Potting Mix, Kilcoy, 369 

Australia) for 8 weeks in a glasshouse at 27°C under natural light conditions.  370 

Selected transgenic banana lines and wild-type control plants were inoculated 371 

with Foc race 1 in two independent glasshouse trials. For logistical reasons, each 372 

independent transgenic line was assayed once in trial 1 or trial 2 with the exception for 373 

Bcl-2 3’ UTR line 6 which was assayed in both trials. For each line tested in both trials, 374 

10 replicate plants were inoculated and two plants were non-inoculated. Plants were 375 

inoculated with Foc race 1 using a modified version of the Foc small-plant bioassay 376 

protocol described by Smith et al. (2008). Briefly, 200 mm pots were half-filled with 377 

potting mix (7 mm gravel, sand, perlite, and vermiculite in a ratio of 2:2:1:1) and 20 mL 378 

of Foc-colonized millet grain (corresponding to an average of 2 x 108 Foc spores) was 379 

placed on the surface. Acclimatized banana plants were placed directly on the millet 380 

grain and the pots were filled with potting mixture. A tablespoon of Osmocote Plus 381 

slow-release fertilizer (Scotts Australia Pty Ltd, Baulkham Hills, NSW, Australia) was 382 

added to each pot. Plants were maintained in a greenhouse with an average 383 

temperature between 23-25°C during the summer and autumn months. 384 

Assessment of disease symptoms 385 

Twelve weeks after inoculation, external and internal symptoms of Fusarium wilt 386 

infection were assessed using a modified version of the method described by Smith et 387 

al. (2008). External symptoms were assessed by scoring each plant for the intensity of 388 
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the three main disease symptoms. Yellowing and wilting were assessed using a 5 point 389 

scoring scale where 1 = healthy, no sign of symptoms (except natural degradation of 390 

lower leaves), 2 = slight symptoms, mainly on lower leaves, 3 = advanced symptoms 391 

(50%), 4 = extensive symptoms (90%) and 5 = entire plant affected (dead plant). 392 

Splitting of the stem was assessed using a 3 point scoring scale where 1 = no sign of 393 

splitting, 2 = slight splitting at the base of the plant and 3 = extensive splitting. 394 

Following assessment of external symptoms, plants were removed from their pots, the 395 

stem was cut longitudinally and digital images of the rhizome were taken using a 396 

Canon Ixus 75 digital camera. The percentage of discoloration (browning) of the stellar 397 

region of the corm was subsequently assessed from the digital images using a 398 

MATLAB-based program to ensure accuracy and reproducibility. 399 

In vitro root assays 400 

Tissue-cultured wild-type and transgenic ‘Lady Finger’ banana plants (5-7 cm tall) 401 

growing on M5 medium were transferred into liquid M5 medium in a 50 mL tube and 402 

roots were allowed to develop for two weeks. The plants were then transferred into 403 

separate fresh 50 mL tubes containing 7 mL Foc spore suspension (105 spores/mL) and 404 

incubated at 25°C with shaking (120 rpm) for 48 h. Negative control samples were 405 

incubated in sugar-free M5 medium only. Root tip fragments (10 mm) for terminal 406 

deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) assays were 407 

taken from each plant at 6, 12, 24 and 48 h post-inoculation, washed in 10 mM 408 

phosphate-buffered saline (PBS), fixed for 24 h in 4% (v/v) paraformaldehyde in 10 mM 409 

PBS (pH 7.4) at 4°C and stored at 4°C in 70% ethanol. 410 
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TUNEL assays 411 

Root tip fragments were washed three times in fresh 10 mM PBS (pH 7.4) before being 412 

assayed by TUNEL essentially as described by Khanna et al. (2007). Positive control 413 

samples were made by subjecting root tissue to 1 unit of RNase-free DNase (Promega) 414 

for 10 min at room temperature. Stained root fragments were squash-mounted onto 415 

slides and examined under a BX41 microscope (Olympus Imaging Australia Pty Ltd, 416 

Macquarie Park, NSW, Australia) equipped with U-MWIBA3 and U-MWIY2 filters 417 

(Olympus), a DP71 microscope digital camera (Olympus) and the DP Manager software 418 

(Olympus). 419 

Statistical analysis 420 

Correlations between data were established using a correlation matrix of all external 421 

and internal symptoms. Due to the ordinal scale of measurements, a Spearman’s Rho 422 

correlation coefficient was calculated to determine the most appropriate choice for 423 

further statistical analysis. Based on a high correlation coefficient, a Multivariate 424 

Analysis of Variant (MANOVA) model was fitted using a general linear model (GLM) 425 

approach. This model included all four symptoms (yellowing, wilting, stem-splitting 426 

and vascular discoloration) concurrently. The LSD Post Hoc test was used to compare 427 

each plant line against the wild-type ‘Lady Finger’ control line with statistical 428 

significance reported at a level of P < 0.05, using a two-tailed test. Statistical analysis 429 

was done using SPSS 15.0 (SPSS Inc., Chicago, IL, USA). 430 
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Tables 548 

 549 

Table 1 Assessment of external symptoms of Foc race 1 infection on Bcl-xL, Ced-9 and 550 

Bcl-2 3’ UTR transgenic lines 551 

 552 
Results are presented as score means based on 10 replicates. 553 
 

Based on 1-5 scale
 554 

λ
 Based on 1-3 scale

 555 
GN Untransformed wild-type ‘Grand Naine’ cultivar 556 
LF Untransformed wild-type ‘Lady Finger’ cultivar 557 
* Significantly different from their respective susceptible LF control lines in either trial 1 (T1) or trial 2 558 
(T2) with P < 0.05 based on LSD Post Hoc test. 559 
 560 
 561 
 562 
 563 
 564 
 565 
 566 
 567 
 568 
 569 
 570 
 571 
 572 
 573 
 574 
 575 
 576 
 577 
 578 
 579 

 580 
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Figure Legends 581 

 582 

Figure 1 Representative photographs of the external symptoms of Fusarium wilt 583 

infection on susceptible, wild-type ‘Lady Finger’ (a) and resistant, transgenic ‘Lady 584 

Finger’ Ced-9-1 (b) and Bcl-2 3’ UTR-6 (c) banana plants at 12 weeks post-inoculation. 585 

Inoculated (I) and non-inoculated (NI) plants are shown as indicated.  586 

 587 

Figure 2 Assessment of the internal symptoms of Fusarium wilt in small-plant bioassays. 588 

(a) Quantitative assessment of the internal symptoms of Foc race 1 infection on 589 

resistant wild-type ‘Grand Naine’ (GN), susceptible wild-type ‘Lady Finger’ (LF) plants 590 

and selected transgenic lines harbouring transgenes Bcl-xL, Ced-9 and Bcl-2 3’ UTR. (b) 591 

Representative photographs of the internal symptoms of Fusarium wilt infection at 12 592 

weeks post-inoculation. Susceptible wild-type ‘Lady Finger’ plants (1 and 2), resistant 593 

wild-type ‘Grand Naine’ plants (3 and 4), transgenic ‘Lady Finger’ Ced-9-6 (5 and 6) and 594 

Bcl-2 3’ UTR-6 (7 and 8) are shown. Transgenic banana lines were inoculated with Foc 595 

race 1 and grown in the glasshouse. After 12 weeks, the plants were scored for the 596 

characteristic external and internal symptoms. Results are presented as score means ± 597 

standard errors based on 10 replicates. The significance of differences between mean 598 

values was evaluated by the LSD Post Hoc test. Differences were considered significant 599 

at P < 0.05. *Denotes the results are statistically significant from their respective 600 

susceptible LF line in either trial 1 (T1) or trial 2 (T2). 601 

 602 

Figure 3 Transgene expression analysis in selected ‘Lady Finger’ transgenic banana 603 

lines. (a) RT-PCR transcript analysis of Ced-9 lines 1, 4 and 6 and Bcl-2 3’ UTR lines 6 604 

and 17. (b) Western analysis of Bcl-xL transgenic lines 15 and 30 (Bcl-xL expected size is 605 

28 kDa). P = Bcl-xL positive control consisting of 6His-Bcl-xL-6His protein expressed in 606 

E. coli (expected size is 31 kDa). WT = wild-type negative control.  607 

 608 

Figure 4 Response of banana root cells to Foc race 1. Root tips from tissue-cultured 609 

susceptible wild-type ‘Lady Finger’ (a), resistant wild-type ‘Grand Naine’ (b) and 610 

transgenic ‘Lady Finger’ Bcl-2 3’ UTR-6 were exposed to either liquid rooting media 611 

alone [Negative control (N) for 48 h] or rooting media containing 105 Foc spores/mL, 612 

and subjected to TUNEL assays and propidium iodide counter-staining at 6, 12, 24 and 613 

48 h post-inoculation. Nucleic acid in TUNEL positive cells is selectively stained and 614 

fluoresces green, indicating the presence of apoptotic-like bodies, whereas all nucleic 615 

acid is counter-stained with propidium iodide and fluoresces red. Roots treated with 616 

DNase were used as a positive control (P). Magnification as indicated. 617 

 618 

 619 
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Figures 620 
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