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Abstract 

The ghrelin axis consists of the gene products of the ghrelin gene (GHRL), and their 

receptors, including the classical ghrelin receptor GHSR. While it is well-known that the 

ghrelin gene encodes the 28 amino acid ghrelin peptide hormone, it is now also clear that the 

locus encodes a range of other bioactive molecules, including novel peptides and non-coding 

RNAs. For many of these molecules, the physiological functions and cognate receptor(s) 

remain to be determined. Emerging research techniques, including proteogenomics, are likely 

to reveal further ghrelin axis-derived molecules. Studies of the role of ghrelin-axis genes, 

peptides and receptors, therefore, promises to be a fruitful area of basic and clinical research 

in years to come. 
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1.0 Introduction 

In 1996 Howard et al. (Howard et al., 1996) described the growth hormone secretagogue 

receptor (GHSR), which is expressed in the pituitary and hypothalamus and mediates the 

growth hormone (GH)-releasing activities of synthetic peptide secretagogues and cyclic 

analogues (Howard et al., 1996). GHSR was shown to be a classical, 7-transmembrane 

domain, G protein-coupled orphan receptor, and its natural ligand was not known. Three 

years later, Kojima et al. (Kojima et al., 1999) isolated the natural GHSR ligand, ghrelin, 

from rat stomach. The ghrelin axis has now been described in a range of vertebrate species 

from teleost fish to humans (Kaiya et al., 2008). Although ghrelin was initially discovered as 

an endogenous GH releasing  peptide, it soon became apparent that ghrelin has a wide range 

of different functions. Ghrelin is the most potent circulating orexigen, and plasma levels are 

elevated prior to meals and stimulates feeding (Wren et al., 2001). It also has roles in the 

regulation of metabolism, insulin and glucose balance, the immune system, cardiovascular 

system and has roles in sleep and memory.   

Ghrelin is a 28 amino acid peptide, which is post-translationally cleaved by furin-like 

proteases from a larger (117 amino acid) preproghrelin protein. We have previously 

hypothesised that the ghrelin gene encodes a wide range of peptides, termed crypteins 

(meaning to hide in Greek) (Seim et al., 2009), and recent evidence supports this hypothesis. 

These hidden peptides, which are derived by alternative transcriptional splicing, proteolytic 

cleavage of larger precursor peptides and/or by other post-translational modifications, may 

have novel or altered functions compared to the wild-type ghrelin peptide. Although the 

human ghrelin gene was originally reported to consist of just four coding exons, recent 

evidence demonstrates that the human ghrelin gene locus is remarkably more complex in 

terms of transcriptional output, and it includes a large number of transcripts transcribed from 

both sense and antisense DNA strands (Seim et al., 2007; Seim et al., 2008).   
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There also appears to be considerable diversity in the ghrelin receptor. Alternative splicing of 

the GHSR gene generates the full-length transcript that encodes the active GHSR 1a and a 

truncated GHSR 1b isoform, the latter exhibits no calcium signalling in response to ghrelin 

treatment (Feighner et al., 1998; Howard et al., 1996), but may downregulate GHSR1a 

expression, acting as a dominant-negative mutant (Leung et al., 2007). There is also strong 

evidence for an unidentified, alternative ghrelin receptor(s) that could mediate some of the 

effects of ghrelin and its non-acylated form, desacyl ghrelin  (Baldanzi et al., 2002; Bedendi 

et al., 2003; Broglio et al., 2004; Cassoni et al., 2001; Cassoni et al., 2004; Filigheddu et al., 

2007; Gauna et al., 2005; Gauna et al., 2006; Kleinz et al., 2006; Martini et al., 2006; 

Muccioli et al., 2004; Sato et al., 2006; Thielemans et al., 2007; Thompson et al., 2004; 

Toshinai et al., 2006; Tsubota et al., 2005).  

In this review, we will highlight what is known about human ghrelin-axis derived molecules, 

ghrelin receptors and RNA transcripts, many of which may play important roles in health and 

disease.  

 

2.0 The ghrelin precursor, mature ghrelin peptide, GOAT and obestatin 

The ghrelin gene contains four preproghrelin-coding exons (exon 1 to 4), and additional 

upstream exons have recently been reported (Seim et al., 2007). During preproghrelin 

processing, a 23 amino acid secretion-signal peptide is cleaved from the N-terminus of the 

117 amino acid preprohormone, resulting in a 94 amino acid proghrelin peptide (Fig. 1). This 

proghrelin peptide is then further cleaved and gives rise to the 28 amino acid ghrelin peptide 

(amino acids 24–51, encoded by exon 1 and part of 2) and a 66 amino acid C-terminal 

propeptide, C-ghrelin (encoded by part of  exon 2, plus exons 3 and 4 of the preproghrelin 

gene) (Pemberton et al., 2003). There are two major forms of the 28 amino acid mature form 
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of ghrelin. Following proteolyic cleavage from proghrelin, the ghrelin peptide can be post-

translationally octanoylated (acylated) at its third residue, which is a serine, by ghrelin O-

acyltransferase (GOAT) (Gutierrez et al., 2008; Yang et al., 2008a). This modified form is 

usually referred to as ghrelin in the literature. A non-octanoylated form of ghrelin (des-acyl 

ghrelin, des-ghrelin or unacylated ghrelin) circulates in the blood at higher levels than 

octanoylated ghrelin (Holmes et al., 2009; Patterson et al., 2005) and because it does not bind 

the GHSR 1a it was previously thought to be biologically inactive. As outlined in several 

articles in this issue, however, des-ghrelin is now known to have many functions in health 

and disease (Delhanty et al., 2010; Gauna et al., 2006; Gauna et al., 2007). 

 

GOAT, the enzyme that octanoylates ghrelin, is a member from the membrane-bound O-acyl 

transferase (MBOAT) family of enzymes and is encoded by the MBOAT4 gene and it is 

highly conserved in vertebrates (Gutierrez et al., 2008; Yang et al., 2008a). Using octanoyl 

CoA as a substrate, GOAT transfers the octanoate group to the third residue (serine) of 

ghrelin, forming an acyl ester (Zhao et al., 2010). The N-terminal 4 amino acids of ghrelin are 

likely to be the substrate recognition sites for the enzyme, and the first, third and fourth 

amino acids are required for octanoylation and are highly conserved (Ohgusu et al., 2009; 

Yang et al., 2008b). GOAT is a hydrophobic, membrane-bound enzyme with 8 membrane-

spanning domains and it appears to be localised to the endoplasmic reticulum (Yang et al., 

2008a). GOAT and ghrelin are co-expressed in cells in the stomach, and GOAT is also 

expressed in the pancreatic islets and to a lesser extent in other tissues (Gutierrez et al., 

2008), including chondrocytes (Gomez et al., 2009).  As ghrelin is uniquely modified by 

GOAT, the enzyme is believed to be an attractive and specific target for the modification of 

ghrelin octanoylation (Yang et al., 2008b) and GOAT could provide a target for the 
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development of drugs to prevent obesity, weight gain and insulin resistance (Barnett et al., 

2010).  

 

There is growing evidence that GOAT plays a role in the regulation of metabolism and it 

appears to play a role in lipid-sensing in the gut and linking energy intake with endocrine 

balance (Kirchner et al., 2009). GOAT knockout mice are unable to maintain adequate blood 

glucose levels in response to severe caloric restriction and weight loss and this effect is 

prevented when GH is co-administered (Zhao et al., 2010). While GOAT may play an 

important role in glucose balance during caloric restriction, it does not appear to play an 

important role in the storage of excess energy stores (Zhao et al., 2010). A ghrelin des-

acylation enzyme (acyl-protein thioesterase 1, APT1) has recently been reported (Satou et al., 

2010), suggesting that the levels of acylated ghrelin can be regulated by the bioavailability of 

GOAT and APT1. The role of ghrelin acylation in health and disease is extensively reviewed 

by Yi et al., in this Special issue. 

 

The 66 amino acid C-terminal region of the prohormone, C-ghrelin (Pemberton et al., 2003), 

contains the 23 amino acid peptide obestatin (Zhang et al., 2005), which is encoded by part of 

exon 3. Obestatin, which is C-terminally amidated, was originally described as having 

opposite effects to ghrelin on food intake (Zhang et al., 2005), but it is now established that 

this is unlikely to be the case (Gourcerol et al., 2007b; Gourcerol et al., 2007a; Seoane et al., 

2006).  However, it is a multi-functional peptide hormone in its own right with several 

reports within the last five years describing functional roles for the obestatin peptide, in sleep, 

adipogenesis, pancreatic homeostasis and cancer (for review, see Seim et al. in this issue). 
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Cleavage of obestatin from C-ghrelin also generates an N-terminal and a C-terminal peptide, 

however, no functional studies involving these peptides have been reported.  

 

2.1 Alternative exon usage may result in novel ghrelin gene-derived peptides 

It is now clear that the human ghrelin gene harbours multiple first exons and is extensively 

spliced (Fig. 2). Until recently, however, the translation and/or function of the majority of 

these peptides was not appreciated (Seim et al., 2009). Prepro-des-Gln14-ghrelin (Fig. 2) is a 

splice variant where an alternative splice site in exon 2 is employed, resulting in a 116 amino 

acid preproghrelin peptide (lacking one glutamine residue) that is likely to be processed and 

function in the same manner as the wildtype preproghrelin transcript (Hosoda et al., 2000; 

Hosoda et al., 2003). Another variant discovered by our laboratory, exon 3-deleted 

preproghrelin (3 preproghrelin) (Fig. 2), encodes a 91 amino acid preprohormone, which 

lacks obestatin and, due to a change in reading frame, generates a novel 16 amino acid C-

terminal sequence (Jeffery et al., 2003; Jeffery et al., 2005; Yeh et al., 2005). This sequence 

has a potential proteolytic cleavage site at its N-terminus. It is not yet known, however, if this 

novel C-terminal peptide (termed 3D) is released within tissues or circulates in the plasma, 

and the function of the 3 peptide is also not known. As the 3 preproghrelin splice variant 

would produce ghrelin, but not obestatin, this provides a potentially important mechanism for 

altering the balance between these molecules and, thereby, resulting in different physiological 

responses. This may be the case in cancers of the breast (Jeffery et al., 2002) and prostate 

(Yeh et al., 2005), where this exon 3-deleted preproghrelin splice variant is upregulated.  

In 2007, Kineman and colleagues (Kineman et al., 2007) described a ghrelin gene transcript 

in the mouse that retained intron 1 of the gene. This splice variant, termed In2-ghrelin, is 

primarily expressed in the pituitary and hypothalamus and is regulated in response to 
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metabolic stress (Kineman et al., 2007). Gahete and colleagues recently reported that In2-

ghrelin mRNA is present in humans and down-regulated in particular brain regions in 

Alzheimer’s disease (Gahete et al., 2010b). In2-ghrelin encodes a 117 amino acid polypeptide 

that includes the signal peptide of preproghrelin, the first 12 amino acids of the 28 amino acid 

ghrelin peptide sequence, and a novel 81 amino acid, C-terminal peptide. The expression of 

In2-ghrelin parallels the expression of ghrelin O-acyltransferase (GOAT), suggesting that the 

peptide is likely to be acylated by GOAT (Gahete et al., 2010a). The 12 amino acid ghrelin-

like region of In2-ghrelin is particularly interesting, as it contains the first 5 amino acids of 

ghrelin (GSSFL), which we previously termed G5-ghrelin (or G5) (Seim et al., 2009). This is 

the minimum sequence required for binding and stimulation of GHSR 1a in vitro (Bednarek 

et al., 2000) and for ghrelin acylation by GOAT (Yang et al., 2008b). The potential existence 

of endogenous, short ghrelin peptides warrants further investigation.  

 

Several transcripts that do not contain exon 1 and, therefore, do not encode ghrelin, are also 

generated from transcription start sites within the alternative far upstream exon -1 and are 

spliced directly into exons 2, 3, and/or 4 (Seim et al., 2007) (Fig. 2). Exon -1 contains a 

putative signal peptide sequence and, therefore, the resulting putative peptides [which encode 

C-ghrelin only, obestatin only or 3D only (Fig. 2)] may be expressed quite independently of 

full-length preproghrelin itself (Seim et al., 2007). Differential regulation of transcription 

start site usage and alternative splicing in different physiological and/or pathophysiological 

states may partly provide an explanation for the lack of correlation between the expression 

levels of ghrelin and C-ghrelin or obestatin peptides. 
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2.2 Ghrelin antisense transcripts 

We have reported the presence of a natural antisense gene, GHRLOS, on the opposite DNA 

strand of the ghrelin gene (GHRL) (Seim et al., 2007; Seim et al., 2008). This gene spans the 

promoter and untranslated regions of GHRL, overlaps with GHRL-adjacent genes and can be 

transcribed into a number of mRNA isoforms. GHRLOS encompasses several exons, is 

extensively spliced, is not well conserved across species and contains multiple stop codons - 

all hallmarks of potential non-coding (nc) RNA genes. It is highly expressed in several 

tissues (including the thymus, brain and testis) that are known sites of ncRNA expression 

(Mercer et al., 2008; Sasaki et al., 2007). It is currently not known if ghrelin antisense 

transcripts, derived from the GHRLOS gene, regulate ghrelin expression, other cellular 

functions, or play a role in disease. Such questions are now the focus of continuous research 

efforts. Antisense transcripts have been shown to influence gene silencing and tumour 

suppression and to represent markers for complex human diseases, among other roles (Taft et 

al., 2010). 

 

3.0 Receptors in the ghrelin axis: more research questions than answers 

Although the cognate ghrelin receptor, GHSR 1a, was identified more than 15 years ago [1], 

significant questions remain regarding the structure-function relationships of this receptor and 

its recognised truncated isoform, GHSR 1b. It is also unclear how many other GHSR-

independent ghrelin receptors there are and the receptors for other ghrelin derived peptides, 

including the obestatin receptor, are unknown (Fig. 3).  
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GHSR 1a is a classical 7-transmembrane G protein-coupled receptor (GPCR) and a member 

of a broader ghrelin receptor family, which includes receptors for neurotensin and 

neuromedins, motilin and other GPCRs, including GPR39 (Holst et al., 2004). GHSR 1a is 

expressed in a wide variety of tissues and is established as the receptor through which some, 

but not all, of the recognised effects of ghrelin (including GH secretion, appetite regulation, 

insulin production, and cell proliferation) are mediated. The truncated, 5-transmembrane 

domain-spanning, GHSR 1b isoform is thought to be inactive, as it does not bind ghrelin and 

ghrelin does not activate signalling through this receptor (Feighner et al., 1998; Howard et al., 

1996). It may, however, play a significant role in modulating other GPCRs, including GHSR 

1a, through GPCR homo- and/or hetero-dimerisation (Chan et al., 2004; Chu et al., 2007; 

Leung et al., 2007; Takahashi et al., 2006). GPCR dimerisation is a well-recognised 

mechanism through which ligand recognition and receptor signalling can be modified 

(Dalrymple et al., 2008). GHSR 1a/1b heterodimerisation has been demonstrated in studies in 

sea bream (teleost fish), (Leung et al., 2007) and by interacting with GHSR 1a, GHSR 1b 

may attenuate the constitutive activation of phospholipase C by GHSR 1a (Chu et al., 2007; 

Leung et al., 2007). GHSR 1b may act as a dominant-negative regulator of GHSR 1a by 

reducing the cell surface expression of GHSR 1a and, therefore, reducing constitutive 

signalling (Leung et al., 2007). 

GHSR 1b is over-expressed in lung cancer and dimerises with the neurotensin receptor, to 

form a new, functional receptor that promotes neuromedin U-induced cell proliferation 

(Takahashi et al., 2006). Although its function is not clear, the fact that it is differentially 

expressed compared to the GHSR 1a isoform in a number of tissues and physiological and 

pathophysiological states, including over-expression in many cancers, could reflect its 

potential importance (Barzon et al., 2005; Gnanapavan et al., 2002; Jeffery et al., 2002; 

Jeffery et al., 2005; Takahashi et al., 2006). 
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A large number of ghrelin gene-derived splice variants and post-translationally modified 

forms have been identified (Seim et al., 2009), and this reflects an unforeseen complexity in 

the physiology of the ghrelin axis. It also suggests that a number of receptors in the axis are 

yet to be discovered and, indeed, there is considerable evidence that alternative receptors for 

both ghrelin, and des-ghrelin and an unidentified obestatin receptor exist (Baldanzi et al., 

2002; Bedendi et al., 2003; Broglio et al., 2004; Cassoni et al., 2001; Cassoni et al., 2004; 

Filigheddu et al., 2007; Gauna et al., 2005; Gauna et al., 2006; Kleinz et al., 2006; Martini et 

al., 2006; Muccioli et al., 2004; Sato et al., 2006; Thielemans et al., 2007; Thompson et al., 

2004; Toshinai et al., 2006; Tsubota et al., 2005). Evidence for an alternative ghrelin receptor 

includes the fact that desacyl ghrelin is unable to bind to GHSR 1a, although this hormone is 

functional in a number of cellular systems. In addition, ghrelin and desacyl ghrelin stimulate 

cell signaling and a range of functions in cells that do not express GHSR 1a and can stimulate 

signaling in GHSR-knockout animal models (Delhanty et al., 2006; Granata et al., 2007). 

When the discovery of obestatin was originally reported, GPR39, a GPCR and a member of 

the small ghrelin receptor family, was thought to be the obestatin receptor (Zhang et al., 

2005; Zhang et al., 2008). This has proven controversial, however, and numerous studies 

have shown that GPR39 is not the obestatin receptor, but it is a zinc (Zn2+) activated receptor 

(Chartrel et al., 2007; Dong et al., 2009; Holst et al., 2004; Holst et al., 2007; Lauwers et al., 

2006; Popovics et al., 2010).  

 

4.0 Future studies on the ghrelin-GHSR axis 

Current and emerging literature demonstrates considerable complexity within the 

ghrelin/ghrelin receptor axis. Multiple ghrelin gene products are translated, and post-

translational modifications add to the potential functional diversity of peptides and receptors 
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in the ghrelin axis. The roles of many of these peptides are yet to be established. Clearly, a 

further dissection of the ghrelin axis peptidome in humans, as well as the mouse and other 

model systems, will be important in determining the exact role of each new ghrelin variant. 

The recent discovery of numerous ghrelin gene-derived peptides and the search for their 

cognate receptors, as well as further investigations into GHSR isoforms, will stimulate many 

new research initiatives that will lead to a better understanding of the role of the ghrelin axis 

in this second decade of ghrelin research. 
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Figure captions 

Figure 1. Schematic illustrating the structure of the ghrelin gene, ghrelin preprohormone 

mRNA and known processed peptides from preproghrelin.  

Translation of ghrelin mRNA yields a 117 amino acid preprohormone precursor, which 

consists of  a 23 amino acid signal peptide (SP), a 28 amino acid mature ghrelin peptide, and 

a 94 amino acid C-terminal peptide (termed C-ghrelin). Obestatin may be processed from C-

ghrelin by proteolytic cleavage, or arise independently from distinct alternative, splice 

variants.  

 

Figure 2. Overview of  human ghrelin gene-derived transcripts and putative peptides.  

Ghrelin is shown in blue, obestatin in red, the 3D peptide in orange, the unique region of 

In2-ghrelin in green, the C-terminal peptide of In2c-ghrelin in purple. G5 denotes putative 

peptides that contain the first 5 amino acids of ghrelin (GSSFL) and harbour novel C-termini. 

Where applicable, other species where splice variants have been reported are indicated 

(mouse). 

 

Figure 3. Overview of ghrelin gene-derived peptide biogenesis and receptors. Des-

acylated (or desghrelin) is acylated by GOAT to form acylated ghrelin, whilst acylated 

ghrelin can be de-acylated by APT1. Ghrelin binds GHSR 1a and ghrelin and des-ghrelin are 

believed to also act through an unidentified alternative receptor. The 23 amino acid peptide 

obestatin and the 16 amino acid 3D peptide are shown as examples of other ghrelin gene-

derived peptides and their receptors have not yet been identified. 
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