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Abstract 

Recently, research has focused on bone marrow derived multipotent 

mesenchymal precursor cells (MPC) for their potential clinical use in bone 

engineering. Prior to clinical application, MPC-based treatment concepts need to be 

evaluated in preclinical, immunocompetent, large animal models. Sheep in particular 

are considered a valid model for orthopaedic and trauma related research. However, 

ovine MPC and their osteogenic potential remain poorly characterized. In the present 

study, ex vivo expanded MPC isolated from ovine bone marrow proliferated at a 

higher rate than osteoblasts (OB) derived from tibial compact bone as assessed 

using standard 2D culture. MPC expressed the respective phenotypic profile typical 

for different mesenchymal cell populations (CD14-/CD31-/CD45-

/CD29+/CD44+/CD166+) and showed a multilineage differentiation potential. When 

compared to OB, MPC had a higher mineralization potential under standard 

osteogenic culture conditions and expressed typical markers such as osteocalcin, 

osteonectin and type I collagen at the mRNA and protein level. After 4 weeks in 3D 

culture, MPC constructs demonstrated higher cell density and mineralization, whilst 

cell viability on the scaffolds was assessed >90%. Cells displayed a spindle-like 

morphology and formed an interconnected network. Implanted subcutaneously into 

NOD/SCID mice on type I collagen coated polycaprolactone-tricalciumphosphate 

(mPCL-TCP) scaffolds, MPC presented a higher developmental potential than 

osteoblasts. In summary, this study provides a detailed in vitro characterisation of 

ovine MPC from a bone engineering perspective and suggests that MPC provide 

promising means for future bone disease related treatment applications. 

 

Introduction 
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In general, bone displays a high intrinsic regenerative capacity following insult 

or disease. Therefore, the majority of bone defects and fractures heal 

spontaneously, stimulated by well orchestrated endogenous cell populations and 

micro-environmental cues. Improvements in surgical techniques, implant design and 

peri-operative management have significantly improved treatment outcomes of 

complex fractures and other skeletal defects resulting from high energy trauma, 

disease, developmental deformity, revision surgery, and tumour resection 1-6. 

However, a compromised wound environment, insufficient surgical technique or 

biomechanical instability can lead to formation of large defects with limited 

regeneration potential 7. Such defects pose a major surgical, socio-economical and 

research challenge and can significantly influence patients’ quality of life 8, 9. Over 

the years, bone grafts have advanced as the “gold standard” treatment for bone 

augmentation 1, 2, 10-16. However, the use of autologous bone is associated with 

additional anaesthetic time and personnel required for graft harvesting 12, 14, 17. Often, 

insufficient amounts of graft can be obtained while access to donor sites is limited 12, 

13, 18, 19. Donor site pain, nerve damage or haemorrhage can occur while donor bone 

is predispositioned to failure 4, 12, 13, 20. To circumvent these limiting factors, there has 

been continuous interest in the use of synthetic and naturally derived bone graft 

substitutes during the past decades. More recently, the concept of tissue engineering 

has emerged as an important approach to bone related orthopaedic and trauma 

research. Tissue engineering unites aspects of cellular biology, biomechanical 

engineering, biomaterial sciences and trauma and orthopaedic surgery. Its general 

principle involves the association of cells with a natural or synthetic supporting 

scaffold to produce a three-dimensional, implantable construct.  
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A number of large animal models have been developed to biomechanically 

simulate human in vivo conditions as closely as possible, and to assess the effects 

of implanted bone grafts and tissue engineered constructs on segmental long bone 

defect regeneration. In particular, mature sheep are considered a valuable model for 

human bone turnover and remodelling activity since animals of 7-9 years of age 

show similar bone structure and composition, possess a bodyweight comparable to 

adult humans, and long bone dimensions enabling the use of human implants 21-24. 

However, published fracture and segmental defect models have often used 

considerably younger animals 25. Whilst, sheep are a well recognized animal model 

for bone related research, the molecular and cellular events surrounding fracture and 

bone defect healing remain poorly understood with respect to the recruitment and 

differentiation of osteogenic precursor cell populations.  

 

In the present study, we hypothesized that ovine marrow derived cells of 7-8 year old 

animals are equivalent to those previously described for humans. The aims of the 

project were to isolate, characterize and compare populations of marrow cells 

derived from the iliac crest with cells from compact bone. Initial characterization of 

cell properties, phenotype and genotype was performed using techniques already 

established for human MPC. The potential of ex vivo expanded ovine marrow and 

bone derived cells to produce tissues with properties consistent with those of mature 

bone was further assessed in vitro and in vivo. The purpose of this study was to 

provide a detailed characterisation of ovine MPC and OB prior to their use in a 

preclinical ovine large animal model in order to evaluate bone tissue regeneration 

following implantation of autologous marrow or bone derived cells into surgically 

created tibial bone defects. 
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Materials and Methods  

Isolation of ovine MPC and OB 

Ovine osteoblast explants were obtained from 6-7 year old Merino sheep 

undergoing experimental surgery as approved by the animal ethics committee of the 

Queensland University of Technology, Brisbane, Australia (ethics number 

0700000915). Compact tibial bone samples were collected under sterile conditions, 

minced, washed with PBS (Invitrogen) and vortexed prior to being incubated with 10 

ml 0.25% trypsin/EDTA (Invitrogen) for 3 min at 37°C, 5% CO2. After trypsin 

inactivation with 10 ml low glucose Dulbecco's Modified Eagle Media (DMEM) 

containing 10% foetal bovine serum (FBS) (Invitrogen), samples were washed once 

with PBS and transferred to 175 cm2 tissue culture flasks (Nunc). Samples were 

topped-up with 12 ml of DMEM containing 10% FBS and 1% penicillin/streptomycin. 

Osteoblast outgrowth could be observed after 5-7 days. Cells were expanded to the 

second or third passage for subsequent experiments. 

Bone marrow aspirates were obtained from the iliac crest under general 

anaesthesia. Total bone marrow cells (0.5-1.5 x 107 cells/ml) were plated at a 

density of 1-2 x 107 cells/cm2 in complete medium comprising low glucose DMEM 

supplemented with 10% FBS, 100 U/ml penicillin and 100 µg/ml streptomycin. Cells 

were subsequently plated at a density of 103 cells/cm2. 

 

Flow cytometric analysis 
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Ex vivo expanded populations were used at passage three of culture for 

immunophenotypic analysis. Ex vivo expanded MPC or OB were treated with 

trypsin/EDTA and resuspended in blocking buffer for 30 min. Individual tubes 

containing 1 x 105 cells were incubated with murine monoclonal IgG antibodies 

reactive to either ovine CD14, CD31, and CD45 (Serotec), ovine and human CD29, 

CD44 (Clone H9H11; Division of Haematology, IMVS, Adelaide, SA, Australia), and 

CD166 (BD Biosciences), or isotype matched controls, 1B5 (IgG1), and 1A6.11 

(IgG2b) at a concentration of 10 µg/ml for 1 h on ice. After washing, cells were 

incubated with secondary detection reagents, goat anti-mouse IgG-FITC or IgM-

FITC conjugated antibodies (1:50; Southern Biotechnology Associates, Inc., 

Birmingham, AL) for 45 min on ice. Following washing, samples were analysed using 

a Cytomics FC 500 flow cytometry system (Beckman Coulter). 

 

Cell proliferation assay 

Adherent passage three MPC and OB were seeded in triplicates at 3000/cm2 

in flat bottomed 24-well plates (Nunc) and maintained in 1 ml standard culture 

medium consisting of low glucose DMEM supplemented with 10% FBS for 1, 3, 5 or 

7 days in a humidified atmosphere (37°C, 5% CO2). At each time point, cells were 

washed twice with PBS and stored at -80°C until analysis. For analysis, samples 

were digested overnight with 0.5 mg/ml proteinase K in 1 x TE at 55°C. DNA content 

for 100 μl of each sample in triplicate were measured and quantified using a Quant-

iT PicoGreen dsDNA assay kit according to the protocol supplied by the 

manufacturer (Invitrogen). An equal volume of the Quant-iT PicoGreen aqueous 

working solution was added to each triplicate and incubated for 3 min on a rocking 
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plate. Fluorescence was measured with a Polar Star Optima plate reader (BMG 

Labtech, Offenburg, Germany) at an excitation wavelength of 485 nm and an 

emission wavelength of 520 nm. 

 

CFU-F clonogenic assay 

CFU-F assays were performed as described previously 26
 
27. Briefly, passage 

two sheep osteoblasts (OB) and bone marrow derived, mesenchymal progenitor 

cells (MPC) were plated at a density of 0.25 x 104 in six-well plates. Cells were 

maintained in low glucose DMEM supplemented with 100 U/ml penicillin G, 100 

μg/ml streptomycin, and 10% or 20% FBS respectively, at 37°C with 5% CO2 for 6 

days. To enumerate colonies, cultures were washed with PBS, fixed in ice cold 

methanol for 15 min, and stained with 0.05% w/v crystal violet in dH2O for 15 min. 

Stained aggregates of greater than 50 cells were scored as CFU-colonies under a 

light microscope (TS100-U, Nikon, Melville, NY). 

 

2D differentiation in vitro 
 

Passage three MPC and OB were seeded in triplicate into 6-well plates 

(Nunc) at a density of 3000 cells/cm2 and expanded in low glucose DMEM/10% FBS 

(Invitrogen) until confluent. Osteogenic induction was then performed over the 

following 28 days using DMEM/10% FBS supplemented with 50 μg/ml ascorbate-2-

phosphate, 10 mM β-glycerophosphate, 0.1 μM dexamethasone (Sigma-Aldrich). 

Controls were cultured in standard expansion medium (DMEM/10% FBS). 

 

Alkaline phosphatase activity 
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At day 14 and 28, ALP enzyme activity was quantified using a colorimetric 

assay. Triplicates were washed with PBS, incubated with 0.1% Triton X in 0.2 M Tris 

buffer at -20°C for 10 min. Cells were harvested and centrifuged at 10000 rpm for 10 

min at 4°C and 100 μl of the cell extraction supernatant was incubated with 125 μl p-

Nitrophenylphosphate (1mg/ml) in 0.2 M Tris buffer (Sigma-Aldrich) in 96 well plates 

(Nunc) and OD was measured after 30 min at 405 nm in a Polar Star Optima plate 

reader. ALP activity was normalized against the sample DNA content determined 

using a Quant-iT PicoGreen dsDNA assay kit (Invitrogen). 

 

Alizarin red staining 

To determine matrix mineralization, at day 14 and 28, triplicate samples were 

washed twice with PBS and fixed with ice cold methanol for 10 min at room 

temperature. Samples were then washed twice with ddH2O and incubated with 1% 

alizarin red s (Sigma-Aldrich) in ddH2O, pH 4.1 for 10 min with gentle shaking. After 

aspiration of the unincorporated dye, samples were washed three times with ddH2O 

and air dried. Stained monolayers were documented using inverted phase 

microscopy (TS100-U, Nikon, Melville, NY). For quantification of staining, 800 μl 10% 

(v/v) acetic acid was added to each well, and the plate incubated at room 

temperature for 30 min with shaking. The monolayer was then scraped from the 

plate with a cell scraper and transferred with 10% (v/v) acetic acid to a 1.5 ml 

microcentrifuge tube. After vortexing for 30 s, the slurry was overlaid with 500 μl 

mineral oil (Sigma-Aldrich), heated to 85°C for 10 min, and transferred to ice for 5 

min. The slurry was then centrifuged at 20,000 x g for 15 min and 500 μl of the 

supernatant was removed to a new 1.5 ml microcentrifuge tube. Then 200 μl of 10% 
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(v/v) ammonium hydroxide was added to neutralize the acid. Aliquots (150 μl) of the 

supernatant were read in triplicate at 405 nm in 96-well format using opaque-walled, 

transparent-bottomed plates (Nunc). Obtained values were normalized against the 

DNA content of separate samples since treatment with acetic acid was expected to 

cause denaturation of DNA.  

 

Immunohistochemistry 

For immunohistochemistry, OB and MPC were cultured on Thermanox 

coverslips to fit 24-well plates (Nunc). Media was removed; samples were washed 

twice with PBS and fixed in 4% paraformaldehyde for 1 h on ice. Cells were then 

permeabilized with 0.1% Triton X in PBS for 5 min and quenched with 0.15 M glycine 

in PBS for 15 min (Sigma-Aldrich). Samples were blocked with 1% BSA (Sigma-

Aldrich) in PBS for 60 min and incubated with primary mouse anti-human type I 

collagen (1:100) (MP Biomedicals, Irvine, CA) and mouse anti-bovine osteocalcin 

(1:500) (Takara Bio Inc., Japan) antibodies in 1% BSA in PBS for 1 h at room 

temperature. Samples were then washed three times with 0.1% BSA in PBS for 5 

min each wash and incubated with a FITC-conjugated goat anti-mouse secondary 

antibody (Invitrogen) at a concentration of 1:200 for 30 min. Cover slips were then 

mounted on glass microscope slides and visualized using a fluorescent microscope 

(TE2000-U, Nikon, Melville, NY). 

 

Total RNA isolation, primer design and qRT-PCR 
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Total RNA was harvested from triplicate wells, from both differentiated and 

control cells, on days 7, 14, 21 and 28. Cells were washed twice with PBS and lysed 

in 1 ml Trizol reagent (Invitrogen) and RNA isolated following the manufacturer’s 

instructions. cDNA was synthesized from 1µg of total RNA using SuperScript III 

(Invitrogen) according to the manufacturer’s instructions. Sheep specific 

oligonucleotides (Geneworks, TheBarton, SA, Australia) were designed according to 

these parameters: 20-30 nt in length; melting temperature 60ºC, +/- 2ºC; at least one 

primer spanning an exon boundary; amplicon length 150 nt, +/- 50 nt; GC content 

between 40 and 60%; and at the 3’ end a C, G, CG or GC. In those cases where an 

Ovis aries mRNA transcripts was not available, a BLAST search was perform on the 

International Sheep Genome Consortium database 

(https://isgcdata.agresearch.co.nz/) using the equivalent human mRNA transcript. To 

date, the exon boundaries of sheep transcript have not been annotated; these 

boundaries were therefore based exon boundary information for human and mouse 

mRNA transcripts. Quantitative RT-PCR was performed on an Applied Biosystems 

7900HT FAST Real Time PCR system (Applied Biosystems, Scoresby, VIC, 

Australia) using a 384-well plate layout; templates and reagents were aliquoted using 

an Eppendorf 5075 epMotion pippeting robot (Quantum Scientific, Murarrie, QLD, 

Australia). The reaction volumes per well were as follows: 5 µl 2X SYBR Green 

(Roche, Castle Hill, NSW, Australia), 1 µl forward and reverse primers at 1 µM final 

concentration, 1 µl water, 2 µl cDNA template diluted 1:10 from stock. The thermo 

cycling conditions were as follows: 1 cycle of 10 min at 95°C for activation of the 

polymerase, 40 cycles of 10 sec at 95°C and 1 min at 60°C for amplification. 

Dissociation curve analysis was carried out to verify the absence of primer dimers 
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and/or non-specific PCR products. The expression of the genes of interest was 

normalized against the GAPDH housekeeping gene. 

 

3D cultures  

Fused deposition modelling was used to fabricate circular mPCL-TCP 

scaffolds of 5 mm diameter and 3 mm thickness. Type I rat tail collagen (Vitrogen 

100, Cohesion, Palo Alto, CA) was lyophilized into the pore space forming a 

microporous mesh throughout the polymer. For 3D cultures, 120.000 ovine MPC or 

OB suspended in 60 µl of basal medium were seeded onto each type I collagen 

coated mPCL-TCP scaffolds and placed in an incubator. After 1 h, 1 ml of medium 

was added to each 24-well. Cell scaffold constructs were cultured in DMEM/20% 

FBS supplemented with 50 μg/ml ascorbate-2-phosphate, 10 mM beta-

glycerophosphate, 0.1 μM dexamethasone on a rocking plate (f=0.125 Hz) for up to 

4 weeks. 

 

SEM 

Cell scaffold constructs were fixed with 3% (v/v) glutaraldehyde in 0.1 M 

sodium cacodylate buffer solution (pH 7.3) for 1 h at 4°C. Fixed specimens were 

then dehydrated through a series of alcohols; two changes each of 50%, 70%, 90%, 

and 100% ethanol and were incubated for 10 min between each change. Specimens 

were then critical point dried (Denton Vacuum, Moorestown, NJ) and gold coated in 

a SC500, Bio-Rad sputter coater (Bio-Rad) before examination using a FEI Quanta 

200 scanning electron microscope (FEI, Hillsboro, OR).  
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Confocal laser microscopy 

To assess cell viability and morphology of MPC and OB seeded onto type I 

collagen coated mPCL-TCP scaffolds, samples were stained with fluorescein 

diacetate (FDA) and propidium iodide (PI)(Invitrogen) or rhodamine conjugated 

phalloidin and 4',6-diamidino-2-phenylindole (DAPI)(Invitrogen). For FDA-PI staining, 

samples were rinsed 3 times with PBS and incubated with FDA staining solution (2 

µg/ml) at 37°C for 15 min in the dark. FDA is a cell-permeant esterase substrate 

which is hydrolysed by living/viable cells to give green fluorescence. Samples were 

then rinsed 3 times with PBS and incubated with PI staining solution (20 µg/ml) at 

room temperature for 2 min in dark. PI is actively excluded by live cells thus dead 

cells in a population are stained red. Samples were again rinsed 3 times with PBS 

and visualised with a Leica SP5 confocal microscope (Leica Microsystems GmbH, 

Wetzlar, Germany). 

For phalloidin-DAPI staining, samples were fixed with 4% paraformaldehyde for 20 

min and permeabilized with 0.2% Triton X-100 in PBS for 20 min at room 

temperature with gentle rocking. Samples were then washed twice for 5 min with 1 

ml PBS at room temperature. 700 µl rhodamine-conjugated phalloidin (0.8 U/ml in 

1% BSA in PBS) was added to each sample and incubated for 1 h at room 

temperature with gentle rocking. Phalloidin binds to F-actin. Samples were then 

washed twice for 5 min with 1 ml PBS at room temperature and nuclei were stained 

with DAPI staining solution (1.0 µg/ml in PBS) for 40-50 min at room temperature. 

Samples were washed twice for 5 min with 1 ml PBS at room temperature and 

visualised with a Leica SP5 confocal microscope. 
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In vivo transplantation studies 

Ovine MPC and OB were seeded onto type I collagen coated mPCL-TCP 

scaffolds at a density of 120.000 cells/scaffold and cultured for 4 weeks in 

DMEM/20% FBS supplemented with 50 μg/ml ascorbate-2-phosphate, 10 mM β-

glycerophosphate, 0.1 μM dexamethasone on a rocking plate (f=0.125 Hz). The cell 

scaffold constructs were then transplanted subcutaneously into both left and right 

side pockets formed in the dorsal surface of 10-week-old immunocompromised 

NOD/SCID mice (ARC, Perth, WA, Australia). Implants were recovered after 8 

weeks and fixed in 4% paraformaldehyde.  

 

µCT analysis  

Micro CT analysis was performed on both the in vitro constructs and the in 

vivo constructs. After 4 weeks of in vitro culture, constructs were carefully removed 

from each well and inserted into polycarbonate sleeves for micro-CT analysis. In 

vitro mineralization within the constructs was quantified using a Micro-CT 40 scanner 

(Scanco Medical, Brüttisellen, Switzerland) at a voxel size of 6 μm. Samples were 

evaluated at a threshold of 72, a filter width of 3.0 and filter support of 5.0. In vivo 

transplanted constructs were scanned at a voxel size of 16 µm and were evaluated 

at a threshold of 140, a filter width of 1.0 and filter support of 2. X-ray attenuation 

was correlated to sample density using a standard curve generated by scanning 

hydroxyapatite phantoms with known mineral density. Mineralized matrix volume or 
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bone volume fraction, and mineral density were quantified throughout the entire 

construct.  

 

Histology  

For histological examination, specimens were fixed in 4% paraformaldehyde, 

and dehydrated using an ethanol gradient (30 min in 70%, 1h in 90%, 95% and 

100% ethanol). The samples were then processed through xylenes for 40 min three 

times, infiltrated with MMA for 3h and embedded in MMA containing 3% PEG. Seven 

micrometre sections were cut with an osteomicrotome (SM2500; Leica 

Microsystems, Wetzlar, Germany), stretched with 70% ethanol onto a polylysine 

coated microscope slide (Lomb Scientific), overlayed with a plastic film and slides 

were clamped together before being dried for 12 h at 60°C. Sections were then 

stained using combined von Kossa and van Giesen 28 stains to visualise the 

mineralised bone and connective tissue respectively.  

 

Image analysis  

Histology sections were quantified using Image J software to quantify the 

amount of mineralisation in a given area of section. Briefly, a JPEG image of the 

entire tissue section was selected, converted to grayscale and a scale bar was 

calibrated onto the image. The entire tissue section area was then calculated by 

segmenting the entire tissue region from the background, and then measuring the 

area. Next, only the mineralised (black) area was segmented from the entire tissue 
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area, and measured. The total mineralised area was then calculated as a percentage 

of the total section area. Six sections were analysed per sample group. 

 

Statistical analysis 

Statistical analysis was carried out using the student’s t test and p values < 0.05 

were considered significant.  

 

Results 

MPC show a higher proliferation rate than OB in vitro  

Cells isolated from ovine bone marrow showed a significantly higher 

proliferative potential after 1,3 and 5 days in culture (p<0.05) when compared to 

ovine tibial osteoblasts as represented by the higher DNA content per 24-well for 

MPC (Fig. 1 A). After 6-7 days both MPC and OB entered a plateau phase indicative 

for contact inhibition of cells reaching confluency (p=0.0502).  

 

MPC and OB exhibit a similar immunophenotype 

Fluorescence-activated cell sorting (FACS) analysis was performed to 

characterise the phenotype of ex vivo expanded ovine bone marrow derived MPC 

and OB. The two cell populations exhibited similar expression patterns for CD29 (β1-

Integrin), CD44, CD166 (ALCAM) and CD14 (LPS-R). CD44 and CD166 have 

previously been identified as markers associated with human bone marrow stromal, 
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adipose, and dental pulp stem cells 26, 29-31.  Importantly, both populations did not 

react with hematopoietic markers CD45 (common leukocyte antigen) and CD31 

(PECAM-1, endothelial) (Fig. 2). 

 

Clonogenic efficiency of MPC 

The mean frequency of CFU-F derived from marrow aspirates was 2.5 ± 0.5 

per 0.25 x 104 mononuclear cells (MNC) in both DMEM/10% FBS and 20% FBS, 

with the incidence of CFU-F forming MSC within the marrow MNC population being 

approximately 0.08-0.12%. The mean frequency of CFU-F derived from tibial bone 

explants was 2 ± 0.6 in DMEM/10% FBS and 1.8 ± 0.7 in DMEM/20% FCS 

respectively (incidence of colony forming cells 0.04-0.12%)(data not shown). 

 

2D differentiation potential of ovine MPC and OB in vitro  

The potential of bone marrow derived MPC to differentiate into osteoblasts 

and of bone derived osteoblasts to secrete a mineralised extracellular matrix was 

investigated by culturing cells in the presence of L-ascorbic-2-phosphate, 

dexamethasone, and β-glycerophosphate 31. After 4 weeks of induction, cultured 

MPC and OB had formed extensive amounts of alizarin red-positive mineral deposits 

throughout the adherent layers. However, OB consistently formed significantly fewer 

mineralized nodules (p<0.05) compared to bone marrow derived cells (Fig. 1 C, Fig. 

3 B and H). Extracellular matrix produced by both MPC and OB stained positive for 

type I collagen and osteocalcin (Fig. 3 C-F and I-L). ALP activity measured at day 14 

and day 28 displayed a typical rise-fall pattern 32, 33 and was significantly increased in 
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osteogenically induced OB and MPC (p<0.05) when compared to their respective 

controls (Fig. 1 B). Under osteogenic conditions a significant increase in type I 

collagen expression of 31% could be observed over the course of 4 weeks for MPCs 

whilst an increase of only 9% was found in the control culture without osteogenic 

supplements (Fig. 4 A). Osteocalcin expression was up-regulated around day 21 and 

further increased towards the end of week 4 (23%, 11% in control)(Fig. 4 C). An 

increase in osteopontin expression could be detected between day 7 and 14 (26%, 

5% in control)(Fig. 4 E). For OB, no significant changes in type I collagen expression 

(5%, 5% in control) were found (Fig. 4 B), only a small increase in osteocalcin (9%, 

6% in control) expression (Fig. 4 D). Osteopontin levels slightly increased between 

day 0 and 7 (12%, 7% in control) to further stay on that level (Fig. 4 F). All 

percentages compare to base level activity on day 0. 

 

3D differentiation potential of MPC and OB in vitro 

 Viability, morphology and osteogenic potential of ovine MPC and OB in a 

three dimensional environment was assessed by FDA/PI staining, phalloidin-DAPI 

staining, SEM, and micro computed tomography. After 28 days of osteogenic 

induction under dynamic conditions, cell viability was assessed >90% (Fig. 5 A and 

D). Phalloidin-DAPI staining (Fig. 5 B and E) and SEM analysis (Fig. 5 C and F) 

revealed elongated, spindle-shaped, osteoblast-like cell morphology for both OB and 

MPC. However, MPC seemed to have proliferated at a higher rate on the type I 

collagen coated mPCL-TCP scaffolds forming a dense, interconnected three 

dimensional network. Micro CT analysis displayed mineral deposition throughout the 

entire thickness of OB and MSC-constructs, compared to control constructs (Fig. 6 
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A-F). Scaffolds seeded with MPC showed a significantly higher mineral volume 

fraction (MVF) compared to scaffolds seeded with OB (p=0.000197) (Fig. 6 G) while 

no significant difference in mineral density could be found between MPC and OB-

constructs (Fig. 6 H).  

 

Differentiation potential of MPC and OB in vivo 

The developmental potential of culture-expanded, ovine MPC and OB was 

assessed in vivo following transplantation into NOD/SCID mice in association with 

type I collagen coated mPCL-TCP scaffolds. Transplants were recovered after 8 

weeks, subjected to micro CT analysis and then processed for histology. Micro CT 

analysis revealed a significantly higher degree of ectopic bone formation for the 

scaffolds seeded with MPC prior to implantation (Bone volume fraction: 20.15%) 

when compared to OB (6.12%) or the respective cell free controls (0.55 %) (Fig. 7 A-

C, M). However, no significant difference could be found with regard to the mineral 

density of newly formed bone matrix (Fig. 7 N). 

 

Histological examination of ectopic explants, using von Kossa staining revealed no 

mineralisation for the control (no cell) constructs (Fig. 7 D,G,J) whereas both MPC 

(Fig. 7 E, H, K) and OB (Fig. 7 F, I, L) seeded mPCL-TCP scaffolds formed 

extensive ectopic bone within the implants, over a course of 8 weeks in vivo. Mineral 

nodules containing calcium, stain black with the von Kossa staining by virtue of silver 

ions (positive charge) binding with the mineralised tissue (negative portion of the 

calcium salt) forming a silver salt which is black in colour. The amount of ectopic 
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bone formed was significantly higher for MPC seeded tissue engineered constructs 

compared with OB-seeded constructs (Fig. 7 O)(p<0.05). Residual mPCL-TCP 

scaffold was evident within all transplants (Fig. 7 D) evidenced by voids in the tissue 

from longitudinal and transverse sectioning of the scaffold struts. The infiltration of 

haematopoietic cells together with associated adipose elements was reminiscent of 

native bone marrow (Fig. 7). The formation of different tissue types within the 

transplanted constructs included mineralised bone (mb), fat (f) and fibrous 

connective tissue (c) with clear blood vessel (bv) formation. The predominantly 

formed tissue type in all both MSC and OB samples however, was bone with mature 

osteocytes enclosed in characteristic lacunae surrounded by the bone extracellular 

matrix. 

 

Discussion 

 Orthopaedic research frequently necessitates the utilisation of large animal 

models. Animal models in bone repair research include representations of normal 

fracture-healing, segmental bone defects, and fracture non-unions 34. The selection 

of a specific animal species as a model system involves the consideration of a 

number of factors. Physiological and pathophysiological analogies are essential in 

respect to the scientific question under investigation. It must be manageable to 

operate and observe a multiplicity of study objects over a relatively short period of 

time 22, 35, 36. Further selection criteria include costs for acquisition and care, animal 

availability, acceptability to society, tolerance to captivity and ease of housing 23. 

Mature sheep and goats possess a bodyweight comparable to adult humans and 

long bone dimensions enabling the use of human implants 21. The mechanical 
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loading environment occurring in sheep is well understood 37, 38. Since no major 

differences in mineral composition 39 are evident and both metabolic and bone 

remodelling rates are akin to humans 40, sheep are considered a valid model for 

human bone turnover and remodelling activity 41 and show comparable bone healing 

potential and bone blood supply 42. On a cellular and molecular level however, sheep 

as a well recognized animal model for bone related research remain poorly 

characterized and understood, and the aim of this study was to begin to address the 

shortfalls in literature on this subject. 

 As described previously, bone marrow aspirates collected from adult sheep 

contain a proportion of CFU-F forming cells with an incidence and morphology highly 

similar to human MSC 27, 31, 43-46. The incidence of ovine CFU-F exceeds those 

described for most other animals, but lie within the normal range reported for human 

bone marrow CFU-F 27, 47-50.  

 To date, there is limited information available on the cell surface characteristics 

of ovine bone marrow derived MPC and bone derived OB. This can mainly be 

attributed to the limited availability of antibodies specific for and cross-reacting with 

equivalent sheep antigens 27, 47, 51. However, to validate sheep as a model system for 

research on a cellular and molecular level, and to provide insight into fundamental 

processes such as haematopoiesis, cell migration and homing, injury repair, 

differentiation, and proliferation, the availability of suitable antibodies plays a key 

role. The cell surface expression profile of ovine MPC and OB showed high and 

uniform levels of cell surface CD29, CD44 and CD166 which have previously been 

identified as markers associated with human bone marrow stromal, adipose, and 

dental pulp cells 26, 29-31. Characteristic for ovine MPC and OB cultures was the 

absence of expression of the endothelial associated adhesion marker CD31 and 
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haematopoietic marker CD45 consistent with expression patterns previously 

described for human bone marrow derived MSC  26, 27.  

When compared to ovine OB isolated from compact tibial bone, the cells 

isolated from the bone marrow showed a higher proliferative potential (Fig. 1 A) 

indicative for immature progenitor cells. Both MPC and OB followed a normal growth 

curve reported for different human cell types consisting of a lag phase followed by a 

log phase of exponential cell growth, ending with a plateau phase in which the 

growth rate declined 52-55. The steeper slope of the MPC growth curve between day 

1 and 3 after seeding results in a higher density of cells before the rate of growth 

begins to decline. A high proliferation capacity is desirable when it comes to the 

application of cell based tissue engineering strategies in preclinical models since 

large cell numbers generated over a relatively short period of time may be required 

for various clinical applications. 

After 28 days of culture under osteogenic conditions both MPC and OB were 

shown to produce mineralized extracellular matrix positive for alizarin red, 

osteocalcin and type I collagen. We showed that MPC and OB can be induced to 

form mineral in culture by treatment with osteogenic medium in vitro. Osteogenic 

medium contains a source of phosphate, ascorbic acid, and dexamethasone in a rich 

medium such as α-MEM containing fetal bovine serum (FBS) 56. In a chelation 

process, alizarin red S forms complexes with calcium and therefore allows 

simultaneous evaluation of mineral distribution and inspection of fine structures by 

phase contrast microscopy. It is particularly versatile in that the dye can be extracted 

from the stained monolayer and readily assayed with low variability and a much 

wider linear detection range than traditional calcium detection methods  57, 58.To 

monitor inorganic phosphate deposition may be problematic due to the high levels of 
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contaminating phosphate associated with other components of the cell and the high 

levels of free phosphate in the cytosol.  

The extracellular matrix produced by ovine MPC and OB was shown to stain 

positive for type I collagen and osteocalcin. Type I type I collagen comprises 

approximately 95% of the entire collagen content of bone and about 80% of the total 

proteins present in bone 59, 60. The increase in type I collagen expression on the 

gene level in MPC and its presence in the extracellular matrix deposited by MPC 

under osteogenic conditions is therefore consistent with osteogenic differentiation 

processes. Osteocalcin is synthesized and secreted by normal maturing osteoblasts. 

It is one of the major non-collagenous bone matrix proteins, with osteocalcin 

comprising 1% to 2% of the total proteins in the skeleton 61. Osteocalcin binds with 

high affinity to hydroxyapatite crystals, the key mineral component of bone, and 

regulates bone crystal formation 62. Osteocalcin can also act as a chemo-attractant in 

the recruitment of osteoblasts and osteoclasts, contributing to the dynamics of new 

bone formation and bone resorption 63. Ducy et al. 64 reported that osteocalcin-null 

mice exhibit increased bone formation without impaired bone resorption, suggesting 

a more complex interaction between recruited osteoblasts and osteoclasts in this 

process. In the MPC cultures, osteocalcin expression was up-regulated around day 

21 and further increased towards the end of week 4 which is consistent with 

osteocalcin being a late osteogenic marker. Osteocalcin protein was additionally 

detected immunohistochemically in the ECM produced by both ovine MPC and OB 

further suggesting a bone like composition. Osteopontin is biosynthesized by a 

variety of tissue types including pre-osteoblasts, osteoblasts, osteocytes, and bone 

marrow cells and is considered an early osteogenic marker and was shown to be up-

regulated in the ovine MPC cultures early during differentiation. It has further been 
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implicated as an important factor in bone remodelling 65. Specifically, research 

suggests it plays a role in anchoring osteoclasts to the mineral matrix of bones 66. 

For the OB, no significant changes in type I collagen expression were found, only a 

small increase in osteocalcin expression. Osteopontin levels increased between day 

0 and 7 and remained at this level. The findings suggest that while MPC undergo a 

differentiation process when supplemented with osteogenic factors, OB – as they are 

mature cells already – very much maintain their gene expression pattern. Alkaline 

phosphatase (ALP) is considered a marker for osteoblastic activity in vitro. ALP 

activity measured at day 14 and 28 displayed a typical rise-fall pattern 32, 33 and was 

significantly increased in osteogenically induced OB and MPC (p<0.05) when 

compared to their respective controls (Fig. 1 B).  

Since the extrapolation from results in 2D to cell behaviour in 3D is rather 

difficult, 3D in vitro cultures of ovine MPC and OB were established on medical 

grade PCL-TCP scaffolds produced via fused deposition modelling. Polymer–

calcium phosphate composites confer favourable mechanical and biochemical 

properties for bone tissue engineering, including strength (ceramic phase), 

toughness and plasticity (polymer phase), more favourable degradation and 

resorption kinetics, and graded mechanical stiffness 67, 68. Results obtained from 3D 

in vitro culture confirmed the findings from 2D differentiation studies with MPC 

demonstrating a higher proliferative and osteogenic potential (Fig. 5 and 6). Micro 

CT analysis revealed no significant difference in matrix mineral density suggesting 

that the MPC had undergone an osteogenic differentiation process towards 

osteoblast like cells actively secreting mineralized matrix.  

 Preliminary analysis of the in vivo osteogenic developmental potential of ovine 

MPC and OB was undertaken by subcutaneous transplantation into immune-
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compromised NOD/SCID mice. Both MPC and OB demonstrated osteogenic 

potential upon transplantation with type I collagen coated mPCL-TCP composite 

scaffolds, as indicated by the presence of extensive deposits of ectopic bone (Fig. 

7). The observation of ectopic bone, fibrous tissue, and haematopoiesis is analogous 

with studies using these scaffolds seeded with porcine bone marrow derived 

progenitor cells 68.  

 

Conclusion 

In summary, in the present study, ovine MPC isolation from bone marrow 

aspirates and the isolation of OB from cortical bone explants have been 

standardized. It was found that ovine MPC exhibit morphological, 

immunophenotypical and multipotential characteristics similar to those in human 

bone marrow derived MPC. The study represents an essential first step towards the 

detailed characterization of ovine MPC and OB in translational studies towards the 

establishment of preclinical in vivo models. However, further studies are required to 

verify the regenerative potential of MPC and OB in vivo. 
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Figure legends 
 

Figure 1: Proliferation capacity, ALP activity and matrix mineralization of MPC and 

OB. When compared to OB, MPC displayed a higher proliferative potential (A). In 

osteogenically induced MPC and OB, ALP activity showed a typical rise fall pattern 

(B). After 28 days of culture in osteogenic media, MPC cultures showed a significant 

higher degree of mineralization (C). 

 

Figure 2: Surface antigen expression for MPC and OB. The two cell populations 

exhibited similar expression patterns for CD29 and CD44. CD166 and CD14 was 

>50% MPC while only low levels were detected on OB. Both populations did not 

react with the hematopoietic markers CD45 and CD31.  

 

Figure 3: Alizarin red, osteocalcin (OC) and type I collagen staining for MPC and OB 

cultures after 28 days. Under osteogenic conditions, both MPC and OB secreted a 

mineralized matrix (B, H) that stained positive for OC (D, J) and type I collagen(F, L).  

 

Figure 4: Quantitative RT-PCR for osteogenic markers. RT-PCR revealed significant 

increases in type I collagenand osteocalcin expression over 4 weeks for MPC under 

osteogenic conditions and an increase in osteopontin expression between day 7 and 

14. For OB, no significant changes in type I collagen, osteopontin and osteocalcin 

expression were found. 

 

Figure 5: SEM, live-dead and phalloidin-DAPI staining of MSC and OB on mPCL-

TCP scaffolds. Cell viability was assessed >90% for both cell types (A and D). 
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Phalloidin-DAPI staining (B and E) and SEM analysis (C and F) revealed elongated, 

spindle-shaped, osteoblast-like cell morphology for both OB and MPC forming a 

dense, interconnected three dimensional network. 

 

Figure 6: µCT analysis of 3D in vitro cultures. µCT displayed mineral deposition 

throughout the entire thickness of all constructs. Scaffolds seeded with MPC (C, D) 

showed a higher mineral volume fraction (MVF) (G) compared to OB seeded (E, F) 

or cell free scaffolds (A, B). No significant difference in mineral density was found 

(H).  

 

Figure 7: Micro CT of in vivo specimens revealed significantly more bone formation 

for MPC compared with OB and control (B, C, A, M). No significant difference in 

mineral density was observed (N). Histology revealed extensive ectopic bone 

formation for MPC and OB (E, F, H, I, K, L). Tissue types: mineralised bone (mb), 

muscle (m) fat (f), blood vessels (bv) and fibrous connective tissue (c).  

 


