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Abstract 
 
We examine the impact of individual-specific information processing strategies (IPS) 
on the inclusion/exclusion of attributes on the parameter estimates and behavioural 
outputs of models of discrete choice. Current practice assumes that individuals 
employ a homogenous IPS with regards to how they process attributes of stated 
choice (SC) experiments. We show how information collected exogenous of the SC 
experiment on whether respondents either ignored or considered each attribute may be 
used in the estimation process, and how such information provides outputs that are 
IPS segment specific. We contend that accounting the inclusion/exclusion of attributes 
will result in behaviourally richer population parameter estimates. 
 
* This research was undertaken when Simon Washington was a Visiting Professor at 
ITLS, The University of Sydney. 
 
Key Words: Stated choice experiment, behavioural outputs, willingness to pay, 
information processing strategy 
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Introduction 
 
Stated choice (SC) experiments have become a popular method to model choice 
behaviour in transportation contexts. The behavioural outputs of SC models, including 
elasticities, marginal effects and willingness to pay (WTP) estimates have been used 
extensively to derive demand forecasts for new and existing modes (Jovicic, et al., 
2003; Hensher and Rose 2007), to understand and model route choice behaviour (e.g., 
Jou, 2001; Lam, et al., 2002), to model influences on travel behaviour (e.g.,  Peeta, 
2000), to determine the viability of new infrastructure projects such as proposed toll 
roads (e.g., de Dios Ortúzar, et al., 2000; Hensher, 2001), and to test the implications 
on transport systems of proposed policies (e.g., Hensher and King, 2001). Given the 
risks often associated with such projects and the potential to suffer large financial 
losses if they fail, it has become increasingly important that the outputs of SC models 
be both reliable and unbiased estimates of the true population behavioural parameters 
which they purport to represent.  
 
Aside from their ability to provide asymptotically efficient parameter estimates, one 
of the key reasons why SC methods have become so popular is their ability to mimic 
decisions made in real markets that otherwise could not be observed (Burke, et al., 
1992; Carson, et al., 1994). Realism in SC experiments is captured through 
respondents being asked to undertake similar actions as they would in real markets 
(i.e., respondents are asked to make ‘choices’ between a finite but universal set of 
available alternatives, just as in real markets). However, for any individual 
respondent, realism may be lost if the alternatives, attributes and/or attribute levels 
used to describe the alternatives do not realistically portray that respondent’s 
experiences or, in terms of ‘new’ or ‘innovative’ alternatives, are deemed not to be 
credible (e.g., Green and Srinivasan, 1978; Green and Srinivasan, 1990; Cattin and 
Wittink, 1982; Wittink and Cattin, 1989). With regards to the attributes and attribute 
levels used within a SC experiment, significant prior preparation on behalf of the 
analyst (including, amongst other things, extensive literature reviews and qualitative 
research in the form of focus groups and in-depth interviews) may reduce the possible 
inclusion of irrelevant or improbable product descriptors within the choice sets shown 
to respondents (Hensher, et al., 2005). Additionally, for quantitative variables, 
pivoting the attribute levels of the SC task from a respondent’s current or recent 
experience is likely to produce attribute levels within the experiment that are 
consistent with those experiences, and hence, produce a more credible or realistic 
survey task for the respondent (see for example, Hensher and Greene, 2003). The 
selection of what alternatives to include within an SC experiment, whilst somewhat 
more difficult to manage, may also be handled within the design of SC experiments 
(Anderson and Wiley, 1992; Batsell and Louviere, 1991; Lazari and Anderson, 1994; 
Rose and Hensher, 2006). 
 
Typically, SC studies have tended to rely on single pre-specified experimental designs 
with fixed numbers of alternatives, attributes and attribute levels. Significant research 
effort has therefore been expended on how to optimise the outputs derived from 
respondents completing choice tasks derived from these single design plans generated 
using statistical design theory (e.g., Bunch, et al., 1994; Huber and Zwerina, 1996, 
Kanninen, 2002; Kuhfeld, et al., 1994, Lazari and Anderson, 1994; Sandor and 
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Wedel, 2001), whilst minimising the amount of cognitive effort required of 
respondents (e.g., Louviere and Timmermans, 1990; Oppewal, et al., 1994; Wang, et 
al., 2001; and Richardson, 2002). Yet these research efforts appear to have developed 
without adequate recognition that respondents perhaps process SC tasks differently 
(i.e., there may exist heterogeneity in the information processing strategies (IPS) 
employed by respondents; this is borne out by the not uncommon observance of 
lexicographic choice behaviour in segments of respondents completing SC surveys) 
and therefore should be tailored to be as realistic as possible at the level of the 
individual respondent.  
 
Adaptive-Choice-Based-Conjoint (e.g., see Toubia, et al., 2004) customizes the 
attribute levels of a SC experiment shown to a respondent using the previous choices 
made. This, however, is not the same as customising the actual alternatives or 
attributes in order to make the choice task more realistic or believable to the 
individual respondent. Rose and Hensher (2006) address the mapping of alternatives 
in terms of their presence or absence in reality to choice experiments at the individual 
respondent level, however, research addressing the presence or absence of attributes at 
the individual level is only just beginning to be considered within the literature (see 
Hensher 2010, Hensher and Rose 2009, Scarpa et al., 2009). This is somewhat 
surprising given that in real markets, there will likely exist heterogeneity in the 
information held with regards to the attributes and attribute levels of alternatives 
amongst decision makers, as well heterogeneity in terms of the salience of and 
preference for specific attributes. For example, one respondent may have perfect 
information with regards to the torque of alternative vehicles and posses a positive 
marginal utility for the attribute, whilst a second respondent may have no 
understanding of the attributes meaning (indeed, some respondents may not realise 
that such an attribute actually exists, or if so, whether more or less torque is desirable) 
and hence possess no marginal utility for the attribute at all. SC experiments assume 
that all respondents have perfect information (at least on the attributes included within 
the experiment) and that all respondents process these attributes in the same way.  
 
Whilst advances in the econometric modelling of discrete choices, in the form of 
latent class and mixed logit models, may help in uncovering preference heterogeneity 
for attributes, experience suggests that, depending on the random parameter 
distribution, these models will likely assign non-zero parameter estimates to 
individual decision makers, even though their marginal utility for an attribute may 
strictly be zero1. Whilst this might apply to only a small number of decision makers, a 
bias in the population parameter estimates is still likely to exist. Therefore, the 
econometric models used to estimate SC outputs need to be conditioned to assign to 
those individuals who either ignore an attribute or do not have that attribute present, a 
zero parameter estimate. 
 
Rather than rely solely on econometric models to uncover different IPS strategies and 
preference heterogeneity, an alternative strategy is to tailor the choice experiment to 
the individual so that each choice set includes only those alternatives and attributes 
that the respondent would have access to information on in real markets and which 
they would likely use in making their choices. Whilst we advocate this as the 
                                                 
1 This will particularly be the case if the constrained triangular or log-normal distributions are used. 
Whilst these distributions force the parameter estimates to be of the same sign, they also ensure that 
few, if any, individual specific parameter estimates will be zero.  
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preferred strategy, the focus of this paper is to examine how we can use exogenous 
information on the IPS strategies employed by individual respondents undertaking SC 
tasks and how we can use such information to condition the parameter estimates 
derived from the econometric models fitted. Additional non-design information that 
may be captured in SC surveys to assist in revealing the IPS include the 
inclusion/exclusion plan for each attribute as well as an aggregation plan (e.g., the 
adding up of attributes such as components of travel time). In this paper, we 
concentrate only on the information processing attribute inclusion/exclusion strategy 
employed by individual respondents. In doing so, we recognise that as we start to 
appreciate the role of a set of IPS’s in representing choice behaviour (in contrast to the 
default fully compensatory IPS), that we are adding an additional layer of complexity 
in model estimation and model application. In terms of applications, we would need 
supplementary models to identify the probability of a specific IPS being used by each 
individual in the application population. Given the growing evidence (as set out 
succinctly in Hensher and Layton 2010), that accommodating a heterogeneous set of 
IPS does impact non-marginally on WTP and elasticity outputs, this is a layer of 
complexity that cannot be assumed away. 
 
The paper is organised as follows. The next section outlines the econometric model 
used in the paper. A brief overview of the empirical data used is then given followed 
by the set of model results comparing traditional SC models with those conditioned 
using information on the information processing attribute inclusion/exclusion 
strategies used. The substantive implications of the analysis are set out followed by 
some conclusions and directions for ongoing research. 
 

Model Development 
 
Consider a situation in which q=1,2,…,Q individuals evaluate a finite number of 
alternatives. Let subscripts j and t refer to alternative j=1, 2, …, J and choice situation 
t=1,2, ...,T. Random utility theory (RUT) posits that the utility for alternative j present 
in choice situation t may be expressed as: 
 

jtqjtqqjtq xU   '
         (1) 

 
where  
Ujtq is the utility associated with alternative j in choice situation t held by individual q, 
xjtq is a vector of values representing attributes belonging to alternative j, 
characteristics associated with sampled decision makers q, and/or variables associated 

with context of the choice situation, t, and jtq represents unobserved influences on 

utility. '
q  is a vector of parameters such that θ=θ1,θ2,…,θK where K is the number of 

parameters, corresponding to the vector xjtq.  
 
In the most popular choice model, multinomial logit, the probability that alternative i 
will be chosen is given as:  
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where  

.'
jtqqjtq xV           (3) 

 
Assuming a sample of choice situations, t = 1, 2, ..., T, has been observed with 
corresponding values xjtq, and letting i designate the alternative chosen in situation t, 
the likelihood function for the sample is given as 
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and the log likelihood function of the sample as  
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Equation (5) may be re-written to identify the chosen alternative i: 
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Given that θ is unknown, it must be estimated from the sample data. To do this, we 

use the maximum likelihood estimator of θ which is the value of ̂  at which L(θ) is 
maximised. In maximising equation (6), it is usual to use the entire set of data 

for .jtqV That is, it is assumed that across all t, all Vjtq and hence xjtq are considered 

and as such, the levels assumed by each x in the xjtq matrix are used in determining the 

value at which ̂  maximizes the likelihood estimator of θ. 
 
Assuming that over a sample of choice situations, t, not all k variables within the xjtq 

vector are considered in the decision process, the value of ̂  which is conditioned on 
the assumption that all xjtq are considered, will likely be biased. For those choice 
situations in which an attribute, k, is excluded from consideration in the choice 

process, k̂   should be equal to zero. Note that this is not the same as saying that the 

attribute itself should be treated as being equal to zero2.  
 
In cases where attribute k is indicated as being excluded from the decision process, 
rather than set the value for the kth element in the xjtq vector to zero and maximising 

                                                 
2 To demonstrate, consider the situation where attribute xjtq is the price for alternative j in choice 
situation t. For all but giffen goods, setting the price to equal zero will likely make that alternative 
much more attractive relative to other alternatives in which the price is not equal to zero. Further, the 
procedure for maximising L*(θ) will be ignorant of the fact that setting xjtq = 0 represents the exclusion 

of that attribute in the choice process and will estimate a value of ̂ k assuming that the value observed 
by the decision maker in choice situation t was zero for that attribute when indeed it was not. As such, 
setting xkjt = 0 will not guarantee that the parameter for that attribute will be equal to zero for that 

choice situation. It is therefore ̂ k that should be set to zero in the estimation process, not xkjt. 
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equation (6), the search algorithm in searching for the maximum of equation (5), 
excludes that x from the estimation procedure altogether and automatically assigns to 

it a parameter value of zero. The parameter estimate, k̂ , is then estimated solely on 

the sample population for which the variable was not excluded. In this sense, the 
process is analogous to selectivity models (which censors the distribution, as distinct 
from truncation). To demonstrate, consider a simple example in which there are only 
two variables, x1 and x2, associated with each of j alternatives. Denote N as the 
number of attribute processing strategies such that n = 1 represents those decision 
makers who consider only x1 in choosing between the j alternatives, n = 2 represent 
those decision makers who consider only x2, and n = 3 represent those decision 
makers who consider both x1 and x2. The likelihood is defined by the partitioning of 
observations based upon subset membership defined above. The likelihood function is 
therefore given as: 
 

  *

1 1

( ) ln .
T N

itq
t n

L P
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         (7) 

 
The derivatives of the log likelihood for groups n1 and n2 have zeros in the position of 
zero coefficients and the Hessians have corresponding rows and columns of 
zeros. This partitioning of the log-likelihood function may be extended to any of the 
logit class of models, including the nested logit and mixed logit family of models. In 
the next section, we discuss the empirical application in which we estimate models of 
the form described above. 
 

Empirical Application  
 
The data reported herein was collected as part of a larger study examining differences 
between the temporal partitioning of the administration of stated choice data. The 
empirical setting for the study is a labelled SC experiment, the context of which was 
the choice of airline carrier for an interstate holiday. The experiment involved four 
alternatives, three labelled alternatives and a no choice alternative. Each labelled 
alternative was described by four attributes, each further described by four attribute 
levels. Within the labelled experiment, three existing airlines were named as part of 
the experiment. The first airline, which we report as Airline A, represents the 
dominant domestic airline carrier in Australia. The second airline, (Airline B) is an 
international carrier that is perceived within the Australian domestic airline market as 
the being the budget carrier. The third alternative airline (Airline C) within the 
experiment is a dominant international airline that competes with Airline A in terms 
of offering similar service levels within the marketing mix. Given that the experiment 
was a labelled choice experiment, the smallest possible experimental design (capable 
of estimating non-linear main effects in the marginal utilities of each attribute) 
consists of 16 treatment combinations (see Rose and Bliemer, 2007). Rather than 
generate a design with 16 treatment combinations, a 4(3×4) orthogonal fractional 
factorial experimental design with 40 treatment combinations was generated. This 
design allows for the estimation of non-linearities in the marginal utilities over the 
attribute levels for all main effects. The attributes and attribute levels are shown in 
Table 1. 
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Table 1: Attribute and attribute levels 
Attribute Attribute levels 
Ticket Price $79, $99, $119, $139 
Flight Time (minutes) 40, 50, 60, 70 
Departure Time 6.00am, 10.00am, 2.00pm, 6.00pm 
Flight Time Variability  5%, 7.5%, 10%,  12.5% 

 
In addition to the attribute columns, two additional orthogonal blocking columns were 
generated as part of the experimental design. The first blocking column of two levels, 
divided the design into two orthogonal halves. The second blocking column of four 
levels, divided the design into four orthogonal quarters. These two blocking columns 
were used to establish two of three experimental conditions. The first experimental 
condition, involving neither blocking column, consisted of respondents completing 
the entire design in a single session (i.e., respondents completed all 40 choice sets in 
one sitting). The second experimental condition, using the first blocking column, saw 
respondents complete the entire experiment over two sessions, completing each half 
fraction of the experiment as determined by the blocking column, spaced one week 
apart. The second blocking column was used in the third experimental condition, with 
respondents asked to complete each of the four quarters in separate sessions spanning 
a four week time frame. In each condition, the order of choice sets was randomized so 
as to avoid order effect biases. A second non-labelled choice experiment involving 
mobile phone choice was also conducted at the same time using the same principles 
described above (see Rose and Black, 2006). 
 
Two hundred and thirty two first and second year marketing undergraduate students 
were recruited to complete the experiment. Recruited students were randomly 
assigned to one of the three experimental conditions. Of the 232 students, 61 were 
randomly assigned to the first experimental condition, 81 to the second experimental 
condition and 90 to the last experimental condition. Greater numbers of students were 
assigned to each successive experimental condition so as to compensate for expected 
attrition over sessions. Table 2 shows the number of respondents completing each 
experimental condition of the study and the number of observations thus obtained. 
Percentages shown represent the within condition completion/non-completion rates. 

 
Table 2: Attribute and attribute levels 

Condition (choice sets 
per condition) 

Number of choice 
sets completed Number of respondents 

Number of choice 
observations 

1 (40) 40 61 (100%) 2440 

2 (20) 40 55 (67.9%) 2200 

2 (20) 20 26 (32.1%) 520 

3 (10) 40 34 (37.78%) 1360 

3 (10) 30 29 (32.22%) 870 

3 (10) 20 12 (13.33%) 240 

3 (10) 10 15 (16.67%) 150 

  Total 7780 
 
Table 3 shows the demographic breakdown of the sampled respondents by 
experimental condition. The vast majority of those completing the survey were female 
and currently owned or had owned a mobile phone in the past.  
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Table 3: Demographic breakdown of sample 
Condition (choice sets 

per condition) 
Number of choice 
sets completed 

Age 
(average) 

Gender 
 (female) 

Percentage having experience 
with a mobile phone 

1 (40) 40 20.54 47.46% 77.97% 

2 (20) 40 20.30 64.00% 78.00% 

2 (20) 20 20.97 65.63% 71.88% 

3 (10) 40 20.38 61.54% 76.92% 

3 (10) 30 19.9 65.52% 82.76% 

3 (10) 20 19.9 72.73% 72.73% 

3 (10) 10 20.3 58.33% 91.67% 

 
Upon completing the choice tasks for a session, sampled respondents were asked 
which attributes they had ignored in making the choices that they had made whilst 
undertaking the choice experiment. The response metric for this question was a simple 
binary yes/no for each attribute. Although we use a simple binary indicator to define 
the inclusion or exclusion of an attribute in an individual’s information processing 
strategy, we do not attribute the reason for the response herein, which could be due to 
cognitive burden or simply relevance (see Hensher, 2004). Table 4 summarises the 
number of times each attribute was stated as being ignored over experimental 
conditions. Ticket price was ignored in the choice process the least number of times 
and flight time variability the most number of times. Over the sample, flight time and 
departure time were ignored approximately the same number of times. Significantly, a 
check of the data showed no respondent ignored all attributes in making their choices. 
 

Table 4: Number of respondents who did not consider an attribute by experimental condition 
 (Percentage of respondents in which an attribute were excluded from the   

choice process shown in brackets) 
Condition (choice 
sets per condition) 

Ticket Price Flight Time 
(minutes) 

Departure 
Time 

Flight Time 
Variability  

1 (40) 7 (11.48%) 12 (19.67%) 16 (26.23%) 37 (60.66%) 
2 (20) 1 (1.82%) 8 (14.55%) 6 (10.91%) 40 (72.73%) 
2 (20) 1 (3.85%) 6 (23.08%) 3 (11.54%) 21 (80.77%) 
3 (10) 9 (29.03%) 6 (19.35%) 10 (32.26%) 21 (67.74%) 
3 (10) 6 (20.69%) 5 (17.24%) 8 (27.59%) 15 (51.72%) 
3 (10) 0 (0.00%) 0 (0.00%) 0 (0.00%) 10 (76.92%) 
3 (10) 1 (6.67%) 8 (53.33%) 2 (13.33%) 9 (60.00%) 

Total ignored 25 (10.78%) 45 (19.40%) 45 (19.40%) 153 (65.95%) 
 
 

 

Empirical Results 
 
Table 5 presents the model results for the experiment. The first two models were 
estimated using all data irrespective of whether a sampled individual indicated 
whether they had ignored an attribute throughout the experiment or not. This 
represents current practice whereby it is assumed that all attributes are relevant (to 
varying degrees) to all sampled respondents. The final two models are estimated using 
the procedure described earlier. Models 1 and 3 are MNL models, models 2 and 4 are 
mixed logit (ML) models. All four models were estimated using the pooled choice 
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data from all three experimental conditions, irrespective of whether all 40 choice sets 
were completed or not. While we recognise that pooling data with different numbers 
of choice sets may have some influence on the parameter estimates, this is not the 
issue of interest in this current paper. Research by Hensher (2006), amongst others, 
has not found any systematic biases in parameter estimates due to the number of 
choice scenarios evaluated. Bias tends to be influenced by attribute range and levels 
which were the same throughout the entire data set. We have allowed for correlation 
between choice scenarios for each individual; however given the almost instantaneous 
nature of the ‘panels’ we suggest that the correlated structure has already been 
adequately handled, given it is still a very short ‘panel’. 

Table 5: Summary of Empirical Results for Models 1 through 4 
(Random Parameters mean = spread parameter) 

 Full Data Partial Data 
 MNL  MMNL  MNL  MMNL  
  Coeff. (t-ratio) Coeff. (t-ratio) Coeff. (t-ratio) Coeff. (t-ratio) 
Ticket Price -0.054 (-52.87) -0.107 (-32.26) -0.036 (-41.41) -0.035 (-32.69) 
Flight Time -0.027 (-18.78) -0.041 (-20.13) -0.016 (-14.67) -0.022 (-16.04) 
Flight Time Variability 0.483 (0.78) 0.378 (0.46) -6.488 (-11.26) -9.905 (-12.56) 
Departure Time (6am) -0.533 (-17.36) -0.686 (-17.29) -0.424 (-8.26) -0.452 (-8.29) 
Departure Time (10am) 0.437 (14.16) 0.617 (14.49) 0.488 (9.86) 0.448 (8.78) 
Departure Time (12pm) 0.089 (2.96) 0.121 (3.31) 0.159 (3.21) 0.123 (2.39) 
  Non-Random Parameters 
Constant A 7.171 (50.33) 14.814 (33.88) 4.650 (41.08) 5.220 ( (32.69) 
Constant B 7.245 (50.97) 14.865 (34.17) 4.731 (41.66) 5.304 (33.08) 
Constant C 6.952 (49.48) 14.451 (33.87) 4.490 (39.75) 5.061 (31.82) 
  Model Fits 

LL(0) -10785.370 -10785.370 -10785.370 -10785.370 
LL(β) -8538.611 -8158.476 -9502.17 -9441.21 

χ2 4493.519 5253.788 2566.401 2688.324 

ρ2 0.199 0.243 0.118 0.124 

Observations 7780 7780 7780 7780 

Marginal Effects 
 Airline A Airline B Airline C None 
Ticket A -2.988 -3.376 -2.046 -1.737 
Ticket B -2.923 -3.325 -1.999 -1.698 
Ticket C -3.098 -3.666 -2.095 -1.698 
Flight Time A -0.828 -0.853 -0.449 -0.568 
Flight Time B -0.809 -0.840 -0.441 -0.557 
Flight Time C -0.851 -0.906 -0.462 -0.589 
Flight Time Variability A 0.023 0.012 -0.122 -0.173 
Flight Time Variability B 0.023 0.013 -0.120 -0.171 
Flight Time Variability C 0.025 0.014 -0.128 -0.181 
Departure Time (6am) A -0.103 0.010 -0.068 -0.011 
Departure Time (6am) B -0.109 0.016 -0.071 -0.012 
Departure Time (6am) C -0.104 0.006 -0.066 -0.007 
Departure Time (10am) A 0.084 -0.012 0.079 0.020 
Departure Time (10am) B 0.089 -0.009 0.081 0.022 
Departure Time (10am) C 0.085 0.019 0.076 0.027 
Departure Time (12pm) A 0.017 -0.001 0.025 0.004 
Departure Time (12pm) B 0.018 -0.002 0.026 0.004 
Departure Time (12pm) C 0.017 0.001 0.024 0.004 

 
For all four models, all parameters associated with the design attributes are specified 
as generic random parameter estimates. With the exceptions of the flight time 
variability parameters of models 1 and 2, all parameters associated with the design 
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attributes are statistically significant and of the expected sign. In specifying the ML 
models, the parameters associated with the design attributes were drawn from a 
constrained triangular distribution. Hensher and Greene (2003) have shown that for 
the triangular distribution, when the mean parameter is constrained to equal its spread 
(i.e., jk = k + |k| Tj , where Tj is a triangular distribution ranging between -1 and 
+1), the density of the distribution rises linearly to the mean from zero before 
declining to zero again at twice the mean. Therefore, the distribution must lie between 
zero and some estimated value (i.e., the jk). As such, all individual specific parameter 
estimates are constrained to be of the same sign. Empirically the distribution will be 
symmetrical about the mean which not only allows for ease of interpretation, but also 
avoids the problem of long tails often associated with drawing from a log-normal 
distribution. The random parameter estimates of the ML models were drawn using 
500 Halton draws. 
 
Comparison of models 1 and 2, and 3 and 4 reveal significant differences in the 
parameter estimates of the four models. The parameter estimates for the ticket price 
and flight time attributes for models 1 and 2 suggest that when the information 
processing attribute inclusion/exclusion strategy is not accounted for, the sample 
population is much more sensitive to both increases in price and flight times than 
when the information processing attribute inclusion/exclusion strategy of sampled 
respondents is considered during the modelling process. The flight time variability 
parameter estimates which were not significant and of the incorrect sign when 
information processing attribute inclusion/exclusion strategy is ignored become 
highly significant and of the correct sign when estimated only for those who 
considered the attribute. This clearly illustrates that including or excluding attributes 
is an important segmentation criterion. The departure time attribute, which was effects 
coded (see Hensher et al., 2005), produces roughly similar population moments 
whether all data is used in the estimation process or only data for those who 
considered the attribute during the choice experiment.  
 
In interpreting the parameter estimates for models 3 and 4, it is important to note that 
the parameter estimates are specific only to sample population segments who consider 
an attribute whilst undertaking the choice experiment. For those who do not consider 
an attribute, the parameter estimate for that individual is zero. As such the parameter 
estimates of models 3 and 4 are not inclusive of the entire sample population. That is, 
the parameter estimates are specific to each information processing attribute 
inclusion/exclusion strategy. In terms of segmentation and benefits studies, this is an 
important development. Assuming that respondents only consider attributes which 
they perceive a benefit when making choice decisions, the parameter estimates shown 
in models 3 and 4 may be interpreted as those for the specific needs benefits 
segments. In traditional models, these IP or benefits segments may be lost if the 
segment is small relative to the total population size. This is demonstrated with the 
flight time variability attribute in which only a small segment of the sampled 
population considered this attribute in the choice process. When the parameters are 
estimated ignorant of the information processing attribute inclusion/exclusion strategy 
employed, the flight time variability parameter is not significant (indeed it is of the 
wrong sign) which would result in the analyst wrongly assuming that the parameter is 
not important in the choice process for the entire population when in fact, for a small 
proportion of the sampled population, the attribute is a highly significant determinant 
of airline choice.  
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The impact of the information processing attribute inclusion/exclusion strategy carries 
through to the behavioural outputs derived from models of discrete choice. As well as 
the parameter estimates, Table 5 shows the direct marginal effects for the four 
estimated models. Supporting our earlier observations, ignoring the information 
processing attribute inclusion/exclusion strategy employed by sampled respondents 
tends to increase the sensitivities for the sampled population to increases in airline 
ticket prices and flight times. Indeed, the marginal effects for model 4 are 
approximately half those for model 2. Non-marginal changes are observed for the 
marginal effects for the flight time variability attribute when the information 
processing attribute inclusion/exclusion strategy is accounted for in the model 
estimation process compared to when the information processing attribute 
inclusion/exclusion strategy is ignored. Only marginal changes are observed within 
the magnitudes of the departure time effects coded attribute however several sign 
reversals are noted.  
 
Figure 1 shows the willingness to pay (WTP) distributions for the flight time attribute 
estimated from the two ML models reported in Table 5. These WTP distributions 
were derived from the conditional individual specific parameter estimates obtained 
using methods outlined in Train (2003) and Greene et al. (2005). At the individual 
specific level, the estimation procedure assigns a zero parameter estimate to those 
who did not consider an attribute but assigns a parameter estimate from the assigned 
distribution for those who did, using the procedures described in Train (2003) and 
Hensher, et al. (2004). For derivation of WTP distributions, this poses problems if one 
or both of the parameters in the WTP ratio are equal to zero. If the cost parameter is 
equal to zero, the denominator of the ratio is equal to zero and the WTP measure 
becomes infinite. This is similarly the case if both parameters are equal to zero. If on 
the other hand, the parameter located in the numerator of the WTP calculation is zero, 
the WTP estimate becomes zero. These issues do not arise if the information 
processing attribute inclusion/exclusion strategy is not accounted for in the estimation 
process. In deriving the WTP distributions shown in Figure 1, we have removed those 
WTP measures which are infinite or which are equal to zero due to one or more of the 
individual-specific conditional parameter estimates are equal to zero. We discuss this 
in a later section. The WTP based on individual parameters are summarised in Table 6 
for the mixed logit models. All WTP have a distribution in the positive range.  
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Figure 1: Willingness to Pay Kernel Density Functions for Flight Times 
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Table 6: Summary of Empirical WTP values from models 2 and 4 

 WTP Mean Stand. dev. Range 
Full data Flight Time (minutes) $25.14 $7.10 $16.20-$76.16 
IP att. exclusion strategy Flight Time (minutes) $38.4 $11.75 $3.26-58.34 

 
The above analysis demonstrates the importance of accounting for the processing 
strategies of respondents undertaking SP work, where the current paper has made use 
of exogenous information related to the ignoring patterns of respondents during the 
choice survey. Questions remain however as to how such results can be translated into 
the real world beyond the modelled results. For example, the above models, which for 
example have identified that a small minority of respondents in a choice survey are 
sensitive to flight time variability, will not assist airline managers to understand 
precisely who these people are, and hence will not allow for any direct marketing 
campaigns to target such individuals. To overcome this shortcoming, it is possible 
however to estimate a series of binary logit models based on the surveyed respondents 
stated IPSs when additional covariate information, also captured in the data, is used as 
independent variables. Using binary logit models where the dependent variable is one 
if an attribute was ignored and 0 otherwise, it is possible to determine whether 
particular covariate classes are more or less likely to ignore a specific attribute in 
making their choices. In the current dataset we do this using the respondent’s age and 
gender as well as an interaction term between the two. Results for the four binary logit 
models are presented in Table 7. 
 

Table 7: Binary Logit models of ignoring patterns 
 Ignore Ticket Price Ignore Flight Time Ignore FT Var. Ignore Dep. Time 

 Par. (t-ratio) Par. (t-ratio) Par. (t-ratio) Par. (t-ratio) 

Constant -4.290 (-3.24) -2.604 (-1.61) -1.705 (-1.02) -2.896 (-1.86) 

Age 0.112 (1.77) 0.067 (0.86) 0.019 (0.24) 0.170 (2.22) 

Gender (female = 1) -0.905 (-2.61) -7.262 (-2.90) -2.104 (-1.99) 5.020 (2.56) 

Age×Gender -0.448 (-1.28) 0.335 (2.79) 0.097 (0.94) -0.233 (-2.42) 

Model Fits 

LL(0) -137.507 -239.746 -241.120 -303.321 

LL(β) -131.837 -224.684 -238.106 -298.993 

ρ2 0.041 0.063 0.013 0.014 

Adj. ρ2 0.033 0.055 0.004 0.006 
 
From Table 7, it can be seen that, ceteris paribus, females are less likely than males to 
ignore ticket prices, flight time and flight time variability, but are much more likely to 
ignore departure times. Examining the Age×Gender interaction however suggests that 
older females are more likely to ignore flight time but are less likely to ignore 
departure time than younger females. Irrespective of gender, older respondents are 
more likely to ignore departure time than younger respondents but no differences exist 
between ages in terms of the remaining attributes. Given such results, airline 
managers may specifically target their marketing campaigns and pricing strategies at 
certain specific groups.  
 

Discussion and Conclusion 
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This paper has examined the issue of information processing attribute 
inclusion/exclusion strategies and their effect on the parameter estimates and other 
behavioural outputs of models of discrete choice. We have shown that accounting for 
individual specific information on the processing of attribute inclusion/exclusion 
strategies results in significant differences in the parameter estimates and other 
behavioural outputs of models of discrete choice. These differences arise from a form 
of respondent segmentation, the basis of which is respondent IPS. Through 
partitioning the log-likelihood function of discrete choice models based on the IPS of 
individual respondents, the outputs of the models we estimate, represent those of these 
IPS segments, rather than those of the entire sample population. In this way, we are 
able to detect the preferences for different segments within the sample population 
based on the IPS strategies existing within the sampled population. In traditional 
choice models, such segments will likely go undetected. 
 
The particular question asked as to whether an attribute should be excluded from 
model estimation for a specific respondent is critical to the method and the results. We 
recognise that there may be other ways of defining the behavioural rule for including 
or excluding an attribute. We also recognise that it is important to understand whether 
the attribute was excluded simply because of cognitive burden in the survey task in 
contrast to a genuine behavioural exclusion in respect of the relevance of the attribute 
in making such choices in real markets. It could be the case that cognitive burden 
associated with the survey instrument may indeed be real but so it can be in real 
markets with information acquisition and processing and so care is required in 
separating out and accounting for all these reasoning processes. Clearly they are all 
legitimate members of an individuals IPS.  
 
Ultimately, our preferred strategy would be to tailor the SC experiment to the 
individual based on the IPS of the respondent. How best to do this is a matter of 
research. One question is whether the IPS strategy should be determined a priori and 
the SC experiment fixed for each respondent over the course of the experiment or 
whether the IPS strategy is determined for each distinct choice set. The former 
approach is appealing for reasons of simplicity, the latter for completeness given that 
the IPS strategy may be linked not only to the attributes, but the attribute levels of the 
experiment. The strategy we outline here, whereby we employ an SC experiment 
derived from a single design plan, represents the more traditional approach to 
conducting SC experiments; however, we are able to account for the IPS strategy 
exogenously, without having to tailor the SC experiment to each individual. Research, 
however, is required as to whether it is best to ask each respondent which attributes 
were ignored at the end of the experiment, as we did here, or upon completion of each 
choice task. As with the tailoring of the SC task, the former approach is appealing for 
reasons of simplicity as well as the probable limiting of cognitive burden experienced 
by respondents, whilst the later may represent a more complete approach, given that 
the attributes that are ignored or considered may be a function of the attribute levels of 
the alternatives as well as a function of experience or fatigue as the number of choice 
tasks completed increases. Whatever is the subsequent empirical evidence, we 
strongly promote the need to recognise that the choice experiment per se can influence 
the selection of an IPS, and hence the choice response, and adjustments mad where 
evidence from alternative choice experiments are being compared. Hensher (2006a) 
developed a formula to make such adjustments. 
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A further point of future research interest is on the WTP estimates derived from the 
processes outlined within this paper. In this paper, we have excluded the WTP outputs 
for those who stated they ignored one or both of the two attributes used in the WTP 
calculation. Whilst it may be impossible to do anything else, this does not suggest that 
such individuals WTP measures are zero (or infinity). What is known is that the WTP 
measures of such individuals are zero (or infinity) given the attribute levels used in 
the SC experiment. Had other levels been used, these individuals may have a non-zero 
(or non-infinite) WTP measure. This may point to a miss-specification of the attribute 
levels used in the experiment, which if shown to have occurred, suggests that WTP 
measures derived from models which fail to account of individual specific IPS 
strategies, are likely to be biased. This is an important issue, still needing to be 
satisfactorily resolved.  One promising avenue for future exploration in this area may 
be the estimation of models in WTP-space rather than preference space (as recently 
undertaken by Train and Weeks 2005, Scarpa et al., 2008, and Hensher and Greene in 
press). 
 
We conclude by noting that the proposed modelling approach discussed here applies 
equally to models estimated using revealed preference (RP) data. Researchers 
collecting RP data must pre-specify the data collected and assume, as with SC data, 
that the attributes of RP data are processed homogenously over the sampled 
population. As with SC data, this need not be the case. 
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