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Abstract
Background: The majority of peptide bonds in proteins are found to occur in the trans conformation.
However, for proline residues, a considerable fraction of Prolyl peptide bonds adopt the cis form. Proline
cis/trans isomerization is known to play a critical role in protein folding, splicing, cell signaling and
transmembrane active transport. Accurate prediction of proline cis/trans isomerization in proteins would
have many important applications towards the understanding of protein structure and function.

Results: In this paper, we propose a new approach to predict the proline cis/trans isomerization in
proteins using support vector machine (SVM). The preliminary results indicated that using Radial Basis
Function (RBF) kernels could lead to better prediction performance than that of polynomial and linear
kernel functions. We used single sequence information of different local window sizes, amino acid
compositions of different local sequences, multiple sequence alignment obtained from PSI-BLAST and the
secondary structure information predicted by PSIPRED. We explored these different sequence encoding
schemes in order to investigate their effects on the prediction performance. The training and testing of
this approach was performed on a newly enlarged dataset of 2424 non-homologous proteins determined
by X-Ray diffraction method using 5-fold cross-validation. Selecting the window size 11 provided the best
performance for determining the proline cis/trans isomerization based on the single amino acid sequence.
It was found that using multiple sequence alignments in the form of PSI-BLAST profiles could significantly
improve the prediction performance, the prediction accuracy increased from 62.8% with single sequence
to 69.8% and Matthews Correlation Coefficient (MCC) improved from 0.26 with single local sequence to
0.40. Furthermore, if coupled with the predicted secondary structure information by PSIPRED, our
method yielded a prediction accuracy of 71.5% and MCC of 0.43, 9% and 0.17 higher than the accuracy
achieved based on the singe sequence information, respectively.

Conclusion: A new method has been developed to predict the proline cis/trans isomerization in proteins
based on support vector machine, which used the single amino acid sequence with different local window
sizes, the amino acid compositions of local sequence flanking centered proline residues, the position-
specific scoring matrices (PSSMs) extracted by PSI-BLAST and the predicted secondary structures
generated by PSIPRED. The successful application of SVM approach in this study reinforced that SVM is a
powerful tool in predicting proline cis/trans isomerization in proteins and biological sequence analysis.
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Background
It is well known that the planar peptide bonds occur pre-
dominantly in the trans conformation [1], cis peptide
bonds occur rarely in proteins in that there exists an
energy barrier of approximately 20 kcal/mol between the
trans and cis conformation. However, in the case of Xaa-
Pro peptide bond (also called peptidyl prolyl isomeriza-
tion, where Xaa is any amino acid), the difference in
energy is only 0.5 kcal/mol between trans and cis isomeri-
zation, and the energy barrier is about 13 kcal/mol. Thus
a considerable proportion (about 4–5%) of Xaa-Pro pep-
tide bonds adopts the cis conformation, while only 0.03–
0.05% Xaa-nonPro bonds occur in the cis form [2-4].

In recent years, there are an increasing number of known
protein structures determined which exhibit conforma-
tional heterogeneity of one or more prolyl peptide bonds
[5]. Proline cis peptide bonds bear great biological signif-
icance in protein structure and function. The importance
of proline cis/trans isomerization as rate-limiting step in
protein folding has been well characterized [6-8], for
example, it has been suggested to dominate the folding of
the alpha subunit of trp synthase in E. coli [9]. The isomer-
ization process of Xaa-Pro peptide bonds can be catalyzed
and accelerated by the so-called peptidyl prolyl cis/trans
isomerase [10], which are found to be involved in cell sig-
naling and cell replication, and be implicated in the
induction of severe diseases such as cancer, AIDS, Alzhe-
imer's disease and other neurodegenerative disorders
[11]. In addition, proline isomerization functions as
molecular switch due to its potential ability to control
protein activity within the confines of the intrinsic confor-
mational exchange [5].

Since high throughput genome sequence projects are pro-
ducing a large number of raw sequence data, fast and
accurate prediction methods are in great demand to anno-
tate protein structural and functional properties. Towards
this point, accurate prediction of proline cis/trans isomer-
ization in proteins would have many important applica-
tions in the study of protein structure prediction and
rational molecular design. Numerous studies on the cor-
rections of the proline cis/trans population and the prolyl
puckering have been reported by analyzing different non-
redundant datasets of protein X-ray structures
[1,4,6,12,13]. The results indicated that there exist a sig-
nificant correlation between cis conformation content and
the local amino acid sequences adjacent to proline resi-
dues.

More recently, Pahlke et al employed different statistical
methods like Chou-Fasman parameter calculation and
occurrence matrices to analyze the probability of the cis
and trans proline conformation and derived patterns for
its possible prediction [14]. Recent study on the conserva-

tion of cis prolyl bonds showed that cis prolyl residues are
more often conserved than trans prolyl ones in evolution-
ary related proteins, and the overall protein sequence
homology is a stronger indicator for the occurrence of cis
prolyl residues in contrast to the local sequence motifs
[15].

However, most of these studies were merely based on sta-
tistical analysis of the neighboring residue occurrences of
centered proline, without further systematic prediction of
proline cis/trans isomerization from the primary protein
sequence. To the best of our knowledge, the first attempt
to predict the peptidyl prolyl cis/trans isomerization on
the basis of the amino acid sequences was done by Fröm-
mel and Preissner [16]. They used six different patterns to
correctly assign about 72.7% (176 cis-prolyl residues in
their relatively small dataset of 242 Xaa-Pro bonds) of
known cis-prolyl residues, by taking into account the
neighboring ± 6 residues centered on proline, as well as
their physicochemical properties. Later, support vector
machine (SVM) were then introduced to implement this
task and achieved 76.7% prediction accuracy by using
jack-knife test for the cis proline residues, using the single
amino acid sequence information encoded by binary bits
(0 and 1) as input vector [17]. COPS algorithm was devel-
oped to predict the cis/trans peptide bond isomerization
based on the conformation parameters [18], but this
method only took advantage of the secondary structure
information of amino acid triplets, failing to consider the
important amino acid sequence information.

In this paper, we propose a novel method to predict the
proline cis/trans isomerization based on support vector
machine, which combined the position-specific scoring
matrices (PSSM) extracted from the sequence profiles by
PSI-BLAST [19] and the predicted secondary structures
generated by PSIPRED program [20], as the SVM input
vector in addition to the single amino acid sequence infor-
mation. Our method has been evaluated on a well-
resolved non-homologous dataset by 5-fold cross-valida-
tion test and achieved an overall prediction accuracy of
71.5% and Matthews Correlation Coefficient (MCC) val-
ues of 0.43 that provided a comparable prediction per-
formance with all the previously reported results.

Results
Xaa-Pro cis and Xaa-Pro trans peptide bond distribution
Among the total 2424 protein chains in the current data-
set, there are 881 chains containing Xaa-Pro cis peptide
bonds, in which 1265 prolyl bonds are in cis conforma-
tion and 12570 are in trans form. It was shown that the
distribution of Xaa-Pro cis peptide bonds is very uneven,
and 70% PDB sequences in this dataset have only one
prolyl cis peptide bond. Less than 3% protein chains have
more than three prolyl cis bonds (Figure 1). In contrast to
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the preferably unevenly distributed Xaa-Pro cis peptide
bonds, the distribution of Xaa-Pro trans peptide bonds
appears more averagely (Figure 2).

Effect of different kernel functions and parameters
The selection of the kernel function parameters is an
important step for SVM training and testing, because they
implicitly determine the structure of the high dimensional
feature space when constructing the OSH [40]. Several
parameters must be determined in advance to optimize
SVM training, such as the regularization parameter C, the
γ parameter in RBF kernel, and the d parameter in polyno-
mial kernel functions. The parameter C is a regulation
parameter which controls the trade-off between margin
and the training error.

We used five different SVM models by selecting different
combinations of kernel functions and parameters. The
prediction accuracy comparison of using different kernel
functions and their respective parameters is shown in
Table 1. These models are constructed and compared

based on single sequence input with window size 11.
Model 1 and 2 used single sequence input and second-
order and fifth-order polynomial kernel functions, respec-
tively. Model 3, 4 and 5 are all constructed using single
sequence input and selecting different choices of C and γ
parameters. The results indicate that using RBF kernel
could achieve better prediction performance compared
with other kernels.

As can be seen from the ROC curves in Figure 3, selection
of different kernel functions does not make a significant
contribution to the final prediction results. Model 3 has
the best prediction performance compared with the other
models. That means selecting RBF kernel at γ = 0.01 and
regularization parameter C = 2.0 could give the better sen-
sitivity values when fixing the specificity values, in com-
parison with the other SVM models. The results also
indicate that using RBF kernel gives a slightly better accu-
racy than Polynomial kernel, at the cost of longer training
and testing time consumed. Therefore in the following
analysis, we then selected the mixed combination of RBF
kernel at γ = 0.01, C = 2.0 and γ = 0.2, C = 1.0 to evaluate
the prediction performance.

The imbalance problem
The imbalance problem will occur when there is a large
difference between the positive and negative samples of
the dataset [41]. In this study, the cis and trans prolyl resi-
dues are unbalanced (1265 cis prolines versus 27196 trans
ones). We need to take into consideration this problem
because if this proportion is used, the training difficulty
will be met and SVM classifier will not converge after the
training. And in that case, SVM have a tendency to accu-
rately predict the over-represented class (trans) and incor-
rectly assign the under-represented class (cis).

Usually, there are two methods towards overcoming the
imbalance problem: (1) Increasing the dataset size of the
under-represented samples by random resampling the
dataset and (2) Decreasing the size of the over-represented
dataset by random removing its samples [41]. Here, we
explored the second one. We set the ratio of the size of the
positive to negative training samples (the positive-nega-
tive-training ratio) at 1:1, since SVM will achieve better
accuracy coverage under this ratio.

Distribution of the Xaa-Pro cis peptide bonds per protein sequences in the datasetFigure 1
Distribution of the Xaa-Pro cis peptide bonds per 
protein sequences in the dataset. Protein chains are 
grouped according to the number of Xaa-Pro cis peptide 
bonds.

Table 1: Prediction accuracy comparison with different kernel functions and parameters. The results were obtained by 5-fold cross-
validation.

SVM model Kernel function Parameters Accuracy (%)

1 Polynomial α = 1, β = 1, d = 2 59.0
2 Polynomial α = 1, β = 1, d = 5 60.5
3 RBF γ = 0.01, C = 2.0 62.8
4 RBF γ = 0.06, C = 2.0 60.5
5 RBF γ = 0.2, C = 1.0 62.6
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Prediction using single sequence information
The SVM has been trained and tested with single
sequences encoded as binary bits (0 and 1). In this coding
scheme, each amino acid is represented by the 20-dimen-
sional binary vector, e.g. Ala (10000000000000000000),
Cys (01000000000000000000), ..., Tyr
(00000000000000000001), etc.

Increasing the window size can provide more local
sequence information. The window size w is defined as
the residue numbers involved in the local sequence win-
dows centered on proline, i.e. w = 3, 5, 7, 9, 11, 13, 15, 17,
19 in this study. Here, we tried to use different local win-
dow sizes to build the SVM models in order to find out
which could lead to the best performance. The prediction
accuracy is shown in Table 2. The standard deviations of
prediction accuracies by 5-fold cross-validation for these
variant window sizes are all less than 2%. As expected, the
overall prediction accuracy Q2 (defined in the Methods
Section) increases with the enlarging window size and
attain its peak at 11. It is understandable since larger win-
dow size would have much more noise included while
smaller window size would result in less useful informa-
tion used. Our finding is also consistent with other
group's conclusion that more sequence information does
not lead to a better prediction [15].

Accordingly, we then fixed 11 as the optimal window size
in the following analysis of this study. Figure 4 is the
graphical depiction of the effects of different local
sequence window sizes on the prediction accuracy.

Prediction using amino acid composition of local sequence
We also used the amino acid compositions of different
window sizes as SVM input, and compared the influence
of different window sizes on the prediction performance.
In many cases, amino acid compositions have been
proved to result in the improvement of prediction per-
formance to a certain extent. The amino acid composition
is calculated by

where ni is the number of occurrences of amino acid type
i in the local sequence window of window size w.

For this encoding scheme, the input vector of SVM is com-
posed of 20 elements corresponding to the amino acid
percentage of twenty residues in the local window
sequence. The prediction results based on composition
input vectors of different window sizes are listed in Table
3. The prediction performance increases as the window
size increases, and reaches the maximum Q2= 61.6% and
MCC = 0.23 at size 15. It is worth noting that the selecting
the window size 11 doesn't necessarily result in the best
performance in terms of this coding scheme.

The prediction performance reached Q2 = 61.6% and
MCC = 0.23 at the full length. The relatively high accuracy
by using only amino acid compositions of the full
sequence length mainly comes from the improvement on
the Sensitivity value (as high as 72.6%) despite its low
Specificity (44.5%), implying that proline cis/trans
isomerization state is also determined by the global
sequence information, as well as the local sequence infor-
mation.

Prediction using multiple sequence alignment and 
secondary structure information
In this work, we employed several different encoding
schemes, i.e. local sequence ("LS"), amino acid composi-
tions of local sequence ("AA"), multiple sequence align-
ment in the form of PSI-BLAST profiles ("MS"), predicted
secondary structure by PSIPRED ("SS"), and multiple
sequence alignment plus secondary structure ("MS+SS").
The prediction results are shown in Table 4.

It is well known that multiple sequence alignment rather
than single amino acid sequence could improve the pre-
diction accuracy [25]. In order to further improve the pre-
diction performance, we then included multiple sequence
alignment in the form of PSI-BLAST position-specific scor-
ing matrices (PSSMs) as the SVM input. As expected,
including evolutionary information in the form of PSI-
BLAST profiles could significantly increase the prediction
performance. As a result, the MCC improved from 0.26

AA
n

w
ii= =∑ 1

20

Distribution of the Xaa-Pro trans peptide bonds per protein sequences in the datasetFigure 2
Distribution of the Xaa-Pro trans peptide bonds per 
protein sequences in the dataset. Protein chains are 
grouped according to the number of Xaa-Pro trans peptide 
bonds.
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with single local sequence to 0.40. The considerable
improvement in prediction score came from the use of
position-specific scoring matrices in the multiple
sequence alignment that contained some relevant infor-
mation of distantly related protein sequences with query
proteins [25]. And the PSI-BLAST profiles are represented
by the position-specific probabilities of this relevant
weighted information, thus greatly enhanced the predic-
tion performance.

Recently, Pahlke et al developed a stand alone algorithm
COPS to predict the cis and trans conformation of amino
acids in proteins. Their algorithm was based on statistical
analysis of the so-called conformation parameters- the
extension of Chou-Fasman parameters. COPS derived
four rules to predict the cis conformation by taking into
consideration the secondary structure of amino acid tri-
plets alone [18]. Therefore we wanted to know whether
introducing the predicted secondary structure informa-
tion by PSIPRED as the input to SVM classifier would be
contributive or not. As can be seen in Table 4, the overall
accuracy Q2 was 63.6 and the MCC value was 0.27, which
was better than that obtained with local sequence ("SS").
The results indicated that including the secondary struc-
ture by PSIPRED could provide more useful information
for the prediction performance compared with the local
sequence alone.

To further improve the prediction performance, we com-
bined the multiple sequence alignment in the form of PSI-
BLAST ("MS") and the predicted secondary structure from
PSIPRED ("SS"). Among those five SVM models, "MS+SS"
provided the best predictions of proline cis/trans isomeri-
zation. For this model, its overall accuracy Q2 was 71.5%
and MCC was 0.43, while the MCC values for "LS", "AA"
and "SS" were 0.26, 0.23 and 0.27, respectively. There is
also a great improvement in the Sensitivity and Specificity
values after using "MS+SS" encoding scheme. The final
values of Sensitivity and Specificity are 70.7% and 72.2%,
which are 14% and 3.5% higher than that obtained with
single sequence alone, respectively. All these prediction
scores indicate that using multiple sequence alignment
together with the predicted secondary structure consider-
ably increases the number of true positives and true nega-
tives and decreases the over- and under-predictions.

However, our results also showed that simply combining
"AA" together with "MS+SS" couldn't result in the better
prediction performance than "MS+SS" (data not shown).
This may result from the reason that including too many
input vectors not only increased the useful information
used by SVM classifier but also introduced much noise
underlying those vectors at the same time.

In addition, the performance of different SVM models has
also been evaluated by comparing the areas under the
receiver operating characteristic (ROC) curves. As can be
seen from the ROC Curves in Figure 5, SVM model based
on "MS+SS" encoding schemes surpasses all the other
models, which means this SVM classifier has better sensi-
tivity values given any choice of specificity compared with
other models.

Comparison with other methods
We need to make an objective comparison among differ-
ent methods by using their prediction results generated
based on the same dataset. In this study, we analyzed the
prediction performance of SVM methods, as well as the
Naïve Bayes, Logistic regression, K-nearest neighbor and
decision tree classifiers. The performance comparison of
these different classifiers obtained by 5-fold cross-valida-
tion is shown in Table 5.

The prediction accuracy of SVM is about 12% and 13%
higher than Naïve Bayes and Logistic regression classifiers,
respectively. The accuracy difference between SVM classi-
fier and those based on K-nearest neighbor and decision
trees are even larger. The same tendency exists for the
MCC values. Moreover, the SVM classifier could correctly
assign 70.7% of the cis proline residues, namely, 13%
higher than any other classifier implemented in Weka
package used in this study. In contrast, Naïve Bayes and
Logistic regression could only recognize about 61% of

ROC Curves of five different SVM modelsFigure 3
ROC Curves of five different SVM models. A ROC 
curve provides a graphical representation of the relationship 
between the true-positive and false-positive prediction rate 
of a SVM model. ROC curve is obtained by plotting all 1-Spe-
cificity values (false-positive rate) on the X axis and Sensitiv-
ity (true-positive rate) on the Y axis. The resulting area 
under the ROC curve is an important index for evaluating 
the classification performance, i.e. the highest and leftmost 
ROC curve in the plot represents the best SVM model.
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trans proline samples in the dataset, but on the other
hand, they failed to predict the cis proline ones (less than
60%). Therefore, it is obvious that SVM outperformed
other machine learning techniques in implementing the
prediction task of proline cis/trans isomerization based on
the same dataset.

There is several works that studied the prediction of prolyl
cis/trans isomerization in the current literature [16-18].
Here, we also made a comparison with those published
work, especially the method proposed by Wang et al [17],
who also used SVM and the same single sequence encod-
ing scheme. The comparison is summarized in Table 6.

Based on the statistical analysis of the neighbors (± 6 res-
idues) of proline residues and their physiochemical prop-

erties, Frömmel and Preissner found six patterns that
could be applied to assign correctly 72.7% (less than
75%) of known cis proline residues [16]. However, it
should be pointed out that their result was obtained on a
small dataset containing only 242 Xaa-Pro peptide bonds,
thus the six patterns found might not be applicable when
using larger dataset.

COPS is a stand alone algorithm that was developed
based on the extended Chou-Fasman parameters, i.e. the
conformation parameters for each amino acid after con-
sidering the correlation between the secondary structure
information and the cis/trans conformation [18]. Their
prediction was made by using the four rules found, all of
which needs to be fulfilled otherwise trans would be pre-
dicted. As can be seen from Table 6, the prediction accu-
racy of COPS for the cis proline is 63.6% (averaged by 10-
fold cross-validation), which is consistent with the result
obtained by using SVM based on predicted secondary
structure.

Wang et al first introduced support vector machine to
solve this task and achieved an overall accuracy of 69.8%
and 76.7%, when measured by the independence and
jack-knife test, respectively. They used the single amino
acid sequence information encoded by binary bits (20-
dimensional vectors composed of 0 and 1) as the input
vector to SVM [17]. Although their prediction accuracy by
jack-knife test was better than that of our method, these
results were drawn based on a different dataset.

Perhaps we should not attach too much importance to the
prediction score here, because it is unfair to compare the
different studies using different datasets and accuracy
assessment methods. Although different datasets (242
prolyl residues, 2193, 2424 and 8584 proteins) and differ-
ent prediction performance test methods (self-consist-
ency, jack-knife and n-fold cross-validation) were used,
our method achieved a comparable prediction perform-

The prediction accuracy (Q2) using different local sequence window sizesFigure 4
The prediction accuracy (Q2) using different local 
sequence window sizes. The local window size is defined 
as the residue numbers involved in the local sequence win-
dows centered on proline.

Table 2: Predictive performance of SVM based on singe sequence inputs of different local window sizes. More details for prediction 
accuracy measurement are given in the Methods section. The results were obtained by 5-fold cross-validation.

Window size Prediction accuracy (%)

Q2 MCC Sensitivity Specificity

3 61.2 0.22 64.4 57.9
5 62.5 0.25 63.3 61.6
7 61.8 0.24 61.4 62.3
9 62.1 0.24 61.1 63.2
11 62.8 0.26 56.6 68.7
13 61.7 0.23 59.2 63.8
15 61.6 0.23 55.4 67.6
17 61.0 0.22 56.3 65.6
19 59.8 0.19 55.4 63.9
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ance, especially after adopting the PSI-BLAST and
PSIPRED encoding scheme. Therefore we can conclude
that our method was successful in predicting the proline
cis/trans isomerization, with the prediction accuracy at a
satisfactory level.

CISPEPpred web server
The CISPEPpred web server [51] has been developed for
the prediction of proline cis/trans isomerization in pro-
teins by using the method in this work. This server pro-
vides two SVM models based on the single sequence and
the multiple sequence alignment in the form of PSI-
BLAST profiles along with the secondary structure by
PSIPRED, respectively. With the protein sequence submit-
ted in FASTA format, the order of proline residues in the
sequence and their respective cis/trans isomerization state
predicted will be generated. Additional information
including the introduction, methodology and the PDB
chain list used in this study can be found at this website.

Discussion
Prediction of proline cis/trans isomerization is important
in the understanding of protein structure and function. In
the present work, we carried out the extensive prediction
study of proline cis/trans isomerization by using different
encoding schemes and developed a novel tool to imple-

ment this task based on support vector machines. We
investigated the effect of different SVM kernel functions
and their corresponding parameters and found that using
RBF kernel achieved better prediction performance com-
pared with polynomial kernel and linear kernel. Our
results indicate that SVM classifier built on multiple
sequence alignment in the form of PSI-BLAST profiles
could yield better performance, the prediction accuracy
improved from 62.8% with single sequence to 69.8%,
while MCC improved from 0.26 with single local
sequence to 0.40. This result strengthens the fact that
introducing multiple sequence alignments could improve
the prediction performance rather than single sequence.
Moreover, using PSI-BLAST profiles in the form of posi-
tion-specific scoring matrices contribute significantly to
improve the prediction performance together with the
predicted secondary structures by PSIPRED, the predic-
tion accuracy was further improved to Q2 of 71.5% and
MCC of 0.43.

There are three important factors that account for the pre-
diction performance of our method. Firstly, we employed
SVM in the present study which is a new machine learning
method based on Statistical Learning Theory. SVM has
many attractive features not only in its fast speed and scal-
ability, but also in its ability to extract and condense infor-

Table 3: Predictive performance of SVM based on amino acid compositions of different local window sizes. More details for prediction 
accuracy measurement are given in the Methods section. The results were obtained by 5-fold cross-validation.

Window size Prediction accuracy (%)

Q2 MCC Sensitivity Specificity

9 59.9 0.20 62.1 57.9
11 60.6 0.21 60.3 60.9
15 61.6 0.23 59.8 63.2
21 60.4 0.21 50.4 69.9
25 59.5 0.19 56.0 62.7

Full length 59.3 0.18 72.6 44.5

Table 4: Comparison of predictive performance of SVM based on different encoding input information. More details for prediction 
accuracy measurement are given in the Methods section. The results were obtained by 5-fold cross-validation.

Methods Prediction accuracy (%)

Q2 MCC Sensitivity Specificity

LSa 62.8 0.26 56.6 68.7
AAb 61.6 0.23 59.8 63.2
MSc 69.8 0.40 70.5 68.7
SSd 63.6 0.27 57.8 69.3

MS+SSe 71.5 0.43 70.7 72.2

aLS: prediction performance for the local sequence encoding scheme;
bAA: prediction performance for the amino acid composition encoding scheme of local sequence;
cMS: prediction performance for the multiple sequence alignment encoding scheme in the form of PSI-BLAST profile;
dSS: prediction performance for the predicted secondary structure encoding scheme by PSIPRED;
eMS+SS: prediction performance for the multiple sequence alignment plus secondary structure encoding scheme.
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mation contained in the training samples. Secondly,
multiple sequence alignment in the form of PSI-BLAST
profiles was used. The PSI-BLAST profiles were generated
by searching the remote protein homologs against the
NCBI non-redundant database, thus containing the useful
evolutionary information [27]. Thirdly, the predicted sec-
ondary structure by PSIPRED was also used. Recent stud-
ies indicate that the neighboring secondary structure of
prolines could be used to predict the cis/trans conforma-
tion and achieved a good performance [14,18]. PSIPRED
is considered as one of the best secondary structure predic-
tion methods. The strategy of using multiple sequence
alignment in the form of PSI-BLAST profiles together with
predicted secondary structure information by PSIPRED
has been successfully applied in the prediction of α-turn
[25] and β-turn types in proteins [26,27].

Further improving the prediction accuracy with only local
sequence information remains a difficult and challenging
task, in that peptidyl prolyl cis/trans isomerization is also
determined by its intrinsically flexible properties of cis/
trans switches inside the proline residues themselves,
which could in turn increase the prediction difficulty. The
prediction performance is related to the global informa-
tion on the protein level like the amino acid composi-
tions. Moreover, recent study also suggested that global
sequence homology is a strong indicator for the occur-
rence of cis prolyl residues [15]. The key point is to find
out accurate descriptors of cis/trans proline residues and
put forward appropriate encoding schemes in order to

serve efficiently as the classifier input vectors. However,
the unbalanced distribution of cis/trans samples in pro-
teins and the property cis/trans conformation switch of
further increases the difficulty in predicting their states. It
should be pointed out that the overall prediction accuracy
of cis/trans isomerization is correlated with the ratio
between these two classes, perhaps it would be reasonable
for us not to attach much importance to the absolute Q2
values. In this aspect, MCC could be considered as the
coequal measures of the classification performance.

Future improvements may be achieved by combining sev-
eral available methods and incorporating more possible
information to describe the prolyl cis/trans peptide bonds,
for example, protein solvent accessibility. Since protein
solvent accessibility is an important factor in determining
protein structure and function, including this information
might enhance the prediction performance. In fact, recent
studies also indicated that cis proline residues are more
frequently found in surface accessible areas compared to
the trans prolines [14]. Therefore, further improvement is
anticipated to be attained by combining some non-local
structural descriptors of proteins such as protein structural
classes and homologs and the local sequence profiles of
proline residues like protein solvent accessibility profiles.
Thus future work is possible to focus on this direction and
improve the prediction accuracy by constructing such
multiple feature vectors.

Conclusion
In this paper, we developed a new method to predict the
proline cis/trans isomerization in proteins based on sup-
port vector machine. The CISPEPpred web server has been
designed to implement this task. The preliminary experi-
ments indicate that using RBF kernels could lead to better
prediction performance than that of polynomial and lin-
ear kernel functions. We proposed several different
sequence encoding schemes and compared their resulting
prediction performance. The purpose of this study was to
find which kind of information input can lead to the best
prediction result. The prediction accuracies were averaged
by using 5-fold cross-validation. It was found that using
multiple sequence alignments could significantly improve
the prediction performance, the prediction accuracy
increased from 62.8% with single sequence to 69.8% and
MCC from 0.26 to 0.40. Moreover, if coupled with the sec-
ondary structure information predicted by PSIPRED, the
prediction accuracy was further improved to 71.5% and
MCC of 0.43, 9% and 0.17 higher than the accuracy
achieved based on the singe sequence information. The
successful application of SVM approach in this study rein-
forced that SVM is a powerful prediction tool for extract-
ing the relationship between proline cis/trans
isomerization and primary amino acid sequence. We
believe that CISPEPpred will be a useful tool for proline

ROC Curves of five different SVM modelsFigure 5
ROC Curves of five different SVM models. Five SVM 
models were constructed using five different sequence 
encoding schemes: single local sequence ("LS"), amino acid 
compositions of local sequence ("AA"), multiple sequence 
alignment ("MS"), secondary structure information ("SS"), and 
multiple sequence alignment with secondary structure 
("MS+SS").
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cis/trans isomerization prediction and will provide helpful
and complementary information in understanding pro-
tein structure and function.

Methods
Dataset
In the present study, the dataset comprised 2424 non-
homologous protein chains, which was obtained from the
Culled PDB list provided by PSICES server [21]. This list
was generated on October 15, 2005. All structures in this
database were determined by X-ray crystallography
method with resolution better than 2.0 Å and R-factor less
than 0.25. The sequence identity between each pair of
sequences was less than 25%. The protein chains with
sequence length shorter than 60 amino acids were
excluded in our dataset. Every chain contains at least one
proline residues. There are totally 609182 residues in this
dataset. The protein chain names can be found in Addi-
tional file 1. The detailed information of proline cis/trans
peptide records and protein sequences of each protein
chain can be found in Additional file 2 and 3.

Although the PDB files do contain the CISPEP records, we
can't directly extract these records in that there may exist
some errors for such annotations as the bond angles
[22,23]. We calculated the ω dihedral angle of the CO-NH
bond for each proline residue with the preceding amino
acid. Bonds with ω dihedral angle between -30° and +30°
were considered as cis peptide bonds, whereas bonds with
ω dihedral angle between -180° (or +30°) and -30° (or
+180°) were assumed to be trans. According to this defi-
nition, we gained 28461 ω dihedral angles for the Xaa-Pro
bonds, which included 1265 cis and 27196 trans prolyl
residues.

Sequence profiles generated by PSI-BLAST
We used a sliding window method to describe the neigh-
boring sequence environments of proline residues, with
local window length 2l. The local window was centered
on the proline residue and the preceding amino acid. Evo-
lutionary information in the form of multiple sequence
alignment profiles generated by PSI-BLAST program was
included in this window as the input information. The

Table 5: Comparison of predictive performance with Naïve Bayes, Logistic regression, IBk and J48 classifier. More details for 
prediction accuracy measurement are given in the Methods section. The results were obtained by 5-fold cross-validation.

Methods Prediction accuracy (%)

Q2 MCC Sensitivity Specificity

SVM 71.5 0.43 70.7 72.2
Naïve Bayes 59.1 0.18 57.0 61.1

Logistic regression 58.7 0.17 56.6 60.8
IBk (K-nearest neighbors) 52.9 0.06 44.9 60.5

J48 (decision trees) 54.2 0.09 53.6 54.7

Table 6: Comparison of predictive performance with other methods.

Methods Prediction accuracy (%) Dataset used Prediction performance 
evaluation method

Q2 MCC

Statistical patterna 72.7 - 242 Xaa-Pro bonds self-consistency
COPSb 63.6 - 8584 proteins 10-fold cross-validation

SVM single sequencec 69.8 - 2193 proteins independence test
SVM single sequenced 76.6 0.53 2193 proteins Jack-knife
SVM single sequencee 62.8 0.26 2424 proteins 5-fold cross-validation

SVM PSI-BLASTf 69.8 0.40 2424 proteins 5-fold cross-validation
SVM PSIPREDg 63.6 0.27 2424 proteins 5-fold cross-validation

SVM PSI-BLAST and 
PSIPREDh

71.5 0.43 2424 proteins 5-fold cross-validation

aPrediction accuracy reported by Frömmel and Preissner [16]. The result cannot be determined from the paper.
bPrediction accuracy estimated based on the average statistical results of COPS [18].
cPrediction accuracy using independence test reported by Wang et al [17].
dPrediction accuracy using jack-knife test reported by Wang et al [17].
ePrediction accuracy of SVM based on single sequence encoding scheme using our dataset.
fPrediction accuracy of SVM based on PSI-BLAST encoding scheme using our dataset.
gPrediction accuracy of SVM based on PSIPRED encoding scheme using our dataset.
hPrediction accuracy of SVM based on PSI-BLAST and PSIPRED encoding scheme using our dataset.
Page 9 of 13
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idea of adopting the intermediate PSI-BLAST generated
position-specific scoring matrix (PSSM) as direct input
was first proposed by Jones [20]. Now this method has
been widely used in protein secondary structure predic-
tion [24-27], subcellular localization prediction [28],
disulfide connectivity prediction [29], solvent accessibil-
ity prediction [30], protein-protein binding site predic-
tion [31], DNA binding site prediction [32], protein B-
factor profile [33], as well as protein contact number pre-
diction [34]. Including evolutionary information in the
form of PSI-BLAST profiles has been proved to improve
the prediction accuracy by a significant increment of
about 3–5% in these problems.

Here, we applied this method as the first use of PSSM in
proline cis/trans isomerization prediction. Firstly, we
obtained the NCBI nr database [35], which contained all
known databases: all non-redundant GenBank transla-
tions, SwissProt, PIR, PDB, PRF, and NCBI RefSeq data-
base. Then, blastpgp program was run to query each
protein in our dataset against the NCBI nr database to
generate the PSSM profiles, by three iterations of PSI-
BLAST, with a cutoff E-value of 0.001. After that, these
profiles were scaled to the required 0–1 range by the fol-
lowing standard logistic function

where x is the raw profile matrix value. The scaled PSSM
profiles were then used as the input information to SVM.

The use of PSSM profiles can avoid the time-consuming
multiple sequence alignment procedures. The PSSM is a
protein sequence is an M × 20 matrix, where M is the tar-
get sequence length and 20 is the number of amino acid
types. Each element of the matrix represents the log-odds
score of each amino acid at one position in the multiple
alignments. The window size 2l+1 indicated the scope of
the vicinity of the target prolyl peptide bonds, determin-
ing how much neighboring sequence information was
included in the prediction. In order to evaluate the influ-
ence of different window sizes on the prediction perform-
ance, we selected 9 windows sizes to build our SVM
predictors, i.e. M = 3, 5, 7, 9, 11, 13, 15, 17, 19 (l = 1, 2, 3,
4, 5, 6, 7, 8, 9, respectively).

Predicted secondary structure by PSIPRED
The predicted probability matrices of secondary structure
states from PSIPRED have also been used in prediction.
PSIPRED is a well-known program to predict the protein
secondary structure, whose output provides the reliability
indices (in 0–1 range) for all the three secondary structure
states (helix, strand and coli) for each residue in the pro-
tein sequence [20]. We directly extracted the M × 3 matrix

from the output file of PSIPRED using a sliding window
scheme, where M is the target sequence length and 3 is the
number of secondary structure types.

Support vector machine
The concept of support vector machine (SVM) was first
introduced by Vapnik and his coworkers [36,37]. SVM is
a new machine learning method based on Statistical
Learning Theory (SLT) and has been extensively used in
many kinds of pattern recognition problems, such as
microarray data analysis [38], protein secondary structure
prediction [39], protein subcellular localization predic-
tion [40,42,43], disulfide connectivity prediction [29] and
protein solvent accessibility prediction [44]. The SVM
approach usually outperforms other machine learning
technologies, including artificial neural networks (ANN),
K-nearest neighbor (KNN) methods and Bayesian infer-
ence classification. The basic idea of SVM is to transform
the samples into a high dimensional feature space and
construct an Optimal Separating Hyperplane (OSH) that
maximize its distance from the closest training samples.
The attractive features of SVM lie in its fast speed and scal-
ability, as well as its ability to extract and condense infor-
mation contained in the training samples. SVM can not
only be used deal with two-class classification but also be
extended to multi-class problems. More details descrip-
tion of SVM can be found in Vapnik's publications
[36,37].

In the present study, we used SVM_light, an implementa-
tion of Vapnik's SVM for support vector classification,
regression and pattern recognition [45]. 5-fold cross-vali-
dation was used on the dataset of 2, 424 protein
sequences to evaluate the prediction efficiency of the cur-
rent method. The whole dataset were randomly divided
into 5 subsets of roughly equal size. In each validation
step, one subset was selected for testing, while the rest
were used as the training dataset. The selection of the ker-
nel function parameters is an important step for SVM
training and testing, because implicitly determine the
structure of the high dimensional feature space when con-
structing the OSH [40]. Several parameters must be deter-
mined in advance to optimize SVM training, such as the
regularization parameter C, the γ parameter in RBF kernel,
and the d parameter in polynomial kernel functions.

Here, we adopted the polynomial kernel function and
Radial Basis Function (RBF kernel) to construct the SVM
classifiers:

f x
x

( )
exp( )

=
+ −

1
1

K x x x xi j i j
d( , ) ( )i= +1

K x x r x xi j i j( , ) exp( )= − −
2
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where in the case of polynomial kernel, the degree d needs
to be tuned, and the γ parameter and the regularization
parameter C for RBF kernel need to be regulated.

Waikato environment for knowledge analysis (Weka)
Weka 3.4.5 is a comprehensive Java library of machine
learning package [46] providing an implementation of
many state-of-the-art learning and data mining algo-
rithms [47], such as decision trees, rule sets, Bayesian clas-
sifiers, support vector machines, logistic and linear
regression, multi-layer perceptrons and nearest-neighbor
methods, as well as meta-learners like bagging, boosting,
stacking, etc [47]. The algorithms provided by Weka can
be classified into three types: classification, regression and
feature selection. More information about Weka can be
found in [48]. In this work, we selected four algorithms to
build our classifiers: 1) Naïve Bayes, which is an imple-
mentation of the probabilistic Naïve Bayesian classifier;
2) Logistic regression, which is a variation of ordinary
regression frequently used when the observed outcome is
restricted to two values; 3) lazy IBk, which is based on the
k-nearest neighbors classifier that employs the distance
metric for classification; 4) J48, which is an implementa-
tion of a decision tree learner.

The input data for Weka classifiers is represented in ARFF
(attribute-relation function format), consisting of the list
of all instances with the values for each instance separated
by commas ("yes" for cis proline fragments and "no" for
trans proline fragments). As a result of dataset training and
testing, a confusion matrix will be generated showing the
number of instances of each class that has been assigned.

Performance assessment
To evaluate the prediction performance of the classifiers,
we used the 5-fold cross-validation method, i.e. the data-
set were randomly divided into ten groups, with each
group containing roughly equal numbers of protein
sequences. Each group was singled out in turn as the test-
ing dataset, while the remaining proteins in other groups
were used as the training dataset.

Four different measurements have been used to measure
the prediction performance of our method. The sensitivity
(sens; also called recall, i.e. the fraction of positive exam-
ples that are predicted correctly) is given by

where TP is the number of the true positives and FN is the
number of false negatives or under-predictions.

The specificity (spec; also called precision, i.e. the fraction
of negative examples that are predicted correctly) is given
by

where TN is the number of true negatives, and FP is the
number of false positives or over-predictions.

The overall prediction accuracy is given by

The Matthews Correlation Coefficient (MCC) [49] is
defined as

The value of MCC is 0 for a random assignment and 1.0
for a perfect prediction. All the results obtained here are
from 5-fold cross-validation.

We also measured the classification accuracy by using the
Receiver Operating Characteristic (ROC) analysis [50].
ROC is a threshold independent measure and classic
method in signal processing technique and has been used
in the prediction analysis of protein α-turn, β-turn and B-
factor profiles [25,26,33]. For a prediction method, ROC
plots classification sensitivity as a function of one minus
specificity (1-specificity) for all possible thresholds. The
resulting area under the ROC curve is considered as an
important index for evaluating the classification perform-
ance. That means the highest and leftmost ROC curve in
the plot represents the best classification method [33].

Availability and requirements
The prediction web server CISPEPpred is available at [51].
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