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ABSTRACT 

Strengthening of steel structures using externally bonded carbon fibre reinforced 

polymers ‘CFRP’ is a rapidly developing technique. This paper describes the 

behaviour of axially loaded flat steel plates strengthened using carbon fibre reinforced 

polymer sheets. Two steel plates were joined together with adhesive and followed by 

the application of carbon fibre sheet double strap joint with different bond lengths. 

The behaviour of the specimens was further investigated by using nonlinear finite 

element analysis to predict the failure modes and load capacity. In this study, bond 

failure is the dominant failure mode for normal modulus (240 GPa) CFRP bonding 

which closely matched the results of finite elements. The predicted ultimate loads 

from the FE analysis are found to be in good agreement with experimental values. 
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INTRODUCTION 

There are many advantages in favour of the use of CFRP materials for repair and 

rehabilitation of bridges and structures. Cost savings may be realised through labour 

savings and reduced requirements for staging and lifting material. The dead weight 

added to a structure is minimal due to the high strength to weight ratio of CFRP 

materials. Application of bonded CFRP materials results in reduced stress-

concentrations as compared to mechanical fastening. Despite the high material costs 

associated with CFRP materials, when overall costs for a strengthening project are 

determined, overall project costs are typically reduced.  

 

The advantages of the use of carbon fibre to repair metallic structures have been 

shown in the strengthening of tunnel supports for the London underground railway 

system[1]. In the United States, several bridges have been strengthened with bonded 

CFRP strips, e.g. Bridge 1-704 over Christina Creek in Delaware [2] and a bridge in 

Iwoa [3]. More examples reported in the literatures [4-12] showed that there is a great 

potential for CFRP to be used in the retrofit of steel structures. However, many 

technical issues are yet to be resolved.  One of them is bond between steel and CFRP.  

 

There are several methods to conduct bond testing as reviewed in [13], such as double 

strap joint test [14], [15-18], single strap test  [19] and [20] and test to apply force 

directly on FRP[21]. This paper describes a series of double strap joint tests loaded in 

tension to investigate the bond between CFRP sheets and steel plates. The focus of the 

paper is on using nonlinear finite element (FE) method to predict the load-deflection 

behaviour and distribution of strain along the bonded length of the CFRP bonded steel 

plate. 



 

MATERIALS PROPERTY 

Three materials have been used to prepare the specimens. These are CFRP, adhesive 

and steel plates. Normal modulus CFRP CF130 has chosen with modulus of elasticity 

of 240 GPa and the nominal ultimate tensile strength is of 3800 MPa according to the 

manufacturer’s specifications. The adhesive Araldite 420 has chosen which has 

tensile strength of 32 MPa and tensile modulus 1900 MPa according to the 

manufacturer’s specifications. Mild steel plates 210 mm long, 50 mm wide and 5 mm 

thick are used in the test program.  

 

As part of a broader research work at Monash University, tensile coupon tests were 

conducted for CFRP [22] and steel plates [23] to verify the modulus, tensile strength 

and strain specified by the manufacturer. The tested values have been adopted in the 

FE analysis. Table 1 shows the properties of three materials used in FE analysis. 

 

EXPERIMENTAL PROGRAM 

A total of four specimens were prepared with normal modulus CFRP. All steel plates 

have a dimension of 210 mm in length and 50 mm in width and 5mm thickness. The 

steel plates were ground in the area to be bonded to ensure a better mechanical 

interlocking. The surfaces were cleaned with acetone to remove grease, oil and rust. 

Two steel plates were aligned in position in a jig before applying adhesives and 

CFRP. Three layers of CFRP sheets were applied on both sides of the plate. The 

specimens were cured for 7 days and post-cured for one day at 70oC. Each specimen 

was loaded in tension in a 500 kN capacity universal testing machine with a loading 

rate of 2 mm/min. The details of the tests and experimental results can be found in 



Fawzia et al (2004) [15]. A schematic view of the specimen is shown in Figure 1. The 

observed failure mode for the normal modulus CFRP was bond failure. Table 2 gives 

test results for different bond length. 

 

EFFECTIVE BOND LENGTH  

The ultimate load carrying capacity is plotted in Figure 2 against the bond length L1. 

It can be seen from Figure 2 that the load carrying capacity reaches a plateau after the 

bond length exceeds a certain value. This length, beyond which no significant 

increase in load carrying capacity will occur, is called the effective bond length. The 

effective bond length of 75 mm for joints with normal modulus CFRP is adopted in 

the experiment which is same as that reported by Jiao and Zhao [20] for joints 

between steel tubes and normal modulus CFRP. It seems that the curved surface of 

steel tubes does not affect the effective bond length between steel and normal 

modulus CFRP.  

 
 

FE MODEL GEOMETRY, BOUNDARY CONDITIONS AND LOADING 

A three dimensional finite element (FE) computing package, Strand 7 (version 2.2.5) 

[24] was used to simulate the CFRP bonded steel plate.  The simulation was done by 

running nonlinear analysis solver to account for the nonlinear properties of the 

materials. Since the specimen is symmetric about all three axes, only one eighth of the 

specimen is modelled.   

All constituent materials of the specimens were modelled with 8-noded brick 

elements as shown in Figure 3. Three layers of CFRP are bonded to the steel on either 

side. Each layer has thickness 0.176mm as given by the manufacturer. The adhesive 



layer thickness ta is 0.224mm [15]. Three layers combined with two epoxy resin 

layers produce a thickness of 0.976mm.  

 

Since one eighth of the specimen is modelled, a number of translation boundary 

conditions were applied in the model to account for symmetry as shown in Figure 3. 

Loading was applied through displacement increments to simulate the uniform 

displacements along the loaded edges of the steel plates in the experiments.  

 

Strand7 uses information about the nominal size of the structure to automatically give 

a reasonable displacement scale, one that clearly shows the deformation. Figure 4 

shows bond failure of the CFRP sheets. In case of experiment the failure mode was 

similar as with the FE. Figure 5 shows a typical experimental bond failure. This is 

similar to those observed previously from similar tests on normal modulus CFRP and 

steel tubes [20].   

 

MATERIAL PROPERTIES 

The properties including tensile strength, strain and modulus can be found from Table 

1. In the FE model, 3 layers of CFRP together with 2 layers of adhesive were 

considered as full CFRP layer having an equivalent thickness. The equivalent 

modulus of this layer was taken equal to 117 GPa. This was calculated from: 
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where Ea and Ef are the tensile moduli of the adhesive and carbon fibre, respectively. 

The terms ta and tf represent the total thickness of the adhesive and carbon fibre 

layers, respectively.                                                            



 

COMPARISON OF THE RESULTS  

Examination of Figures 6 and 7 shows that the zones of maximum Von Mises stress 

in the adhesive layer increase with the increase of load, indicating progressive bond 

failure as found experimentally.  

 

Figures 8,9,10 and 11 show the comparison between load vs deflection of experiment 

and FE analysis. The term SN stand for normal modulus CFRP, Exp is for experiment  

and FE stands for finite element. 

 

Table 3 gives a comparison of the ultimate load achieved from FE and experiment. A 

mean ratio of 1.072 is achieved with a coefficient of variation (COV) of 0.033. The 

analytical load carrying capacity was found to be in close agreement with that 

obtained experimentally. 

 

Fawzia et al. [15] proposed a modification to an existing model derived by Hart-Smith 

[25] to predict the effective bond length and ultimate load capacity of double-strap 

joints. The modified model is compared with the experimental and FE results as 

shown in Figure 2. A good agreement is evident. 

 

DISTRIBUTION OF STRAIN ALONG THE BOND LENGTH  

The strain distribution measured in the specimens along the bond lengths are plotted 

in Figures 12 and 13. At each load level, the distributions show a gradual decline from 

the peak near the loaded edge to the other end. As the load increases, the strain at the 

first and second gauges increases significantly. The distributions have the steepest 



slope near the loaded edge. The distribution of strain after the third gauge is very 

small and becomes almost zero at a distance 75mm from the loaded edge. This 

phenomenon clearly indicates the concept of effective bond length which is the 

distance over which the maximum strain decreases to near zero. 

 

The FE results were evaluated by comparing the predictions with test data. The strains 

predicted by the model, at known locations in the specimen, were compared with 

measured strain in the specimen as shown in Figure 14. It is evident that the 

distributions of strain agree well with those measured experimentally.  

 

CONCLUSIONS 

The CFRP bonded steel plate has been simulated by using the FE method. The model 

was evaluated by comparing the predictions with test data. The following conclusions 

and observations are made based on the FE analysis: 

• The analytical load carrying capacity was found to be  in close agreement with 

that obtained experimentally with a mean ratio of 1.072 and a coefficient of 

variation (COV) of 0.033. 

In FE analysis the zone of maximum Von Mises stress in the adhesive layer increases 

sharply with the increase of the load indicating progressive bond failure as found 

experimentally.  

• Comparison of the predicted strain distribution from FE analysis agrees well 

with experimental results. 
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Figure 1: A schematic view of specimen (not to scale). 
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Figure 2: Effective bond length for normal modulus CFRP joint 
 



 
 
 
 
Figure 3: Details of the boundary conditions of the model (Failure edge). S=Steel, 
A=Adhesive, F=CFRP. 
 
 
 
 
 

 
 
 
Figure 4: Bond failure of the specimen (Failure edge). S=Steel, A=Adhesive, 
F=CFRP. 
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Figure 5: Bond failure of the specimen(Experiment) 
 
 
 

 
 
Figure 6: Maximum Von Mises stress for adhesive layer at low load level. 
 
 
 
 



 
 
 
 
 

 
 
Figure 7: Maximum Von Mises stress for adhesive layer at a high load level. 
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Figure 8: Load vs Deflection for bond length 80mm. 
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Figure 9: Load vs Deflection for bond length 70mm. 
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Figure 10: Load vs Deflection for bond length 50mm. 
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Figure 11: Load vs Deflection for bond length 40mm. 
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Figure 12: Distribution of strain along the distances from the loaded edge for bond 
length 70mm. 
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Figure 13: Distribution of strain along the distances from the loaded edge for bond 
length 80mm. 
 
 

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060

0.0070

0.0080

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00
Distance from the loaded edge (mm)

St
ra

in

SN80 FE 100% U.L
SN80 Exp 100% U.L

 
 
Figure 14: Comparison of experimental strain distribution with FE along the distances 
from loaded edge for bond length 80mm (at 100 % U.L) 
 
 
 
 
 
 



Table 1: Material Properties 
 

 CFRP Steel plate Adhesive 
Tensile Modulus (GPa) 215 195 1.9 
Tesile strength (MPa) 1710 484 32 

Yield stress (MPa) - 359 - 
Tensile strain 0.008 0.015 0.04 
Poisson’s ratio 0.28 0.25 0.21 

 
 
 
Table 2: Results of specimen testing 
 
 
Specimen Label Bond Length L1 (mm) Ultimate Load Pult (kN) Failure Mode 

SN40 40 49.9 Bond Failure 
SN50 50 69.8 Bond Failure 
SN70 70 80.8 Bond Failure 
SN80 80 81.3 Bond Failure 

 
 
 
Table 3: Comparison of experimental and FE results 

Bond length 
(mm) 

Experimetal failure 
load Pexp (kN) 

Finite element failure 
load Pfe (kN) 

Pfe/Pexp 

40 49.9 55.2 1.106 
50 69.8 71.3 1.022 
70 80.8 87.2 1.080 
80 81.3 87.7 1.079 

Mean  1.072 
COV 0.033 

 
 
 


