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A General Procedure for the Derivation of 
Principal Domains of Higher-Order Spectra 

Vinod Chandran and Steve Elgar 

Abstract-A general procedure to determine the principal domain (i.e., 
nonredundant region of computation) of any higher-order spectrum is 
presented, using the bispectrum as an example. The procedure is then 
applied to derive the principal domain of the trispectrum of a real-valued, 
stationary time series. These results are easily extended to compute the 
principal domains of other higher-order spectra. 

I. INTRODUCTION 
The primary purpose of this study is to provide a general procedure 

for deriving the principal domains (i.e., nonredundant regions) of 
higher-order spectra and use it to derive the nonredundant region of 
computation of the trispectrum. Higher-order spectra or polyspectra 
were introduced for studying nonlinearities and deviations from 
Gaussianity in stationary random processes. They are defined as 
the Fourier transforms of higher-order moments or cumulants of a 
random process. The idea of a spectral representation for higher- 
order moments of a time series appears in [ l ] ,  and was further 
developed in [2]. A spectral representation for cumulants (attributed 
to Kolmogorov) appears in [2]. Higher-order spectra are derived 
from first principles in [3], [4]. For a single time series, the first 
higher-order spectrum is the (auto) power spectrum. The 2nd and 
3rd higher-order spectra are the (auto) bispectrum and the (auto) 
trispectrum, and are defined as the Fourier transforms of the 3rd and 
4th cumulants, respectively. Although cross higher-order spectra can 
be defined for multiple time series, the present study is restricted to a 
single time series and the prefix auto will be dropped. Further, it is not 
necessary to define higher-order spectra in terms of cumulants here. 
Instead, an altemative form involving products of Fourier coefficients 
of realizations of a random process will be used. This form can be 
derived from the cumulant based definition using Stieljes Integrals 
~41. 

Manuscript received May 29, 1992; revised January 14, 1993. The 
associate editor coordinating the review of this paper and approving it for 
publication was Prof. Jose A. R. Fonollosa. This work was supported by the 
Office of Naval Research. 

The authors have been with the School of Electrical Engineering and 
Computer Science, Washington State University, Pullman, WA 99164-2752. 
V. Chandran is now with the Signal Processing Research Centre, School of 
Electrical and Electronic Systems Engineering, Q.U.T., Brisbane, Queensland, 
Australia. 

IEEE Log Number 9213287. 

Let s[ t ]  be a real-valued, stationary random process. The bi- 
spectrum, B(f l .  f2), of the process can be expressed as 

D(f l . fZ)  = E[-7 i ( f l ) l i ( fZ)S(- f l  - f i l l  (1) 

where 

is the Fourier decomposition of a realization of the process, * 
denotes complex conjugation, j = m. and E [  ] is the expectation 
operator. This form of definition appears in [5] in an application 
of the bispectrum which precedes the theoretical development of 
cumulant spectra [3], [4]. Similarly, the trispectrum, T (  fl, fi, J 3 ) .  

of the random process may be expressed as 

The bispectrum has been used in many applications including 
the study of quadratic interactions, signal reconstruction, system 
identification, and pattern recognition [7]. The trispectrum [4], [6], 
[8]-[Ill has not enjoyed the same popularity as the bispectrum, 
partially because of the increased complexity in its computation 
and interpretation. Dalle Molle and Hinich [IO] discuss part of the 
principal domain of the trispectrum. A procedure for the derivation of 
the complete principal domain is described in Section 11, and applied 
to the bispectrum in Section 111. 

11. THE PROCEDURE 
Let f denote the frequency normalized by the Nyquist frequency, 

such that 0 5 f 5 1. If ~ [ t ]  is a real-valued time series, then 
the Fourier transform, I(f). is conjugate symmetric, and hence 
S*(f)  = S(-f). The bispectrum, D ( f l . f 2 ) ,  is then also given by 

B ( f 1 . f ~ )  = E[-I-(fi ) - ~ ( f ~ ) - ~ - * ( f i  + f 2 ) I .  ( 3 )  

The trispectrum or any other higher-order spectrum can also be 
expressed as the expected value of a product as in (3). The bispectrum 
(or other higher-order spectrum) possesses redundancy in bifrequency 
(or polyfrequency) space arising from 

1) the interchangeability of any pair of frequencies in its definition 
(11, 

2) redundancy of the negative half of some of the frequency axes 
owing to the conjugate symmetry property, and 

3) periodicity of the Fourier transform at intervals of the sampling 
frequency for discrete-time processes. 

This redundancy can be systematically exploited and eliminated to 
derive the principal domain or nonredundant region of computation 
of the bispectrum (or other higher-order spectrum). Thus, B(  f l ,  f2) 

need only be computed for a subset (derived here to illustrate the 
procedure) of all possible values of bifrequency ( fl , f2 ). 

Owing to property 1 the bispectrum is symmetric about the lines 
f l  = f 2 : f 1  = - f l  - f2 (or 2 f l  + f2 = 0 ) : f ~  = -fl - f~ (or 
fl + 2f2 = 0 )  as shown in Fig. 1. The kth order polyspectrum 
will have k (  k + 1 ) / 2  hyperplanes of symmetry in k-frequency space, 
analogous to the lines of symmetry above. The bispectrum need be 
computed only on one side of either of these lines, and therefore 
only for the subset 
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Fig. 1. The three lines of symmetry of the bispectrum arising from the 
interchangeability of the frequencies involved in its definition. The principal 
domain of the bispectrum must lie within the shaded region. 

which is shown shaded in Fig. 1 .  This subset for the kth order 
polyspectrum is 

Property 2 must be exploited carefully because the redundancy 
involved is different for the trispectrum and other higher-order spectra 
than it is for the bispectrum, as will be evident in the next section. 
A systematic exploitation of this property consists of 

0 partitioning the k-frequency space into Zk+' - 2 subsets de- 
pending on the signs of the frequencies fl , f2. . . . . fk and the sum 
frequency fl + f~ + . . . + fk. 

0 grouping together all subsets that map into each other upon 
conjugate symmetric transformations, and 

0 including only one subset from each group in the nonredundant 
region. 

Thus, for the bispectrum, bifrequency space can be partitioned into 
the six subsets, that (using the interchangeability property) can be 
rewritten as 

5% = { f l . f 2 . f a  2 0) 

= {exactly one frequency from f l .  f2 < 0: fb 2 0) 

s ; ~  = {exactly one frequency from fl. f2 < 0; fs < 0) 

s& = { f l . f 2 . f s  < 0) 

where fs = fl + fi and f l  2 f2. These subsets are shown in Fig. 2. 
There are four unique subsets instead of six because the frequencies 
are ordered. The k-frequency space for the kth order polyspectrum 
can similarly be partitioned into 2k subsets (instead of 2"+' - 2 )  as 

s$a = { f l . f 2 : " . f k . f s  2 0) 

S,", = {exactly one frequency from fl. ... . fk < 0; j .  2 01 
s,", = {exactly one frequency from fl. . . . , fr < 0: f3 < 0) 

= {exactly two frequencies from fl,. . . . f A  < 0: fb 2 01 
s,", = {exactly two frequencies from fl. . . . f n  < 0: fs < 01 

. . .  = .  

where f. = f~ + fz + ... + fk and fl 2 fz 2 . . .  2 f r .  
The redundancy among these subsets can now be eliminated using 
conjugate symmetry operations to test which subsets map into each 
other, as follows. Rearrange the equation f l  + f2 + . . . 4- f k  = f5 
taking negative frequencies to the opposite side of the equation with 

\ 
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0 
0 

0 ° 0  '$d 

0 

0 

\ f, + f2= 0 

Fig. 2. The subsets into which bifrequency space is partitioned to exploit 
the redundancy arising from the conjugate symmetry property. The principal 
domain of the bispectrum must be contained in the shaded subset because all 
other subsets map into this subset. 
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Fig. 3. The principal domain for the bispectrum of a continuous process is 
given by the shaded area. 

a negation in sign until there are only sums of positive frequencies on 
each side. Each of the subsets, Si, through S,", can now be assigned 
a pair of integers of the form ( 1 ,  r ) .  where 1 and r are the number 
of frequencies on the left and right side of the equation, respectively, 
and I + r = k + 1. That is, Si, is ( k , l ) , S t b  is (IC - 1,2),S& is 
( k .  1). and so on. Those subsets that are assigned the same number 
pair will map into each other upon interchange of frequencies. In 
particular, s,",. will map to si, , s,", will map to s,", , s,", will map to 
S,",. etc. Thus, all the subsets with fs < 0 can be eliminated. Further, 
( r .  I )  maps into (1. r )  upon conjugation. This reduces the number of 
subsets that enter into the principal domain to r k / 2 1  for the kth order 
polyspectrum. This formula yields only 1 region for the bispectrum 
(as is well known), but 2 regions for the trispectrum and 4-th order 
polyspectrum, 3 regions for the 5th- and 6th-order polyspectra, etc. 
Of these, S,", will reduce to a sum interaction region, and the others 
will reduce to difference interaction regions for k 2 3. 

Thus, only subset S:a need be retained for the bispectrum. Com- 
bining the two properties, the principal domain of computation of 
the bispectrum of a continuous process is given by 5: n Si<,. This 
is the wedge shaped region shown in Fig. 3. For the kth order 
polyspectrum, there will be a similar wedge shaped sum interaction 
region. However, there are rk /21 -  1 additional difference interaction 
regions as discussed in the next section. 

Property 3 applies to discrete-time processes. Let a[t] be sampled at 
time interval T.  and normalize the frequencies by f\- = 1/2T.-Y(f) 
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Fig. 4. The principal domain of the bispectrum of a discrete-time process 
must also be contained in the shaded region shown here because of the 
periodicity of the Fourier transform of a discrete-time function. The lines 
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Fig. 6. The principal domain for the bispectrum of a continuous-time 
bandlimited process with unit bandwidth in normalized frequency units is 
given by the shaded area. This is also the principal domain for the bispectrum 
of a discrete-time process with no bispectral aliasing. 

of symmetry of the bispectrum (shown in Fig. 1) also repeat periodically for 
the discrete-time bispectrum. 

For the kth order polyspectrum this subset is given by 

rf2 

’ f:= f2 
(9) 

(2/3,2/3)\* ’ - The principal domain of the bispectrum for a continuous-time ban- 
dlimited process with unit bandwidth in normalized frequency or for 
a discrete-time process with no polyspectral aliasing is given by the 
shaded triangular region shown in Fig. 6. The difference between the 
two shaded triangular regions in Figs. 5 and 6 is known as the outer 
triangle or OT region [7], and it has its k-dimensional counterpart 

& / 
-1 (190) , 

for the kth order polyspectrum. 
2f, + f,= 2 

111. PRINCIPAL DOMAIN OF THE TRISPECTRUM 

The procedure described above is now applied to the trispectrum. 
Using the interchangeability of frequencies, the planes of symmetry 
of the trispectrum are f l  = f z :  f 2  = f3; f i  = f3; 2f1 + fz + f3 = 
0: f l  + 2 f i  + f j  = 0: and fl + f 2  + 2f.r = 0. The principal domain 
must therefore be contained in 

Fig. 5.  The principal domain for the bispectrum of a discrete-time process 
is given by the shaded area. 

s? = {fl  L fi L f3} n {f, + f 2  + 2f3 2 0). (10) is now periodic and uniquely defined in the interval 1 2 f 2 -1. 
More each Of the lines (Or hype@anes) Of symmetry 
will also be periodic at intervals of 2 units in normalized frequency. 
The bispectrum then need only be computed for the 

Using the conjugate symmetry property, the trifrequency space can 
be partitioned into the subsets 

s;<, = { f i . f 2 . f 3 . f . .  2 0 )  
’.’ = {’ ’ f i  ’ -‘I {* ’ 2fi + .f2 0} (6) S;,, = {exactly one frequency from f l .  fz. fn < 0 and f3 2 0} 

which is shown shaded in Fig. 4. The interchangeability property has S.;, = {exactly one frequency from f l .  fz. f3 < 0 and f. < 0 )  
also been utilized in (6) to order the frequencies. This subset for the 
kth order polyspectrum would be 

s : ~ ~  = {exactly two frequencies from f l  . f2. f3 < 0 and f. 2 0} 

Sj, = {exactly two frequencies from fl . fl. f 3  < 0 and f, < 0) 

Combining all three properties, the principal domain of the bispec- 
trum for a discrete-time process is given by S: n Sz,, n S;;. which 
is the triangular region shown in Fig. 5. 

For a continuous-time bandlimited process with unit bandwidth 
in normalized frequency, or for a discrete-time process when there 
is no polyspectral aliasing [4], the subset S:r comprises a smaller 
region given by 

s.;.[ = { f i . f 2 . f 3 . f , ?  < O} 

where f a  = f~ + f2 + f3. Denoting subsets S,“, through S,”, by 
integer pairs (as explained above), they are found to be (3, I), (2, 
2), (3, l ) ,  (1, 3), (2, 2), and (1, 3), respectively. After eliminating 
identical and commuted pairs, only subsets S;,, and S& remain for 
inclusion in the principal domain. 

Combining the two properties, the principal domain of the trispec- 
trum for a continuous process is given by S: n (Sl, fl S&). The 
contribution from S.;,, is a d ~ e r e n c e  interaction region which does 
not reduce to cubic sum interactions. This is a significant difference 
between the principal domains of the bispectrum and the trispectrum. 
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f3 

2f, +f,+f,= 2 t o  

Fig. 7. The sum interaction region, T I .  which forms part of the principal 
domain of the discrete-time trispectrum. 

For a discrete-time process, using the periodicity property, the 
trispectrum need only be computed in the subset 

s,: = (1 2 f l  2 f2 2 2 -1}n{2 2 2 f l + f 2 + f : j  2 o}. (11) 

The principal domain of the discrete-time trispectrum is given by 
5; r l  (S,", n S i b )  n S,". It comprises the sum interaction region, 
Tl = 5': n Si, n S," shown in Fig. 7 and the difference interaction 
region, T2 = Sf n Si, n S,: shown in Fig. 8. In terms of the 
frequencies, fl. f 2 ,  f3. 

T~ = {fl L f 2  L f3} n ifl + f 2  + 2 f 3  2 01 

n (fl  L o . f 2  2 ~ . f : ~  L 01 
n (1 L f l  L f2 2 f3 L -1 )  
n ( 2  2 2fl  + f 2  + f 3  2 01 

= (1 2 f i  + f 2 / 2  + f3/2 2 f i  2 f2 2 f3 0) (12) 

where the constraint f l  + f2 + 2f . j  2 0 is ignored because it is 
dominated by the stronger constraint f:r 2 0. This is a tetrahedron 
with vertices (found by solving equalities simultaneously in the 
defining relations for T I )  at (0, 0, 0), (1, 0, O), (2/3, 2/3, O), and 
(l/2, 1/2, 1/2) as shown in Fig. 7. Similarly, 

T~ = {fl L f 2  2 f 3 }  n i f l  + f2 + 2f . ,  2 01 
n {fl. f2 2 0 2 f3} n Ifl + fr + 2 0) 
n (1 2 f l  L f 2  L f 3  2 -1) 

n {2 L 2f1 + f2  + f3 2 0) 
= (1 2 f l  2 f2 L 0 L f . 3  2 -1> 

n {2 L 2 f l  + fa + f 3 }  

n {fl + f2 + 2f3 L 01 (13) 

where the constraint f l  + f2 + f3 2 0 is ignored because it is 
dominated by the stronger constraint fl + f2 + 2f3 2 0 when f:r 
is negative. This is a polyhedron with vertices (found by solving 
equalities simultaneously in the defining relations for T2) at (0, 0, O), 
(1 ,0 ,0) , (2 /3 ,2 /3 ,0) , (1 .0 . -1 /2)and(1 ,1 . -1)  asshowninFig .  
8. This region has not been reported previously. 

For a continuous-time bandlimited process with unit bandwidth 
in normalized frequency, or for a discrete-time process with no 
trispectral aliasing, the subset S," comprises a smaller region given by 

S3ir=(1Lfi L f 2 L f 3 L - l } n ( l L f 1 + f ~ + f . i > - 1 } .  
(14) 

Thus, the principal domain of the trispectrum for a continuous-time 
bandlimited process with unit bandwidth in normalized frequency or 
for a discrete-time process with no trispectral aliasing, consists of 

Fig. 8. The difference interaction region, Tz. which also forms part of the 
principal domain of the discrete-time trispectrum. 

fT (1 /3,1/3,1/3) 
Fig. 9. The principal domain of the trispectrum for a continuous-time, 
bandlimited process with unit bandwidth in normalized frequency units. This is 
also the principal domain of the discrete-time trispectrum with no trispectral 
aliasing. 

smaller regions as shown in Fig. 9. These regions are TI and Tz. 
where 

TI = { 1 2 f i  + f2 + f:j 2 f i  2 f2 2 f3 2 0) (15) 

which is a tetrahedron with vertices at (0, 0, 0), (1, 0, O), (1/2, 1/2, 
O), (1/3, 1/3, I N ,  and 

T2 = (1 2 f i  2 f2 2 0 f3 2 -I} 
n if l  + f 2  + 2 f 3  2 o} n (1 2 f l  + f 2  + f 3 )  (16) 

which is a polyhedron with vertices at (0, 0, 0), (1, 0, 0), (1/2, 1/2, 
0). (1.0.-1/2) and (1.1.-I). 

The principal domain of the kth order polyspectrum comprises 
rk /21  regions given by 

Tf = { 1 2 f i  + f2 + ' ' ' + f k  2 f l  2 f2.. . 2 fk 2 O} (17) 
T i  = (1 2 f ,  2 f2 2 . . .  2 f r - 1  2 0 2 f k  2 -1} 

T: = (1 2 f l  2 fa 2 . . .  2 f r - 2  2 0 2 f k - 1  2 f r  2 -1) 

n {fl  + f2 + . . . + 2 fk 2 o} 
n (1 2 f l  + f2 + . . . +  fk.} (18) 

n ( f l + f 2 + . . . + t " f l ,  20) 
n { 1 2 f l  + f2 + . . . + fk } (19) 
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and so on. These regions may be combined into one as done for the 
trispectrum in Fig. 9. 

I. INTRODUCTION 

One of the most challenging problems encountered in the practical 
application of statistical estimation techniques to real-world data is 
the determination of an appropriate model dimension based only on 
the observed data. Although a number of investigations concerning 

estimates have been recently reported [1]-[3], the exact number of 
has always been assumed known apriori. H ~ ~ ~ ,  i t  

is assumed that the detection step has already taken place, resulting 

IV. CONCLUSIONS 

derive the nonredundant region of computation of the trispectrum. 
This region differs from that derived by a direct extension of the 
principal domain of the bispectrum to three dimensions. 

A procedure to higher-order spectra was used to the characteristics of eigenstructure-based direction of arrival (DOA) 
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The Effect of Source Number Underestimation 
on MUSIC Location Estimates 

Bill M. Radich and Kevin M. Buckley 

in the incorrect estimate of D sources, and therefore, the detection 
problem shall not be covered in any detail. As will be explained in 
the Section 111-A, the case of overestimating the number of signals 
can be analyzed as a special case of weighted MUSIC, and therefore, 
variance analysis falls within the framework of results published in 
131. 

In this study, we are concemed with the effects that underesti- 
mating the number of narrowband sources D impinging on an array 
of sensors has on the source estimates. Specifically, the variance of 
MUSIC [5]  source location estimates is derived when it is assumed 
that there are D sources, with D < D .  We note that a more general 
formulation of the problem has been addressed independently in [4]. 

Of course, if there are really two impinging sources and the MUSIC 
spectrum is computed under the assumption that there is only one, a 
single source estimate may or may not be meaningful. For instance, 
if the two sources are equipowered, at a relatively high SNR, and 
well separated in space, a single source estimate would not give any 
reasonable degree of accuracy for either of the sources. However, in 
such a situation, i t  is also highly unlikely that any of the standard 
detection methods would fail to detect both sources. Therefore, from 
a practical standpoint, the variance expressions derived here are 
appropriate for many realistic situations. 

11. BACKGROUND 

Consider D narrowband, far-field, and noncoherent signals radiat- 
ing from source locations 0 , .  0 2 .  . . . . H L I .  The sources impinge on an 
array of li sensors. Denote the array response vector corresponding 
with each source location 0 ,  as a ( H , ) ,  The Ii x 1 array observation 
vector is therefore modeled as 

where is the li x D array response matrix, and s ( t )  is the 
D x 1 signal vector that is assumed to be uncorrelated with the 
I< x 1 noise vector. The signal and noise processes are modeled as 

Abstract-An analytical expression for the variance of MUSIC source 
location estimates is derived under the assumption that the detection 

temporally white and zero-mean complex Gaussian processes with 
E { ~ ( t ) ~ [ ’ ( t ) \  = p, and E { ) j ( f ) r l H ( t ) }  = g21r;. Here, P, is 

Y 

for other situations where the asymptotic correlation matrix yields biased 
source estimates. 

respectively, The covariance matrix of the observation vector is thus 

~ { . r ( t ) . r “ ( t ) }  = R ,  = .-w,.-tH + g21r,. (2) 
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