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Abstract

Markov chain Monte Carlo (MCMC) estimation provides a solution to the complex
integration problems that are faced in the Bayesian analysis of statistical problems. The
implementation of MCMC algorithms is, however, code intensive and time consuming. We
have developed a Python package, which is called PyMCMC, that aids in the construction
of MCMC samplers and helps to substantially reduce the likelihood of coding error, as
well as aid in the minimisation of repetitive code. PyMCMC contains classes for Gibbs,
Metropolis Hastings, independent Metropolis Hastings, random walk Metropolis Hastings,
orientational bias Monte Carlo and slice samplers as well as specific modules for common
models such as a module for Bayesian regression analysis. PyMCMC is straightforward
to optimise, taking advantage of the Python libraries Numpy and Scipy, as well as being
readily extensible with C or Fortran.

Keywords: MCMC, Metropolis Hastings, Gibbs, Bayesian, OBMC, slice sampler, Python.

1. Introduction

The most common approach currently used in the estimation of Bayesian Models is Markov
chain Monte Carlo (MCMC). PyMCMC is a Python module that is designed to simplify the
construction of Markov chain Monte Carlo (MCMC) samplers, without sacrificing flexibility
or performance. Python has extensive scientific libraries, is easily extensible, has a clean
syntax and powerful programming constructs, making it an ideal programming language to
build an MCMC library; see van Rossum (1995) for further details on the programming
language Python. PyMCMC contains objects for the Gibbs sampler, Metropolis Hastings
(MH), independent MH, random walk MH, orientational bias Monte Carlo (OBMC) as well
as the slice sampler: see for example Robert and Casella (1999) for details on standard MCMC
algorithms. The user can simply piece together the algorithms required and can easily include
their own modules, where necessary. Along with the standard algorithms, PyMCMC includes
a module for Bayesian regression analysis. This module can be used for the direct analysis
of linear models, or as a part of an MCMC scheme, where the conditional posterior has the
form of a linear model. It also contains a class that can be used along with the Gibbs sampler
for Bayesian variable selection.

The flexibility of PyMCMC is important in practice, as MCMC algorithms usually need to
be tailored to the problem of interest in order to ensure good results. Issues such as block
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size and parameterisation can have a dramatic effect on the convergence of MCMC sampling
schemes. For instance, Lui, Wong, and Kong (1994) show theoretically that jointly sampling
parameters in a Gibbs scheme typically leads to a reduction in correlation in the associated
Markov chain in comparison to individually sampling parameters. This is demonstrated
in practical applications in Carter and Kohn (1994) and Kim, Shephard, and Chib (1998).
Reducing the correlation in the Markov chain enables it to move more freely through the
parameter space and as such enables it to escape from local modes in the posterior distribution.
Parameterisation can also have a dramatic effect on the convergence of MCMC samplers; see
for example Gelfand, Sahu, and Carlin (1995), Sahu and Roberts (1997), Pitt and Shephard
(1999), Robert and Mengersen (1999), Früwirth-Schnatter (2004) and Strickland, Martin,
and Forbes (2008), who show that the performance of the sampling schemes can be improved
dramatically with the use of efficient parameterisation.

PyMCMC aims to remove unnecessary repetitive coding and hence reduce the chance of cod-
ing error, and importantly, greatly speed up the construction of efficient MCMC samplers.
This is achieved by taking advantage of the flexibility of Python, which allows for the imple-
mentation of very general code. Another feature of Python, which is particularly important,
is it is also extremely easy to include modules from compiled languages such as C and Fortran.
This is important to many practitioners who are forced, by the size and complexity of their
problems, to write their MCMC programs entirely in compiled languages, such as C/C++ and
Fortran in order to obtain the necessary speed for feasible practical analysis. With Python, the
user can simply compile Fortran code using a module called F2py (Peterson 2009), or inline
C using Weave, which is a part of Scipy (Oliphant 2007), and use the subroutines directly
from Python. F2py can also be used to directly call C routines with the aid of a Fortran sig-
nature file. This enables the use of PyMCMC and Python as a rapid application development
environment, without compromising on performance by requiring only very small segments
of code written in a compiled language. It should be mentioned that for most reasonable
sized problems PyMCMC is sufficiently fast for practical MCMC analysis without the need
for specialised modules.

Figure 1 is a flow chart that depicts the structure of PyMCMC. Essentially, the implemen-
tation of an MCMC sampler can be seen to centred around the class MCMC, which acts as
a container for various algorithms that are used in sampling from the conditional posterior
distributions that make up the MCMC sampling scheme.

The structure of the paper is as follows. In Section 2 the algorithms contained in PyMCMC
and the user interface are described. This includes the Gibbs sampler, the Metropolis based
algorithms and the slice sampler. Section 2 also contains a description of the Bayesian re-
gression module. Section 3 contains three empirical examples that demonstrate how to use
PyMCMC. The first example demonstrates how to use the regression module for the Bayesian
analysis of the linear model. In particular, the stochastic search variable selection algorithm,
see George and McCulloch (1993) and Marin and Robert (2007), is used to select a set of
‘most likely models’. The second example demonstrates how to use PyMCMC to analyse the
loglinear model and the third example demonstrates how to use PyMCMC to analyse a linear
model with first order autoregressive errors. Section 4 contains discussion on the efficient
implementation of the MCMC algorithms using PyMCMC. Section 5 describes how to use
PyMCMC interactively with R and Section 7 concludes.
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Figure 1: Flow chart illustrating the implementation of PyMCMC.

2. Bayesian analysis

Bayesian analysis quantifies information about the unknown parameter vector of interest, θ,
for a given data set, y, through the joint posterior probability density function (pdf), p(θ|y),
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which is defined such that

p(θ|y) ∝ p(y|θ)× p(θ), (1)

where p(y|θ) denotes the pdf of y given θ and p(θ) is the prior pdf for θ. The most common
approach used for inference about θ is MCMC.

2.1. Markov chain Monte Carlo methods and implementation

In the following subsections, a brief description of each algorithm and the associated pro-
gramming interface is included.

Markov chain Monte Carlo sampling

If we partition θ into s blocks, that is θ = (θ1,θ2, . . . ,θs)
T , then the jth step for a generic

MCMC sampling scheme is given by:

Algorithm 1 Gibbs sampler

1. Sample θj1 from p
(
θ1|y, θj−12 ,θj−13 , . . . ,θj−1s

)
,

2. Sample θj2 from p
(
θ2|y, θj1,θ

j−1
3 ,θj−14 , . . . ,θj−1s

)
,

...

s. Sample θjs from p
(
θs|y, θj1,θ

j
2, . . . ,θ

j
s−1

)
.

An important special case of Algorithm 1 is the Gibbs sampler, which is an algorithm that is
proposed in Gelfand and Smith (1990). Specifically, when each of θ1,θ2, . . . ,θs, is sampled
from a closed form then this algorithm corresponds to that of the Gibbs sampler. PyMCMC
contains a class that facilitates the implementation of Algorithm 1, in which the user must
define functions to sample from each block, i.e.,. a function for each of θi, for i = 1, . . . , s.
These functions may be defined using the Metropolis based or slice sampling algorithms that
are part of PyMCMC. The class is named MCMC and the following arguments are required in
the initialisation of the class:

nit: The number of iterations.

burn: The burnin length of the MCMC sampler.

data: A dictionary (Python data structure) containing any data, functions or objects that
the user would like to have access to when defining the functions that are called from
the Gibbs sampler.

blocks: A list (Python data structure) containing functions that are used to sample from the
full conditional posterior distributions of interest.

**kwargs Optional arguments:
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loglike A tuple (a Python data structure) containing a function that evaluates the
log-likelihood, number of parameters and the name of the dataset. For example:
loglike = (loglike, nparam, ‘yvec’). If this is defined then the log-likelihood
and the BIC will be reported in the standard output.

transform A dictionary, where the keys are the names of the parameters and the asso-
ciated values are functions that transform the iterates stored in the MCMC scheme.
This can be useful when the MCMC algorithm is defined under a particular pa-
rameterisation, but where it is desirable to report the results under a different
parameterisation.

Several functions are included as a part of the class:

sampler() - Used to run the MCMC sampler.

get_mean_cov(listname) - Returns the posterior covariance matrix for the parameters
named in listname, where listname is a list that contains the parameter names of
interest.

get_parameter(name) - Returns the iterates for the named parameter including the burnin.

get_parameter_exburn(name) - Returns the iterates for the named parameter excluding
the burnin.

get_mean_var(name) - Returns the estimate from the MCMC estimation for the posterior
mean and variance for the parameter defined by name.

set_number_decimals(num) - Sets the number of decimal places for the output.

output(**kwargs) - Used to produce output from the MCMC algorithm.

**kwargs - Optional arguments that control the output.

parameters: A dictionary, list or string specifying the parameters that are going
to be presented.

• If a string is passed (e.g.,: parameters = ‘beta’), all elements of that
parameter are given.

• If a list (e.g.,: parameters = [‘alpha’, ‘beta’]), all elements of each
parameter in the list are given.

• If a dictionary (e.g.,: parameters = {‘alpha’:{‘range’:range(5)}}),
then there is the possibility to add an additional argument ‘range’ that
tells the output to only print a subset of the parameters. The above
example will print information for alpha[0], alpha[1],..., alpha[4]

only.

custom - A user defined function that produces custom output.

filename - A filename to which the output is printed. By default output will be
printed to stdout.

plot(blockname, **kwargs) - Create summary plots of the MCMC sampler. By
default, a plot of the marginal posterior density, an ACF plot and a trace plot
are produced for each parameter in the block. The plotting page is divided into
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a number of subfigures. By default, the number of columns are approximately
equal to the square root of the total number of subfigures divided by the number
of different plot types. Arguments to plot are:

blockname - The name of the parameter, for which summary plots are to be
generated.

**kwargs - An optional dictionary (Python data structure) containing information
to control the summary plots. The available keys are summarised below:

elements: A list of integers specifying the elements that will be plotted. For
example, if the blockname is ‘beta’ and β = (β0, β1 . . . βn) then you may
specify elements as elements = [0,2,5].

plottypes: A list giving the type of plot for each parameter. By default the
plots are ‘density’, ‘acf’ and ‘trace’. A single string is also acceptable.

filename: A string providing the name of an output file for the plot. As
a plot of a block may be made up of a number of subfigures, the output
name will be modified to give a separate filename for each subfigure. For
example, if the filename is passed as ‘plot.png’, and there are multi-
ple pages of output, it will produce the files plot001.png, plot002.png,
etc. The type of file is determined by the extension of the filename,
but the output format will also depend on the plotting backend being
used. If the filename does not have a suffix, a default format will be
chosen based on the graphics backend. Most backends support png, pdf,
ps, eps and svg (see the documentation for Matplotlib for further details
http://matplotlib.sourceforge.net).

individual: A Boolean option. If true, then each subplot will be done on
an individual page.

rows: Integer specifying the number of rows of subfigures on a plotting page.

cols: Integer specifying the number of columns of subfigures on a plotting
page.

CODAoutput(**kwargs) - Output the results in a format suitable for reading in with the
statistical package Convergence Diagnostic and Output Analysis (CODA) (Plum-
mer, Best, Cowles, and Vines 2006). By default, there will be two files created,
coda.txt and coda.ind.

**kwargs - An optional dictionary controlling the CODA output.

filename: A string to provide an alternative filename for the output. If the
file has an extension this will form the basis for the data file and the index
file will be named by replacing the extension with ind. If no extension
is in the filename then two files will be created and named by adding the
extensions .txt and .ind to the given filename.

parameters: A string, a list or a dictionary that specify the items writ-
ten to file. It can be a string such as ‘alpha’ or it can be a list (e.g.,
[‘alpha’,‘beta’]) or it can be a dictionary (e.g.,
{‘alpha’:{‘range’:[0,1,5]}}. If you supply a dictionary the key is the
parameter name. It is also permissible to have a range key with a range
of elements. If the range isn’t supplied it is assumed that the user wants
all of the elements.
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thin: Integer specifying how to thin the output. For examples if thin = 10,
then every tenth element will be written to the CODA output.

Metropolis Hastings

A particularly useful algorithm that is often used as a part of MCMC samplers is the MH
algorithm (Algorithm 2); see for example Robert and Casella (1999). This algorithm is usually
required when we cannot easily sample directly from p(θ|y), however, we have a candidate
density q(θ|y,θj−1), which in practice is close to p(θ|y), and is more readily able to be
sampled. The MH algorithm at the jth iteration for j = 1, 2, . . . ,M is given by the following
steps:

Algorithm 2 Metropolis Hastings

1. Draw a candidate θ∗ from the density q
(
θ|y,θj−1

)
,

2. Accept θj = θ∗ with probability equal to min

{
1, p(θ∗|y)

p(θj−1|y)/
q(θ∗|y,θj−1)
q(θj−1|y,θ∗)

}
,

3. Otherwise θj = θj−1.

PyMCMC includes a class for the MH algorithm, which is called MH. To initialise the class
the user needs to define:

func - User defined function that returns a sample for the parameter of interest.

actualprob - User defined function that returns the log probability of the parameters of
interest evaluated using the target density.

probcandprev - User defined function that returns the log of q
(
θ∗|y,θj−1

)
.

probprevcand - User defined function that returns the log of q
(
θj−1|y,θ∗

)
.

init_theta - Initial value for the parameters of interest.

name - The name of the parameter of interest.

**kwargs - Optional arguments:

store

‘all’ (default), stores every iterate for the parameter of interest. This is required
for certain calculations.

‘none’, does not store any of the iterates from the parameter of interest.

fixed_parameter - Is used if the user wants to fix the parameter value that is returned.
This is used for testing MCMC sampling schemes. This command will override any
other functionality.
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Independent Metropolis Hastings

The independent MH is a special case of the MH described in Algorithm 2. Specifically,
the independent MH algorithm is applicable when we have a candidate density q(θ|y) =
q(θ|y,θj−1). The independent MH algorithm at the jth iteration for j = 1, 2, . . . ,M is given
by Algorithm 3.

Algorithm 3 Independent MH algorithm

1. Draw a candidate θ∗ from the density q (θ|y) ,

2. Accept θj = θ∗ with probability equal to min
{

1, p(θ∗|y)
p(θj−1|y)/

q(θ∗|y)
q(θj−1|y)

}
,

3. Otherwise accept θj = θj−1.

PyMCMC contains a class for the independent MH algorithm, named IndMH. To initialise the
class the user needs to define:

func - A user defined function that returns a sample for the parameter of interest.

actualprob - A user defined function that returns the log probability of the parameters of
interest evaluated using the target density.

candpqrob - A user defined function that returns the log probability of the parameters of
interest evaluated using the candidate density.

init_theta - Initial value for the parameters of interest.

name - Name of the parameter of interest.

**kwargs- Optional arguments:

store

‘all’ (default), stores every iterate for the parameter of interest. This is required
for certain calculations.

‘none’, does not store any of the iterates from the parameter of interest.

fixed_parameter - Is used if the user wants to fix the parameter value that is returned.
This is used for testing MCMC sampling schemes. This command will override any
other functionality.

Random walk Metropolis Hastings

A useful and simple way to construct an MH candidate distribution is via

θ∗ = θj−1 + ε, (2)

where ε is a random disturbance vector. If ε has a distribution that is symmetric about
zero then the MH algorithm has a specific form that is referred to as the random walk MH
algorithm. In this case, note that the candidate density is both independent of y and, due to
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symmetry, q
(
θ∗|θj−1

)
= q

(
θj−1|θ∗

)
. The random walk MH algorithm at the jth iteration

for j = 1, 2, . . . ,M is given by Algorithm 4.

Algorithm 4 Random Walk MH

1. Draw a candidate θ∗ from Equation 2 where the random disturbance ε has a distribution
symmetric about zero.

2. Accept θj = θ∗ with probability equal to min
{

1, p(θ∗|y)
p(θj−1|y)

}
,

3. Otherwise accept θj = θj−1.

A typical choice for the distribution of ε is a Normal distribution, that is ε ∼ i.i.d. N (0,Ω)
where the covariance matrix Ω is viewed as a tuning parameter. PyMCMC includes a class
for the random walk MH algorithm, named RWMH. The class RWMH is defined assuming ε
follows a normal distribution. Note that more general random walk MH algorithms could be
constructed using the MH class. To initialise the class the user must specify:

post - A user defined function for the log of full conditional posterior distribution for the
parameters of interest.

csig - Scale parameter for the random walk MH algorithm.

init_theta - Initial value for the parameter of interest.

name - Name of the parameter of interest.

**kwargs - Optional arguments:

store

‘all’ (default), stores every iterate for the parameter of interest. This is required
for certain calculations.

‘none’, does not store any of the iterates from the parameter of interest.

fixed_parameter - Is used if the user wants to fix the parameter value that is returned.
This is used for testing MCMC sampling schemes. This command will override any
other functionality.

adaptive - ‘GFS’, Then the adaptive random walk MH algorithm of Garthwaite, Fan,
and Scisson (2010) will be used to optimise Ω.

Orientational bias Monte Carlo

The multiple try Metropolis (Liang, Lui, and Wong 2000) generalises the MH algorithm
to allow for multiple proposals. The OBMC algorithm is a special case of the multiple try
Metropolis that is applicable when he candidate density is symmetric. The OBMC Algorithm
at iteration j is as follows:
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Algorithm 5 Orientational Bias Monte Carlo

1. Draw L candidates θ∗l , l = 1, 2, . . . , L, independently from the density q
(
θ|y,θj−1

)
,

where q
(
θ|y,θj−1

)
is a symmetric function.

2. Construct a probability mass function (pmf) by assigning to each θ∗l , a probability
proportional to p (θ∗l |y) .

3. Select θ∗∗ randomly from this discrete distribution.

4. Draw L− 1 reference points rl, l = 1, 2, . . . , L− 1, independently from q (θ|y,θ∗∗) and
set rL = θj−1.

5. Accept θj = θ∗∗ with probability equal to min

{
1,

∑L

l=1
p(θ∗l |y)∑L

l=1
p(rl|y)

}
,

6. Otherwise accept θj = θj−1.

PyMCMC implements a special case of the OBMC algorithm, for which the candidate density
is multivariate normal, making it a generalisation of the random walk MH algorithm. The
class for the OBMC algorithm is named OBMC. To initialise the class the user must specify:

post - A user defined function for the log of the full conditional posterior distribution for
the parameters of interest.

ntry - Number of candidates, L.

csig - A scale parameter for the OBMC algorithm.

init_theta - Initial value for the parameter of interest.

**kwargs - Optional arguments:

store

‘all’ (default), stores every iterate for the parameter of interest. This is required
for certain calculations.

‘none’, does not store any of the iterates from the parameter of interest.

fixed_parameter - Is used if the user wants to fix the parameter value that is returned.
This is used for testing MCMC sampling schemes. This command will override any
other functionality.

Closed form sampler

A class is included so that the user can specify a function to sample the parameters of interest
when there is a closed form solution. The name of the class is CFsampler. To initialise the
class the user must specify:

func - User defined function that samples from the posterior distribution of interest.
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init_theta - Initial value for the unknown parameter of interest.

name - The name of the parameter of interest.

**kwargs - Optional parameters:

store

‘all’ (default), stores every iterate for the parameter of interest. This is required
for certain calculations.

‘none’, does not store any of the iterates from the parameter of interest.

fixed_parameter - Is used if the user wants to fix the parameter value that is returned.
This is used for testing MCMC sampling schemes. This command will override any
other functionality.

Slice sampler

The slice sampler is useful for drawing values from complex densities; see Neal (2003) for
further details. The required distribution must be proportional to one or a multiple of several
other functions of the variable of interest;

p(θ) ∝ f1(θ)f2(θ) · · · fn(θ).

A set of values from the distribution is obtained by iteratively sampling a new value, ω, from
the vertical slice between 0 and fi(θ), then sampling a value for the parameter θ from the
horizontal slice that consists of the set of possible values of θ, for which the previously sampled
ω ≤ p(θ). This leads to the slice sampler algorithm, which can be defined at iteration j using
Algorithm 6.

Algorithm 6 Slice sampler

1. For i = 1, 2, . . . , n, draw ωi ∼ Unif[0, fi(θ
j−1)].

2. Sample θj ∼ Unif[A] where A = {θ : f1(θ) ≥ ω1 ∈ f2(θ) ≥ ω2 ∈ · · · ∈ fn(θ) ≥ ωn}.

In cases where the density of interest is not unimodal, determining the exact set A is not
necessarily straightforward. The stepping out algorithm of Neal (2003) is used to obtain the
set A. This algorithm is applied to each of the n slices to obtain the joint maximum and
minimum of the slice. This results in a sampling interval that is designed to draw a new θj in
the neighbourhood of θj−1 and may include values outside the permissible range of A. The
user is required to define an estimated typical slice size (ss), which is the width of set A,
along with an integer value (N), which limits the width of any slice to N × ss. The stepping
out algorithm (7) is:
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Algorithm 7 Stepping out

1. Initiate lower (LB) and upper (UB) bounds for slice defined by set A.

• U ∼ Unif(0, 1);

– LB = θj−1 − ss×U ,

– UB = LB + ss.

1. Sample V ∼ Unif(0, 1).

2. Set J = Floor(N×V ).

3. Set Z = (N − 1)− J .

4. Repeat while J > 0 and ωi < fi(LB)∀i;

• LB = LB - ss,

• J = J − 1.

5. Repeat while Z > 0 and ωi < fi(UB)∀i;

• UB = UB + ss,

• Z = Z - 1.

6. Sample θj ∼ Unif(LB,UB).

The value of θj is accepted if it is drawn from a range (LB,UB) ∈ A. If it is outside the
allowable range due to the interval (LB,UB) being larger in range than the set A we then
invoke a shrinkage technique to resample θj and improve the sampling efficiency of future
draws, until an acceptable θj is drawn. The shrinkage algorithm is implemented as follows,
repeating this algorithm until exit conditions are met.

Algorithm 8 Shrinkage

1. U ∼ Unif(0, 1).

2. θj = LB + U×(UB − LB);

• If ωi < fi(ωi)∀i, accept θj and exit,

• Else if θj < θj−1, set LB = θj and return to step 1,

• Else set UB = θj and return to step 1.

PyMCMC includes a class for the slice sampler named SliceSampler. To initialise the class
the user must define:

func - A k dimensional list containing the set of log functions.
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init_theta - An initial value for θ.

ssize - A user defined value for the typical slice size.

sN - An integer limiting slice size to N × ss.

**kwargs - Optional arguments:

store

‘all’ (default), stores every iterate for the parameter of interest. This is required
for certain calculations.

‘none’, does not store any of the iterates from the parameter of interest.

fixed_parameter - Is used if the user wants to fix the parameter value that is returned.
This is used for testing MCMC sampling schemes. This command will override any
other functionality.

2.2. Normal linear Bayesian regression model

Many interesting models are partly linear for a subset of the unknown parameters. As such
drawing from the full conditional posterior distribution for the associated parameters may
be equivalent to sampling the unknown parameters in a standard linear regression model.
PyMCMC includes several classes that aid in the analysis of linear or partly linear mod-
els. In particular the classes LinearModel, CondRegressionSampler, CondScaleSampler and
StochasticSearch are useful for this purpose. These classes are described in this section.
For the standard linear regression model (see Zellner (1971), assume the (n× 1) observational
vector, y, is generated according to

y = Xβ + ε; ε ∼ N(0, σ2I), (3)

where X is an (n× k) matrix of regressors, β is a (k × 1) vector of regression coefficients and
ε is a normally distributed random variable with a mean vector 0 and an (n× n) covariance
matrix, σ2I. Assuming that both β and σ are unknown then the posterior distribution for
Equation 3 is given by

p(β, σ|y,X) ∝ p(y|X,β, σ)× p(β, σ), (4)

where

p(y|X,β, σ) ∝ σ−n exp

{
− 1

2σ2
(y −Xβ)T (y −Xβ)

}
, (5)

is the joint pdf for y given X, β and σ, and p(β, σ) denotes the joint prior pdf for β and σ.

A class named LinearModel is defined to sample from the posterior distribution in Equation 4.
One of four alternative priors may be used in the specification of the model. The default choice
is Jeffreys prior. Denoting the full set of unknown parameters as θ = (βT , σ)T , then Jeffreys
prior is defined such that

p(θ) ∝ |I(θ)|−1/2, (6)
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where I(θ) is the Fisher information matrix for θ. For the normal linear regression model in
3, given the assumption that β and σ are a priori independent, Jeffreys prior is flat over the
real number line for β, and σ is distributed such that

p (σ) ∝ 1

σ
. (7)

See Zellner (1971) for further details on Jeffreys prior. Three alternative informative prior
specifications are allowed, namely the normal-gamma, the normal-inverted-gamma and Zell-
ner’s g-prior; see Zellner (1971) and Marin and Robert (2007) for further details. The normal-
gamma prior is specified such that

β|κ ∼ N(β,V −1), κ ∼ G
(
ν

2
,
S

2

)
, (8)

where κ = σ−2 and β, V , ν and S are prior hyperparameters that take user defined values. For

the Normal-gamma prior, LinearModel produces estimates for
(
κ,βT

)T
rather than

(
σ,βT

)
. The Normal-inverted gamma prior is specified such that

β|σ−2 ∼ N(β,V −1), σ−2 ∼ IG
(
ν

2
,
S

2

)
, (9)

where β, V , ν and S are prior hyperparameters, which take values that are set by the user.
Zellner’s g-prior is specified such that

β|σ ∼ N
(
β, gσ2

(
XTX

)−1)
, p(σ) ∝ σ−1, (10)

where β and g are hyperparameters with values that are specified by the user. To initialise
the class LinearModel the user must specify:

yvec - One dimensional Numpy array containing the data.

xmat - Two dimensional Numpy array contain the regressors.

**kwargs - Optional arguments:

prior - A list containing the name of the prior and the corresponding hyperparameters.
Examples:
prior = [‘normal_gamma’, betaubar, Vubar, nuubar, Subar] ,
prior = [‘normal_inverted_gamma’,betaubar, Vubar, nuubar, Subar] and
prior = [‘g_prior’, betaubar, g].
If none of these options are chosen or they are miss-specified then the default prior
will be Jeffreys prior.

LinearModel contains several functions that may be of interest to the user. In particular:

sample() - Returns a sample of σ and β from the joint posterior distribution for the normal-
inverted gamma prior, Jeffreys prior and Zellner’s g-prior. If the normal-gamma prior
is specified then sample() returns κ and β.
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update_yvec(yvec) - Updates yvec in LinearModel. This is often useful when the class is
being used as a part of the MCMC sampling scheme.

update_xmat(xmat) - Updates xmat in LinearModel. This is often useful when the class is
being used as a part of the MCMC sampling scheme.

loglike(scale, beta) - Returns the log-likelihood.

posterior_mean() - Returns the posterior mean for the scale parameter (either σ or κ
depending on the specified prior) and β.

get_posterior_covmat() - Returns the posterior covariance matrix for β.

bic() - Returns the Bayesian information criterion; see Kass and Raftery (1995) for details.

plot(**kwargs) - Produces standard plots. Specifically the marginal posterior density in-
tervals for each element of β and for the scale parameter (σ or κ).

residuals - Returns the residual vector from the regression analysis. The residuals are
calculated with β evaluated at the marginal posterior mean.

output - Produces standard output for the regression analysis. This includes the means,
standard deviations and highest posterior density (HPD) intervals for the marginal
posterior densities for each element of β and for the scale parameter (σ or κ). The
output also reports the log-likelihood and the BIC.

In MCMC sampling schemes it is common that for a subset of the unknown parameters of
interest the full conditional posterior distribution will correspond to that of a linear regression
model, where the scale parameter is known. For the linear regression model specified in
Equation 3 the posterior distribution for the case that σ is known is as follows

p (β|y,X,β, σ) ∝ p(y|X,β, σ)× p(β), (11)

where p(y|X,β, σ) is described in Equation 5 and p(β) is the prior pdf for β. To sample from
Equation 11 a class named CondRegressionSampler can be used. The user may specify one
of three alternative priors. The default prior is Jeffreys prior, which for β is simply a flat
prior over the real number line. A normally distributed prior for β is another option, and can
be specified such that

β ∼ N
(
β,V −1

)
.

The user may also specify their a priori beliefs using Zellner’s g-prior, where

β|σ ∼ N
(
β, gσ2XTX

)
.

To initialise the class the user must specify:

yvec - A one dimensional Numpy array containing the data.

xmat - A two dimensional Numpy array containing the regressors.

**kwargs - Optional arguments:
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prior - A list containing the name of the prior and the corresponding hyperparameters.
Examples:
prior=[‘normal’, betaubar, Vubar] or [‘g_prior’, betaubar, g].
If none of these options are chosen or they are miss-specified then the default prior
will be Jeffreys prior.

CondRegressionSampler contains several functions that may be of interest to the user. In
particular:

sample(sigma) - Returns a sample of β from the posterior distribution specified in 11.

get_marginal_posterior_mean() - Returns the marginal posterior mean for 11.

get_marginal_posterior_precision() - Returns the marginal posterior precision for the
linear conditional posterior distribution specified in 11.

update_yvec(yvec) - Updates yvec in CondRegressionSampler. This is often useful when
the class is being used as a part of an MCMC sampling scheme.

update_xmat(xmat) - Updates xmat in CondRegressionSampler. This is often useful when
the class is being used as a part of an MCMC sampling scheme.

Many Bayesian models contain linear components with unknown scale parameters, hence a
class has been specified named CondScaleSampler, which can be used to individually sample
scale parameters from their posterior distributions. In particular, we wish to sample from

p(σ|y,θ), (12)

where θ is the set of unknown parameters of interest excluding σ. The user may choose to
use one of three priors. The Jeffreys prior, which for σ given the posterior in Equation 12 is
as follows

p(σ) ∝ 1

σ
.

The second option is to specify an inverted-gamma prior, such that

σ ∼ IG
(
ν

2
,
S

2

)
.

Alternatively, the user may specify a gamma prior for κ = 1
σ2 , where

κ ∼ G
(
ν

2
,
S

2

)
.

To initialise the class CondScaleSamper the user may first specify:

**kwargs - Options arguments:

prior - List containing the name of the prior and the corresponding hyperparameters.
Examples:
prior=[‘gamma’,nuubar,subar] or
prior=[‘inverted-gamma’, nuubar, subar]. If no prior is specified the Jeffreys
prior is used.
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PyMCMC also includes another class that can be used for the direct analysis of the linear
regression model. The class is called StochasticSearch and can be used in conjunction with
the class MCMC, for the purpose of variable selection.

The stochastic search algorithm can be used for variable selection in the linear regression
model. Given a set of k possible regressors there are 2k models to choose from. The stochastic
search algorithm, as proposed by George and McCulloch (1993), uses the Gibbs sampler to
select a set of ‘most likely’ models. The stochastic search algorithm is implemented in the
class StochasticSearch. The specific implementation follows Marin and Robert (2007). The
algorithm introduces the vector γ, which is used to select the explanatory variables that are to
be included in the model. In particular, γ is defined to be a binary vector of order k, whereby
the inclusion of the ithregressor implies that the ithelement of γ is a one, whilst the exclusion
of the ith regressor implies that the ith element is zero. It is assumed that the first element of
the design matrix is always included and should typically be a column of ones which is used
to represent the constant or intercept in the regression. The algorithm specified to sample γ
is a single move Gibbs sampling scheme; for further details see Marin and Robert (2007).

To use the class StochasticSearch the user must specify their a priori beliefs that the
unknown parameters of interest, (σ,βT )T , are distributed following Zellner’s g-prior, which is
described in Equation 10. StochasticSearch is designed to be used in conjunction with the
MCMC sampling class. To initialise StochasticSearch the user must specify:

yvec - One dimensional Numpy array containing the dependent variable.

xmat - Two dimensional Numpy array containing the regressors.

prior - List with the following structure [betaubar, g].

The class StochasticSearch also contains the following function:

sample_gamma(store) - Returns a sample of γ. The only argument to pass into the function
sample_gamma is the storage dictionary that is passed by default to each of the classes
that are called from the class MCMC in PyMCMC.

3. Empirical illustrations

PyMCMC is illustrated though three examples. Specifically, a linear regression example
with variable selection, a log-linear example and a linear regression model with first order
autoregressive errors. For each example, the model of interest is specified, then the code used
for estimation is shown, following which a brief description of code is given. Each example
uses the module for PyMCMC, along with the Python libraries Numpy, Scipy and Matplotlib:
see Oliphant (2007); Hunter (2007) for further details of these Python libraries. Example 3
further uses the library Pysparse (Geus 2011).

3.1. Example 1: Linear regression model: Variable selection and estimation

The data used in this example are a response of crop yield modelled using various chemical
measurements from the soil. As the results of the chemical analysis of soil cores are done in a
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laboratory, many input variables are available and the data analyst would like to determine
the variables that are most appropriate to use in the model.

The normal linear regression model in Equation 3 is used for the analysis. To select the set of
‘most probable’ regressors we use the stochastic search variable selection approach described
in Section 2.2 using a subset of 19 explanatory variables.

In addition to PyMCMC, this example uses functions from Numpy, so the first step is to
import the relevant packages:

import os

from numpy import loadtxt, hstack, ones, random, zeros, asfortranarray, log

from pymcmc.mcmc import MCMC, CFsampler

from pymcmc.regtools import StochasticSearch, LinearModel

The remaining code is typically organised so that the user defined functions are at the top and
the main program is at the bottom. We begin by defining functions that are called from the
class MCMC, all of which take the argument store. In this example there is one such function:

def samplegamma(store):

return store['SS'].sample_gamma(store)

In this case, samplegamma simply uses the predefined function available in the StochasticSearch
class to sample from γ.

The data and an instance of the class StochasticSearch are now initialised:

data = loadtxt('yld2.txt')
yvec = data[:, 0]

xmat = data[:, 1:20]

xmat = hstack([ones((xmat.shape[0], 1)), xmat])

data ={'yvec':yvec, 'xmat':xmat}

prior = ['g_prior', zeros(xmat.shape[1]), 100.]

SSVS = StochasticSearch(yvec, xmat, prior);

data['SS'] = SSVS

Notice that data is augmented to include the class instance for StochasticSearch. In this
example we use Zellner’s g-prior with β = 0 and g = 100. The normal-inverted-gamma prior
could also be used.

The next step is to initialise γ and set up the appropriate sampler for the model. In this case,
as the full conditionals are of closed form, we can use the CFsampler class:

initgamma = zeros(xmat.shape[1], dtype ='i')
initgamma[0] = 1

simgam = CFsampler(samplegamma, initgamma, 'gamma')

The required arguments to CFSampler are a function that samples from the posterior
(samplegamma), the initial value for γ (initgamma) and the name of the parameter of interest
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(‘gamma’). The single argument to samplegamma, store, is a dictionary (Python data struc-
ture) that is passed to all functions that are called from the MCMC sampler. The purpose of
store is to contain all the data required to define functions that sample from, or are used in
the evaluation of, the posterior distribution. For example, we see that samplegamma accesses
store[‘SS’], which contains the class instance for StochasticSearch. In addition to all
the information contained in data, store contains the value of the previous iterate for each
block of the MCMC scheme. It is possible, for example, to access the current iteration for
any named parameter (in this case ‘gamma’) from any of the functions called from MCMC
by using store[‘gamma’]. This feature is not used in this example, but can be seen in the
proceding examples.

The actual sampling is done by setting a random seed and running the MCMC sampler:

random.seed(12346)

ms = MCMC(20000, 5000, data, [simgam])

ms.sampler()

The MCMC sampler is initialised by setting the number of iterations (20000), the burnin (5000),
providing the data dictionary data and a list containing the information used to sample from
the full conditional posterior distributions. In this case, this list consists a single element,
simgam, the CFsampler instance.

The default output from the MCMC object is a summary of each parameter providing the
posterior mean, posterior standard deviation, 95% credible intervals and inefficiency factors.
This can output directly to screen, or captured in an output file. A sample of this output,
giving only the first four elements of γ is:

ms.output()

--------------------------------------------------------

The time (seconds) for the MCMC sampler = 7.4

Number of blocks in MCMC sampler = 1

mean sd 2.5% 97.5% IFactor

gamma[0] 1 0 1 1 NA

gamma[1] 0.0929 0.29 0 1 3.75

gamma[2] 0.0941 0.292 0 1 3.54

gamma[3] 0.0939 0.292 0 1 3.54

In this case, the standard output isn’t all that useful as a summary of the variable selection.
A more useful output, giving the 10 most likely models ordered by decreasing posterior prob-
abilities, is available using the output function in the StochasticSearch class. This can be
called by using the custom argument to output:

ms.output(custom = SSVS.output)

Most likely models ordered by decreasing posterior probability
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------------------------------------------------------------

probability | model

------------------------------------------------------------

0.09353333 | 0, 12

0.0504 | 0, 11, 12

0.026 | 0, 10, 12

0.01373333 | 0, 9, 12

0.01353333 | 0, 8, 12

0.013 | 0, 4, 12

0.01293333 | 0, 12, 19

0.01206667 | 0, 7, 12

0.01086667 | 0, 11, 12, 17

0.01086667 | 0, 12, 17

------------------------------------------------------------

As indicated earlier, the MCMC analysis is conducted using 20000 iterations, of which the
first 5000 are discarded. The estimation takes 7.4 seconds in total. The results indicate that
a model containing variable 12 along with a constant (indicated in the table by 0) is the
most likely (prob = 0.09). Furthermore, variable 12 is contained in each of the 10 most likely
models, indicating its strong association with crop yield.

Following the variable selection procedure, we may wish to fit a regression to the most likely
model. This can be done using the LinearModel class. First, extract the explanatory variables
from the most likely model:

txmat = SSVS.extract_regressors(0)

and fit the model using the desired prior:

g_prior = ['g_prior', 0.0, 100.]

breg = LinearModel(yvec,txmat,prior = g_prior)

The output summarises the fit:

breg.output()

---------------------------------------------------

Bayesian Linear Regression Summary

g_prior

---------------------------------------------------

mean sd 2.5% 97.5%

beta[0] -0.1254 0.1058 -0.3361 0.08533

beta[1] 0.7587 0.0225 0.7139 0.8035

sigma 0.3853 0.03152 NA NA

loglikelihood = -4.143

log marginal likelihood = nan

BIC = 21.32
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Figure 2: Marginal posterior density plots for the regression coefficients in example 1.

The parameter associated with variable 12, β̂1, is estimated as a positive value, 0.7587, with
a 95% credible interval [0.7139, 0.8035]. We note that zero is not contained in the credible
interval, hence the crop yield increases with higher values of variable 12. The marginal
posterior densities (Figure 2) can be created using

breg.plot()

This clearly shows this effect is far from zero.

3.2. Example 2: Log-linear model

The data analysed in this example are the number of nutgrass shoots counted, in randomly
scattered quadrats, at weekly intervals, during the growing season. A log linear model is used;

log(count) = β0 + β1week (13)

where the intercept, β0, is expected to be positive in value, as nutgrass is always present in
this study site, and β1 is also expected to be positive as the population of nutgrass increases
during the growing season.

For the log-linear model, see Gelman, Carlin, Stern, and Rubin (2004), the ith observation yi,
for i = 1, 2, . . . , n, is generated as follows

p(yi|µi) =
µyii exp(−µi)

µi!
, (14)
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with

log(µi) = xTi β,

where xTi is the ithrow of the (n× k) matrix X.

The joint posterior distribution for the unknown parameter β is given by

p(β|y,X) ∝ p(y|β,X)× p(β), (15)

where p(y|β,X) is the joint pdf for y conditional on the β and X, and p(β) denotes the
prior pdf for β. From Equation 14 it is apparent that

p(y|β,X) =
n∏
i=1

µyii exp(−µi)
µi!

.

A priori we assume that

β ∼ N(β,V −1).

To sample from Equation 15, a random walk MH algorithm is implemented, where the can-
didate β∗, at each iteration, is sampled following

β∗ ∼ N
(
βj−1,Ω

)
, (16)

where

β0 = βnls = arg min (y − exp (Xβ))2

and

Ω−1 = −
n∑
i=1

exp
(
xTi βnls

)
xix

T
i .

The example code for PyMCMC uses two Python libraries, Numpy and Scipy, which the user
must have installed to run the code.

As before, the code begins by importing the required packages:

import os

from numpy import random, loadtxt, hstack, ones, dot, exp, zeros, outer, diag

from numpy import linalg

from pymcmc.mcmc import MCMC, RWMH, OBMC

from pymcmc.regtools import LinearModel

from scipy.optimize.minpack import leastsq

The import statements are followed by the definition of a number or required functions.

A function minfunc used in the non-linear least squares routine:

def minfunc(beta, yvec, xmat ):

return yvec - exp(dot(xmat, beta))

A function prior to evaluate the log of the prior pdf β. and a function logl defining the
log-likelihood function:
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def prior(store):

mu = zeros(store['beta'].shape[0])
Prec = diag(0.005 * ones(store['beta'].shape[0]))
return -0.5 * dot(store['beta'].transpose(), dot(Prec, store['beta']))

def logl(store):

xbeta = dot(store['xmat'], store['beta'])
lamb = exp(xbeta)

return sum(store['yvec'] * xbeta - Lamb)

As in the variable selection example, store is a Python dictionary used to store all the
information of interest that needs to be accessed by functions that are called from the MCMC
sampler. For example, the function logl uses store[‘beta’] which provides access to the
vector β.

A function posterior which evaluates the log of the posterior pdf for β:

def posterior(store):

return logl(store) + prior(store)

A function llhessian which returns the hessian for the log-linear model:

def llhessian(store, beta):

nobs = store['yvec'].shape[0]
kreg = store['xmat'].shape[1]
lamb = exp(dot(store['xmat'], beta))

sum = zeros((kreg, kreg))

for i in xrange(nobs):

sum = sum + lamb[i] * outer(store['xmat'][i], store['xmat'][i])
return -sum

Following the function definitions, the main program begins with the command to set the
random seed:

random.seed(12345)

and the set up of the data:

data = loadtxt('count.txt', skiprows = 1)

yvec = data[:, 0]

xmat = data[:, 1:data.shape[1]]

xmat = hstack([ones((data.shape[0], 1)), xmat])

data ={'yvec':yvec, 'xmat':xmat}

Bayesian regression is used to initialise the non-linear least squares algorithm:

bayesreg = LinearModel(yvec, xmat)

sig, beta0 = bayesreg.posterior_mean()
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The function leastsq from Scipy is used to perform the non-linear least squares operation:

init_beta, info = leastsq(minfunc, beta0, args = (yvec, xmat))

data['betaprec'] =-llhessian(data, init_beta)

scale = linalg.inv(data['betaprec'])

Initialise the random walk MH algorithm:

samplebeta = RWMH(posterior, scale, init_beta, 'beta')

Finally, setup and run the sampling scheme. Note that the sampling algorithm is run for
20000 iterations and the first 4000 is discarded. The MCMC scheme has only one block and
is a MH sampling scheme:

ms = MCMC(20000, 4000, data, [samplebeta],

loglike = (logl, xmat.shape[1], 'yvec'))
ms.sampler()

A summary of the model fit can be produced using the output function:

ms.output()

--------------------------------------------------------

The time (seconds) for the Gibbs sampler = 7.47

Number of blocks in Gibbs sampler = 1

mean sd 2.5% 97.5% IFactor

beta[0] 1.14 0.0456 1.05 1.23 13.5

beta[1] 0.157 0.00428 0.148 0.165 12.2

Acceptance rate beta = 0.5625

BIC = -7718.074

Log likelihood = 3864.453

It can be seen from the output that estimation is very fast (7.5 seconds), and that both β0
and β1 are positive values, with β̂0 = 1.14 [1.05, 1.23] and β̂1 = 0.157 [0.148, 0.165].

Summary plots can also be produced (Figure 3):

ms.plot('beta')

The marginal posterior densities of these estimates (Figure 3) confirm that both estimates are
far from zero. The ACF plots (Figure 3) and low inefficiency factors (see Chib and Greenberg
(1996) for details on inefficiency factors) of 13.5 (β̂0) and 12.2 (β̂1) show that autocorrelation
in the sample is relatively low for an MCMC sampler.
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Figure 3: Plots of the marginal posterior density, autocorrelation and trace plots for the
MCMC estimation of the log linear model in Example 2. Note summaries are calculated after
removing the burn in.

3.3. Example 3: First order autoregressive regression

The final example demonstrates first order autoregressive regression using a simulated data
set, with 1000 observations and 3 regressors.

The linear regression model, with first order autocorrelated serial correlation in the residuals,
see Zellner (1971) is defined such that the tth observation, yt, for t = 1, 2, . . . , n,

yt = xTt β + εt, (17)

with

εt = ρεt−1 + νt; νt ∼ i.i.d.N(0, σ2), (18)

where xt is a (k × 1) vector of regressors, β is a (k × 1) vector of regression coefficients, ρ is a
damping parameter and νt is an independent identically normally distributed random variable
with a mean of 0 and a variance of σ2. Under the assumption that the process driving the
errors is stationary, that is |ρ| < 1, and assuming that the process has been running since
time immemorial then Equation 17 and Equation 18 can be expressed as

y = Xβ + ε; ε ∼ N
(
0, κ−1Ω−1

)
, (19)

where

Ω =



1 −ρ 0 0 · · · 0

−ρ 1 + ρ2 −ρ 0
. . . 0

0 −ρ 1 + ρ2
. . .

. . .
...

0 0
. . .

. . . −ρ 0
...

...
. . . −ρ 1 + ρ2 −ρ

0 0 · · · 0 −ρ 1


.
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Further, if we factorise Ω = LLT , using the Cholesky decomposition, it is straightforward to
derive L, where

L =



1 −ρ 0 0 · · · 0

0 1 −ρ . . .
. . . 0

0 0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1 −ρ

0 0 · · · · · · 0
√

1− ρ2


.

Pre-multiplying Equation 19, by L gives

ỹ = X̃β + ε̃, (20)

where ỹ = LTy, X̃ = LTX and ε̃ = LTε. Note that ε ∼ N(0, κ−1I).

The joint posterior distribution for the full set of unknown parameters is

p(β, κ, ρ|y) ∝ p(y|β, κ, ρ)× p(β, κ)× p(ρ), (21)

where p(y|β, κ, ρ) is the joint pdf of y conditional on β, κ, and ρ, p(β, κ) is the joint prior
pdf for β and κ, and p(ρ) denotes the prior density function for ρ. The likelihood function,
which is defined following Equation 17 and Equation 18 is defined as follows

p(y|β, κ, ρ) ∝ κn/2|Ω|1/2 exp

{
−κ

2
(y −Xβ)T Ω (y −Xβ)

}
= κn/2|Ω|1/2 exp

{
−κ

2

(
ỹ − X̃β

)T (
ỹ − X̃β

)}
.

= κn/2
(
1− ρ2

)1/2
exp

{
−κ

2

(
ỹ − X̃β

)T (
ỹ − X̃β

)}
. (22)

For the analysis a normal-gamma prior is assumed for β and κ, such that

β|κ ∼ N
(
β, κ−1

)
, κ ∼ G

(
ν

2
,
S

2

)
. (23)

It follows from Equation 22 and Equation 23 that sampling β and κ conditional on ρ is simply
equivalent to sampling from a linear regression model with a normal-gamma prior. A beta
prior is assumed for ρ there by restricting the autocorrelation of the time series to be both
positive and stationary. Specifically

ρ ∼ Be (α, β) .

A MCMC sampling scheme, for the posterior distribution in Equation 21, defined at iteration
j is as follows:

1. Sample β(j), κ(j) from p(β, κ|y, ρ(j−1)).

2. Sample ρ(j) from p(ρ|y,β, κ).

The code for this model follows the structure of the previous examples, and begins by im-
porting the required packages:
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from numpy import random, ones, zeros, dot, hstack, eye, log

from scipy import sparse

from pysparse import spmatrix

from pymcmc.mcmc import MCMC, SliceSampler, RWMH, OBMC, MH, CFsampler

from pymcmc.regtools import LinearModel

As this example uses simulated data the first function is used to derive this data:

def simdata(nobs, kreg):

xmat = hstack((ones((nobs, 1)), random.randn(nobs, kreg - 1)))

beta = random.randn(kreg)

sig = 0.2

rho = 0.90

yvec = zeros(nobs)

eps = zeros(nobs)

eps[0] = sig ** 2 / (1. - rho ** 2)

for i in xrange(nobs - 1):

eps[i + 1] = rho * eps[i] + sig * random.randn(1)

yvec = dot(xmat, beta) + eps

return yvec, xmat

Next, define a function that calculates ỹ and X̃:

def calcweighted(store):

nobs = store['yvec'].shape[0]
store['Upper'].put(-store['rho'], range(0, nobs - 1), range(1, nobs))

store['Upper'].matvec(store['yvec'], store['yvectil'])
for i in xrange(store['xmat'].shape[1]):

store['Upper'].matvec(store['xmat'][:, i], store['xmattil'][:, i])

Note that LT is updated based on the latest iteration in the MCMC scheme. Further, LT is
stored in the Python dictionary store and is accessed using the key ‘Upper’. It is stored in
sparse matrix format using the library Pysparse.

Next define a function that is used to sample β, from its conditional posterior distribution:

def WLS(store):

calcweighted(store)

store['regsampler'].update_yvec(store['yvectil'])
store['regsampler'].update_xmat(store['xmattil'])
return store['regsampler'].sample()

Now define functions to evaluate the log-likelihood (loglike), the log of the prior pdf for ρ
(prior_rho) and a function to evaluate the log of the posterior pdf for ρ (post_rho):
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def loglike(store):

nobs = store['yvec'].shape[0]
calcweighted(store)

store['regsampler'].update_yvec(store['yvectil'])
store['regsampler'].update_xmat(store['xmattil'])
return store['regsampler'].loglike(store['sigma'], store['beta'])

def prior_rho(store):

if store['rho'] > 0. and store['rho'] < 1.0:

alpha = 1.0

beta = 1.0

return (alpha - 1.) * log(store['rho']) + (beta - 1.) * \

log(1.-store['rho'])
else:

return -1E256

def post_rho(store):

return loglike(store) + prior_rho(store)

The main program begins by setting the seed and constructing the Python dictionary data,
which is used to store information that will be passed to functions that are called from the
MCMC sampler:

random.seed(12345)

nobs = 1000

kreg = 3

yvec, xmat = simdata(nobs, kreg)

priorreg = ('g_prior', zeros(kreg), 1000.0)

regs = LinearModel(yvec, xmat, prior = priorreg)

data ={'yvec':yvec, 'xmat':xmat, 'regsampler':regs}
U = spmatrix.ll_mat(nobs, nobs, 2 * nobs - 1)

U.put(1.0, range(0, nobs), range(0, nobs))

data['yvectil'] = zeros(nobs)

data['xmattil'] = zeros((nobs, kreg))

data['Upper'] = U

Initial values for σ and β are set using Bayesian regression:

bayesreg = LinearModel(yvec, xmat)

sig, beta = bayesreg.posterior_mean()

The parameters σ and β are jointly sampled using the closed form class:

simsigbeta = CFsampler(WLS, [sig, beta], ['sigma', 'beta'])

The parameter ρ is sampled using the Slice Sampler, with initial value 0.9:
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rho = 0.9

simrho = SliceSampler([post_rho], 0.1, 5, rho, 'rho')

In this example, there are two blocks in the MCMC sampler. The code:

blocks = [simrho, simsigbeta]

constructs a Python list that contains the class instances that define the MCMC sampler. In
particular, it implies that the MCMC sampler consists of two blocks. Further, ρ will be the
first element sampled in the MCMC scheme.

Finally, the sampler can be initialised and sampling undertaken:

loglikeinfo = (loglike, kreg + 2, 'yvec')
ms = MCMC(10000, 2000, data, blocks, loglike = loglikeinfo)

ms.sampler()

The MCMC sampler is run for 10000 iterations and the first 2000 are discarded. A summary
can be generated by the output command:

ms.output()

The time (seconds) for the Gibbs sampler = 27.72

Number of blocks in Gibbs sampler = 2

mean sd 2.5% 97.5% IFactor

beta[0] -0.523 0.0716 -0.653 -0.373 3.5

beta[1] 1.85 0.00508 1.84 1.86 3.56

beta[2] 0.455 0.00505 0.445 0.465 3.75

sigma 0.217 0.00489 0.207 0.226 3.5

rho 0.901 0.0155 0.872 0.932 3.67

Acceptance rate beta = 1.0

Acceptance rate sigma = 1.0

Acceptance rate rho = 1.0

BIC = -331.398

Log likelihood = 182.969

The total time of estimation is approximately 28 seconds. From the inefficiency factors it is
clear that the algorithm is very efficient.

Summary plots generated using ms.plot(‘rho’) (Figure 4) provide the marginal posterior
density, autocorrelation plot and the trace plot for the iterates.
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Figure 4: Marginal posterior density, autocorrelation function and trace plot based on the
MCMC analysis for Example 3. Note summaries are calculated after removing the burnin.

4. Using PyMCMC efficiently

The fact that MCMC algorithms rely on a large number of iterations to achieve reasonable
results and are often implemented on very large problems, limits the practitioner’s choice of
a suitable environment, in which they can implement efficient code. This efficiency comes
through an understanding of what makes a simulation efficient MCMC sampler, and also
the ability to produce computationally efficient code. Interestingly, the two are related. To
achieve both simulation and computationally efficient code in MCMC samplers it is often
extremely important that large numbers of parameters are sampled in blocks, rather than the
alternative of a single move sampler. From the perspective of simulation efficiency it is well
known that individually sampling correlated parameters induces correlation in the resultant
Markov chain and thus leads to a poorly mixing sampler. A classic example in the literature
uses simulation smoothers to jointly sample the state vector in a state space model; see for
example Carter and Kohn (1994) and de Jong and Shephard (1995). Whilst implementing
a simulation smoother is required to achieve simulation efficient code, the sequential nature
of their implementation often renders higher level languages impractical for large problems
and thus forces the analyst to write their entire code in a lower level language. This is an
inefficient use of time as usually only a small percentage of code needs to be optimised. This
drawback is easily circumvented in PyMCMC as Python makes it easy to use a lower level
language to write the specialised module and use the functions directly from Python. This
ensures PyMCMC’s modules can be used for rapid development from Python and lower level
languages are only resorted to when necessary.

This section aims to provide guidelines for producing efficient code with PyMCMC. We discuss
alternative external libraries that are available to the user for producing efficient code using
PyMCMC. Despite the ease of writing specialised modules this should not be the first resort
of the user. Instead, one should ensure that the Python code is as efficient as possible using
the resources available with Python.

Arguably, the first thing the user of PyMCMC should concentrate on when optimising their
PyMCMC code is to ensure they use as many inbuilt functions and libraries as possible. As
most high performance libraries are written in C or Fortran this ensures that computationally
expensive procedures are computed using code from compiled languages. Python users, and
hence PyMCMC users, have an enormous resource of Scientific libraries available to them as
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a result of the popularity of Python in the scientific community. Two of the most important
libraries for most users will quite possibly be Numpy and Scipy. Making use of such libraries
is one of the best ways of avoiding large loops in procedures that are called from the MCMC
sampler. If a large loop is used inside a function that is called from inside the MCMC
sampler then this could mean that a large proportion of the total computation is being done
by Python, rather than a library that was generated from optimised compiled code. This
can have a dramatic effect on the total computation time. As a simple and somewhat trivial
example we modify Example 2 from Section 3.2 so that a loop is explicitly used to calculate
the log likelihood.

def logl(store):

suml=0.0

for i in xrange(store['yvec'].shape[0]):
xbeta=dot(store['xmat'][i,:],store['beta'])
suml=suml+store['yvec'][i] * xbeta - Exp(xbeta)

return suml

Whilst the two functions to calculate the log-likelihood are mathematically equivalent, the
one with the explicit loop is substantially slower. Specifically, the time taken for the MCMC
sampler went from 7.3 seconds to 130.19 seconds. As such, this minor modification leads to
an approximate 18-fold decrease in the speed of the program.

If the use of an an inbuilt function is not possible and the time taken from the program
is unacceptable then there are several alternative solutions available to the user. One such
solution is to use the package Weave, which is a part of the Scipy library, to write inline C
code which will accelerate the problem area in the code. An example is given below.

def logl(store):

code = """

double sum = 0.0, xbeta;

for(int i=0; i<nobs; i++){

xbeta = 0.0;

for(int j=0; j<kreg; j++){

xbeta += xmat(i,j) * beta(j);

}

sum += yvec(i) * xbeta - exp(xbeta);

}

return_val = sum;

"""

yvec = store['yvec']
xmat = store['xmat']

nobs, kreg = xmat.shape

beta = store['beta']
return weave.inline(code,['yvec','xmat', 'beta','nobs','kreg'],\

compiler='gcc',type_converters=converters.blitz)

The total time taken for Weave version is 4.33 seconds. The reason for the speed increase over
the original version that uses Numpy functions is the Weave version avoids the construction
of temporary matrices that are typically a by product of overloaded operators.
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Another alternative, which is our preferred approach, is to use the Python module F2py; see
Peterson (2009) for further details. F2py allows for the seamless integration of Fortran and
Python code. Following on using the same trivial example we use the following Fortran77
code. This example requires that the user have basic linear algebra subprograms (BLAS) and
preferably also the automatically tuned linear algebra software (ATLAS).

c fortran 77 code used to calculate the likelihood of a log

c linear model. Subroutine uses BLAS.

subroutine logl(xb,xm,bv,yv,llike,n,k)

implicit none

integer n, k, i, j

real*8 xb(n),xm(n,k), bv(k), yv(n), llike

real*8 alpha, beta

cf2py intent(in,out) logl

cf2py intent(in) yv

cf2py intent(in) bv

cf2py intent(in) xmat

cf2py intent(in) xb

alpha=1.0

beta=0.0

call dgemv('n',n,k,alpha,xm,n,bv,1,beta,xb,1)

llike=0.0

do i=1,n

llike=llike+yv(i)*xb(i)-exp(xb(i))

enddo

end

In UNIX type environments, such as Linux and OSX the code is compiled with the following
command (Windows users see Section 4.1):

f2py -c loglinear.f -m loglinear -lblas -latlas

The loglinear library can then be imported as a python module, and the function logl accessed
as a standard python function:

import loglinear

print loglinear.logl.__doc__

logl - Function signature:

llike = logl(xb,xm,bv,yv,llike,[n,k])

Required arguments:
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xb : input rank-1 array('d') with bounds (n)

xm : input rank-2 array('d') with bounds (n,k)

bv : input rank-1 array('d') with bounds (k)

yv : input rank-1 array('d') with bounds (n)

llike : input float

Optional arguments:

n := len(xb) input int

k := shape(xm,1) input int

Return objects:

llike : float

Note that this function requires as input xb a rank-1 array of length n. We add this to the
data dictionary:

data['xb']=zeros(yvec.shape[0])

The array data[‘xb’] is a work array used for the calculation of Xβ. As it is stored in the
Python dictionary data it is only created once rather that each time the function logl is
called.

It is useful to pass arrays stored in column major order to F2py functions since this is what is
used in Fortran, rather than the Python default, which is row major order the default for the
C programming language. This can be achieved using the Numpy function asfortranarray:

data['xmatf']=asfortranarray(xmat)

If store[‘xmat’] were passed to the function loglinear.logl then F2py will automatically
produce a copy and convert it to column major order each time the function logl is called.

The function logl can now be rewritten as:

import loglinear

def logl(store):

loglike=array(0.0)

return loglinear.logl(store['xb'],store['xmatf'],
store['beta'],store['yvec'],loglike)

The total time for the MCMC sampler when using F2py is 4.03 seconds. This is slightly faster
that the version that uses Weave, where most likely the small gain can be attributed to the
use of ATLAS.

The user has many other choices available to them for writing specialised extension modules.
For example, if it is the preference of the user it is not much more difficult to use F2py to
compile procedures written in C, which then can be used directly from Python. Another
popular library that can be used to marry C, as well as C++, code with Python is SWIG. In
our opinion SWIG is more difficult than f2py for complicated examples. The user may also
opt to manually call C and C++ routines using Python and Numpy’s C application interface.
Another option for C++ users is to use Boost Python. These alternative approaches are
beyond the scope of this paper.
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4.1. Compiling code in Windows

The previous section described how one might go about using PyMCMC efficiently. To do
this, access to a compiler is necessary. Under most flavours of UNIX, this should pose no
problem, but under Microsoft Windows this can be more difficult. This section provides some
brief guidelines to an approach we found workable under Windows.

In order to run PyMCMC, Python, Numpy and Scipy are all required, but to have a reasonable
developer experience under Windows, we suggest a few additional packages, all of which are
freely available:

• mingw (http://www.mingw.org/) which provides, among other things, the GNU com-
piler suite. The user should choose at least gcc and g++.

• msys (http://www.mingw.org/wiki/MSYS) which provides a set of GNU utilities com-
monly found on Linux. This will make building and compiling code more manageable
under Windows.

• ipython (http://ipython.scipy.org/moin/), an interactive interface to Python, which can
be used as an alternative to the idle interface that is distributed with Python.

• pyreadline (http://ipython.scipy.org/moin/PyReadline/Intro), which provides Windows
readline capabilities for IPython.

• gfortran (http://gcc.gnu.org/wiki/GFortranBinaries), which provides a native Windows
Fortran compiler.

Once these additional utilities are installed, it should be possible to compile code in different
languages. To test that Weave works as expected, make sure that the mingw bin directory is
in your path, and try the following code:

import scipy.weave

a=100

scipy.weave.inline('printf("a=%d\\n",a);',['a'],verbose=1)

The output should be similar to:

In [4]: scipy.weave.inline('printf("a=%d\\n",a);',['a'],verbose=1)
<weave: compiling>

No module named msvccompiler in numpy.distutils; trying from distutils

Compiling code...

Found executable c:\mingw\bin\g++.exe

finished compiling (sec): 2.73600006104

a=100

F2py requires a Fortran compiler. To set this up under Windows, follow the instructions at
http://www.scipy.org/F2PY Windows, and make sure the simple example provided works on
your system. The examples presented above additionally require BLAS or ATLAS to be avail-
able. This can be built under windows (see instructions at
http://www.scipy.org/Installing SciPy/Windows, for example). To check that F2py and
ATLAS are installed correctly, save the following code as, for example, blas_eg.f90:
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subroutine dgemveg()

REAL*8 X(2, 3) /1.D0, 2.D0, 3.D0, 4.D0, 5.D0, 6.D0/

REAL*8 Y(3) /2.D0, 2.D0, 2.D0/

REAL*8 Z(2)

CALL DGEMV('N', 2, 3, 1.D0, X, 2, Y, 1, 0.D0, Z, 1)

PRINT *, Z

end subroutine dgemveg

Set the location of your ATLAS libraries appropriately, and ensure that gfortran is in your
path and compile. The following provides a template:

ATLAS_LIB_DIR="/d/tmp/pymcmc_win_install/BUILDS/lib"

export PATH=${PATH}:\

/c/Program\ Files/gfortran/libexec/gcc/i586-pc-mingw32/4.6.0:\

/c/Program\ Files/gfortran/bin:/c/python26

python /c/Python26/Scripts/f2py.py -c -m foo \

--fcompiler=gfortran \

blas_eg.f90 -L${ATLAS_LIB_DIR} -lf77blas -latlas -lg2c

This should produce a Python dll (foo.pyd), which can be imported into Python:

import foo

dir(foo)

print foo.__doc__

foo.dgemveg()

5. PyMCMC interacting with R

There are many functions from the R statistical language (R Development Core Team 2010)
that can be useful in Bayesian analysis. The RPy2 (Gautier 2011) Python library can be
used to integrate R functions into PyMCMC programs. These can be accessed in PyMCMC
through the RPy2 Python library. As an example, consider the log linear model described in
Section 3.2. The random walk MH requires the specification of a candidate density function
Equation 2 and an initial value. The R functions glm and summary.glm can be used to set
this to the maximum likelihood estimate β̂ and the unscaled estimated covariance matrix of
the estimated coefficients. The relevant code is summarised below:

import rpy2.robjects as robjects

def initial_values(yvec,xmat):

ry = robjects.FloatVector(yvec)

rv = robjects.FloatVector(xmat[:,1:].flatten())

rx = robjects.r['matrix'](rv, nrow=xmat.shape[0],

byrow=True)
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robjects.globalenv['y'] = ry

robjects.globalenv['x'] = rx

mod = robjects.r.glm("y~x", family="poisson")

init_beta = array(robjects.r.coefficients(mod))

modsummary = robjects.r.summary(mod)

scale = array(modsummary.rx2('cov.unscaled'))
return init_beta,scale

random.seed(12345)

data=loadtxt('count.txt',skiprows=1)
yvec=data[:,0]

xmat=data[:,1:data.shape[1]]

xmat=hstack([ones((data.shape[0],1)),xmat])

data={'yvec':yvec,'xmat':xmat}

init_beta,scale=initial_values(yvec,xmat)

samplebeta=RWMH(posterior,scale,init_beta,'beta')
ms=MCMC(20000,4000,data, [samplebeta],loglike=(logl,xmat.shape[1],'yvec'))
ms.sampler()

ms.CODAoutput(filename="loglinear_eg", parameter="beta")

It may also be useful to take advantage of the many MCMC analysis functions in R and
associated packages. To facilitate this, PyMCMC includes a CODA (Plummer et al. 2006)
output format which can easily be read into R for further analysis. A sample R session after
PyMCMC might look like:

library(coda)

aa <- read.coda("loglinear_eg.txt","loglinear_eg.ind")

plot(aa)

summary(aa)

raftery.diag(aa)

xyplot(aa)

densityplot(aa)

acfplot(aa,lag.max=500)

6. Obtaining PyMCMC

The source code for PyMCMC is held in a git repostitory, and can be cloned by

git clone https://bitbucket.org/christophermarkstrickland/pymcmc.git
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As an alternative, for unix-based operating systems, a pre-packaged source distribution is
available at https://bitbucket.org/christophermarkstrickland/pymcmc/downloads/pymcmc-1.
0.tar.gz

For most users, installation should require only

python setup.py install

More detailed installation instructions, including information on building for Microsoft Win-
dows or Macintosh systems are included in the INSTALL file in the source distribution.
Additionally, binaries are available for Mac and Microsoft Windows systems from https:

//bitbucket.org/christophermarkstrickland/pymcmc/wiki/installing.

7. Conclusions

In this paper, we describe the Python software package PyMCMC. PyMCMC takes advantage
of the flexibility and extensibility of Python to provide the user with a code efficient way
of constructing MCMC samplers. The PyMCMC package includes classes for the MCMC
sampler MH, independent MH, random walk MH, OBMC and slice sampling algorithms. It
also contains an inbuilt module for Bayesian regression analysis. We demonstrate PyMCMC
using an example of Bayesian regression analysis with stochastic search variable selection,
a log-linear model and also a time series regression analysis with first order autoregressive
errors. We demonstrate how to optimise PyMCMC using Numpy functions, inline C code
using Weave and with Fortran77 using F2py, where necessary. We further demonstrate how
to call R functions using RPy2.
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