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Abstract 

Angiogenesis, or neovascularization, is a finely balanced process controlled by pro- 

and anti-angiogenic factors.  Vascular endothelial growth factor (VEGF) is a major 

pro-angiogenic factor, whereas pigment epithelial-derived factor (PEDF) is the most 

potent natural angiogenesis inhibitor.  In this study, the regulatory role of bone 

marrow stromal cells (BMSCs) during angiogenesis was assessed by the endothelial 

differentiation potential, VEGF/PEDF production and responses to pro-angiogenic 

and hypoxic conditions.  The in vivo regulation of blood vessel formation by BMSCs 

was also explored in a SCID mouse model.  Results showed that PEDF was 

expressed more prominently in BMSCs compared to VEGF.  This contrasted with 

human umbilical vein endothelial cells (HUVECs) where the expression of VEGF 

was higher than that of PEDF.  The ratio of VEGF/PEDF gene expression in BMSCs 

increased when VEGF concentration reached 40 ng/ml in the culture medium, but 

decreased at 80 ng/ml. Under CoCl2-induced hypoxic conditions, the VEGF/PEDF 

ratio of BMSCs increased significantly in both normal and angiogenic culture media.  

There was no expression of endothelial cell markers in BMSCs cultured in either 

pro-angiogenic or hypoxia culture conditions when compared with HUVECs. The in 

vivo study showed that VEGF/PEDF expression closely correlated with the degree of 

neovascularization, and that hypoxia significantly induced pro-angiogenic activity in 

BMSCs.  These results indicate that, rather than being progenitors of endothelial 

cells, BMSCs play an important role in regulating the neovascularization process, and 

that the ratio of VEGF and PEDF may, in effect, be an indicator of the pro or 

anti-angiogenic activity of BMSCs. 

 

 

 

 

 

 

 



Introduction  

Angiogenesis or neovascularization is thought to be a regulated process between pro- 

and anti-angiogenic factors. Vascular endothelial growth factor (VEGF) is one of the 

most important pro-angiogenic factor and can initiate angiogenic differentiation of 

endothelial progenitor cells (EPCs) (Koch et al., 2006; Asahara and Kawamoto, 

2004).  VEGF is expressed by a wide range of cells including bone marrow derived 

mesenchymal stem cells (BMSCs) (Farhadi et al., 2005).  Pigment epithelial-derived 

factor (PEDF) was originally purified from the conditioned media of human fetal 

retinal pigment epithelial (RPE) cells, and is the most potent natural angiogenesis 

inhibitor (Ohno-Matsui et al., 2003).  PEDF is thought to be a key factor associated 

with avascularity of the cornea (Ohno-Matsui et al., 2003) and the balance between 

VEGF and PEDF expression plays a crucial role in retinal vascularization (Zhang et 

al., 2006).  It is therefore clear that the balance between VEGF and PEDF is vital in 

the processes of angiogenesis and neovascularization.  There is, however, little 

information to be found in the scientific literature concerning VEGF and PEDF 

expression in BMSCs with respect to angiogenesis and neovascularization, but it is 

known that BMSCs are involved in a number of pro-angiogenic and anti-angiogenic 

activities (Chen et al., 2003).  It is therefore of interest to explore how VEGF and 

PEDF expression patterns affect the fate of BMSCs in the regulation of angiogenesis 

and neovascularization.  

The bone marrow comprises two dominant stem cell populations, namely 

hematopoietic stem cells and mesenchymal stem cells (Bianco et al., 2001; Bianco et 

al., 2006).  When cultured in vitro, the latter rapidly adhere to the tissue culture 

substrate and is thus easily separated from the non-adherent hematopoietic cells 

through repeated media changes.  Hematopoietic stem cells (HSCs) serve as the 

reservoir for the various blood cells, such as erythrocytes, leukocytes, macrophages or 

platelets. They also contain endothelial progenitor cells (EPCs), which are capable of 

differentiating into mature endothelial cells (Loomans et al., 2006; Schatteman et al., 

2007).  BMSCs are well characterized and are negative for CD45, CD14, CD31 and 

CD34, but positive for CD105, CD 44, CD73 and CD90.  They are a heterogeneous 



mix of multipotent progenitor cells, capable of differentiating into mesodermal cell 

lineages, such as osteoblasts, chondrocytes, fibroblasts and adipocytes (Reyes et al., 

2001).  However, whether BMSCs are capable of differentiating into endothelial cell 

lineages has yet to be definitively proven and therefore remains an open question 

(Oswald et al., 2004; Zhang et al., 2007).  

In this study we investigated, both in vitro and in vivo, the differentiation potential of 

BMSCs into endothelial cells and the regulatory role in angiogenesis in response to 

pro-angiogenic and hypoxic conditions. 

 

Materials and Methods 

Cells and cell culture 

Human bone marrow was sourced from patients undergoing elective surgery at the 

orthopaedics department at the Prince Charles Hospital (PCH) in Brisbane, 

Queensland, Australia.  Informed consent was given by all participants and the 

project had approval from the ethics committees of the PCH and the Queensland 

University of Technology.  Mononuclear cells (MNCs) were isolated from the bone 

marrow by density gradient centrifugation over Lymphoprep (Axis-Shield PoC AS, 

Oslo, Norway) according to the manufacturer’s protocol and plated out in tissue 

culture flasks in low glucose Dulbecco’s Modified Eagle Medium (DMEM; 

Invitrogen Australia Pty Ltd., Mt Waverley, VIC, Australia) containing 10% (v/v) fetal 

calf serum (FCS; InVitro Technology, Noble Park, VIC, Australia) and 1% (v/v) 

penicillin/streptomycin (Invitrogen).  Unattached hematopoietic cells were removed 

by subsequent media changes.  When reaching the 70-80% confluence, the attached 

mesenchymal cells were subcultured at a seeding density of 3×103 / cm2 after 

treatment with 0.25% Trypsin/EDTA (Invitrogen).  Only early passage cells (P2-P5) 

were used in this study.  Human umbilical vein endothelial cells (HUVECs; 

Clonetics, San diego, CA, USA) were used as positive controls when required.  

HUVECs were cultured in a defined endothelial cell growth medium (ECGM) 

containing VEGF, FGF-2, IGF-1, EGF, ascorbic acid and hydrocortisone (EGM-2; 

Lonza Australia Pty Ltd., Mt Waverley, VIC, Australia) supplemented with 2% FCS.  



The medium was changed for both BMSCs and HUVECs every three days until the 

cells had reached confluence. 

 

Endothelial cell differentiation of BMSCs under the stimulation of VEGF  

BMSCs sourced from five patients (one female and four males ranging from 40 to 78 

years of age, average of 61 years) were included in this experiment.  At 

approximately 80% confluence, angiogenic differentiation media, low glucose 

DMEM supplemented with 5% FCS and 20, 40 or 80 ng VEGF (R&D Systems Inc., 

Minneapolis, MN, USA) per ml(Oswald et al., 2004; Zhang et al., 2007; Xu et al., 

2009), were applied to the cells. The media were replenished halfway through a 6-day 

culture period, after which the cells were harvested and subjected to real time 

quantitative PCR (RT-qPCR), western blot, enzyme-linked immunosorbent assay 

(ELISA), and immunohistochemistry.  The ability of these BMSCs to form in vitro 

vessel-like structures was tested on a Matrigel substrate (Oswald et al., 2004; Xu et 

al., 2009)(BD biosciences, North Ryde, NSW, Australia).  

 

Endothelial cell differentiation of BMSCs under cobalt chloride-induced hypoxia  

BMSCs sourced from six patients (two female and four male patients ranging from 47 

to 76 years of age, average 57 years) were used in this experiment. The cells were 

grown to 80% confluence and then subcultured into the following three groups: (i) 

BMSCs cultured in normal DMEM containing 5% FCS; (ii) BMSCs cultured in 

DMEM containing 5% FCS and 100 µM cobalt chloride; and (iii) BMSCs cultured in 

DMEM containing 5% FCS, 100 µM cobalt chloride and 20 ng VEGF/ml.  The 

media were changed every three days and on day 6, RT-qPCR, western blot, ELISA 

and immunohistochemistry were conducted.  The ability of these BMSCs to form in 

vitro vessel-like structures was tested on a Matrigel substrate.  

    

Real time quantitative polymerase chain reaction 

Total RNA was extracted using Trizol reagent (Invitrogen) and cDNA synthesized 

from 1 µg of RNA using SuperScript III reverse transcriptase (Invitrogen).  



RT-qPCR was performed with SYBR Green: 12.5 µl 2X SYBR Green QPCR master 

mix (Roche, Castle Hill, NSW, Australia) was mixed with 5 µl water, 2.5 µl reverse 

and forward primers (Sigma-Aldrich Pty. Ltd, Castle Hill, NSW, Australia) and 2.5 µl 

cDNA template for a 25 µl final volume in a 96-well PCR plate. The mRNA 

expressions of PEDF, VEGF, CD31, VEGF receptor 2 (VEGFR2), von Willebrand 

factor (vWF) and endothelium nitric oxide synthases III (eNOSIII) were assayed and 

normalized against the 18s house keeping gene. Forward and reverse primers of each 

assayed gene are detailed in Table 1.  Each sample was performed in triplicate and 

the reactions were run on ABI Prism 7300 sequence detection system (AB Applied 

Biosystems, Melbourne, Australia).  The mean cycle threshold (Ct) value of each 

target gene was normalized against Ct value of 18s; the relative expression calculated 

using the following formula: 2 -(normalized average Cts) × 104.  

 

Western blot 

Total protein was harvested in a cell lysis buffer supplemented with a proteinase 

inhibitor cocktail (Roche Products Pty. Ltd., Dee Why, NSW., Australia).  The 

protein concentration was determined with a BCA protein assay kit (Sigma) and 10 µg 

proteins from each sample were separated on SDS-PAGE gels.  The proteins were 

transferred onto a nitric cellulous membrane (Pall corporation, East Hills, NY, USA) 

by semi-dry transfer method.  The membranes were probed with hypoxia inducible 

factor 1 alpha (HIF-1α) (1:1000, rabbit anti-human; Santa Cruz Biotechnology Inc., 

Santa Cruz, CA. U.S.A.), VEGF (1:2,000, rabbit anti-human; Thermo Fisher 

Scientific, Fremont, CA, USA), PEDF(1:2,000, mouse anti-human; Millipore, North 

Ryde, NSW, Australia), and α-tubulin (1:5,000, rabbit anti-human; Abcam Inc., 

Cambridge, MA, USA) primary antibodies.  These were bound to HRP-conjugated 

anti-mouse or rabbit secondary antibodies (1:10,000; Thermo Fisher Scientific, 

Fremont, CA, USA). The bands were visualized using Super-Signal substrate 

(Thermo Fisher Scientific, Fremont, CA, USA) and images captured on X-ray films.  

 

 



Enzyme-linked immunosorbent assay (ELISA) 

The protein expression of VEGF and PEDF by BMSCs under different treatment 

conditions were tested using ELISA assay kits for VEGF (R&D Systems Inc.) and 

PEDF (CHEMICON, Millipore) . Briefly, BMSCs cultured in flasks were thoroughly 

washed with phosphate buffer saline (PBS) for three times and cell lysate was 

produced by adding the lysis buffer supplemented with a proteinase inhibitor cocktail 

(Roche) and shaking at 4°C for 1h. Then the lysate was transferred into eppendorf 

tubes and spinned at 10,000 g for 10mins to remove cell debris. The supernatant was 

collected for the ELISA tests. The test was performed in triplicates and results were 

expressed as the amount (pg) of VEGF or PEDF in per µg total cell protein, which 

was measured by the BCA protein assay kit (Sigma).  

 

Immunohistochemistry  

BMSCs and HUVECs were cultured in chamber slices and fixed in 4% 

paraformaldehyde and washed at least three times with PBS.  The cells were 

permeablized with 0.1% Triton X solution for 6 min and endogenous peroxidase 

activity quenched by incubating the sample slices with 3% H2O2 for 15 min, then 

blocked with 10% swine serum for 1 h.  The cells were incubated with the vWF 

(Rabbit anti-human, 1:300, Millipore) and VEGFR2 (goat anti-human, 1:100, R&D 

Systems, Inc., Minneapolis, MN, USA), VEGF (rabbit anti-human, 1:50, Thermo 

Fisher Scientific) and PEDF (mouse anti-human, 1:100, Millipore) primary antibodies 

overnight at 4°C, followed by incubation with the biotinylated swine-anti-mouse, 

rabbit, goat universal secondary antibody (DAKO Multilink, CA, USA) for 15 min, 

and then with horseradish peroxidase-conjugated avidin-biotin complex (DAKO 

Multilink, CA, USA) for another 15 min.  The slides were counter stained with 

Mayer’s haematoxylin (HD Scientific Pty Ltd., Kings Park, NSW, Australia) and the 

antibody complexes were visualized by the addition of a buffered diaminobenzidine 

(DAB) substrate for 4 min.   

 

 



Matrigel Assay    

Aliquots (50 µl) of growth factor-reduced phenol red free Matrigel matrix (BD 

biosciences, North Ryde, NSW, Australia) were added into the wells of 96-well cell 

culture plates and allowed to polymerize at 37°C for a minimum of 30 min.  3×103 

BMSCs (randomly sourced from one patient described above), HUVECs or BMSCs 

cultured under different conditions for 6 days, i.e. with different VEGF concentrations 

or under cobalt chloride-induced hypoxia, were added onto the matrigel matrix and 

original culture conditions were maintained. The new vessel-like networks formed on 

the Matrigel was observed using a microscope at 40× magnification after 6 h 

incubation at 37°C and 5% CO2 condition. To study the interactions between the 

HUVECs and BMSCs, 3 ×103 HUVECs were mixed with either CoCl2-treated 

BMSCs or untreated BMSCs in serum-free DMEM at the ratio of 1:1, and seeded 

onto the Matrigel.  Unmixed HUVECs and CoCl2-treated BMSCs were used as 

controls. Vessel networks formed on the Matrigel by different cell combinations were 

photographed after 24 and 72 h incubation. The total number of vessels in five 

randomly selected areas from each well was recorded using the Axion software (Carl 

Zeiss Microimaging GmbH, Göttingen, Germany).  The experiment was done in 

triplicates and the average was taken for statistical analysis. 

 

In vivo vascularization assessment  

Three female 6 week-old severe combined immunodeficient (SCID) mice (Animal 

Resources Centre, Canning Vale, WA, Australia) were used to assess the in vivo 

regulatory role of BMSCs in neovascularization.  Ethics approval for this experiment 

was granted from the QUT Animal Ethics Committee.  The animals were 

anesthetized with 10 µl/g bodyweight of a mixture of ketamine (100 mg/ml) and 

xylazine (20 mg/ml), injected intraperitoneally.  A total of 5 × 104 cells of one of five 

conditions: (i) BMSCs, (ii) HUVECs, (iii) BMSCs treated with 20 ng/ml VEGF, (iv) 

BMSCs treated with 100 µM cobalt chloride or (v) BMSCs treated with both 20 

ng/ml VEGF and 100 µM cobalt chloride, were mixed with Matrigel at a ratio of 1:2 

to reach a final volume of 300 µl.  Gel without cells was used as a negative control.  



Each mouse was injected with six gels (one from each group) with three on either side 

of the dorsal area, approximately 1 cm apart.  All animals had recovered by the 

following day, and were sacrificed after 10 days and the implants were retrieved, 

photographed and fixed in 4% paraformaldehyde.  After paraffin embedding, the 

implants were sectioned and three serial sagittal slices, close to the centre of each 

implant, used for immunohistochemical staining.  A vWF antibody (rabbit 

anti-human, 1:300, Millipore) was used to detect the endothelial cells, and all vWF+ 

positive cells, capillaries or blood vessels were counted on each slice and normalized 

to the slice area (mm2).  The average from each group was used for statistical 

analysis.  To determine the relationship of VEGF vs. PEDF expression and the 

degree of neovascularization, the VEGF (1:50) and PEDF (1:100) antibodies were 

used to stain the slices.   

 

Statistical analysis 

Analysis was performed using SPSS software (SPSS Inc., Chicago, Il., USA). All the 

data was analyzed using Student-t, one-way ANOVA or Friedman test. The 

significance level was set at p ≤0.05.         

 

Results  

VEGF and PEDF expressions in BMSCs and HUVECs 

RT-qPCR revealed that gene expression of both VEGF and PEDF in BMSCs was 

significantly higher than that in HUVECs (Student-t test, p<0.01) (Fig. 1A), and also 

that the ratio of VEGF to PEDF differed between the two cell types.  The PEDF 

expression in BMSCs was significantly higher compared to VEGF (Student-t test, 

p<0.05) (Fig. 1A), whereas in HUVECs the PEDF expression was significantly less 

than the VEGF expression (Student-t test, p<0.05) (Fig. 1A). The average 

VEGF/PEDF expression ratio in HUVECs was around 8.0, which was 16 times 

greater than that (around 0.5) of BMSCs (Student-t test, p<0.01) (Fig. 1B).  Western 

blot analysis showed stronger expression of PEDF and VEGF in BMSCs compared 

with HUVECs (Fig. 1C). Immunohistochemical staining of VEGF and PEDF 



confirmed the high expressions in BMSCs and weak VEGF and PEDF expressions 

were noted in HUVECs (Fig. 1D).   

 

The VEGF/PEDF expression pattern and endothelial cell differentiation of 

BMSCs under different extracellular VEGF concentrations 

When cells were cultured in angiogenic media with increasing VEGF concentrations, 

the VEGF/PEDF gene expression in BMSCs showed an interesting pattern (Fig 2). 

The VEGF expression increased to around 1.5 times the original expression at 20 

ng/ml extracellular VEGF, returning to its original expression when extracellular 

VEGF increased from 40 ng/ml to 80 ng/ml (Friedman test, p<0.05) (Fig.2 A).  

When the extracellular VEGF increased from 0 to 40 ng/ml, PEDF expression 

decreased by nearly half the original expression level.  At 80 ng/ml VEGF, however, 

the PEDF expression returned to approximately 75% of its original expression 

(Friedman test, p<0.05) (Fig.2 B).  The VEGF/PEDF gene expression ratio reached a 

peak average value of 0.8 at 40 ng/ml extracellular VEGF (Friedman test, p<0.05) 

(Fig.2 D).  Western blot image showed a similar pattern in VEGF/PEDF expression 

ratio (Fig.2 C). ELISA results showed the general increasing trend for VEGF and 

decreasing trend for PEDF despite the absence of statistical differences (Fig.4).   

Endothelial differentiation of BMSCs at different extracellular VEGF concentrations 

was also tested with RT-qPCR of the endothelial cell markers CD31, VEGFR2, vWF 

and eNOSIII, with HUVECs serving as control.  The gene expression of these 

markers were all significantly higher in HUVECs than in BMSCs cultured in either 

normal cell culture media or VEGF supplemented media (one-way ANOVA, p<0.01) 

(Fig.2 E). There was no significant difference in the expression of those endothelial 

cell markers between different BMSCs groups (one-way ANOVA, p>0.05) (Fig.2 E). 

These findings were further confirmed by immunohistochemical staining against two 

typical endothelial cell markers VEGFR2 and vWF (Fig. 5). 

 

 

The VEGF/PEDF expression pattern and endothelial cell differentiation of 



BMSCs under cobalt chloride induced hypoxia  

The hypoxia induced by CoCl2 was firstly confirmed by the accumulated HIF-1α 

protein within the CoCl2-treated BMSCs revealed by the western blot test (Fig.3 C). 

When BMSCs were cultured under hypoxic condition induced by 100 µM CoCl2, the 

VEGF mRNA expression increased, on average, nearly 5 fold (Fig.3 A) and reduced 

PEDF mRNA expression by nearly 50% (Friedman test, p<0.05) (Fig.3 B).  The 

addition of 20 ng/ml VEGF did not significantly influenced the effect of CoCl2 on the 

VEGF/PEDF gene expression (Friedman test, p>0.05) (Fig.3 A&B). The 

VEGF/PEDF gene expression ratio increased to about 4.0 under CoCl2 culture 

condition (Fig.3 F). PEDF and VEGF protein expression detected by western blot and 

ELISA confirmed the gene expression pattern under the CoCl2-induced hypoxia 

condition (Fig.3 D & Fig.4).  Evidence of endothelial cell differentiation of BMSCs 

under hypoxic conditions was tested with RT-qPCR of CD31, VEGFR2, vWF and 

eNOSIII endothelial gene expression.  There was no significant difference in the 

expression of these markers between BMSC controls and BMSCs treated with either 

100 µM CoCl2 or 100 µM CoCl2 plus 20 ng/ml VEGF (one-way ANOVA, p>0.05) 

(Fig.3 E), and also confirmed by immunohistochemical staining against two typical 

endothelial cell markers VEGFR2 and vWF (Fig. 5).   

 

Enhanced vessel formation of HUVECs on Matrigel by CoCl2-treated BMSCs 

The Matrigel assays showed that HUVECs formed new vessel-like structures more 

readily within 6 h (Fig.6G), compared to undifferentiated BMSCs (Fig.6A) or 

endothelial cell-differentiated BMSCs in 20 ng/ml VEGF (Fig.6B), 40 ng/ml VEGF 

(Fig.6C), and 80 ng/ml VEGF (Fig.6D), as well as in CoCl2 (Fig.6E) or CoCl2 plus 20 

ng/ml VEGF (Fig.6F). The number of vessels formed on Matrigel was significantly 

higher in HUVECs (one-way ANOVA, p<0.01) (Fig.6P).  There was no difference in 

the ability to form vessel-like structures between BMSC groups (one-way ANOVA, 

p>0.05) (Fig.6P).   

HUVECs, when mixed with CoCl2-treated BMSCs (Fig.6 H&L) in serum-free 

DMEM, formed more stable vessel-like structures at both 24 (Fig.6 H-K) and 72 h 



(Fig.6L-O) incubation on the Matrigel compared to HUVECs with untreated BMSCs 

(Fig.6 I&M), CoCl2 treated BMSCs alone (Fig.6 J&N) or HUVECs alone (Fig.6 

K&O). The number of vessel-like structures formed by HUVECs with CoCl2-treated 

BMSCs was more than any other group after both 24 and 72 h incubation (one-way 

ANOVA, p<0.001) (Fig.6Q). 

 

In vivo neovascularization of BMSCs  

The Matrigel implants were harvested from the SCID mice and images captured with 

a stereomicroscope (Fig.7 a-f).  There was no obvious neovascularization visible in 

the Matrigel control (Fig. 7a), or in Matrigels containing untreated BMSCs (Fig. 7b) 

or BMSCs treated with VEGF (Fig. 7c).  Matrigels with CoCl2 treated BMSCs (Fig. 

7d) or CoCl2+VEGF (Fig.7e), or HUVECs (Fig. 7f) showed an obvious blood vessel 

formation inside implants, and this was confirmed by vWF staining of the samples.  

Almost no vWF expression was detected in Matrigel without cells (Fig.7g), with 

untreated BMSCs (Fig.7h) or with BMSCs treated with 20 ng/ml VEGF (Fig.7i). 

vWF positive cells were found in Matrigel with BMSCs treated with CoCl2 (Fig.7j), 

Matrigel with BMSCs treated with CoCl2 plus VEGF (Fig.7k) and Matrigel with 

HUVECs (Fig.7l). Higher magnification (400x) of vWF staining of the Matrigel with 

BMSCs treated with CoCl2 showed blood vessels and capillaries (Fig.7m) and a small 

artery growing into the gel (Fig.7n). Matrigel containg HUVECs also showed positive 

capillaries in the higher magnification (Fig.7o). The number of vWF positive cells and 

blood vessels on each slice were counted and normalized against the area of each 

slice.  These results showed that Matrigels containing HUVECs, BMSCs treated 

with CoCl2  alone or together with VEGF had significantly more vWF+ cells and 

blood vessels in comparison with Matrigels containing untreated BMSCs or BMSCs 

treated with only VEGF (Friedman test, p<0.01) (Fig.7p).  

When stained with VEGF and PEDF it was revealed in non-vascularized areas of the 

Matrigels containing untreated BMSCs that stromal cells showed stronger expression 

of PEDF (Fig.8 A&B) compared to the highly vascularized areas of Matrigels 

carrying CoCl2-treated BMSCs (Fig.8 C&D).  In Matrigels containing CoCl2-treated 



BMSCs, robust VEGF expression was seen in both newly formed blood vessel walls 

(Fig.8 E) and in the surrounding stromal cells (Fig.8 F&G). The positive staining of 

vWF was also noted in the endothelial cell of newly form blood vessel (Fig.8 H).   

 

 

Discussion 

BMSCs are cells isolated from the bone marrow mononuclear cell and which attach to 

cell culture plastic surfaces.  It has been argued that in vitro cultured BMSCs might 

be capable of differentiating into endothelial cells lineages, or in other words, that in 

vitro cultured BMSCs contained endothelial progenitor cells (Oswald et al., 2004; 

Zhang et al., 2007).  To obtain BMSCs, the standard method for BMSCs isolation 

and expansion was used in this study, and only cells from passage 2 to 5 were used in 

an effort to eliminate HSCs contamination.  Following a previously described 

angiogenic differentiation protocol, which prescribes a 6 day angiogenic induction 

period (Cipriani et al., 2007; Oswald et al., 2004; Zhang et al., 2007), BMSCs were 

not capable of trans-differentiation into endothelial cells under either VEGF 

stimulation or CoCl2-induced hypoxic conditions, based on criteria of endothelial cell 

surface marker expression and Matrigel tube structure formation, when compared 

with the endothelial cell line of HUVECs.  An extended endothelial differentiation 

period (2 and 3 weeks) was also investigated, including the application of 

HUVECs-specific media (EGM-2), with similar negative results (data not shown).   

 

BMSCs are reported to be involved in a number of tissue development and 

regeneration processes, such as osteogenesis, chondrogenesis and angiogenesis (Xia 

et al., 2008; Connelly et al., 2008; Lamagna and Bergers, 2006; Bexell et al., 2009; 

Ozerdem et al., 2005).  The role of BMSCs during angiogenesis is far from clear, 

although some studies have shown that BMSCs may support and stabilize newly 

formed blood vessels as pericytes (Lamagna and Bergers, 2006; Bexell et al., 2009; 

Ozerdem et al., 2005). Within the angiogenic environment, VEGF is one of the major 



pro-angiogenic growth factor that affect endothelial cell differentiation, migration and 

blood vessel formation (Shibuya, 2008; Otrock et al., 2007; Yamazaki and Morita, 

2006), and VEGF concentration tends to be elevated in the angiogenic areas 

(Harlozinska et al., 2004).  PEDF, on the other hand, is probably the most potent 

angiogenesis inhibitor capable of preventing vascularisation and inducing apoptosis in 

endothelial cells (Notari et al., 2006; Ohno-Matsui et al., 2003).  The ratio or balance 

between these two antagonistic factors (VEGF/PEDF) in a local environment 

therefore has a great effect on angiogenesis and vascularization (Zhang et al., 2006).  

VEGF expression in BMSCs has been investigated in the past (Sena et al., 2007; 

Wrobel et al., 2003; Cai et al., 2002), but studies concerning the VEGF feedback loop 

and interactions between VEGF and PEDF in BMSCs has not been forthcoming.  

The findings reported here reveal for the first time that PEDF is much more strongly 

expressed in BMSCs than is VEGF.  Interestingly, VEGF expression in HUVECs, 

although quite low when compared with BMSCs, is much higher than PEDF, the 

VEGF/PEDF ratio being more or less diametrically opposite that of BMSCs. Together 

these findings suggest that BMSCs may not be an angiogenesis-promoting cell 

population, when in a normoxia and neutral environment. This view is supported by a 

recent report which suggests that MSCs have a negatively regulatory role and are 

capable of inhibiting capillary growth at high cell numbers (Otsu et al., 2009). 

 

In a pro-angiogenic environment, extracellular VEGF concentration increases during 

the angiogenic process (Harlozinska et al., 2004).  In this study, it was found that 

depending on the concentration, extracellular VEGF set up a general positive 

feedback with the endogenous VEGF expression of BMSCs, although a certain high 

level of extracellular VEGF concentration (80 ng/ml in this study) dropped the 

endogenous VEGF production of the BMSCs; On the other hand, the increasing 

extracellular VEGF concentration suppressed the PEDF expression of BMSCs.   

These changes in the VEGF/PEDF expression pattern indicates that when 

environmental VEGF is at an appropriate concentration, BMSCs may play a more 

active role in the angiogenic process.  



 

Cobalt chloride is a hypoxia mimicking agent commonly used to activate 

hypoxia-related responses in cells (Lee et al., 2007).  The biochemical and molecular 

mechanisms of CoCl2 induced hypoxia have been shown to be similar to those in low 

oxygen tension (Lee et al., 2007).  Changes to gene expression in BMSCs as a result 

of hypoxia has been reported (Ohnishi et al., 2007), however, little is known about 

hypoxia effect on the endothelial cell differentiation and VEGF/PEDF expression 

patterns in BMSCs.  In this study we showed that CoCl2-induced hypoxia 

significantly increases VEGF expression and suppresses PEDF expression, suggesting 

that hypoxia drives BMSCs to favor angiogenesis and neovascularisation.  We also 

demonstrated that CoCl2-treated BMSCs appeared to enhance and stabilize the 

vessel-like structure formed by HUVECs in Matrigel, further demonstrating a 

supporting role for BMSCs in neovascularization when BMSCs were in a hypoxia 

environment.  

 

Our in vivo study showed that the VEGF/PEDF expression ratio in BMSCs was 

closely correlated with neovascularization. The VEGF/PEDF ratio in undifferentiated 

or VEGF-treated BMSCs was low (less then “1” at both gene and protein levels), and 

no in vivo blood vessel formation was found after in vivo transplantation. However, in 

CoCl2-induced hypoxia culture condition the VEGF/PEDF expression ratio in BMSCs 

reversed up to around “4” at both gene and protein levels, and once transplanted a 

higher degree of neovasculariztion was observed.  The distribution of VEGF and 

PEDF in the neovascularized areas further confirmed that more VEGF was expressed 

in blood vessel forming areas, whereas more PEDF was expressed in areas of 

relatively low vessel formation. 

 

The findings in this study suggest that BMSCs are important regulators in the 

neovascularization, rather than as a source of endothelial progenitor cell, under both 

normoxia and hypoxia conditions.  The ratio of VEGF and PEDF may therefore be 

an indicator of the pro- and anti-angiogenic activity of BMSCs.  
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