
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Saha, Suvash C. (2011) Unsteady natural convection in a triangular enclo-
sure under isothermal heating. Energy and Buildings, 43(2-3), pp. 695-
703.

This file was downloaded from: http://eprints.qut.edu.au/44072/

c© Copyright 2011 Elsevier

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1016/j.enbuild.2010.11.014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10905603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/Saha,_Suvash.html
http://eprints.qut.edu.au/44072/
http://dx.doi.org/10.1016/j.enbuild.2010.11.014


Unsteady natural convection in a triangular enclosure under 
isothermal heating 

  
Suvash C. Saha 

 
School of Engineering and Physical Sciences, James Cook University, 

Townsville, QLD 4811, Australia 
 

Email: s_c_saha@yahoo.com 
Tel: +61-7-4779-7523, Fax: +61-7-4781-6788 

 
Abstract 

The fluid flow and heat transfer inside a triangular enclosure due to instantaneous heating 

on the inclined walls are investigated using an improved scaling analysis and direct 

numerical simulations. The development of the unsteady natural convection boundary 

layer under the inclined walls may be classified into three distinct stages including a start-

up stage, a transitional stage and a steady state stage, which can be clearly identified in 

the analytical and numerical results. A new triple-layer integral approach of scaling 

analysis has been considered to obtain major scaling relations of the velocity, thicknesses, 

Nusselt number and the flow development time of the natural convection boundary layer 

and verified by direct numerical simulations over a wide range of flow parameters.  
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Nomenclature 
A Aspect ratio of the cavity  X, Y Dimensional coordinates 
L Length of one of the sloping walls  x, y Dimensionless coordinates 
l Half length of the base Greek symbols
h Vertical length of the cavity  Thermal expansion coefficient 

g Acceleration due to gravity T Temperature difference between 
the wall and the fluid 

Nu Nusselt number T-i Dimensional viscous inner layer 
thickness 

Nus Nusselt number at steady state time Ts -is Dimensional steady state viscous 
inner layer thickness 

P Dimensional pressure *
T -*

i Dimensionless viscous inner layer 
thickness 

p Dimensionless pressure *
Ts -*

is Dimensionless steady state 
viscous inner layer thickness 

Pr Prandtl number T Dimensional thermal boundary 
layer thickness 

Ra Rayleigh number Ts Dimensional steady state thermal 
layer thickness 

T Temperature *
T Dimensionless thermal boundary 

layer thickness 
Th Wall temperature *

Ts Dimensionless steady state 
thermal layer thickness 

T0 Reference temperature v Dimensional viscous layer 
thickness 

t Time vs Dimensional steady state viscous 
layer thickness 

ts Steady state time *
v Dimensionless viscous layer 

thickness 
U,V Dimensional velocity components  *

vs Dimensionless steady state 
viscous layer thickness 

U0 Reference velocity  Thermal diffusivity 
Um Dimensional velocity scale  Density 
Ums Dimensional velocity scale at 

steady state stage 
 Kinematic viscosity 

u, v Dimensionless velocity 
components 

 Dimensionless temperature 

um  Dimensionless velocity scale  Angle 
ums Dimensionless velocity scale at 

steady state stage 
 Dimensionless time 

tf Dimensional heating up time s Dimensionless steady state time 
  f Dimensionless heating up time 
 

 

 



1. Introduction 

The study of natural convection in triangular enclosures is important as it has applications 

in many domestic and industrial systems as well as in geophysical flows. Moreover, the 

channels of structures, the panels of electronic apparatus and conductors in the electrical-

engineering industry often have the form of a prism of triangular cross section. One 

important application of this type of geometry which has a great interest of many 

researchers recently is the natural convection through attics of buildings. The shape of 

many houses are isosceles triangular cross-section. One of the important objectives for 

design and construction of houses is to provide thermal comfort for occupants. It is also a 

requirement for houses to be energy efficient, i.e. the energy consumption for heating or 

air-conditioning houses must be minimized.  

 More than last three decades research relevant to the heat transfer in attics 

increases due to its importance in our daily life. Most of the previous research focused on 

the fundamental study of natural convection in attics [1–4], which is also the focus of this 

paper. The first reported work for this kind of geometry was conducted by Flack [5] who 

adopted an isosceles triangle for his experimental model and performed flow 

visualizations and heat transfer measurements for night-time (heating from below) 

conditions. It was found in his research that, at low Rayleigh numbers, the flow remained 

laminar. However, the flow eventually became turbulent as the Rayleigh number was 

increased.  

 Recently, an increasing number of studies have been conducted in this area [6-

11]. It is revealed from the literature review that the majority of the existing research is 

concerned with steady-state flows and heat transfer [6,10-16]. However, a very few 

research have been conducted for the transient flow response [2,4,7-9]. Among these 

investigations, Poulikakos and Bejan [4] studied scaling analysis of the transient flow 

inside the attic space for the case of night-time boundary condition with the assumption 

that the flow is symmetric about the center plane and the aspect ratio is very small. 

Scaling analysis has also been performed under both heating and cooling conditions on 

the sloping boundaries of the attic by Saha et al. [7,8].  The numerical simulations for the 

transient flow response to different thermal forcing conditions have been carried out by 

Salmun [17] and Karyakin et al. [18]. Holtzman et al. [3] and Ridouane and Campo [4] 



observed the asymmetric flow structures in an isosceles triangular enclosure due to 

formation of a pitchfork bifurcation for the night time cooling condition.  

Asan and Namli [19] reported results for steady, laminar, two-dimensional natural 

convection in a pitched roof of triangular cross-section under the summer day boundary 

conditions. The results showed that the height-to-base ratio has a profound influence on 

the temperature and flow field. On the other hand, the effect of Rayleigh number is not 

significant for H/B < 1 and Ra < 105. Haese and Teubner [20] investigated the 

phenomenon for a large-scale triangular enclosure for night-time or winter day conditions. 

The authors point out that for a realistic attic space, Rayleigh numbers as high as 1010 or 1011 

would be encountered. This study focused on the existing building structure. 

 Very recently, Saha et al. [21-23] have been studied scaling analysis for the 

transient development of the fluid flow adjacent to an inclined plate for the air (Pr < 1) 

and a range of aspect ratios and Rayleigh numbers. The authors also used those scaling 

results to solve the attic space problem [7-8]. Even though the scaling relations have been 

correctly shown the Rayleigh number (Ra) and aspect ratio (A) dependence under various 

flow configurations, it has also been shown that some of the scalings do not perform 

satisfactorily with Pr variation. This motivates us to further develop the scalings by 

taking into account the Pr variation in the scaling analysis. An improved scalings with Pr 

variation have been performed for the suddenly heated inclined flat plate by Saha et al. 

[24]. The scaling results work very well for the Pr variation of Pr >1. For the case of 

heated vertical flat plate,  Lin et al [25] also have performed the improved scaling 

analysis with numerical verifications. 

 In this study suddenly imposed temperature on the sloping wall is considered and 

a modified triple-layer integral approach of scaling relations have been considered. The 

scaling results are then validated against a set of numerical results. The Prandtl number in 

this study is chosen greater than unity. The numerical simulations of the N-S and the 

energy equations have been performed for various flow parameters, Ra, Pr and A and 

found that the scalings work very well with numerical simulations. The heating up time 

scale and the time series of Nusselt number up to that time are also calculated and 

verified. It is found that initially the Nusselt number on the sloping wall is very high due 

to strong conduction effect. However, it decreases rapidly up to the steady state time of 



the boundary layer. Then it reduces again when the whole cavity becomes heated up. The 

scaling results derived here may be useful for the builder for their air-conditioning 

calculation.      

 

2. Problem formulation 

Under consideration is the unsteady flow behaviour resulting from heating a 

quiescent, isothermal Newtonian fluid with Pr > 1 in a two-dimensional triangular cavity 

of height h and horizontal length 2l by imposing a fixed higher temperature, Th, on both 

inclined walls, as shown in Fig. 1. The fluid is initially at rest and at a uniform 

temperature T0 (T0 < Th). The bottom surface is kept adiabatic and all boundaries are 

nonslip. It is also assumed that the flow is laminar. In order to avoid the singularities at 

the tips in the numerical simulation, the tips are cut off by 5% and at the cutting points 

(refer to Figure 1) rigid non-slip and adiabatic vertical walls are assumed. We anticipate 

that this modification of the geometry will not alter the overall flow development 

significantly. 

 The development of the flow under the inclined plate is governed by the 

following two-dimensional Navier–Stokes and energy equation with the Boussinesq 

approximation: 
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The initial and boundary conditions are defined as follows: 
 

 On the sloping walls a rigid non-slip wall and a constant temperature condition, T 

= Th are applied. 



 The bottom horizontal wall is adiabatic (T/n = 0, where n is the direction 

normal to the wall) and rigid non-slip. 

 At the cutting points of the bottom tips, rigid non-slip and adiabatic vertical walls 

are assumed. 

 Initially the fluid is quiescent and isothermal at temperature T0. 

 
The flow development is determined by three governing parameters: the Rayleigh 

number (Ra), the Prandtl number (Pr) and the slope (A). They are defined respectively as 

follows, 


 3Thg

Ra


 ,  



Pr ,  
l

h
A   (5)

 

A typical flow development of the boundary layer is illustrated in figure 2, where 

numerically simulated temperature contours and the streamlines are shown for the 

specific case of Ra = 107, Pr = 10 and A = 0.5. 

 

3. Scaling Analysis 

 

As soon as the sloping walls are heated, a boundary layer starts to grow adjacent to the 

walls. The flow can be classified into several stages of the boundary layer development. 

A start-up stage is dominated by conduction which is normal to the inclined wall, 

followed by a short transitional stage with some overshoots and undershoots before 

reaching a steady-state stage. However, hot fluid thorough the boundary layer ejected 

from the top of the cavity into the core and eventually heated up the entire domain. The 

parameters characterise the flow behaviour at the boundary-layer development stage: T, 

the thermal boundary layer thickness, Um, the maximum velocity parallel to the inclined 

walls within the boundary layer, ts, the time for the boundary layer to reach the steady 

state, tf, the time for the whole cavity to become heated up, Nus, the steady state Nusselt 

number. The present scaling analysis is the modification of the scaling derived by [8]. To 

show the effect of the Prandtl number on the boundary layer it is necessary to examine 

the structure of the boundary layer in more detail.  



 

3.1 Start up stage 

 

Since initially the fluid is quiescent and uniform in the domain, the energy equation (3) 

indicates that heat from the plate will transfer into the fluid layer through conduction, 

resulting in a thermal boundary layer of thickness T. This is because the advection term 

(UT/h) in the energy equation (3) is much smaller than the conduction term for a very 

small time. The dominant balance is between the unsteady and conduction terms, that is, 
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This scaling is valid until the convection term becomes important. 

The unsteady inertia, viscous and advection terms of the momentum equation (2) 

are O(U/t), O(U/T
2) and O(U 2/L) respectively. The ratio of the advection term to the 

unsteady term is O(Ut/L). For sufficiently small time, this ratio is much smaller and thus 

the advection term is not significant. In addition, the ratio of the unsteady to viscous term 

is (U/t)/(U/T
2)  1/Pr, where Pr = /. For Pr >> 1, the unsteady term is also smaller 

than the viscous term and thus the correct balance is between the viscosity and the 

buoyancy in the momentum equation (2).  
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Figure 3 shows the profiles of the temperature and velocity along a line perpendicular to 

the left inclined wall of the enclosure at its mid point. Since the momentum boundary 

condition of the wall is no-slip, the velocity of the fluid is zero at the surface. The 

velocity increases from zero at the inclined wall and reaches its maximum which occurs 

within T. The velocity then decreases as the position is further from the wall. The 

validation of the scaling relations of the flow features will be shown in the following 

section. It is worth noting that for Pr < 1 the scenario is different, which is out of scope of 

this study. Outside the thermal layer the balance between viscosity and buoyancy is 

invalid. Instead, the fluid is driven by the diffusion of momentum by viscosity from the 

region accelerated by buoyancy. The viscous layer thickness is defined by the length 



scale v. Therefore, we may divide the whole boundary layer into three regions as shown 

in figure 3.  

In regions I and II, the balance is between the viscosity and the buoyancy. 

However, in region III the balance is between viscosity and inertia. In region I (the inner 

viscous layer), the balance (7) gives: 
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In region II, the limit of the integral is taken between (T - i) and T.  
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 Hence, (8) becomes, 
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Equating (11) to (8), we may obtain 
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 As the buoyancy force is negligible in region III, the flow is driven solely by 

diffusion of momentum in which the unsteady term balances the viscous term, yielding 
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Additionally, the length of the inner viscous layer (region I) is  
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(17) is the scaling for Um at the start-up stage 

 The local Nusselt number at any x on the inclined plate at the start-up stage is  
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and the global Nusslet number at the start-up stage is 
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3.2 Steady state stage:  

 

As time increases the more heat is convected away. The boundary layer approaches a 

steady state until convection balances conduction, i.e. 
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which leads to a time scale when the boundary layer reaches a steady state,  
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The corresponding maximum velocity scale at the steady state time is 
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The steady-state thickness scale of the thermal boundary layer is 
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The scaling of the steady state inner viscous boundary layer thickness is 
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The scaling of the steady state viscous boundary layer thickness is 
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At a steady state, the global Nusselt number is: 
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Heating up stage: 
 

Once the boundary layer is fully developed, The hot fluid through the boundary 

layer from both sloping walls meet on the top tip of the cavity. Then it has no choice but 

to move downward. This way the interior of the enclosure is gradually stratified, starting 

from the top of the cavity, and this heating-up stage continues until the hot fluid layer 

from the top reaches the bottom surface. The appropriate parameters to characterize this 

heating-up stage are the time, tf for the fluid to be fully heated-up and the average Nusselt 

number on the heated wall. 

During the heating-up stage, let us consider an arbitrary moment, t. At this 

moment, the fluid inside the enclosure can be assumed to consist of two layers with the 

location x = xi as the interface. The bottom layer is at the original temperature, T0 whereas 

the top layer is filled with the hot fluid discharged from the thermal boundary layer, the 

temperature of which is assumed to be the same as the wall temperature Th.  

From MNO and MPQ in Figure 4, we have, 
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Suppose the total volume of the enclosure ABC is  
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At the steady state time the volume filled by the hot fluid is  
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It is estimated that the maximum ratio of the volume filled by hot fluid during the 

transient stage (from start-up to the steady state time) to the total volume of the enclosure 

is less than 0.095 over the ranges of Ra, Pr, A and other parameters considered here. 

Therefore, the filled volume at the transient stage is insignificant compared to the total 

volume and is neglected below. 

From the mass conservation law 
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  Now applying (22) and (23) in (34) we have, 
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The time when the whole enclosure is filled with hot fluid (xi ~ 0) is obtained as 
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Since only the lower part of the sloping wall contributes to the heat transfer at any given 

time, it is apparent from (26) that the global Nusselt number, Nu at the heating up stage 

is,  

 (37) 

Applying (35) and (36) in (37), we have 
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4. Normalization of the governing equations and the scaling: 

 

To verify the various scales, numerical solution of the full Navier-stokes equations and 

the energy equation are obtained for a range of Ra, Pr and A values. For convenience, the 

non- dimensionalised forms of the governing equations are adopted  
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where x, y, u, v, , p and  are the normalised forms of X, Y, U, V, T, P and t, 

respectively,  which are made normalised by the following set of expressions: 
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where U0 = Ra1/2/h . The origin of the coordinate system is located at the leading edge of 

the heated plate. 

 The scaling relations obtained above are normalised as follows: 
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and 
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The dimensionless form of (22) at a steady state time is 
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At the steady state, (23), (24), (25) and (26) are re-written in the dimensionless form:  
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At the heating up time, (36) and (38) are normalised respectively as 
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5. Numerical procedure 

 

Equations (1) - (4) are solved along with the initial and boundary conditions using the 

SIMPLE scheme. The Finite Volume scheme has been chosen to discretize the governing 

equations, with the QUICK scheme (see Leonard and Mokhtari [26]) approximating the 

advection term. The diffusion terms are discretized using central-differencing with 

second order accurate. A second order implicit time-marching scheme has also been used 

for the unsteady term. The detailed numerical procedure can be found in [7-9]. 

 

6. Results and discussions 
 

The flow features discussed theoretically above are verified on the basis of a complete 

series of numerical simulations. It is assumed that the fluid contained in the attic space is 

originally quiescent and of a uniform temperature  = 0. A sudden heating boundary 

condition is applied on the sloping walls of the cavity. Throughout this simulation, the 

horizontal bottom wall is assumed to be adiabatic. The above scales have been developed 

with an assumption that the flow is symmetric along the symmetry center line of the 

cavity. Previous studies of attic space have revealed that the flow is indeed symmetric 

along the center line for the case of heating on the sloping walls.      

 The detailed validation of the boundary layer development has been discussed in 

Saha, et al. [24] (e.g. velocity scale, thickness scale etc). For brevity, those results are not 

repeated here. However, heat transfer scales together with steady state time scales have 

been verified in this study. Moreover, the heating-up time scale and the subsequent heat 

transfer scale at that time have also been verified.    



 The heating-up time is determined by the heat flux through the natural convection 

boundary layer. The hot fluid moves upward along the boundary layers of both inclined 

walls and meets under the apex of the enclosure. Then it has no choice but to move 

downward right below the tip, forming a horizontal stratification. This stratified hot fluid 

fills the enclosure, ultimately reaching the bottom surface at which time the whole 

enclosure is filled with hot fluid.  

Table 1 shows all simulation cases in this study in which Runs 1-5 with Pr = 5, 

10, 20, 50 and 100 while keeping A = 0.5 and Ra = 1.0×107 unchanged are carried out to 

show the dependence of the scaling relations on the Prandtl number; Runs 6-9 and 2 with 

Ra = 1.0×106, 5.0×106, 5.0×107, 1.0×108 and 1.0×107 while keeping Pr = 10 and A = 0.5 

unchanged to show the dependence on the Rayleigh number; and Runs 10-11 and 2 with 

A = 1.0, 0.2 and 0.5 while keeping Pr = 10 and Ra = 1.0×107 unchanged to show the 

dependence of the slope of the inclination of the plate. 

The numerical results showing the dependence of the instantaneous average 

Nusselt number Nu on Ra, Pr and A at the boundary-layer development stage and at the 

heating-up stage are presented in Figure 5 and 6. Figure 5(a) shows the raw data of the 

time series of the Nusselt number which have been calculated on the left inclined wall of 

the cavity for different Rayleigh numbers, Prandtl numbers and aspect ratios. It is found 

that the Nusselt number depends strongly on Ra, Pr and A. It is also noticed that initially 

Nusselt number for different parameters are very high due to strong conduction effect. 

Then it decreases gradually and become steady state. However, the return flow from the 

top eventually occupied the entire cavity which affects the Nusselt numbers. The Nusselt 

number approaches zero when the whole cavity becomes heated up. In Figure 5(b), the 

time has been normalized with respect to the steady state time, (1+A2)1/2(1+Pr-1/2)/A, of 

the boundary layer development. We notice that the steady state of the Nusselt numbers 

fall on a vertical line (long dashed line), which validates the steady state time scale of the 

boundary layer development (48).  

The Nusselt number is now normalized with respect to its steady state value, 

A1/2Ra1/4/[(1+A2)1/4(1+Pr-1/2)1/2] and plotted against normalized time with respect to the 

steady state time scale in Figure 6(a). As anticipated, all lines collapse together in one 

line up to the steady state time. This validates the scaling relation (26) together with the 



time scale (48) at the boundary-layer development stage. Finally, the normalized Nusselt 

number has been plotted against 1-(/f)
1/2 in Figure 6(b). Again all lines collapse on a 

single line which validates the scaling relation (54) at the heating up stage. Note that the 

x-axis is on a log scale of figure 6(b). 

 To verify the heating-up time scale, the temperature has been recorded at the 

midpoint of the bottom surface, which is shown in Figure 7. Raw data of the time series 

of the temperature for different Rayleigh numbers, Prandtl numbers and aspect ratios are 

plotted in Figure 7(a). It is anticipated that initially there is no response of the 

temperature at the middle point of the bottom surface. The hot fluid from the boundary 

layer discharge from the top and the enclosure gradually becomes stratified from the top. 

As soon as the hot fluid reaches the bottom, the temperature starts to increase. However, 

this response time is different for different Ra, Pr and A. In Figure 7(b), the time is 

normalized with respect to the heating-up time, f ~ Ra1/4(1+Pr-1/2)1/2/[A1/2(1+A2)1/4] and 

the temperature has been normalized by the temperature difference. We see that the 

temperature series response at the same time for different flow parameters. This confirms 

that the heating-up time scale (53) is accurate. 

 

7 Conclusions 

 

Natural convection under a heated triangular cavity is examined by modified scaling 

analysis and verified by numerical simulations for various parameters considered here. 

The verification of the scaling relations includes steady state time scale of the boundary-

layer development as well as the heat transfer rate. Moreover, heating up time scale and 

the Nusselt number at that time are also verified by numerical simulations. Numerical 

results demonstrate that the scaling relations are able to accurately characterize the 

physical behaviour in each stage of the flow development, including the start-up stage, 

the transitional stage, the steady state stage and the heating up stage. The present scaling 

analysis incorporates a detailed balance in the momentum equation depending on the 

thickness of the boundary layer that improves scaling predictions especially where the Pr 

variation effect is taken into account. The scaling relations are formed based on the 

established characteristic flow parameters of the maximum velocity in the boundary layer 



(um), the time for the boundary layer to reach the steady state (ts) and the thermal (δT) and 

viscous (δν) boundary layer thickness. Through comparisons of the scaling relations with 

the numerical simulations, it is found that the scaling results agree well with the 

numerical simulations. 
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Table 1 
Values of Ra, Pr and A for 11 simulations run 

Run number Ra Pr A 
1 1.0×107 5 0.5 
2 1.0×107 10 0.5 
3 1.0×107 20 0.5 
4 1.0×107 50 0.5 
5 1.0×107 100 0.5 
6 1.0×106 10 0.5 
7 5.0×106 10 0.5 
8 5.0×107 10 0.5 
9 1.0×108 10 0.5 
10 1.0×107 10 1.0 
11 1.0×107 10 0.2 

 

 
  



Fig.1. Schematic of the computational domain and boundary conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

2l 

0
ˆ





n 

T 
,
 
 u = v = 0 

y 

h 

x 

0  v u  ,T T h   0 vu ,TT h  

T0  

A' 

B   
C  

D   

E 

L 

 



Fig. 2. Numerically simulated temperature contours (left) and stream functions (right) at 

of the boundary-layer development at Ra = 107, Pr = 10 and A = 0.5, where  is the time 

normalised by h/U0. 

 

 
 
 
 
 



 

 
Fig. 3. A schematic of the temperature and velocity profiles normal to one of the 
inclined walls at its mid point.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y

(T
-T

0)
/

T
,U

/U
m

0 0.005 0.01 0.015
0

0.2

0.4

0.6

0.8

1

1.2

Temperature Profile
Velocity profile



I III

i



II



 

Fig. 4. Schematic of heating-up process for sudden heating. 
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Figure 5 Nusselt number canculated on the heated plate for all cases considered: (a) raw 
data (b) Nu plotted against /s. 
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Figure 6 Nusselt number canculated on the heated plate for all cases considered: (a) 

Nu/Nus plotted against /s (b) Nu/Nus plotted against 1-(/s)
1/2. 
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Figure 7 Time series of the maximum velocity parallel to the plate at x = 0.5 for all cases 

considered: (a) raw data and (b)  plotted against [A1/2(1+A2)1/4]/Ra1/4(1+Pr-1/2)1/2. 

 
 





0 50 100 150 200 250 300 350

0

0.2

0.4

0.6

0.8

1(a)

/f



0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

Ra = 1.0107, Pr = 5, A = 0.5

Ra = 1.0107, Pr = 10, A = 0.5

Ra = 1.0107, Pr = 20, A = 0.5

Ra = 1.0107, Pr = 50, A = 0.5

Ra = 1.0107, Pr = 100, A = 0.5

Ra = 1.0106, Pr = 10, A = 0.5

Ra = 5.0106, Pr = 10, A = 0.5

Ra = 5.0107, Pr = 10, A = 0.5

Ra = 1.0108, Pr = 10, A = 0.5

Ra = 1.0107, Pr = 10, A = 1.0

Ra = 1.0107, Pr = 10, A = 0.2

(b)



 


