

Queensland University of Technology Brisbane Australia

This is the author's version of a work that was submitted/accepted for publication in the following source:

Smith, Graham & Wermuth, Urs D. (2011) Proton-transfer compounds of isnipecotamide with the aromatic dicarboxylic acids 4-nitrophthalic, 4,5-dichlorophthalic, 5-nitroisophthalic and terephthalic acid. *Acta Crystallographica Section C*, *C67*, 0259-0264.

This file was downloaded from: http://eprints.qut.edu.au/42101/

© Copyright 2011 International Union of Crystallography

Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1107/S0108270111020518

Proton-transfer compounds of isonipecotamide with the aromatic dicarboxylic acids 4-nitrophthalic, 4,5-dichlorophthalic, 5-nitroisophthalic and terephthalic acids

Graham Smith^a* and Urs D. Wermuth^b

^aSchool of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia, and ^bSchool of Biomolecular and Physical Sciences, Griffith University, Nathan, Qld 4111, Australia

Correspondence email: g.smith@qut.edu.au

The structures of the 1:1 proton-transfer compounds of isonipecotamide (4-piperidinecarboxamide) with 4-nitrophthalic acid, 4-carbamoylpiperidinium 2-carboxy-4-nitrobenzoate, $C_6H_{13}N_2O_8^+ C_8H_4O_6^-$ (I), 4,5-dichlorophthalic acid, 4-carbamoylpiperidinium 2-carboxy-4,5-dichlorobenzoate, $C_6H_{13}N_2O_8^+ C_8H_3Cl_2O_4^-$ (II) and 5-nitroisophthalic acid, 4-carbamoylpiperidinium 3-carboxy-5-nitrobenzoate, $C_6H_{13}N_2O_8^+C_8H_4O_6^-$ (III) as well as the 2:1 compound with terephthalic acid, bis(4-carbamoylpiperidinium) benzene-1,2-dicarboxylate dihydrate, $2(C_6H_{13}N_2O_8^+)C_8H_4O_4^{2-}$. 2H₂O (IV) have been determined at 200 K. All salts form hydrogen-bonded structures, one-dimensional in (II) and three-dimensional in (I), (III) and (IV). In (I) and (III) the centrosymmetric $R^2_2(8)$ cyclic amide-amide association is found while in (IV) several different types of water-bridged cyclic associations are present [graph sets $R^2_4(8)$, $R^3_4(10)$, $R^4_4(12)$, $R^3_3(18)$ and $R^4_6(22)$]. The one-dimensional structure of (I), features the common 'planar' hydrogen 4,5-dichlorophthalate anion together with enlarged cyclic $R_{3}^{3}(13)$ and $R_{4}^{3}(17)$ associations. With the structures of (I) and (III) the presence of head-to-tail hydrogen phthalate chain substructures is found. In (IV) head-to-tail primary cation-anion associations are extended longitudinally into chains through the water-bridged cation associations and laterally by piperidinium N-H···O_{carboxyl} and water O -H···O_{carboxyl} hydrogen bonds. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen-bonded structures. An additional example of cationanion association with this cation is also shown in the asymmetric three-centre piperidinium N-H···O,O'carboxyl interaction in the first-reported structure of a 2:1 isonipecotamide-carboxylate salt.

Comment

Our project of investigation of the hydrogen-bonding modes in the salts of the Lewis base 4-piperidinecarboxamide (isonipecotamide: INIPA) with carboxylic acids has provided a considerable number of structures, the majority being anhydrous 1:1 salts with aromatic acids (Smith & Wermuth, 2010*d*, 2011*a*); Smith *et al.*, 2010*b*). Solvated examples are the nicotinate (a partial hydrate) (Smith & Wermuth, 2011*c*), the acetate (a monohydrate) (Smith & Wermuth, 2010*e*) and the 6- carboxypyridine-2-carboxylate (a methanol monosolvate) (Smith & Wermuth, 2011*c*), while with *o*-phthalic acid, a 1:1 hydrogen phthalate-phthalic acid salt adduct is found (Smith & Wermuth, 2011*b*). Anhydrous picrates are also known (Smith & Wermuth, 2010*c*), together with a 2:1 salt with bipyridine-4,4'-disulfonate (Smith, *et al.*, 2010*a*). Considering the unusual formation of the a 1:1:1 cation:anion:phthalic acid adduct (Smith & Wermuth, 2011*b*), from a 1:1 stoichiometric reaction, our aim was to investigate the nature of the products formed from the similar reactions of INIPA with a series of aromatic dicarboxylic acids in various alcoholic and aqueous alcoholic solutions. Examples included 4-nitrophthalic acid (NPHA), 4,5-dichlorophthalic acid (DCPA), 5-nitroisophthalic acid (NIPA) and terephthalic acid (TPA) which provided good crystalline products. The 1:1 anhydrous salts of $C_6H_{13}N_2O_8^+ C_8H_4O_6^-$ (I), 4- carbamoylpiperidinium 2-carboxy-4,5-dichlorobenzoate, $C_6H_{13}N_2O_8^+ C_8H_3Cl_2O_4^-$ (II) and 4- carbamoylpiperidinium 3-carboxy-5-nitrobenzoate, $C_6H_{13}N_2O_8^+ C_8H_4O_6^-$ (III) were obtained while the 2:1 hydrated salt of the terephthalate, bis(4-carbamoylpiperidinium) benzene-1,2-dicarboxylate dihydrate, $2(C_6H_{13}N_2O_8^+) C_8H_4O_4^{-2}$. 2H₂O (IV) was identified. The structures of (I)–(IV) are described here.

With the 1:1 salts (I)–(III) (Figs. 1–4), proton transfer has occurred to the hetero-N of the piperidine ring and with the terephthalate salt (IV), it involves a two-proton transfer with a dianion formation. The resulting piperidinium group of the anion in each, together with the hydrogen donor and acceptor *p*-related substituent amide group are subsequently involved in hydrogen-bonding interactions, resulting in supramolecular structures which in (I), (III) and (IV) are three-dimensional and one-dimensional in (II) (Figs. 5–8). A feature of the hydrogen-bonding in (I) and (III) is the presence of the centrosymmetric cyclic homomolecular N—H···O hydrogen-bonded amide–amide motif (Allen *et al.*, 1998), having graph set $R^2_2(8)$ (Etter *et al.*, 1990; Bernstein *et al.*, 1995). This motif has now been found in 11 of the 24 known structures of INIPA proton-transfer salts, including the present examples.

In the structure of the 1:1 INIPA salt with 4-nitrophthalic acid (I), the 1-carboxy rather than the 2-carboxy group is deprotonated (Fig. 1) and gives a primary piperidinium N—H···O_{carboxyl} ion-pair interaction. The hydrogen phthalate anions give head-to-tail hydrogen-bonded chain substructures featuring short carboxylic acid O—H···O_{carboxyl} hydrogen bonds [graph set C(7)] (Fig. 5). These substructures are common among hydrogen phthalate salt structures (Glidewell *et al.*, 2005; Smith & Wermuth, 2010*b*). The peripherally bound INIPA anions give structure extension across (0 1 1) through the classic centrosymmetric $R^2_2(8)$ amide–amide N—H···O hydrogen-bonded dimer associations. In addition amide N—H···O_{nitro} and piperidinium N—H···O_{carboxyl} associations (Table 1) result in a three-dimensional structure. In the nitrophthalate anion, the carboxylate group is significantly rotated out of the benzene plane [torsion angle C2–C1–C11–O12, -76.7 (2)°] while the carboxylic acid and nitro groups are essentially coplanar with the benzene plane [torsion angles C1–C2–C21–O22, 169.25 (16)° and C3–C4–N4—O42, -174.03 (18)° respectively].

In the structure of the 1:1 INIPA salt with 4,5-dichlorophthalic acid (II), (Fig. 2) one of the two primary piperidinium cation–anion associations also involves a secondary longer three-centre interaction [N1A—H12A···.O12, 3.044 (4) Å, N—H···O, 118 (3)°] which is probably an artefact of the overall cyclic hydrogenbonding motif. This association [graph set $R^3_4(17)$] involves piperidinium N—H···O_{carboxy}, amide N—H···O_{carboxy}, and amide N—H···O_{carboxy} hydrogen bonds from two INIPA cations and one DCPA anion and is closed by the intramolecular carboxylic acid O—H···O_{carboxyl} hydrogen bond (Fig. 6). A second cyclic association [graph set $R^3_3(13)$] involves one piperidinium and two amide–carboxyl hydrogen bonds (Table 2) and the two motifs link the the DCPA anions peripherally into the head-to-head N—H···O amide-linked cation chain substructures. This results in one-dimensional ribbon structures which extends along the *b* cell direction. In the crystal structures of the DCPA salts with Lewis bases, this low-dimensionality in the hydrogen-bonded structures is commonly associated with the 'planar' DCPA monoanion which features the cyclic intramolecular carboxylic acid O—H···O_{carboxyl} (Smith *et al.*, 2010*a*). The short hydrogen bond [2.393 (3) Å] in the 'planar' DCPA anion in (II) results in a C2–C1–C11–O11 torsion angle of 174.1 (3) Å while another feature of this conformation is an elongation of the C1–C11 and C2–C21 bonds [1.522 (4), 1.534 (4) Å] and distortion of the external bond angles at C1 and C2 [128.8 (2), 128.1 (2)°] (Smith *et al.*, 2010*a*).

In the structure of the hydrogen 5-nitroisphthalate salt (III) (Fig. 3) the primary cation—anion interaction has a second longer N—H···O_{carboxyl} contact [N1A···O12, 3.0366 (17) Å; N—H···O, 118.1 (7)°], similar to that in (II). The cation-anion associations are also similar in some respects to those of (I). The hydrogen isophthalate anions give zig zag head-to-tail hydrogen-bonded chain substructures through carboxylic acid O—H···O_{carboxyl} hydrogen bonds (Table 3) but these are classified as graph set C(8) rather than C(7) as in (I). In addition, the centrosymmetric $R^2_2(8)$ hydrogen-bonded INPA amide–amide dimers give peripheral structure extension through piperidinium N—H···O_{carboxyl} hydrogen bonds which involve two anions, enclosing cyclic $R^3_3(10)$ rings (Fig. 7). The three-dimensional framework structure is generated through amide N—H···O_{carboxyl} hydrogen-bonding associations. The nitro-O atoms are unassociated except for weak intermolecular cation C—H···O associations [C2A···O52ⁱⁱ, 3.308 (2) Å; C—H···O, 151°] (for symmetry code (ii), see Table 3). The anion in (III) is essentially planar but with the carboxylate group rotated slightly out of the plane of the benzene ring [torsion angle C2–C1–C11–O11, -161.47 (16)° *cf.* 172.04 (15) for C2–C3–C31–O32 (the carboxylic acid group) and 175.06 (17)° for C4–C5–N51–O52 (the nitro group)].

With the terephthalate salt (IV) one of the piperidinium N—H···O_{carboxyl} hydrogen bonds seen in Fig 4 is accompanied by an asymmetric three-centre N–H···O,O'_{carboxyl} interaction [graph set $R^2_1(4)$ with the centrosymmetric terephthalate dianion (Fig. 8). This second association links two INIPA cations to the terephthalate dianion which is extended longitudinally in the approximate *b* cell direction through centrosymmetric cyclic water-bridged amide–amide associations [graph set $R^4_4(12)$]. The water molecules also act as acceptors in bridging these chains laterally through amide N–H···O hydrogen bonds (Table 4) forming centrosymmetric cyclic $R^2_4(8)$ associations. The lateral piperidinium N—H···O_{carboxyl} hydrogen bonds shown in Fig. 4 together with water O—H···O_{carboxyl} associations [$R^3_4(10)$, $R^3_3(18)$ and $R^4_6(22)$] complete a threedimensional framework structure. The centrosymmetric terephthalate dianion deviates slightly from planarity [torsion angle C2–C1–C11–O11, 169.25 (12)°].

The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen-bonded structures. An additional example of INIPA cation–anion association is also shown in the asymmetric three-centre piperidinium N—H···O,O'_{carboxyl} interaction in the first-reported structure of a 2:1 isonipecotamide carboxylate salt.

Experimental

The title compounds were synthesized by heating together under reflux for 10 min, 1 mmol quantities of 4piperidinecarboxamide (isonipecotamide) and 4-nitrophthalic acid [for (I)], 4,5-dichlorophthalic acid [for (II)], 5nitroisophthalic acid [for (III)] or terephthalic acid [for (IV)] in 50 mL of either methanol (III), methanol-water (80%) [(I) and (IV)] or ethanol-water (50%) (II). After concentration to *ca*. 30 mL, partial room temperature evaporation of the hot-filtered solutions gave colourless plates of (I) and (III), blocks of (II) or prisms of (IV).

(I)

Crystal data

C₆H₁₃N₂O·C₈H₄NO₆ $M_r = 339.31$ Monoclinic, $P2_1/n$ a = 5.8637 (5) Å b = 11.2707 (8) Å c = 23.0268 (19) Å $\beta = 93.082$ (8)°

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer	2989 independent reflections
Absorption correction: Multi-scan CrysAlis PRO (Oxford Diffraction, 2009)	2375 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.915, \ T_{\max} = 0.980$	$R_{\rm int} = 0.023$
10364 measured reflections	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	0 restraints
$wR(F^2) = 0.114$	H atoms treated by a mixture of independent and constrained refinement
S = 1.05	$\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$
2989 reflections	$\Delta \rho_{\min} = -0.26 \text{ e} \text{ Å}^{-3}$
233 parameters	

Table 1

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1A— $H11A$ ···O11 ⁱ	0.98 (3)	1.77 (3)	2.729 (2)	163 (2)
N1A—H12A···O21	0.93 (3)	1.92 (3)	2.803 (2)	158 (2)
N41A—H42A····O41A ⁱⁱ	0.92 (3)	1.99 (3)	2.907 (3)	176 (2)
N41A—H43A····O42 ⁱⁱⁱ	0.83 (3)	2.40 (3)	3.200 (3)	161 (3)
O22—H22···O12 ^{iv}	0.99	1.47	2.4562 (19)	179

V = 1519.61 (18) Å³

 $0.40 \times 0.40 \times 0.12 \text{ mm}$

 $\mu = 0.12 \text{ mm}^{-1}$ T = 200 K

Mo Ka radiation, $\lambda = 0.71073$ Å

Z = 4

Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+2, -z+1; (iii) x-3/2, -y+3/2, z-1/2; (iv) -x+1/2, y+1/2, -z+3/2.

(II)

Crystal data

$C_8H_3Cl_2O_4 \cdot C_6H_{13}N_2O$	$V = 1570.15 (15) \text{ Å}^3$
$M_r = 363.19$	Z = 4
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.6897 (4) Å	$\mu=0.44~mm^{-1}$
b = 9.7392 (5) Å	T = 200 K
c = 24.1222 (13) Å	$0.30 \times 0.25 \times 0.20 \text{ mm}$

 $\beta = 92.479 \ (4)^{\circ}$

Data collection

Oxford Diffraction Gemini S CCD detector diffractometer Absorption correction: Multi-scan *CrysAlis PRO* (Oxford Diffraction, 2009) $T_{\min} = 0.908, T_{\max} = 0.980$ 19231 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	0 restraints
$wR(F^2) = 0.113$	H atoms treated by a mixture of independent and constrained refinement
S = 1.30	$\Delta \rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$
3084 reflections	$\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$
224 parameters	

Table 2

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$
N1A—H11A…O11	0.92 (4)	1.90 (4)	2.810(3)	170 (3)
N1A— $H12A$ ···O22 ⁱ	0.87 (4)	1.96 (4)	2.753 (3)	152 (3)
N41A—H41A····O21 ⁱⁱ	0.82 (4)	2.48 (4)	3.158 (3)	142 (4)
N41A—H42A····O41A ⁱⁱⁱ	0.93 (4)	2.19 (4)	3.086 (4)	163 (3)
O12—H12···O21	1.00	1.40	2.393 (3)	180

3084 independent reflections

2777 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.028$

Symmetry codes: (i) x, y-1, z; (ii) -x+3/2, y-1/2, -z+1/2; (iii) -x+3/2, y+1/2, -z+1/2.

(III)

Crystal data

$C_6H_{13}N_2O \cdot C_8H_4NO_6$	$V = 1502.27 (11) \text{ Å}^3$
$M_r = 339.31$	Z = 4
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 9.4117 (4) Å	$\mu = 0.12 \text{ mm}^{-1}$
<i>b</i> = 14.3552 (5) Å	T = 200 K
c = 11.4490 (5) Å	$0.45 \times 0.40 \times 0.18 \text{ mm}$
$\beta = 103.787 \ (4)^{\circ}$	

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer	2940 independent reflections
Absorption correction: Multi-scan CrysAlis PRO (Oxford Diffraction, 2009)	2284 reflections with $I > 2s I$)
$T_{\min} = 0.98, \ T_{\max} = 0.99$	$R_{\rm int} = 0.025$
9866 measured reflections	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	0 restraints
$wR(F^2) = 0.106$	H atoms treated by a mixture of independent and constrained refinement
S = 1.00	$\Delta \rho_{max} = 0.35 \text{ e} \text{ Å}^{-3}$
2940 reflections	$\Delta \rho_{min} = -0.24 \text{ e} \text{ Å}^{-3}$
237 parameters	

Table 3

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
$N1A$ — $H11A$ ···O 31^{i}	0.93 (2)	2.06 (2)	2.9236 (18)	153.6 (17)
N1A—H12A…O11	0.98 (2)	1.87 (2)	2.8229 (16)	164 (2)
N1A—H12A…O12	0.98 (2)	2.45 (2)	3.0366 (19)	118.1 (17)
N41A—H41A···O11 ⁱⁱ	0.822 (19)	2.298 (19)	3.0669 (19)	155.9 (17)
N41A—H42A····O41A ⁱⁱⁱ	0.940 (19)	1.996 (19)	2.9321 (18)	174.1 (16)
O32—H32…O12 ^{iv}	0.93 (2)	1.63 (2)	2.5336 (17)	164 (3)

Symmetry codes: (i) -x+2, y+1/2, -z+3/2; (ii) -x+1, y+1/2, -z+1/2; (iii) -x+1, -y+2, -z+1; (iv) -x+2, y-1/2, -z+3/2.

(IV)

Crystal data

$C_8H_4O_4:2(C_6H_{13}N_2O):2(H_2O)$	$\gamma = 80.885 \ (7)^{\circ}$
$M_r = 458.51$	$V = 556.89 (9) \text{ Å}^3$
Triclinic, P1	Z = 1
a = 6.5099 (5) Å	Mo K α radiation, $\lambda = 0.71073$ Å
<i>b</i> = 7.7777 (6) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 11.6865 (12) Å	T = 200 K
$\alpha = 76.429 \ (8)^{\circ}$	$0.50 \times 0.15 \times 0.08 \text{ mm}$
$\beta = 76.968 \ (7)^{\circ}$	

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer	2177 independent reflections
Absorption correction: Multi-scan CrysAlis PRO (Oxford Diffraction, 2009)	1746 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.965, T_{\max} = 0.990$ 6562 measured reflections	$R_{\rm int} = 0.024$
Refinement	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ 0 restraints H atoms treated by a mixture of independent and $wR(F^2) = 0.093$ constrained refinement *S* = 1.05 $\Delta\rho_{max} = 0.23~e~{\AA}^{-3}$ 2177 reflections $\Delta\rho_{min} = -0.16~e~\text{\AA}^{-3}$ 169 parameters

Table 4

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1A—H11A…O11	0.966 (17)	1.856 (18)	2.7937 (16)	162.9 (14)
N1A—H12A…O11 ⁱⁱ	0.979 (17)	1.847 (17)	2.8030 (15)	164.7 (17)
N1A—H12A···O12 ⁱⁱ	0.979 (17)	2.367 (19)	3.1200 (16)	133.3 (14)
N41A— $H41A$ ···O1 W ⁱⁱⁱ	0.927 (17)	2.045 (17)	2.9181 (16)	156.5 (17)
N41 <i>A</i> —H42 <i>A</i> ···O1 <i>W</i>	0.95 (2)	2.111 (19)	2.9870 (17)	153.2 (14)
$O1W$ —H11 W ···O41 A^{iv}	0.861 (18)	1.892 (18)	2.7410 (15)	168.7 (17)
O1 <i>W</i> —H12 <i>W</i> ···O12 ^v	0.932 (19)	1.833 (19)	2.7632 (15)	175.6 (19)

Symmetry codes: (ii) -*x*+1, -*y*+2, -*z*; (iii) -*x*+1, -*y*, -*z*+1; (iv) *x*+1, *y*, *z*; (v) -*x*+1, -*y*+1, -*z*.

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and with the exception of the carboxylic acid H atoms, which were set invariant in the final cycles of refinement, their positional and isotropic displacement parameters were refined. Other H-atoms were included in the refinements at calculated positions [C–H(aliphatic) = 0.97, 0.98 Å and C–H(aromatic) = 0.93 Å] using a riding model approximation, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: CrysAlisPro for (I); *CrysAlis PRO* for (II), (III); *CrysAlis Pro* for (IV). Cell refinement: CrysAlisPro for (I); *CrysAlis PRO* for (II), (III); *CrysAlis Pro* for (IV). Data reduction: CrysAlisPro for (I); *CrysAlis PRO* for (II), (III); *CrysAlis Pro* for (IV). Program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994) for (I); *SIR92* for (II); *SIR 92* (Altomare, 1994) for (III); *SHELXS97* (Sheldrick, 2008) for (IV). For all compounds, program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) within *WinGX* (Farrugia, 1999); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology, Queensland University of Technology and the School of Biomolecular and Physical Sciences, Griffith University.

References

Allen, F. H., Raithby, P. R., Shields, P. & Taylor, R. (1998). Chem. Commun., pp. 1043–1044.

Altomare, A., Burla, M. C., Camalli, M., Cascarno, C., Giacovazzo, A., Guagliardi, A. & Polidori, G. (1994). J. *Appl. Cryst.* **27**, 435.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Anew. Chem. Int. Ed. Eng. 34, 1555-1573.

Farrugia, L. J. (1999). J. Appl. Cryst. 36, 837-838.

Glidewell, C., Low, J. N., Skakle, J. M. & Wardell, J. L. (2005). Acta Cryst. C61, o276-o280.

Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd. Yarnton, Oxfordshire, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Smith, G. & Wermuth, U. D. (2010a). Acta Cryst. C66, 0374-0380.

Smith, G. & Wermuth, U. D. (2010b). Acta Cryst. C66, 0575-0580.

Smith, G. & Wermuth, U. D. (2010c). Acta Cryst. C66, 0609-0613.

Smith, G. & Wermuth, U. D. (2010d). Acta Cryst. C66, 0614–0618.

Smith, G. & Wermuth, U. D. (2010e). Acta Cryst. E66, o3162.

Smith, G. & Wermuth, U. D. (2011a). Acta Cryst. E67, o122.

Smith, G. & Wermuth, U. D. (2011b). Acta Cryst. E67, 0566.

Smith, G. & Wermuth, U. D. (2011c). Unpublished results

Smith, G., Wermuth, U. D. & Young, D. J. (2010a). Acta Cryst. E66, o3160-o3161.

Smith, G., Wermuth, U. D. & Young, D. J. (2010b). Acta Cryst. E66, 03260.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Figure 1

Fig. 1. Molecular conformation and atom naming scheme for the INIPA cation and the NPHA monoanion in (I). Displacement ellipsoids are drawn at the 40% probability level and the inter-species hydrogen bond is shown as a dashed line.

Figure 2

Fig. 2. Molecular configuration and atom naming scheme for the INIPA cation and the DCPA monoanion anion in (II). Displacement ellipsoids are drawn at the 40% probability level and the inter-species hydrogen bond is shown as a dashed line.

Figure 3

Fig. 3. Molecular conformation and atom naming scheme for the INIPA cation and the NIPA monoanion in (III). Displacement ellipsoids are drawn at the 40% probability level. The inter-species hydrogen bonds is shown as a dashed line.

Figure 4

Fig. 4. Molecular conformation and atom naming scheme for the INIPA cation, the TPA dianion and the water molecule of solvation in the asymmetric unit of (IV). The dianion has inversion symmetry: [code (i) -x, -y + 1, -z]. Displacement ellipsoids are drawn at the 40% probability level and inter-species hydrogen bonds are shown as dashed lines.

Figure 5

Fig. 5. The two-dimensional hydrogen-bonded network structure of (I) extending across the *bOc* plane of the unit cell, showing hydrogen-bonding associations as dashed lines. Non-interactive H atoms are omitted. For symmetry codes, see Table 1. In this figure and in Figs. 6–8, graph sets for cyclic hydrogen-bonding associations are also indicated.

Figure 6

Fig. 6. The one-dimensional hydrogen-bonded ribbon structure of (II) extending along the b < i/> cell direction, showing hydrogen-bonding associations as dashed lines. Non-interactive H atoms are omitted. For symmetry codes, see Table 2.

Figure 7

Fig. 7. A perspective view of the three-dimensional hydrogen-bonded framework structure of (III), showing the NIPA chain substructures and amide–amide dimer associations. Hydrogen-bonds are shown as dashed lines. Non-interactive H atoms are omitted. For symmetry code (v): -x + 1, y - 1/2, -z + 1/2. For other codes, see Table 3.

Figure 8

Fig. 8. The three-dimensional hydrogen-bonded framework structure of (IV) in a perspective view of the unit cell, showing hydrogen-bonding associations as dashed lines. Non-interactive H atoms are omitted. For symmetry code (i), see Fig. 1. For other codes, see Table 4.