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ABSTRACT 

Mesoporous bioactive glass (MBG) is a new class of biomaterials with a well-ordered 

nano-channel structure, whose in vitro bioactivity is far superior to that of 

non-mesopore bioactive glass (BG); the material’s in vivo osteogenic properties is, 

however, yet to be assessed. Porous silk scaffolds have been used for bone tissue 

engineering, but this material’s osteoconductivity is far from optimal. The aims of this 

study were to incorporate MBG into silk scaffolds in order to improve their 

osteoconductivity, and then to compare the effect of MBG and BG on the in vivo 

osteogenesis of silk scaffolds. MBG/silk and BG/silk scaffolds with a highly porous 

structure were prepared by a freeze-drying method. The mechanical strength, in vitro 

apatite mineralization, silicon (Si) ion release and pH stability of the composite 

scaffolds were assessed. The scaffolds were implanted into calvarial defects in SCID 

mice and the degree of in vivo osteogenesis was evaluated by micro-computed 

tomography (μCT), hematoxylin and eosin (H&E) and immunohistochemistry (type I 

collagen) analyses. The results showed that MBG/silk scaffolds have better 

physiochemical properties (mechanical strength, in vitro apatite mineralization, silicon 

(Si) ion release and pH stability) compared to BG/silk scaffolds. MBG and BG both 

improved the in vivo osteogenesis of silk scaffolds. μCT and H&E analyses showed that 

MBG/silk scaffolds induced a slightly higher rate of new bone formation in the defects 

than did BG/silk scaffolds and immunohistochemical analysis showed greater synthesis 

of type I collagen in MBG/silk scaffolds compared to BG/silk scaffolds.  
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1. Introduction 

A new class of bioactive glass, referred to as mesoporous bioactive glass (MBG), was 

first developed in 2004. This material has a highly ordered mesopore channel structure 

with a pore size ranging from 5–20 nm [1]. Compared to non-mesopore bioactive glass 

(BG), MBG possesses a more optimal surface area and pore volume, evident by greatly 

enhanced drug-delivery capability, in vitro apatite mineralization and degradation [1-6]. 

For this reason, MBG has received much attention for applications for bone tissue 

engineering [5,7-9]. Li et al. prepared hierarchically MBG scaffolds using polyurethane 

foam as template for the macroporous structure and showed that MBG scaffolds 

induced the formation of an apatite layer after soaking in SBF for 4 h [8]. We have 

recently shown that MBG scaffolds can support cell adhesion, proliferation and 

differentiation [7,9], and also that MBG powders, when incorporated into a poly 

(lactide-co-glycolide) (PLGA) film, significantly enhances the apatite-mineralization 

ability and cell response of PLGA films. compared to BG [5]. These studies suggest that 

MBG is a very promising bioactive material with respect to bone regeneration. Most 

studies of MBG have until now focused on in vitro studies, including the apatite 

mineralization in SBF and cell response [1,7,10] and there are, as far as we know, few, 

if any, studies that have investigated the in vivo osteogenic property of MBG and its 

composites.  
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Silk fibroin, as a new family of native biomaterials, has been widely studied for bone 

and cartilage repair applications in the form of pure silk or its composite scaffolds 

[11-16]. Compared to traditional synthetic polymer materials, such as PLGA and 

poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the chief advantage of silk 

fibroin is its water-soluble nature, which eliminates the need for organic solvents, that 

tend to be highly cytotoxic in the process of scaffold preparation [17]. Other advantages 

of silk scaffolds are their mechanical properties, controllable biodegradability and 

cytocompatibility [17-19]. However, for the purposes of bone tissue engineering, the 

osteoconductivity of pure silk scaffolds is suboptimal. We hypothesize that combining 

MBG with silk scaffolds would greatly improve silks osteogenic properties by virtue of 

the excellent in vitro bioactivity of MBG. The effect of MBG and BG on the in vivo 

osteogenesis of silk scaffolds has not been previously tested, therefore, the aim of this 

study is to incorporate MBG or BG powders into silk scaffolds and compare the 

physio-chemistry and in vivo osteogenesis of MBG/silk and BG/silk scaffolds. 

 

2. Materials and methods 

2.1. Synthesis and characterization of MBG and BG powders 

Mesoporous Bioglass (MBG) powders (molar ratio: Si/Ca/P = 80/15/5) were 

synthesized according to our previous publication [5]. In a typical synthesis, 4.0 g of 

Pluronic P123 (Mw=5800, Sigma), 6.7 g of tetraethyl orthosilicate (TEOS, 98%, 

Sigma), 1.4 g of Ca(NO3)2·4H2O (Sigma), 0.73 g of triethyl phosphate (TEP, 99.8%, 

Sigma) and 1.0 g of 0.5M HCl were dissolved in 60 g of ethanol (Si/Ca/P = 80:15:5, 

molar ratio) and stirred at room temperature for 1 day. The resulting solution was 
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introduced into a petri dish for an evaporation-induced self-assembly process, and then 

the dry gel was calcined at 700ºC for 5 h to obtain MBG powders. Non-mesoporous 

bioglass (BG) powders were synthesized under the same preparation conditions, but 

without the addition of P123, and used as a control. The MBG and BG powders thus 

obtained were ground and sieved to 300 meshes. The inner microstructure of MBG 

powders was analyzed by transmission electron microscopy. 

2.2. Preparation, characterization and mechanical strength of silk, MBG/silk and 

BG/silk porous scaffolds  

Porous MBG/silk scaffolds with 10% MBG (w/w) were fabricated using a freeze-drying 

method: 0.1 g of MBG powders were added to 20 mL of 5% (w/v) silk water solutions 

under stirring for 2 h and ultrasonic dispersing for 10 min to form a uniform mixture, 

0.4 mL of which was quickly transferred into the wells of a 96-well cell culture plate. 

The plate was then placed in a freezer at -20ºC overnight to solidify the mixture and 

induce solid–liquid phase separation. The solidified mixture was freeze-dried in a 

freeze-drying machine (Christ Alpha 1-2) for 48 h to obtain porous MBG/silk scaffolds. 

The scaffolds were soaked in ethanol (99%) for 10 min and then dried overnight at 40ºC. 

Pure silk and BG/silk scaffolds served as controls and were prepared the same way as 

the MBG/silk scaffolds. The pore morphology and surface microstructure of the 

scaffolds were characterized by scanning electron microscopy (SEM, Joel JSM 6510).  

The porosity of the scaffolds was measured according to Archimedes’ principle. 

Samples with a size of Ø5×8 mm were used for the measurement and water was used as 

liquid medium. The porosity (P) was calculated according to the following formulation 
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P = ((W2-W1)/(W2-W3)) × 100%, where W1 is the dry weight of the scaffolds, W2 is the 

wet weight, and W3 is the weight of scaffolds suspended in water. 

For mechanical analysis, cylinder scaffolds with a size of Ø8×10 mm were prepared 

using the method described above and 1.2 ml of silk mixture was added to the wells of 

48-well cell culture plate. The compressive strength and modulus of the scaffolds were 

measured using an Instron 5567 (Illinois Toolworks Inc, USA) computer-controlled 

universal testing machine at a crosshead speed of 1 mm/min by pressing the scaffolds 

until to a 60% strain. 

2.3. The apatite-mineralization ability and ion release of the scaffolds in simulated body 

fluids  

The apatite-mineralization ability and ion release of scaffolds were carried out using 

acellular simulated body fluids (SBF) [20,21]. The scaffolds were immersed in SBF 

with a ratio of 200 mL/g for SBF solution volume to scaffold mass, and kept at 37ºC for 

1, 3 and 7 days. SEM, energy dispersive spectrometer (EDS) and Fourier transform 

infrared spectra (FTIR) analysis was performed after sample scaffolds had soaked in 

SBF for 7 days. The concentration of Si ions released from the scaffolds was assayed by 

inductively coupled plasma atomic emission spectroscopy (ICP-AES). Fresh SBF does 

not contain any Si ions, so these ions served as a measure of ion release from the 

scaffolds. The pH value of the SBF solution was also tested after soaking of the scaffolds 

for longer periods, up to 42 days.  

2.4. Scaffolds transplantation into calvarial defects 

The bone forming ability of the three scaffolds was assessed in a calvarial defect model 
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in adult severe combined immunodeficient (SCID) mice, following a previously 

described method [16,22]. Surgery was carried out according to the guidelines of the 

Animal Research and Care Committees of the Herston Medical Research Centre and the 

Queensland University of Technology. The surgical procedures were performed in 

aseptic conditions under general anesthesia. Briefly, a linear incision (1 cm long) was 

made on the left side of the skull, exposing the bone surface. The periosteum was 

dissected from the bone surface and a full-thickness calvarial bone defect, 3 mm in 

diameter, was created with a trephine bur in the frontal and parietal bones using a 

slow-speed dental drill. To avoid tissue damage due to overheating, 0.9% saline was 

dripped onto the contact point between the bur and bone and great care was taken to 

avoid injury to the dura mater. Scaffolds, with a size of 3×3×1 mm, were carefully 

placed into the defects and soft tissue above the defect was covered by the skin which 

was closed with skin staples.  

2.5. Micro-computed tomography (μCT) and histology 

The animals were euthanized 8 weeks after surgery and the defect areas collected. The 

samples were fixed in 4% paraformaldehyde for 12 h at room temperature. All samples 

were scanned for bone formation within the defect site using a Scanco µCT40 imaging 

system (Scanco Medical, Bassersdorf, Switzerland) with the following scan parameters: 

20 mm field of view, 55 kVp X-ray energy setting, 1024 reconstruction matrix, slice 

thickness 0.02 mm, and a 250 ms integration time. Mineralized tissue was distinguished 

from non-mineralized tissue using a global thresholding procedure with a value 

approximating 1.20 g/cm3 (150 on micro-CT) (25% lower than 1.6 g/cm3) which is the 
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mineral density of normal human compact bone. Bone volume in each defect was 

recorded as the measure of defect bone regeneration.  

After the µCT scanning, all tissue samples were decalcified in 10% EDTA, changed 

twice weekly, for 2 to 3 weeks, after which they were embedded in paraffin. Serial 

sections, 5 µm thick, were cut and mounted on polylysine-coated microscope slides. All 

sections were stained with hematoxylin and eosin (H&E), and a general assessment of 

the tissue and wound healing was performed using visual light microscopy.  

2.6. Immunohistochemistry 

Monoclonal antibody against human type I collagen (COL1) antibody was purchased 

from Sigma-Aldrich (Castle Hill, NSW, Australia). Endogenous peroxidase activity was 

quenched by incubating the tissue sections with 3% H2O2 for 20 min before staining 

with immunoperoxidase. All sections were blocked by 0.1% bovine serum albumin 

(BSA) with 10% swine serum. Sections were then incubated with the optimal dilution of 

primary antibody for COL1 (1:100) overnight at 4°C. Sections were then incubated with 

a biotinylated swine anti-mouse, anti-goat antibody (Multilink; DakoCytomation, 

Carpinteria, CA) for 15 min, and then incubated with horseradish peroxidase conjugated 

avidin–biotin complex for 15 min. Antibody complexes were visualized with the 

addition of a buffered diaminobenzidine substrate for 4 min. The reaction was stopped 

by immersion and rinsing of sections in PBS. Sections were then lightly counterstained 

with Mayer’s hematoxylin and Scott’s blue for 40 s each, in between 3 min rinses with 

running water. Subsequently, sections were dehydrated with ascending concentrations 

of ethanol solutions, cleared with xylene, and mounted with a coverslip and DePeX 
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mounting medium (BDH Laboratory Supplies, Poole, UK). 

Controls for the immunohistochemical staining procedures included conditions under 

which the primary antibody or the secondary (anti-mouse IgG) antibody was omitted; in 

addition, an irrelevant IgG, which should not have been present in the test sections, was 

used as a control. To ensure that the procedure itself was not resulting in nonspecific 

staining, various safeguards were used. These included elimination of the primary 

antibody incubation step, in the presence of all other steps; and normal primary antibody 

incubation followed by elimination of either the secondary antibody or one of the other 

subsequent detection steps. 

2.7. Statistical analysis 

 The data was expressed as means ± standard deviation (SD) for all experiments and 

were analyzed using One-Way ANOVA with a Post Hoc test. A p-value<0.05 was 

considered statistically significant. 

 

3. Results  

3.1. Characterization and mechanical strength of the prepared porous scaffolds 

Mesoporous MBG powders showed a well-ordered channel structure with a pore size of 

approximately 5 nm (Fig. 1). The silk, MBG/silk and BG/silk scaffolds were highly 

porous (Fig. 2), with near identical porosities, 78± 3%, 76±4% and 76±2%, respectively. 

The pure silk scaffolds had a flat pore morphology (Fig. 2a), whereas the MBG or BG 

composite scaffolds had a more open pore morphology (Fig. 2b and c) compared to the 

silk scaffolds. MBG or BG particles were clearly visible in the pore walls of composite 
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scaffolds (see arrows in Fig. 2b and c). It was noted that the MBG/silk scaffolds had 

more particles than BG/silk scaffolds due to the higher specific surface area for MBG 

powders (the specific area of MBG and BG is 400 and 57 m2/g, respectively [5]). The 

pore size of the pure silk scaffolds ranged from several tens to one hundred micrometers; 

The pore size of the composite scaffolds is larger than that of pure silk scaffolds (Fig. 

2).  

The compressive strength and modulus of MBG/silk scaffolds were 420kPa and 

0.70MPa, respectively, figures that were comparable with those of pure silk scaffolds, 

and greater than those of BG/silk scaffolds (Fig. 3). 

3.2. The apatite-mineralization ability and ion release of the scaffolds in SBF  

The morphology of the three scaffold species, after soaking in SBF, is shown in Figure 4. 

There was no apatite particles deposit visible on the pore wall surfaces for pure silk and 

BG/silk scaffolds (Fig. 4a, b and c). However, a layer of apatite microparticles formed 

on the pore wall of MBG/silk scaffolds (Fig. 4d) and at higher magnification apatite was 

seen as nano-sized particles (Fig. 4e). EDS analysis revealed the ratio of Ca/P of the 

apatite to be 2.3. FTIR analysis has shown no obvious P-O peaks in the patterns after 

soaking silk and BG/silk in SBF (Fig. 4f); however, there are several weak P-O peaks in 

the pattern of MBG/silk after soaking in SBF (Fig. 4f). 

Si ion release and pH values of SBF are shown in Figure 5. There was a sustained 

release of Si ions from both the MBG/silk and BG/silk scaffolds, even across an 

extended period of soaking and the MBG/silk scaffolds had a faster rate of Si ion 

release than BG/silk scaffolds (Fig. 5a). The pH value of SBF with MBG/silk scaffolds 
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stayed within a range of 7.25–7.5 throughout the 6 weeks of soaking. The pH values of 

the pure silk and BG/silk scaffolds resulted in a slight decreased in SBF, varying from 

7.1 to 7.4 (Fig. 5b). 

3.3. μCT analysis of the osteogenesis 

Composite 3D μCT images of the bone defect repair with the three scaffold species are 

shown in Figure 6 and 7. Both BG/silk and MBG/silk scaffolds clearly showed better 

bone repair ability than pure silk scaffolds. The defects implanted with MBG/silk 

scaffolds had been completely filled with new bone mineral tissues (Fig. 6b). The 

BG/silk scaffolds also induced new bone formation in the defects (Fig. 6c). However, 

the skull defects implanted with pure silk scaffolds revealed little mineralized tissues 

around the border and no new bone formation at all in the middle of the defects (Fig. 6a). 

Quantitative analysis from μCT data showed that the mineralized tissue volume for 

MBG composite was a little higher than that of BG composite. The volume of 

mineralized tissue for silk, MBG/silk and BG/silk scaffolds was 2.5, 7.0 and 6.1 mm3, 

respectively (Fig. 7). 

3.4. Histology analysis of the osteogenesis 

Histological analysis by H&E demonstrated that more new bone formed in the defects 

filled with MBG/silk scaffolds, compared to BG/silk scaffolds (Fig. 8). New bone filled 

most of the MBG/silk scaffolds from the edge to the center and formed a continuous 

plate of bone area (Fig. 8a and b). Most of MBG/silk scaffolds had been degraded (Fig. 

8a). In the BG/silk scaffolds the majority of the new bone was located in the periphery, 

with some bone islands forming centrally. There was only limited degradation of the 
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BG/silk scaffolds (Fig. 8c and d). In the skull defects implanted with pure silk scaffolds 

there was no evidence of bone formation (data not shown). 

Immunohistochemical analysis revealed COL1 expression in the de novo bone in both 

MBG/silk and BG/silk scaffolds (Fig. 9); there was certainly slightly strong COL1 

expression in the bone matrix of the MBG/silk scaffolds (Fig. 9a and b) and this 

expression was discernibly stronger compared to that in the BG/silk scaffolds (Fig. 9c 

and d). 

 

4. Discussion 

In this study, we have compared the physiochemical and in vivo osteogenic effects on 

silk scaffolds of mesoporous and non-mesoporous bioactive glass (MBG and BG 

respectively). We found that both materials significantly enhanced the in vivo 

osteogenesis of silk scaffolds. The significant finding was that in the case of MBG 

composites, they have the improved mechanical strength, dissolution, in vitro apatite 

mineralization and pH stability, compared to BG composite. This is a novel finding 

which confirms that MBG–a new class of bioactive inorganic materials–has improved 

in vivo bioactivity compared to BG when incorporated into polymer-based scaffolds. It 

is also proves, that preparing mesoporous biomaterials by sol-gel process and 

supramolecular chemistry is a conceptual advance for biomaterials science. 

MBG/silk and BG/silk composite scaffolds with 10% of MBG or BG, have been 

successfully prepared using freeze-drying method. The composite scaffolds produced by 

this method are highly porous, which will benefit tissue ingrowth [23]. In this study we 
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incorporated various amounts of MBG into silk scaffolds, but we found that it was 

difficult to disperse the MBG uniformly in the silk solution if it exceeded 10% w/w due 

to the high surface area of MBG powders. Therefore, 10% w/w was the concentration 

used for both MBG and BG when preparing the composite scaffolds.  

The mechanical tests revealed that MBG/silk scaffolds had greater mechanical strength 

than the BG/silk scaffolds. It is known that MBG powders have significantly greater 

specific surface area and pore volume compared to BG powders. The specific area of 

MBG and BG is 400 and 57 m2/g, and the pore volume of MBG and BG is 0.5 and 0.09 

cm3/g according to our previous publication [5] and MBG powders have a highly 

ordered channel structure with a pore size of approximately 5 nm. In this study, the 

incorporation of BG particles into silk scaffolds may destroy the inner structure of silk 

and lead to the detrimental effect of the mechanical strength of silk scaffolds. Although 

MBG particles may also destroy the inner structure of silk, however, MBG has high 

surface area and pore volume, and parts of silk solution may enter into the nanopores of 

MBG during preparation, which leads to a strong bond between MBG particles and silk 

after freeze-drying. Thus, the incorporation of MBG into silk will not decrease the 

mechanical strength of silk scaffolds.  

The MBG/silk scaffolds also have a faster rate of Si ion release than BG/silk scaffolds 

(Fig. 5a) and we estimated the Si content of MBG to be approximately 80%. It is 

reasonable to assume that MBG/silk scaffolds have greater rate of in vitro dissolution 

than do the BG/scaffolds. The MBG/silk scaffolds maintained a stable pH value as the 

scaffolds degraded in SBF and this is beneficial for cell and tissue growth [24-26].  



 

 14

This, however, was not the case with BG/silk scaffolds in which the pH decreased. It is 

highly likely that the greater release of Si ions from the MBG/silk scaffolds buffered the 

SBF, thereby neutralizing the degradation products and maintaining a more stable pH 

value, compared to the BG/silk scaffolds.  

Apatite mineralization of silicate materials, such as CaSiO3 ceramics, 45S5 bioglass, etc. 

is thought to be an important phenomenon in the chemical interactions between the 

implant materials and the bone tissue, which ultimately affects the in vivo osteogenesis 

of the bone grafting materials [27-29]. In this study, MBG/silk scaffolds had an obvious 

apatite mineralization in SBF, whereas neither BG/silk nor pure silk scaffolds induced 

apatite mineralization. This suggests that MBG/silk scaffolds have an improved “in vitro 

bioactivity”, a term that has been used in previous studies [20,30,31]. Earlier studies 

have also demonstrated that MBG have a significantly improved apatite-mineralization 

ability in SBF than does BG [1,32] and our own work has shown that MBG improves 

attachment, proliferation and differentiation of human osteoblast on PLGA films [5]. 

Together these data leaves little doubt that MBG possesses excellent in vitro bioactivity. 

To the best of our knowledge, there are no reports describing the in vivo osteogenic 

properties of MBG. This study, therefore, is the first to compare the in vivo effect of 

MBG and BG on osteogenesis of silk scaffolds by implanting the scaffolds into calvarial 

defects of SCID mice. Micro-CT, H&E and immunohistochemcal analyses all 

confirmed that MBG/silk scaffold were superior in all aspects compared to BG/silk 

scaffolds. Future work will be conducted in a bone defect model of immune-competent 

animals to investigate potential immunological reaction of the silk/BMG scaffolds, as 
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well as the bone forming capacity of this type of scaffold in immuno-competent models. 

There are three arguments that best explains why MBG/silk scaffolds have slightly 

improved new-bone formation, compared to BG scaffolds: (1) apatite mineralization 

plays an important role in bone repair and studies suggest that apatite mineralization of 

45S5 bioglass [29], A–W bioactive glass ceramics [33] and CaSiO3 ceramics [27,34], is 

the direct factor influencing the in vivo osteogenesis potential of these materials. In the 

present study, we show that MBG/silk has a better apatite-mineralization ability than 

does BG/silk, leading us to draw the tentative conclusion that this may be one of the 

most important factors to improve new-bone formation. (2) The faster rate of 

dissolution and Si ion release of the MBG/silk scaffolds compared to BG/silk scaffolds 

may enhance new-bone formation; this is supported by a study that showed that CaSiO3 

ceramics has significantly faster rate of degradation than does β-tricalcium phosphate 

ceramics and leads to an improved in vivo osseointegration [27]. It has been reported 

that Si ions may be associated with the initiation of pre-osseous tissue mineralization, 

both in periosteal or in endochondral ossification, in the early stages of calcification 

[35,36]. In vitro studies have confirmed that silicon released from the materials results 

in a significant up-regulation of osteoblast proliferation and gene expression [37-39]. 

The faster rate of degradation may in fact provide the space and environment for matrix 

deposition and tissue growth [40], and, at the same time, the quicker release Si ions 

from MBG/silk scaffolds may stimulate the viability of osteoblast around the defects, to 

the benefit of in vivo osteogenesis. (3) one cannot overlook the beneficial role that the 

stable pH environment of MBG/silk scaffolds has on in vivo osteogenesis [41,42].  
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5. Conclusions 

We, for the first time, compared the physiochemistry and osteogenesis of MBG 

composite with BG composite. In the case of MBG composites, they have the improved 

physiochemical properties (mechanical strength, dissolution, in vitro apatite 

mineralization and pH stability), compared to BG composite. MBG/silk scaffolds 

induced a high rate of new-bone formation and type I collagen synthesis after implanted 

in calvarial defects. Our results confirm that MBG–a new class of bioactive inorganic 

materials–has significant capacity to improve the in vivo bioactivity of polymer-based 

scaffolds. 
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Figure captions 

Figure 1. TEM image of mesoporous bioactive glass powders show a well-ordered channel structure 

and the pore size of approximately 5 nm. 

Figure 2. Surface morphology of porous silk (a), MBG/silk (b) and BG/silk (c) scaffolds. Arrows 

point to MBG or BG particles in silk scaffolds. 

Figure 3. The mechanical strength of porous scaffolds. MBG/silk scaffolds have greater strength 

than BG/silk scaffolds. 
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Figure 4. Figure 4. SEM and EDS analysis silk (a), BG/silk (b, c) and MBG/silk (d, e) scaffolds 

after soaking in simulated body fluids for 7 days. Fig. (f) is FTIR analysis. Figure (c) is lower 

magnification of BG/silk scaffolds. Figure (e) is higher magnification of MBG/silk scaffolds. Apatite 

formed on the surface of MBG/silk scaffolds, but no apatite formed on the surface of pure silk and 

BG/silk scaffolds. The ratio of Ca/P for the apatite formed on MBG/silk scaffolds is 2.3.  

Figure 5. Si ion release from the three scaffold species and their pH values in SBF solution. 

MBG/silk scaffolds have a faster rate of Si ion release and maintain a more stable pH value, than  

does BG/silk scaffolds. 

Figure 6. The in vivo bone formation of (a) silk; (b) MBG/silk; and (c)BG/silk scaffolds after 

implantation in calvarial defects in SCID mice for 8 weeks as assessed by Micro-CT. New bone has 

completely filled in defects with MBG/silk scaffolds. MBG/silk scaffolds showed better 

bone-formation ability than did pure silk or BG/silk scaffolds. Size bar = 1 mm. 

Figure 7. The new bone volume for silk; BG/silk; and MBG/silk scaffolds after implanted in 

calvarial defects of SCID mice for 8 weeks.  

Figure 8. The in vivo bone formation was evaluated by hematoxylin and eosin staining. (a) and (b): 

MBG/silk;  (c) and (d): BG/silk. (b) and (d) are higher magnification images. Arrows point to new 

formed bone. There is more new bone formed in the center of MBG/silk scaffolds than in the center 

of BG/silk scaffolds. 

Figure 9. Immunohistochemical analysis by type I collagen staining on the new bone tissues. (a) and 

(b): MBG/silk; (c) and (d): BG/silk. (b) and (d) are higher magnification images. MBG/silk scaffolds 

show greater type I collagen expression than does BG/silk scaffolds. 


