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Abstract: The effect of radiation on natural convection flow from an isothermal circular 

cylinder has been investigated numerically in this study. The governing boundary layer 

equations of motion are transformed into a non-dimensional form and the resulting 

nonlinear systems of partial differential equations are reduced to convenient boundary 

layer equations, which are then solved numerically by two distinct efficient methods 

namely (i) Implicit finite difference method or the Keller-Box Method (KBM) and (ii) 

Straight Forward Finite Difference Method (SFFD). Numerical results are presented by 

velocity and temperature distribution of the fluid as well as heat transfer characteristics, 

namely the shearing stress and the local heat transfer rate in terms of the local skin-

friction coefficient and the local Nusselt number for a wide range of surface heating 

parameter and radiation-conduction parameter. Due to the effects of the radiation the 

skin-friction coefficients as well as the rate of heat transfer increased and 

consequently the momentum and thermal boundary layer thickness enhanced.  

 
Keywords: Natural convection; radiation-conduction interaction; Finite difference 
method, horizontal circular cylinder. 
 
Nomenclature 

a = Radius of the circular cylinder 
Cp = Specific heat at constant pressure
Cf = Skin-friction coefficient 
f = Dimensionless stream function 
g = Acceleration due to gravity 

Gr = Grashof number 
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k = Thermal conductivity 

Nu = Nusselt number 
Pr = Prandtl number 

qr = Radiation heat flux 
qc = Conduction heat flux 

Rd = Radiation-conduction parameter or Planck number 
T = Temperature of the fluid in the boundary layer 
T = Temperature of the ambient fluid 
Tw = Temperature at the surface 
U,V = Dimensionless fluid velocities in the x, y directions
v̂,û  = Fluid velocities in the x̂ , ŷ  directions 

ŷ,x̂  = Axes in the direction along and normal to the surface respectively 

X,Y Dimensionless direction along and normal to the surface respectively 

 
Greek symbols 

 

 
Introduction 
 

A medium is said to be optically dense if the mean free path of a radiation photon beam 

which travels through the medium is very small compared with the characteristic 

dimension of the medium. For an optically dense medium the radiative heat fluxes can be 

approximated by the Rosseland diffusion approximation [1], which has been greatly used 

in many radiation related studies.  In the present work, the effects of thermal radiation 

with the Rosseland diffusion approximation on a free convection boundary layer flow 

from an isothermal cylinder have been investigated theoretically and numerically. The 

thermal radiation effects on the free convection flow are important in many engineering 

applications, such as in advanced types of power plants for nuclear rockets, high-speed 

flights, re-entry vehicles and processes involving high temperatures, and very little is 

known about the effects of radiation on the boundary-layer flow of radiating fluid past a 

body {see [2], Ch-13}. 

r = Rosseland mean absorption coefficient 
 = Volumetric coefficient of thermal expansion
 = Stream function 

w = Wall shearing stress  

 = Fluid density 
  = Dynamic viscosity of the fluid 
 = Kinematic viscosity of the fluid 
 = Dimensionless temperature function  
w = Surface heating parameter 



 3

At a high temperature the presence of thermal radiation alters the distribution of 

temperature in the boundary layer, which in turn affects the heat transfer at the wall. In 

such situation the simultaneous treatment of the convective and radiative heat transfer is 

necessary. Cess [3] studied the interaction of thermal radiation with free convection heat 

transfer along a vertical flat plate by considering absorbing, emitting and non-scattering 

gas. The singular perturbation technique was used to solve the set of non-linear partial 

differential equations. 

An analytical attempt was made to understand the non-equilibrium interaction 

between the thermal radiation and the laminar free convection from a heated vertical 

plate immersed in a radiating gas by considering Prandtl number Pr = 1.0 [4]. Cheng and 

Ozisik [5] investigated the radiation with free convection from a vertical plate, 

considering an absorbing, emitting and isotropically scattering fluid. A viscous, radiating 

and non-similar boundary layer flow from a stagnation region and a flat plate has been 

investigated by Shwartz [6]. He studied the behaviour for an emitting and absorbing gas 

including the entire range of optical thickness, from thin to thick. 

Hossain et al. [7] have analyzed the effect of radiation using the Rosseland 

diffusion approximation, which leads to non-similarity solution for the forced and free 

convection flow of an optically dense viscous incompressible fluid past a heated vertical 

plate with uniform free stream velocity and surface temperature. Using a group of 

transformations, the boundary layer equations governing the flow were reduced to local 

non-similarity equations validating both in the forced and free convection regimes.  

Radiation effects on the natural convection flow about a truncated cone had been 

studied by Yih [8] following the Rosseland diffusion approximation. Molla et al. [9-10] 

have investigated the radiation effect on mixed convection along a wavy surface and 

frustum of cone using the Rosseland diffusion approximation where the 

computational fluid was optically dense.   Molla et al. [9-10] have found that the 

effects of radiation the rate of heat transfer from the wavy surface enhanced and 

consequently the thermal boundary layer increased.  

Natural convection flow of viscous incompressible fluid from a horizontal circular 

cylinder represents an important problem, which is related to numerous engineering 

applications such as to handle hot wire, steam pipe etc. It appears that Merkin [11-12] 
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was the first to present a complete solution of this problem, using the Blasius and Gortler 

series expansion method along with an integral method and a finite-difference scheme. 

The problem of free convection boundary layer flow on a cylinder of elliptic cross-

section was also studied by Merkin [13]. Ingham [14] investigated the boundary layer 

flow on an isothermal horizontal cylinder. Nazar et al. [15] have investigated the 

natural convection flow along a uniformly heated horizontal circular cylinder 

considering the micro polar fluid. They described the effects of micro-rotation of the 

fluid on the heat transfer and the skin-friction coefficient. To the best of our 

knowledge, radiation effects on free convection flow from an isothermal horizontal 

circular cylinder have not yet been studied and the present work demonstrates this 

issue. 

  In the present study, it is proposed to investigate the natural convection flow of an 

optically dense viscous incompressible fluid past an isothermal horizontal circular 

cylinder, considering the Rosseland diffusion approximation. The basic equations of 

motion are transformed into convenient forms, which are solved numerically using a very 

efficient finite-difference scheme together with the Keller-box method ([16]) and the 

straight forward finite difference method. Consideration is given to the situation where 

the buoyancy forces assist the natural convection flow for various combinations of the 

radiation-conduction parameter Rd  and the surface heating parameter w. The numerical 

results allow us to predict the different behaviour that can be observed when the relevant 

parameters are varied.  

 

 Formulation of problem 
 
A steady two-dimensional laminar free convective flow from an isothermal circular 

cylinder of radius a, which is immersed in a viscous and incompressible optically dense 

fluid, is considered. It is assumed that the surface temperature of the cylinder is Tw, where 

Tw>T. Here T is the ambient temperature of the fluid and T is the temperature of the 

fluid. The physical configuration considered is as shown in Figure 1.  
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Figure 1 :  Physical model and coordinate system. 
 
 

Under the usual Bousinesq approximation, following Merkin [11] the equations 
governing the flow are    
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where  v̂,û  are the velocity components along the  ŷ,x̂ axes, g is the acceleration due to 

gravity,  is the fluid density, k is the thermal conductivity,  is the coefficient of thermal 

expansion,   is the viscosity of the fluid, Cp is the specific heat at constant pressure, and 

qr on the right hand side of equation (3) represents the radiative heat flux in the ŷ  

direction. 

The appropriate boundary conditions to solve equations (1)-(3) are  
0ˆat,0ˆˆ  yTTu wv , (4a)

  ŷTT,û as0 . (4b)
This radiation heat flux, qr, is simplified by the Rosseland diffusion approximation as  

  y

T

k
q

sr
r ˆ3

4 4










 (5a) 

where  is the Stefan-Boltzmann constant, r is the Rosseland mean absorption 

coefficient and s is the scattering coefficient. As it is reported by Rapits [17], the fluid-

phase temperature differences within the flow are assumed sufficiently small so that T4 

may be expressed as a linear function of temperature. This is done by expanding T4 in a 
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Taylor series about the free-stream temperature T and neglecting higher-order terms to 

give .34 434
  TTTT  

Therefore (5a) becomes 
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 The limitation to the use of the Rosseland diffusion approximation should be 

recognized. It is valid in the interior of a medium, is not employed near the boundaries, 

and is good only for intensive absorption, that is, for an optically thick boundary layer. 

The approximation cannot provide a complete description of the physical situation near 

the boundaries since it does not include any terms for radiation from the boundary 

surface. However, the boundary surface effects are negligible in the interior of an 

optically thick region since the radiation from the boundaries is attenuated before 

reaching the interior. 

We now introduce the following non-dimensional variables: 
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where  (=/) is the reference kinematic viscosity and Gr is the Grashof number,  is 

the non-dimensional temperature function . 

Substituting the variables (6) into equations (1)-(4) lead to the following non-
dimensional equations 
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and the corresponding boundary conditions are 
0at10  y,u v , (10a)
 y,u as00  , (10b)

where Rd is the radiation-conduction parameter or Planck number, w is the surface 

heating  parameter and Pr is the Prandtl number, which are defined respectively as  
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Numerical methods 

Investigating the present problem the authors have employed two numerical methods, 

namely, implicit finite difference Method or Keller box method (KBM) are elaborately 

described by Cebeci and Bradshaw [18] and the straight forward finite difference 

(SFFD), which are individually described below. 

 

Implicit Finite Difference or Keller Box Method (KBM) 

To solve equations (7)-(9), subject to the boundary conditions (10), we assume the 

following transformations 

   yxyxxf ,,,   , (12)
where  is the non-dimensional stream function defined in the usual way as  

xy
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v, . (13)

Substituting (13) into equations (7)-(10) and after some algebraic manipulations, the 

transformed equations take the following form 
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along with the boundary conditions 

0at1,0 



 y
y

f
f  , (16a)





y
y

f
as0,0  . (16b)

It can be seen that near the lower stagnation point of the cylinder i.e. when x  0, 

equations (14) and (15) reduce to the following ordinary differential equations 

02  ffff , (17)
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subject to the boundary conditions, 
      10000  ,ff , (19a)

 y,f as00  . (19b)



 8

In the above equations primes denote differentiation with respect to y. 

The physical quantities of principle interest are the shearing stress and the rate of 

heat transfer in terms of the skin-friction coefficient Cf and the Nusselt number Nu 

respectively, which can be written as 
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Using the variables (5), (6), (13) and the boundary condition (16a) into equations 
(20)-(21), we get 
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The results of the velocity and temperature distributions are calculated respectively from 

the following relations 

 yx
y

f
xu ,,  



 . (24)

A very efficient and accurate implicit finite difference method (the Keller box method) is 

employed to solve the nonlinear system of partial differential equations (14)-(15). The 

equations (14)-(15) are written in terms of first order equations in y, which are then 

expressed in finite difference form by approximating the functions and their derivatives 

in terms of the central differences in both coordinate directions. Denoting the mesh points 

in the (x, y) plane by xi and yj, where i = 1, 2, 3, , M and j = 1, 2, 3, , N, central 

difference approximations are made such that the equations involving x explicitly are 

centred at (xi1/2, yj1/2) and the remainder at (xi, yj1/2), where yj1/2 = (yj + yj1)/2, etc. This 

results in a set of nonlinear difference equations for the unknowns at xi in terms of their 

values at xi1. These equations are then linearised by the Newton’s quasi-linearization 

technique and are solved using a block-tridiagonal algorithm, taking as the initial 

iteration of the converged solution at x = xi1. Now to initiate the process at x = 0, we first 

provide guess profiles for all five variables (arising the reduction to the first order form) 

and use the Keller box method to solve the governing ordinary differential equations. 

Having obtained the lower stagnation point solution it is possible to march step by step 
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along the boundary layer. For a given value of x, the iterative procedure is stopped when 

the difference in computing the velocity and the temperature in the next iteration is less 

than 105, i.e. when f i  105, where the superscript denotes the iteration number. 

 
Straight forward finite difference (SFFD) 
 
 The new transformations for the SFFD  
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u
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The corresponding boundary conditions are 
 any      0at       1,0 YXVU   , (29a) 
0     , 0at       1,0  XYVU  , (29b) 

0    ,  as    0,0  XYU  . (29c) 
Now equations (26)-(28) subject to the boundary conditions (29) are discretised using the 

central-difference for diffusion terms and the forward-difference for the convection 

terms, finally we get a system of tri-diagonal algebraic equations. The algebraic equations 

have been solved by double sweep technique. The numerical discretisation of the 

equations (26)-(28) are given below: 

    MiNjUU
X

Y
XUUY jijiijijijiji  1,2,

2

1
,1,,1,1,, 




 VV . (30) 

The momentum equation  

i

ijijijiji

ji
jiji

ji
jiji

ii

X

X

Y

UUU

U
Y

UU
V

X

UU
UX

sin2
                    

2

,

2

1,,1,

2
,

1,1,
,

,1,












































 (31) 

And the energy equation 
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where N and M  are  the maximum numbers of Y and X-points respectively.  
 
The computation is started from X = 0.0, and then marches up to the upper stagnation 

point of the circular cylinder ( X  ). Here x = /180 and y = 0.01 are used for the X-

and Y- grids respectively. Now it can be calculated the skin-friction coefficient and the 

rate of heat-transfer from the following dimensionless relations: 
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Results and discussion 

The numerical results for the skin-friction coefficient CfGr1/4 and the Nusselt number 

NuGr1/4
 are obtained for representative values of the radiation-conduction parameter Rd 

(= 0.0, 0.2, 0.5, 0.8, 1.0) and surface heating parameter w (=1.1, 1.3, 1.6, 1.9) against the 

curvature parameter x [0, ]. It should be noted that for both CO2 in the temperature 

range of 37.78-343 C (with the corresponding Prandtl number range 0.76-0.6) and NH3 

vapour in the temperature range of 48.9-204 C (with the corresponding Prandtl number 

0.88-0.84) the value of Rd at 1 atm ranges from 0.033 to 0.1, whereas for water vapour in 

the temperature range of 104-482 C (with the corresponding Prandtl number Pr  1.0), 

the Rd  values lie between 0.02 and 0.3 (see [3]). It should be noted that without radiation 

effect (Rd = 0.0),  we recover the problem that discussed by Merkin [11] and Nazar et al. [15] 

considering Pr = 1.0 which is shown in Table I. 

 
Table I. Comparison of the present numerical values of CfGr1/4 and NuGr1/4

 with those of 

    Merkin [11] and Nazar et al. [15] while Pr = 1.0 and Rd = 0.0. 

CfGr1/4  NuGr1/4
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X 

Mer-
kin 
[11] 

Nazar 
et al. 
[15] 

Present 
results 

by 
KBM 

Present 
results 

by 
SFFD 

Merkin 
[11] 

Nazar 
et al. 
[15] 

Present 
results 

by 
KBM 

Present 
results 

by 
SFFD 

0.0 0.0000 0.0000 0.0000 0.0000 0.4214 0.4214 0.4216 0.4214 
/6 0.4151 0.4148 0.4139 0.4149 0.4161 0.4161 0.4163 0.4166 
/3 0.7558 0.7542 0.7527 0.7553 0.4007 0.4005 0.4006 0.4015 
/2 0.9579 0.9545 0.9526 0.9572 0.3745 0.3741 0.3741 0.3753 

2/3 0.9756 0.9698 0.9677 0.9347 0.3364 0.3355 0.3355 0.3210 
5/6 0.7822 0.7740 0.7717 0.7811 0.2825 0.2811 0.2810 0.2827 
 0.3391 0.3265 0.3238 0.3359 0.1945 0.1916 0.1911 0.1934 

 

The numerical results of the skin-friction coefficient CfGr1/4 and the Nusselt 

number NuGr1/4
 for different values of the radiation-conduction parameter Rd (= 0.0, 1.0, 

2.0, 3.0) while w = 1.1 and Pr = 0.73 are illustrated in Figures. 2(a)-(b) respectively. 

Here we notice that the agreement between the results obtained by using the KBM and 

the SFFD is excellent indeed. From the figures, it can be seen that an increase in 

radiation-conduction parameter Rd leads to an increase in the skin-friction coefficient 

CfGr1/4  and the Nusselt number NuGr1/4. This may be attributed to the fact that the 

increase of the values of Rd implies more interaction of radiation with momentum and 

thermal boundary layers. 
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Figure 2: (a) Skin-friction, (b) Rate of heat transfer for different values of Rd while w = 
1.1 and Pr = 0.73 
 

In Tables II and III, the results of the skin-friction coefficient CfGr1/4  and the 

Nusselt number NuGr1/4 are shown respectively for different values of surface heating 

parameter w (=1.1, 1.3, 1.6, 1.9), while Rd = 0.5 and Pr =0.73. Again the comparisons 
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between the two solutions of KBM and SFFD method are found to be in excellent 

agreement. We further notice that an increase in the values of the surface heating 

parameter w leads to an enhancement in the results of CfGr1/4   and NuGr1/4. For 

example, at x = /2, the skin-friction coefficients CfGr1/4   and NuGr1/4
 increase by 

11.28% and 59.87% respectively while w  increases from 1.1 to 1.9. This phenomenon 

can easily be understood from the fact that when the surface heating parameter w 

increases, the temperature of the surface rises and the thickness of the thermal boundary 

layer grows. Therefore, the surface rate of heat transfer, that is the Nusselt number 

NuGr1/4 , increases. Again, this temperature increase of the fluid corresponds to the high 

surface shear stress which augments the skin-friction coefficient CfGr1/4. 

 
 
 
 
 
Table II: The results of CfGr1/4   for different values of surface heating parameter w 
while Rd = 0.5 and Pr = 0.73. 
x  CfGr1/4    

w = 1.1 w  = 1.3 w = 1.6 w  = 1.9 
KBM SFFD KBM SFFD KBM SFFD KBM SFFD 

0.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
/6 0.46890 0.47001 0.48173 0.48288 0.50112 0.50230 0.51907 0.52023 
/3 0.85457 0.85760 0.87829 0.88147 0.91417 0.91759 0.94749 0.95110 
/2 1.08646 1.09200 1.11757 1.12339 1.16483 1.17114 1.20901 1.21582 

2/3 1.11449 1.12277 1.14851 1.15712 1.20067 1.20990 1.25008 1.25993 
5/6 0.91093 0.92186 0.94301 0.95425 0.99318 1.00498 1.04183 1.05431 
 0.44387 0.45726 0.47050 0.48412 0.51398 0.52804 0.55827 0.57293 
 
Table III: The results of NuGr1/4 for different values of surface heating parameter w 
while Rd = 0.5 and Pr = 0.73. 
x  NuGr1/4 

w = 1.1 w  = 1.3 w = 1.6 w  = 1.9 
KBM SFFD KBM SFFD KBM SFFD KBM SFFD 

0.0 0.54424 0.54365 0.60700 0.60629 0.72160 0.72079 0.85813 0.85724 
/6 0.53776 0.53765 0.60030 0.59963 0.71478 0.71291 0.85122 0.84783 
/3 0.51845 0.51871 0.57916 0.57860 0.69082 0.68815 0.82439 0.81869 
/2 0.48591 0.48645 0.54333 0.54289 0.64942 0.64616 0.77683 0.76934 

2/3 0.43887 0.43974 0.49095 0.49128 0.58728 0.58573 0.70305 0.69850 
5/6 0.37391 0.37508 0.41936 0.42015 0.50372 0.50299 0.60565 0.60220 
 0.27466 0.27629 0.31177 0.31301 0.38160 0.38116 0.46694 0.46348 
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Attention is now given to the effects of pertinent parameters on the dimensionless 

velocity and temperature in the flow field, computed only by the KBM, and these are 

presented graphically in Figure 3. Figures 3(a)-(b) illustrate the velocity and temperature 

distributions against y for different values of the radiation-conduction parameter Rd (= 

0.0, 0.2, 0.5, 0.8, 1.0) at x = /3  while Pr = 0.73 and w =1.1. These figures display how 

Rd influences on the fluid velocity and temperature. As Rd increases, the velocity and 

temperature gradients at the surface increase which again enhances the fluid velocity and 

temperature.  
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Figure 3: (a) Velocity and (b) Temperature distribution for different Rd while w =1.1 and 
Pr = 0.73 at x = /3. 

 
Figures 4 and 5 illustrate the effect of the radiation-conduction parameter Rd on 

the development of streamlines and isotherms, which are plotted for Pr = 0.73 and w = 

1.1. From Figure 4(a), it is seen that without the effect of radiation (i.e. Rd = 0.0) the non-

dimensional value of max within the computational domain is about 2.75 near the 

downstream point (x  ) of the cylinder and when the boundary layer thickness is the 

lowest, but max increases with the increment of Rd and it attains about 4.20 for Rd = 1.0 

(see Figure 4(c)). This phenomenon fully coincides with the early discussion made on 

Figure 3(a), the fluid speeds up as Rd increases and the thickness of the velocity 

boundary layer also increases. The isotherm patterns for corresponding values of Rd are 

shown in Figure 5. From these three frames, we can see that the growth of thermal 

boundary layer over the surface of the cylinder is significant. As x increases from the 

lower stagnation point (x  0.0), the hot fluid rises due to the gravity, hence the thickness 

of the thermal boundary layer, y, increases. This phenomenon is very straightforward as 
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can be seen in this frame for Rd = 1.0 in 5(c). In this case the fluid temperature increases 

slightly which was also noticed in Figure 3(b). 
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Figure 4:  Streamlines for (a) Rd  = 0.0 (b) Rd  = 0.5 (c) Rd  = 1.0 while w =1.1  and Pr = 
0.73 
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Figure 5:  Isotherms for (a)  Rd  = 0.0 (b) Rd  = 0.5 (c) Rd  = 1.0 while w =1.1  and Pr = 
0.73 
 
 
 Conclusion 

The effect of radiation on natural convection flow from an isothermal circular cylinder 

has been investigated numerically. The governing boundary layer equations of motion are 

transformed into a non-dimensional form and the resulting nonlinear systems of partial 

differential equations are reduced to convenient boundary layer equations, which are then 

solved numerically by two distinct efficient methods namely (i) Implicit Finite Difference 

Method or the Keller-box method and (ii) Straight Forward Finite Difference Method 

(SFFD). From the present investigation the following conclusions may be drawn: 
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 The skin-friction coefficient and the Nusselt number increase when the value of 

the radiation-conduction parameter Rd increases. 

 As Rd increases, both the velocity and the temperature distribution increase 

significantly at x = /3 of the surface. 

 An increase in the values of w leads to an increase in the values of the skin-

friction coefficients and the Nusselt number.  

 For increase values of Rd, the momentum and thermal boundary layer increase 

significantly. 
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