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Abstract  

Background 

Achieving health equity has been identified as a major challenge, both internationally and within Australia. 

Inequalities in cancer outcomes are well documented, and must be quantified before they can be addressed. One 

method of portraying geographical variation in data uses maps. Recently we have produced thematic maps 

showing the geographical variation in cancer incidence and survival across Queensland, Australia. This article 

documents the decisions and rationale used in producing these maps, with the aim to assist others in producing 

chronic disease atlases.  

Methods 

Bayesian hierarchical models were used to produce the estimates. Justification for the cancers chosen, 

geographical areas used, modelling method, outcome measures mapped, production of the adjacency matrix, 

assessment of convergence, sensitivity analyses performed and determination of significant geographical 

variation is provided. 

Conclusions 

Although careful consideration of many issues is required, chronic disease atlases are a useful tool for assessing 

and quantifying geographical inequalities. In addition they help focus research efforts to investigate why the 

observed inequalities exist, which in turn inform advocacy, policy, support and education programs designed to 

reduce these inequalities. 
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Background  
Since the 1978 declaration of Alma-Ata which highlighted the need to address inequalities in health status [1], 

there have been important advancements for cancer outcomes. Many developed nations have seen 

improvements in cancer survival, notably for colorectal cancer, breast cancer, prostate cancer, non-Hodgkin 

lymphoma and leukaemia [2, 3]. Also, incidence and mortality rates for some cancers have declined [4]. 

However, notable inequalities in these outcomes persist, with numerous international studies reporting 

disparities in cancer outcomes across socioeconomic status or urban/rural categories [5-7].  

 

Within Australia, one of the greatest recognised health challenges is achieving health equity for all [8]. Cancer 

patients living in rural and disadvantaged areas are generally more likely to be diagnosed with advanced cancer 

and have poorer survival outcomes [9, 10]. Often these areas have a higher prevalence of risk factors such as 

smoking, obesity and lower levels of physical activity [11, 12]. Distance is also important, with cancer patients 

in rural areas having reduced access to cancer care services [13-15].   

 

Inequalities need to be quantified before they can be addressed. Maps have been used to portray geographical 

data for a range of diseases since the mid-1800s, including cancer [16]. By providing a visual representation of 

cancer outcomes, geographic patterns of disease are able to be identified and effectively addressed [17]. For 

example, cancer mortality maps showed high mortality from oral cancer in south-eastern United States of 

America which led to the identification of snuff dipping as a risk factor [18]. Similarly, mammography 

screening efforts were intensified after finding low in-situ breast cancer incidence rates from mapped data in 

north-eastern Connecticut [19].  

 

We  recently developed thematic maps showing the geographical variation in cancer incidence and survival 

across Queensland, Australia [20]. With a population of  4.2 million [21] and covering an area of 1.9 million 

square kilometres, Queensland has the country’s most decentralized population [22] and the highest incidence 
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of cancer [23]. As there is increasing interest in producing disease maps [24-30], it is hoped that by 

documenting the processes and rationale behind the many decisions made during the development of this 

Cancer Atlas, it may assist others seeking to produce similar types of chronic disease atlases. 

 

Methods  
Ethical approval to conduct this study was obtained from the Queensland Health – Central Office Committee 

Human Research Ethics Committee (HREC/09/QHC/25). Approval to extract the data was obtained from the 

Chief Executive Officer – Centre for Health Care Improvement, Queensland Health, under delegation by the 

Director-General, Queensland Health. 

 

Data sources 

The Queensland Cancer Registry (QCR) supplied de-identified data on all primary invasive cancers diagnosed 

among Queensland residents during 1996 to 2007. The QCR is a population-based cancer registry that 

maintains a record of all cases of cancer diagnosed in Queensland since 1982, with data currently available to 

the end of 2007 [31]. Survival status of all cancer patients is obtained through routine linkage with the 

(Australian) National Death Index, enabling deaths of cancer patients who die interstate to be identified. Across 

all cancers, 91% of cancers registered by the Queensland Cancer Registry in 2007 were histologically verified 

and 1.9% were registered based on death certificate only (DCO) [31]. Cases with unknown age group (0.001% 

of all cancers) were excluded from the analyses. 

 

Estimated resident population data grouped by age group (0-4, 5-9…, 80-84, 85+), sex, year and statistical local 

area (SLA) were obtained from the Australian Bureau of Statistics. To calculate the expected population 

mortality estimates, de-identified unit record mortality data for all causes of death for Queensland residents 

were also obtained from the Australian Bureau of Statistics (ABS) [32].   
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Choice of cancers 

The Cancer Atlas described spatial variation in the leading cancers diagnosed in Queensland during the study 

period (Table 1). These included the (Australian) National Health Priority Area cancers of colorectal cancer, 

lung cancer, breast cancer, cervical cancer, prostate cancer and non-Hodgkin’s lymphoma. Although a priority 

cancer, variation in non-melanocytic skin cancer was not assessed, since it is not routinely reported by 

population-based cancer registries in Australia. When a cancer was not gender specific, results were calculated 

for each gender. The only exception to this was breast cancer which was reported for females only due to the 

very small number of breast cancers diagnosed among males. 

 

Geographical areas 

SLAs were used to define the geographical areas. These are part of the Australian Standard Geographic 

Classification (ASGC) used by the ABS [33] and are often based on the incorporated bodies of local 

governments who are responsible for service provision and infrastructure at the local and regional level.   

 

The ABS adjusts the geographical boundaries of SLAs according to changes in the population composition over 

time. To ensure statistical analyses referred to the same geographical area for the entire study period, all SLAs 

were mapped to the boundaries used for the 2006 ASGC.  The mapping process was conducted within the 

Queensland Cancer Registry, and matched the suburb and postcode at diagnosis to the 2006 National Localities 

Index [34]. There were 478 SLAs in Queensland in 2006 [33].  

 

Estimates of incidence and survival were also examined by area-level socioeconomic status and rurality. 

Socioeconomic status was defined using the Socioeconomic Indexes for Areas (SEIFA) Index of Relative 

Socioeconomic Advantage and Disadvantage (IRSAD) compiled by the ABS [35]. Queensland SLAs were 

ranked from the most disadvantaged to the most advantaged and then divided into quintiles, based on a variety 

of data items such as the percentages of: people with high income, people unemployed, households paying 
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cheap rental, households with no car and households with broadband internet connection. Rurality was defined 

using the ARIA+ (Accessibility/Remoteness Index for Australia plus) classification [36], which defines 

remoteness on the basis of five categories: major city, inner regional, outer regional, remote and very remote. 

‘Remote’ and ‘very remote’ categories were combined together. The level of remoteness is determined by road-

based distance to services. 

 

Methods to generate estimates 

To produce a useful map on a small-area scale it is important to have estimates that are robust, or relatively 

insensitive to outliers, across small areas. If estimates are not robust, these outliers from areas which are often 

based on very small populations, are more likely to be disproportionately influential, and thus compromise the 

overall interpretation of the map. 

 

Modelling or smoothing methods are commonly used to generate robust estimates for small geographical areas. 

As traditional regression models are unable to incorporate spatial correlation, approaches which enable 

hierarchical structure to be incorporated such as generalised linear mixed models may be used. These may be 

calculated using either Bayesian, multi-level, or likelihood-based models, however, Bayesian methods do not 

require the restrictive distributional assumptions in the other models (such as, for example, Gaussian random 

effects) [37].  Smoothing methods require no distributional assumptions and include interpolation methods, or 

non-parametric such as kernel regression, kriging and partition methods [38, 39].   They are generally easier 

and faster to perform than modelling, but a comparison of various modelling and smoothing methods suggested 

Bayesian models performed better than the smoothing methods [40].  

 

Bayesian models incorporate empirical Bayes and fully Bayes methods. In both types of Bayesian models, 

parameters are assigned probability distributions, usually based on plausible or expected values, and termed 

‘priors’. Fully Bayesian methods assign second stage priors to the variance controlling this distribution 
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(‘hyperparameters’). In contrast, empirical Bayes methods estimate the hyperparameter from the distribution of 

the data [41]. Therefore, empirical Bayes methods give satisfactory point estimates, but are unlikely to provide 

accurate estimates of the associated uncertainty [42].  

 

Fully Bayesian models are becoming increasingly common in disease mapping [43].  Advantages of Bayesian 

models in comparison to other methods include the ease of drawing strength from neighbouring regions so 

estimates are more reliable and robust, as well as providing better quantification of the uncertainty surrounding 

the calculated estimates [41, 44]. Also, Bayesian methods enable structuring of more complicated models, 

inferences and analyses [45]. Other cancer atlases which have used fully Bayesian methods include NSW 

(Australia) [46] and Limburg (Belgium) [47] (Table 2). 

 

Outcome measures – what to map? 

Incidence estimates 

Incidence is defined as the number of new invasive cancer cases diagnosed within a given time period. When 

examining incidence in small areas, the traditionally used estimate is the SIR (indirectly Standardised Incidence 

Ratio). The SIR is an estimate of relative risk within each area which compares the observed counts against an 

expected number of counts, based on the population size.  

 

However, limitations associated with the SIR estimates have been previously noted [38]. For example, large 

differences can be observed in the SIR estimates even with relatively small changes in incidence counts, and 

areas with no cases automatically receive an SIR of zero, regardless of the expected counts [40]. 

 

Modelling the SIR via spatial or Bayesian methods overcomes many of these problems by producing more 

reliable and robust estimates. Although there are many advantages to using a modelled SIR, they reflect the 

comparison of SLA-specific estimates against the Queensland average and not comparisons between SLA-
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specific estimates themselves. The latter interpretation may be biased if the SLAs have different population age 

structures and the outcome measure varies by age. For this reason the maps must be interpreted in terms of 

which areas are higher or lower than the Queensland average  [48]. Alternative measures, such as the 

Comparative Incidence Figure (CIF, which is the ratio of the local to national (or whole region) directly 

standardized rates, i.e. rates weighted by age groups using an external population), have been proposed to 

overcome this issue, but these have their own disadvantages, including larger standard errors [49]. In light of 

these evaluations, the modelled SIR was adopted. 

 

Survival estimates 

Typically, cancer atlases have tended to report variations in cancer mortality, rather than cancer survival (Table 

2). However spatial variations in cancer mortality reflect differences according to where people die, which may 

not be where they resided when diagnosed or treated. Mortality data are also prone to bias from death certificate 

inaccuracies in cause of death classification [50]. In contrast, mapping cancer survival, which is the percentage 

of patients who survive for a given time after diagnosis, estimates the variation in outcomes based on where 

people lived when diagnosed. Since treatment generally occurs shortly following diagnosis, this better reflects 

the potential impact of barriers to treatment and support services.  

 

Survival after the diagnosis of cancer is the most important single measure for monitoring and evaluating the 

early diagnosis and treatment components of cancer control [51]. When examining cancer survival using 

population-based data, relative survival is often the preferred method as it provides an estimate of the net cancer 

survival without errors from cause of death misclassification, including difficulties in assigning cause of death 

when cancer was a contributing cause, but may not be completely responsible for the death [52, 53].   

 

Relative survival aims to measure deaths in excess of what would be expected, that is, the proportion of cancer 

patients alive x years after diagnosis in the hypothetical situation where the cancer in question is the only 
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possible cause of death. Relative survival is modelled via an excess mortality model, which contrasts the 

mortality in the general population with the mortality of cancer patients. The difference is assumed to be due to 

cancer-related deaths (‘excess mortality’). This model generates the excess hazard, also called relative excess 

risk (RER).  

 

The median smoothed RER (i.e. exponential of the sum of the spatial and random heterogeneity components) 

was mapped. Similar to the interpretation of the SIR, the RER is a comparison against the State average, and 

comparison between areas is not recommended.  

 

Bayesian hierarchical models 

Incidence 

For incidence models the Besag, York and Mollié (BYM) model was used, as it has been shown to have 

desirable properties for disease mapping [43]. This model is specified as: 

yi ~ Poisson(eiθi) 

log(θi) = α + ui + vi 

where ei is the expected number of cases for the ith SLA, θi is the standardised incidence ratio, α is the overall 

level of relative risk, ui is the spatial component modelled with the conditional autoregressive (CAR) prior, and 

vi  is the unstructured random effects (which has a normal distribution centered around zero). Input data were 

aggregated over 1998 to 2007. Since incidence is likely to differ by gender, estimates for males and females 

were generated separately.  

 

Since this is a fully Bayesian model, priors were specified for α, ui and vi. The prior for α was given a vague 

normal distribution with mean 0 and variance of 1.0 x 10
10

. The prior distributions for ui and vi  required 

sensitivity analyses, and are discussed below. 
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Relative survival  

For relative survival, a recommended approach is to model excess mortality under a generalized linear model 

based on collapsed data using exact survival times and a Poisson assumption [52]. The basic version of this 

model was extended to include spatial and random effects, similar to Fairley et al [54]. 

                   

   (         
 )     (    )               

Where      is person-time at risk in the kth age group, the jth follow up interval and the ith SLA,     
  is the 

expected number of deaths due to causes other than the cancer of interest,    is the intercept (which varied by 

follow-up year),    is the coefficient of the predictor variable vector x (representing the broad age groups),    is 

the unstructured random effects (which has a normal distribution) and    is the spatial component modelled 

with the CAR prior. Both α and β were given priors with normal distributions having mean 0 and variance 1.0 x 

10
6
. The model was run separately for males and females. Broad age groups were included in the model to 

prevent bias due to differing age structures between SLAs.  

 

All cases considered ‘at risk’ during 1998 to 2007 were included. Since the earliest year of data was 1996, this 

meant that any cases diagnosed from 1996 onwards which were alive with up to 5 years follow-up at some 

stage during 1998-2007 were included. Cases alive on the 31
st
 December 2007 were considered censored.  

 

This model excluded persons aged 90 years or older at time of diagnosis, those whose diagnosis was based on 

death certificate or autopsy only, or those with a survival time of zero days or less. In total, this was 3.3% of the 

records from 1996-2007.  

 

Adjacency matrix 

Since the Bayesian models incorporate information from neighbouring regions, it is necessary to specify the 

definition of which SLAs are considered neighbours.  An adjacency matrix is generated to apply these 
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definitions in the Bayesian model. Using the standard terminology for adjacency options, which follow the 

possible moves of chess pieces, we used the “Queen” definition, so that SLAs were considered to be neighbours 

if they shared a common border [55]. The adjacency matrix was calculated using the program GeoDa [56] using 

1
st
 order queen adjacencies. Although it is possible to use higher-order weights than first-order (e.g. second-

order weights will include neighbours of neighbours), this was not considered useful for this analysis due to the 

much denser neighbourhood matrix and, particularly in rural areas of the state, the very large distances between 

second-order neighbouring SLAs.  

 

Due to the large number of island SLAs in Queensland, 18 regions originally had no neighbours. Since 

estimates will not be smoothed unless a region has neighbours the default neighbourhood matrix was adjusted 

to ensure all regions had at least one neighbour. Additional neighbours were incorporated by considering they 

could share a border even if separated by a river, or a sea.  In particular, most of the Far North islands were 

grouped together, with some mainland areas also included to ensure enough strength was provided to generate 

meaningful estimates that were able to converge. 

 

Computation 

Models were run using WinBUGS [57] interfaced with Stata [58] (using the wb commands written by John 

Thompson, University of Leicester [59]) with a burn-in period of 100,000 iterations (incidence models) and 

250,000 iterations (survival models) followed by 100,000 iterations. To decrease the correlation between 

iterations a subsample of every tenth iteration was kept. Only one chain was run for each estimate. 

 

Assessing convergence 

Convergence was assessed using visual examination of trace, density and autocorrelation plots, as well as the 

Geweke diagnostic [60]. Geweke diagnostics were calculated as the difference between the means for the first 

1000 iterations (10%) that were kept and the final 5000 iterations (50%), divided by the asymptotic standard 
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error of the difference. These were generated for the SIR or RER estimates for all 478 SLAs, and any estimate 

that had a Geweke estimate with a p-value of less than 0.01 was considered unlikely to have converged. To 

save disk space and processing time, trace and density plots were only generated for 5% (n=24) of the SLAs, 

composed of SLAs of concern due to small numbers as well as a random selection. 

 

Sensitivity analyses 

For these types of models, and particularly when data are sparse, it is vital to carefully consider the choice of 

prior and compare the effects of alternate priors. The priors used on the distribution for the variance of the 

spatial and random effects components may particularly influence the results.  

 

There were three stages to conducting the sensitivity analyses. First, the literature was searched to determine 

what priors were being used in similar models. Many BYM models were found, however, there were few 

examples of Bayesian relative survival models containing spatial components. As there was no other source of 

information relevant to the study at hand on which to base informative priors, a range of non-informative priors 

were used for the relative survival models. Second, the performance of each prior was evaluated. Since the 

potential influence of the prior will be more pronounced for scarce data, Tables 3 and 4 show some of the 

comparative numbers for a less common cancer - oesophageal cancer in males. In addition to these, observed 

values were plotted against those predicted by the model and quantile-quantile plots were examined. Third, 

convergence was examined, as outlined earlier. Lack of convergence could indicate a poor model, or it may 

simply indicate a longer burn-in period is required. Monitoring the estimate over the entire number of iterations 

(including burn-in) would show whether it is likely convergence will eventually be reached. In tables 3 and 4 

the proportion of SLAs for which the SIR or RER estimate did not converge after discarding 50,000 iterations 

is shown.  
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For the sensitivity tests some of the less common cancers were examined (for incidence: oesophageal, brain, 

myeloma; for survival (based on number of deaths): oesophageal, thyroid), as well as a more common one 

(incidence: melanoma; survival: pancreatic).  

 

For both the incidence and survival models, u represents the spatial component, while v represents the random 

component. These components were each given hyperprior distributions, as below: 

         
   

 

[  |         
 ]    ̅    

 ) 

 

where  ̅  
 

∑     
∑        

 

  
  

  
 

∑     

 

 

      if SLAs i, j are adjacent (or 0 if they are not). 

The τ values control the variability of u and v. As such, the distribution can be specified using τ or σ, which is 

the square root of the inverse of τ (variance= σ
2
).  

 

The following priors were compared for the incidence model: 

1. τ u ~ Gamma(0.5, 0.0005),  τv  ~ Gamma(0.5, 0.0005) 

2. τ u ~ Gamma(1,1), τv ~ Gamma(7.801, 2.793) 

3. τ u ~ Gamma(0.1, 0.1), τv ~ Gamma(0.001, 0.001) 

4. τ u ~ Gamma(0.1, 0.01),  τv ~ Gamma(0.1, 0.01) 

5. Reparameterised on σ: σu ~ Uniform(0,1), σv ~ Uniform (0,1) 

6. Reparameterised on σ: σu ~ Uniform (0,1000), σv ~ Uniform (0,1000) 
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Prior 1 shrunk the estimates more than any other (the pD value is lower than the others, and the standard 

deviation smaller) (Table 3). Prior 2 induced far less shrinkage than the others (higher pD and standard 

deviation). Prior 2 also had a larger DIC (greater than 6 above the others), indicating worse model fit. Priors 3 

to 6 gave fairly similar results, although prior 6 had a larger standard deviation.  

 

It was decided to use prior 3 as it provided consistently plausible results and converged well across the range of 

cancers examined. 

 

For the survival model, the following non-informative priors were compared: 

1. τ u ~ Gamma(0.5, 0.001),  τv ~ Gamma(0.5, 0.001) 

2. τ u ~ Gamma (0.1, 0.1), τv ~ Gamma(0.001, 0.001) 

3. τ u ~ Gamma(0.1, 0.01),  τv ~ Gamma(0.1, 0.01) 

4. τ u ~ Gamma(0.5, 0.0005),  τv ~ Gamma(0.5, 0.0005) 

5. Reparameterised on σ: σu ~ Uniform(0,1), σv ~ Uniform(0,1) 

6. Reparameterised on σ: σu ~ Uniform(0,1000), σv ~ Uniform(0,1000) 

 

Prior 3 was chosen because it demonstrated greater convergence properties across the range of cancers 

examined, while restricting the results to a narrower range of smoothed estimates than Prior 2 (Table 4). 

 

Production of maps 

A thematic scheme was chosen, with colours determined using color brewer (colorbrewer2.org) under the 

specifications of a diverging colour-scheme of 5 categories which are suitable for print and colour-blind 

friendly (Figure 1). The SIRs and RERs were categorised as 10% above and 30% above the State average, and 
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the inverse of these for the lower cut-offs. There is great variability in the categories used in other atlases, but 

these fairly broad categories were used to reduce the probability of reporting spuriously significant differences.  

 

Mapping alternative measures, such as  the posterior probability of exceeding a certain value, were considered, 

but were deemed unsatisfactory due to difficulties in interpretation and the lack of information provided in 

regards to the size of the risk [27, 44]. Therefore we used graphs to show the precision of the mapped estimates.   

 

Graphs 

To supplement the information provided in the maps, a graph showing the ranked SIR or RER with the 

associated 95% credible interval for each SLA was provided (Figure 2). Horizontal box plots of the SIR or RER 

estimates by socioeconomic status and rurality were also provided to provide additional information about 

where the extent of variability across the state (Figure 2). Since a primary purpose of the model was to provide 

overall estimates of variability across the State, we did not include these additional variables in the model.  

 

Additional data included 

For each cancer with significant variation, SIR or RER estimates with 95% credible intervals were also 

provided by socioeconomic and rurality classifications. To calculate these, each iteration of the 10,000 

iterations had the modelled observed value (incidence) and the adjusted deaths value (survival) calculated as 

above. For survival (which incorporated age group and time period) these were summed to give 10,000 

iterations for each SLA. Each SLA was then grouped into rurality or socioeconomic status categories, and the 

adjusted estimates summed. These were divided by the original expected values to produce 10,000 SIR or RER 

estimates by rurality and socioeconomic status categories. The median of these 10,000 was used as the SIR or 

RER point estimate, and the 2.5 and 97.5 percentiles used to provide the lower and upper credible interval 

estimates, respectively. 
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Determining whether observed variation is significant 

Once the results have been produced and mapped, it is important to determine whether the apparent variation 

reflects true geographic differences. Therefore, a test for global clustering was conducted. Multiple tests are 

available [19], such as Besag-Newell's R, Moran's I, Oden’s Ipop, but we elected to use Tango’s MEET 

(Maximised Excess Events Test) [61] as it has been shown to perform well across a variety of datasets [19].  

 

A small p-value from Tango’s MEET indicates that estimates differ between regions. As is consistent with 

standard statistical analysis [62], adjusted p-values from the Tango’s MEET statistic below 0.01 were 

considered to strongly indicate spatial variation, while values between 0.05 and 0.01 were moderately 

indicative of variation. Values of 0.05 or above were considered to not be significant, however two categories 

were defined. Values between 0.05 and 0.10 were considered to provide only weak evidence of geographic 

variation, while values above 0.10 no evidence of geographical variation. 

 

Since Tango’s MEET is calculated using Monte Carlo replications, it is expected that there could be slight 

variations in the results. To increase our confidence that the final classification of geographic variation was 

stable, Tango’s MEET was run an additional 5 times for each cancer and gender combination. There were only 

two cases where the final classification did change for different replication, and so these cancers were assigned 

to the more conservative, less significant category. 

 

Input for Tango’s MEET requires an observed and expected value. Since the modelled results were of interest, 

the modelled observed value needed to be calculated. For the incidence data, the observed value was calculated 

by the smoothed SIR median value multiplied by the expected value to produce a modelled observed value. For 

the relative survival model, the adjusted deaths for each data point were calculated as: (person-time at risk  

 exp
follow-up time

   exp
age group

   RER) + expected number of deaths due to causes other than the cancer of interest. 

i.e. (                   )      
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These were then added together for each SLA to provide the input data for Tango’s MEET. 

 

Conclusions  
Chronic disease atlases are a useful tool for assessing and quantifying geographical inequalities, as well as 

assisting to focus research efforts in investigating why the observed inequalities exist. When developing these 

atlases, a myriad of decisions concerning how to model and present the results need to be made and this paper 

presents one decision-making algorithm used to generate a cancer atlas.  

 

There are several priority areas for future consideration in disease mapping including communicating spatial 

results, particularly finding ways to present the uncertainty surrounding the results; and the development and 

use of alternative statistical models such as classification and regression tree (CART) models. In addition, more 

detailed statistical models can be developed to investigate the impact of rurality, area-level and individual level 

socioeconomic status as well as temporal changes. 

 

 As with all chronic disease atlases, it is hoped that the presented variations in outcomes will stimulate further 

research efforts to investigate the reasons underlying the disparities and inform advocacy, policy, support and 

education programs to effectively address these, so that health equity will become a reality. 

 

The full report is available (from February 2011) at: www.cancerqld.org.au/pdf/cancer_atlas.pdf 
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Figures 
 

 

Figure 1: An example of the incidence (risk of diagnosis) and survival (risk of death within 5 years of 

diagnosis) maps for all invasive cancers, males. 
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Figure 2: An example of the incidence graphs for all invasive cancers, males. 
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Tables 
 

Table 1 - Cancers examined for geographic variation, Queensland, 1998-2007 

Type of cancer ICD-O3 code Total number 

males diagnosed 

Total number 

females diagnosed 

All invasive cancers   C00-C80 (excluding C44 

(M805 to 811)) 

105,053 82,470 

Bladder cancer   C67 5,034 1,571 

Brain cancer   C70, C71, C72 1,504 1,067 

Breast cancer   C50 Not included 22,420 

Cervical cancer   C53 Not applicable 1,639 

Colorectal cancer   C18-C20 and C218 13,405 10,871 

Kidney cancer   C64-C66 and C68 3,117 1,883 

Leukaemia   M980-M994 3,084 2,094 

Lung cancer   C33-C34 11,152 5,683 

Melanoma   C44 and  M872-M879 13,793 10,110 

Myeloma   M973 1,192 913 

Non-Hodgkin lymphoma   M959, M967-M971 3,547 2,889 

Oesophageal cancer   C15 1,464 639 

Ovarian cancer   C56 Not applicable 2,120 

Pancreatic cancer   C25 1,940 1,706 

Prostate cancer   C61 25,222 Not applicable 

Stomach cancer   C16 2,193 1,070 

Thyroid cancer   C73 765 2,221 

Uterine cancer   C54  Not applicable  3,112 
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Table 2 - Selected Cancer Atlases published from 1995 onwards 

Region Time period Outcome 

Statistic 

mapped Smoothing method N regionsa 

N cancers 

mappedb Presentation methodc 

Canada [63] 1986-1990 Incidence CIF None 290 17 (M,F or P) Ecumene 

Europe [64] ~1981-1990 

Incidence 

Mortality DSR 

Floating average of 

neighbouring rates for non-cities Not stated 31 (M,F) Isopleth 

India [65] 2001-2002 Incidence DSR None 593 1 (M,F) Areal 

Limburg [66] 

(Belgium) 1996-1998 Incidence SIR 

Poisson-Gamma and CAR 

Bayesian models 44 5 (M,F) Areal 

Netherlands [67] 1989–2003 Incidence DSR 

Floating average of 

neighbouring rates for non-cities 458 11 (M,F) Isopleth 

New York [68] (USA) Not stated Incidence DSR None 62 12 (M,F) Areal 

New South Wales [46] 

(Australia) 1998-2002 

Incidence 

Mortality SIR, SMR CAR Bayesian model 192 

22 - inc (M,F) 

12 -mort (M,F) Areal 

Pennsylvania [69] 

(USA) 1994-2002 Incidence DSR None 67 2 (M,F,P) Areal 

Queensland [20] 

(Australia) 1998-2007 

Incidence 

Survival SIR,RER 

Bayesian hierarchical models: 

BYM and relative survival 478 19 (M,F) Areal 

South Australia [70] 

(Australia) 1991-2000 

Incidence 

Mortality DSR None 117 11 (P) Ecumene 

Spain [71] 1987-1995 Mortality SIR 

Non-parametric empirical Bayes 

estimation method 2218 

4 (M,F) out of 14 

maps Areal 

Sweden [72] 1971-1989 Incidence DSR, CIF None 286 37 (M,F) Areal 

UK [73] 2003-2005 

Incidence 

Survival  

Mortality DSR , RS None 350 17 (M,F,P) Areal 

UK/Ireland [74] 1991-2000 

Incidence 

Mortality 

CIF or 

CMF None 127 21 (M,F) Areal 

USA [75] 1950-1994 Mortality DSR, CIF None 3055 41 (M,F) Areal 

a. When multiple areas are available, as for some of the online Atlases, the number of regions is the number at the most detailed level. 

b. M=males, F=females and P=persons. 

c. Ecumene means only populated areas were coloured, Areal indicates that each individual region was coloured, and Isopleth means a continuous 

gradient was used. 

BYM=Besag, York and Mollié 
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CAR=Conditional AutoRegressive 

CIF/CMF=Comparative Incidence/Mortality Figure, and is the ratio of the DSR of the area to the DSR of the entire region or country 

DSR=Directly age Standardised Rates  

RER = Relative Excess Risk of death 

RS = Relative Survival 

SIR/SMR = indirectly Standardised Incidence/Mortality Ratio 
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Table 3 - Sensitivity analyses for oesophageal cancer incidence among males 

 Prior 1 Prior 2 Prior 3 Prior 4 Prior 5 Prior 6 

Distribution of SIR      

Mean 100.8 99.4 101.5 100.7 100.6 103.6 

Standard deviation 10.2 30.8 16.3 14.5 13.5 23.2 

Maximum 140.6 455.1 181.2 169.5 166.4 201.8 

75% Quartile 107.2 113.1 111.7 110.2 109.4 109.8 

Median 96.5 93.5 95.1 95.6 95.9 95.7 

25% Quartile 93.3 78.7 89.4 89.9 90.7 90.2 

Minimum 87.4 55.9 79.6 79.3 80.0 79.8 

90% ratio
1 

1.3 2.3 1.6 1.5 1.5 1.6 

pD
2 

34.112 138.047 51.305 53.828 53.709 54.098 

DIC
3 

1652.57 1660.32 1650.62 1648.51 1651.02 1650.71 

Spatial fraction
4
  0.56 0.44 0.63 0.48 0.52 0.57 

Percent SLAs with 

Geweke <0.01 for SIR 41.0% 1.9% 3.3% 9.4% 10.3% 10.5% 

Notes: 

1. The 90% ratio is calculated as the 95th percentile divided by the 5th percentile of the smoothed SIR estimates. 

2. pD represents the effective number of parameters in the model. Larger values indicate less smoothing of 

estimates. 

3. DIC=Deviance Information Criterion. Smaller values (of at least 5 below) indicate a better model fit. 

4. The spatial fraction estimates the relative contribution of spatial and unstructured heterogeneity, and is 

calculated as:                   
         

 

         
        

where          
 = marginal spatial variance,    = marginal variability of the unstructured random effects between 

areas. A value close to 1 indicates the spatial heterogeneity dominates, whereas a value close to 0 indicates the 

unstructured heterogeneity dominates. 
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Table 4 - Sensitivity analyses for oesophageal cancer survival among males 

 Prior 1 Prior 2 Prior 3 Prior 4 Prior 5 Prior 6 

Distribution of RER      

Mean 100.2 100.7 100.4 100.1 100.4 100.0 

Standard deviation 6.5 11.5 8.2 3.8 9.3 0.3 

Maximum 119.6 140.7 127.6 111.3 129.5 102.1 

75% Quartile 105.3 105.0 105.7 102.6 106.3 100.2 

Median 98.0 97.3 97.7 99.2 97.0 100.0 

25% Quartile 95.2 92.6 94.7 97.2 93.7 99.8 

Minimum 80.9 63.4 75.0 89.4 72.5 98.3 

90% ratio
1 

1.2 1.4 1.3 1.1 1.3 1.0 

pD
2 

23.988 36.021 33.105 18.663 30.524 18.218 

DIC
3 

3690.23 3690.27 3691.24 3691.32 3690.07 3694.96 

Spatial fraction
4
  0.62 0.87 0.51 0.48 0.80 0.00 

Percent SLAs with 

Geweke <0.01 for RER 

89.3% 9.8% 10.5% 19.5% 21.5% 63.0% 

Notes: 

1. The 90% ratio is calculated as the 95th percentile divided by the 5th percentile of the smoothed RER estimates. 

2. pD represents the effective number of parameters in the model. Larger values indicate less smoothing of 

estimates. 

3. DIC=Deviance Information Criterion. Smaller values (of at least 5 below) indicate a better model fit. 

4. The spatial fraction estimates the relative contribution of spatial and unstructured heterogeneity, and is 

calculated as:                   
         

 

         
        

where          
 = marginal spatial variance,    = marginal variability of the unstructured random effects between 

areas. A value close to 1 indicates the spatial heterogeneity dominates, whereas a value close to 0 indicates the 

unstructured heterogeneity dominates. 

 

 

 

 


