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Abstract 

This overview focuses on the application of chemometrics techniques for the investigation of soils 

contaminated by polycyclic aromatic hydrocarbons (PAHs) and metals because these two important and 

very diverse groups of pollutants are ubiquitous in soils.  The salient features of various studies carried 

out in the micro- and recreational environments of humans, are highlighted in the context of the various 

multivariate statistical techniques available across discipline boundaries that have been effectively used in 

soil studies. Particular attention is paid to techniques employed in the geosciences that may be effectively 

utilized for environmental soil studies; classical multivariate approaches that may be used in isolation or 

as complementary methods to these are also discussed. Chemometrics techniques widely applied in 

atmospheric studies for identifying sources of pollutants or for determining the importance of 

contaminant source contributions to a particular site, have seen little use in soil studies, but may be 

effectively employed in such investigations. Suitable programs are also available for suggesting 

mitigating measures in cases of soil contamination, and these are also considered.  

Specific techniques reviewed  include pattern recognition techniques such as Principal Components 

Analysis (PCA), Fuzzy Clustering (FC) and Cluster Analysis (CA); geostatistical tools include 

variograms, Geographical Information Systems (GIS), contour mapping and kriging; source identification 

and contribution estimation methods reviewed include Positive Matrix Factorisation (PMF), and Principal 

Component Analysis on Absolute Principal Component Scores (PCA/APCS). Mitigating measures to 

limit or eliminate pollutant sources may be suggested through the use of ranking analysis and multi 

criteria decision making methods (MCDM). These methods are mainly represented in this review by 
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studies employing the Preference Ranking Organisation Method for Enrichment Evaluation 

(PROMETHEE) and its associated graphic output, Geometrical Analysis for Interactive Aid (GAIA).  

 

Keywords: Soil studies; chemometrics;, multivariate analysis; geostatistics; source identification; source 

contributions; PCA/APCS; PROMETHEE; GAIA. 

Abbreviations and acronyms 

CA  Cluster Analysis 

FC  Fuzzy Clustering 

FKA  Factorial Kriging Analysis 

GAIA  Geometrical Analysis for Interactive Aid 

GIS  Geographical Information Systems 

HMW  High Molecular Weight 

LDA  Linear Discriminant Analysis 

LMW  Low Molecular Weight 

MCDM  Multi Criteria Decision Making 

PAH   Polycyclic Aromatic Hydrocarbons 

PCA  Principal Component Analysis 

PCA/APCS Principal Component Analysis/Absolute Principal Component Scores 

PMF  Positive Matrix Factorization 

PROMETHEE Preference Ranking Organization Method for Enrichment Evaluation 

1. Introduction. 

Pollutants reach surface soils through atmospheric deposition of suspended particles [1-8], deposition of 

contaminated sediments [9-13]  and the circulation of groundwater [13-17]. In general, such substances 

can be inhaled either as re-suspended particulates in their natural state or as adsorbates on dust or soil 

particles [18]. 

In recent years, there has been a number of  investigations of soil contamination within cities, recreational 

spaces and in children’s environments [3, 5, 19-25]. Many of these studies have been undertaken partly 

because soil ingestion has been recognised as an important exposure route for contaminants to humans, 
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especially infants [18, 26, 27]. For example, some toxic  pollutants such as lead [26] and arsenic [28] are 

known to be  more likely to be ingested than inhaled. Therefore, soil pollution continues to be an 

important area of study for environmental scientists. However, apart from a few early studies [29, 30] the 

application of multivariate data analysis in such studies has been fairly limited to date. Many investigators 

preferred classical univariate statistics for processing data [19, 20, 25, 31, 32]. Chemometrics techniques 

such as Principal Components Analysis (PCA), Linear Discriminant Analysis (LDA) and the various 

source apportionment techniques have not found significant usage [7, 8, 12, 33, 34]. However, cluster 

analysis [7, 22, 23, 26, 34] has been employed with some effect. Recently, a few studies have appeared in 

which some apportionment techniques have been explored [18, 33, 35-37], but source contributions are 

rarely studied [36, 38], and multicriteria decision making methods (MCDM) are used even more rarely 

[38]. Because many parameters are usually measured during soil analysis, multivariate data analysis 

techniques such as those involved in the chemometrics procedures reviewed in this paper are more likely 

than univariate methods  to explain the underlying structures of the data. 

On the other hand, specialised geostatistical tools for the geosciences do exist and are widely employed in 

the mining industry [39]. These have found some application in the study of soils [18, 35, 40-46]. 

However, many environmental scientists appear to be less familiar with such tools and their applications. 

This overview focuses on the application of chemometrics techniques for the investigation of soils 

contaminated by polycyclic aromatic hydrocarbons (PAHs) and metals because these two important and 

very diverse groups of pollutants[31, 47],  [48, 49] are ubiquitous in soils [29, 37]. The approach 

employed in the review is to highlight the salient features of studies carried out in the micro- and 

recreational environments of humans, in the context of the various multivariate statistical techniques 

available across discipline boundaries that have been effectively used in soil studies.  

2. Pollutants and Related Factors 

2.1. Occurrence and Impact  

Although the focus of this review is the application of chemometrics to soil pollutants, it is important to 

provide contextual framework for the ensuing discussion. Therefore, we have outlined the occurrence of 

the two broad classes of pollutants targeted in the review as well as their human effects and issues such as 

sampling, which are important when one is considering how to generate meaningful data from soil  

analysis. 

2.1.1. Metals 

Metals are found in all soils. It is the concentration levels which present the risk, and it is the mechanism 

of enrichment that defines the enriched environment as “polluted”. The earth’s crust consists of metals 
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combined with various non-metallic elements, mainly oxygen and silicon and they are not equally 

distributed over the surface of the earth. The unequal distribution of metals in the crust gives rise to 

exceedingly high levels in some localities, which can be redistributed by stormwater run-off [10, 50] and 

circulating groundwater [13, 14, 17, 28] with dire consequences for humans. Soil contamination by metals 

may occur as a result of various mechanisms. Worldwide, the most important sources of metal pollution 

are mine tailings, smelter emissions, waste incineration and atmospheric deposition [4, 5, 9].  But the 

main contribution to the trace element load in urban topsoils and dust is almost unanimously considered 

to be traffic emissions [25] derived from atmospheric deposition.  

Interest in the metal content of soils stems from the fact that certain metals are essential for  human 

health, for example, Ca, Fe, Mg, Zn and Cu [51]. However, some of the elements, which are essential for 

human health, may be injurious when present in excess. For instance, excessive amounts of Fe, Cu, Zn, 

Co, Mg, Cr and Se are known to have adverse human effects [17]. Furthermore, many metals such as Cd, 

Pb and Hg [15] have no known biological importance in human biochemistry and physiology and can 

have adverse human effect even at low concentrations.  

2.1.2 PAHs 

PAHs are ubiquitous contaminants in both the general environment and in certain working environments 

[49] and are deposited on soils through atmospheric fallout.  They are generally produced in incomplete 

combustion processes [52-54], and the composition of PAHs emitted from such processes is dependent on 

a variety of factors, such as the fuel and its properties, as well as atmospheric oxidation and degradation 

[49]. Although PAHs are produced in volcanic activity and in forest fires [3, 54, 55], and are also present 

in petroleum and coke products, their primary source is anthropogenic activities [3, 49, 53, 54]. 

PAHs constitute a wide class of compounds consisting of two or more fused benzene rings. The 

conceivable number of different PAHs with eight aromatic rings is more than one thousand [56]. A large 

number of structural isomers exist, as well as nitro- and other substituted compounds. PAHs are highly 

lipophilic compounds with low chemical reactivity [49]. They occur in the environment as complex 

mixtures of many components with widely varying toxic potencies [49, 52, 56]. PAHs bind strongly to 

soils, especially the organic components and are difficult to dissipate, due to their octanol-air fraction 

coefficient [3, 8]. Soils thus act as sinks for PAHs, where they tend to persist for a long time [3, 8, 55]. 

They are specifically strongly adsorbed to the organic fractions of sediments and soil [3, 52]. 

Consequently, soil is one of the main reservoirs of PAHs in the environment [8, 57].  

There have been increased interest in the profiles of PAHs in soils because these compounds have 

mutagenic, carcinogenic and immunotoxic properties [8, 58-60]. Animal studies have shown that orally 
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ingested PAHs cause cancers of the stomach and gastrointestinal tract [60]. The most active compounds 

are those composed of four to seven rings [49, 54]. The USEPA has classified seven PAHs as probable 

human carcinogens: benzo[a]pyrene (BAP), benz[a]anthracene (BAA), chrysene (CHR), 

benzo[b]fluoranthene (BBF), benzo[k]fluoranthene (BBK), dibenz[a,h]anthracene (DBA), and 

indeno[1,2,3-cd]pyrene (IND) [61]. In addition to these, a further 9 are regarded as priority PAHs: 

naphthalene (NAP), anthracene (ANT), fluorene (FLU), fluoranthene (FLT), acenaphthylene (ACY), 

acenaphthene (ACE), phenanthrene (PHE), pyrene (PYR) and benzo[g,h,i]perylene (BGP) [3]. 

Studies concerned with the presence of these PAHs will feature in this review. The best-characterised 

source for PAHs is vehicle emissions followed by wood burning [62, 63]. The composition of PAHs in 

combustion products depends on the combustion temperature. At low to moderate temperature, as in 

wood or coal stoves, low molecular weight PAH compounds are abundant, whereas at higher 

temperatures, such as those in vehicular emissions, higher molecular weight compounds abound [63].  

It has been difficult to make accurate estimations of PAH emissions because it is not easy to 

quantitatively determine how much of any particular PAH has been contributed by any specific source. 

Residential heating, automobile exhaust, industrial power generation, incinerators and production of coal, 

coke and asphalt produce complex mixtures of PAHs. Some PAHs are common to a number of these 

sources [49, 62]. Source apportionment is therefore an important consideration in the study of PAHs in 

the environment in general and in soils in particular. 

2.1.2. Sampling issues. 

A number of issues impact on meaningful data analysis of soil samples. Of these, sampling depth, 

sampling density [35, 39, 57] and the analytical techniques employed  [57, 64] are the most important in 

ensuring that the results are reliable and amenable to multivariate analysis. Soil characteristics such as 

organic content and stratification and external factors such as climate [65] further complicate 

investigations and obscure observable trends and comparison of different studies [57]. Necessitated by the 

requirement for economic feasibility and accurate projections of mine lifetimes and productive capacity 

[39], the earth sciences have developed rigorous sampling procedures to ensure that accurate and 

representative images of the sampled body are obtained [13, 39]. Exploration and sample preparation for 

metals is thus fairly well understood and universally applied in the geosciences. However, these 

techniques are not widely employed by environmental scientists seeking to determine soil pollution by 

metal species [34, 35].  

Sampling and sample preparation for the determination of organic soil pollutants is confounded by 

various factors [57]. Sampling site, sampling time, sampling depth, sampling support, extraction 
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techniques and the sum calculation of organic species all hamper the comparability between different 

studies. A multitude of analytical techniques and the effect of soil stratification, land use and climatic 

conditions further complicate matters [57]. To date, the problem of how to quantify reliably the bias of 

soil sampling is not considered really solved [57]. It has been recognised that there is an urgent need for 

harmonisation of soil monitoring within the European Community, since standardisation is dependent on 

harmonisation, and biased standardisation is misleading not only for sampling, but for the whole 

measurement chain [57] and consequently also for the subsequent  data analysis.  

From the above, it is evident that sampling and sample preparation procedures are vitally important for 

the derivation of results amenable to data interpretation. Environmental studies may greatly benefit by 

applying soil sampling techniques as developed and used in the geosciences; additionally, great care must 

be taken with sample preparation, especially with extraction techniques [57]. 

3. Soil pollutants and multivariate techniques 

In recent decades, it has become routine for large amounts of data to be generated with the use of 

automated analysis. Univariate data analysis is no longer sufficient for exploring fully the complexity of 

the vast amounts of information available [66]. Therefore, it has become general practice to employ 

various multivariate techniques for pattern recognition, classification and prediction for analysis of large 

datasets [66-69].  The common methods are summarised in Table 1 and a number of these are outlined in 

the Appendix.  

It is usually important for environmental investigators to determine one or more of the following 

parameters when studying pollutant species: 

1. Distribution of pollutants and associated factors, such as background values and physico-

chemical factors (for instance pH); the extent of affected areas; the nature of the distributing 

agent, whether by atmospheric wet (rain) or dry (dust) deposition and the nature of 

transportation – whether in vapour or particulate phase, circulation of groundwater, or 

stormwater run-off; and, the distinction between different populations of pollutants. 

2. Identification and apportionment of sources – where do the contaminants originate?; and, 

determining source contributions – how much does each source contribute to the contamination? 

3. Mitigating measures and their effectiveness. 

This overview is not intended to be exhaustive because its intent is to show the reader how chemometrics 

can enhance the interpretation of data from soil pollutants to improve knowledge outcomes. Although the 

review is not chronological, it does acknowledge the researchers who applied chemometrics to soil 
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science.  The studies referred to in this overview are therefore used to focus on and illustrate the 

application of various chemometrics techniques as applied to soil studies. 

3.1. Pollutant distribution and chemometrics 

3.1.1. Geostatistics, GIS mapping and chemometrics  

Depending on the aims of a particular study there are a number of approaches that are available for the 

interpretation of pollutant distribution data. Perhaps the most visually satisfying and direct method is by 

generating a contour map [6, 18, 33, 35-37, 41] displaying spatial variability of a particular chemical 

species. This type of approach is usually suitable for regional studies where a large quantity of soil data 

has been gathered in a systematic way. In this context, geostatistical tools such as inverse-distance 

squared interpolations, variograms and kriging are the most applicable [18, 33, 35, 36].  

Soil data are gathered from predetermined sampling points situated on a map grid, and values between 

points and missing values are interpolated. The contour diagram can then be generated using 

Geographical Information Systems (GIS) [18, 35, 70]. The reader is referred to Wellmer [39] and 

Goovaerts [41-43] for a discussion on the theory and practice of geostatistical interpolatory methods and 

to studies by Mielke et al [31, 32], Zhou et al [12], Zheng, Chen and He [40], Zhang et al [33] and 

Facchinelli, Sacchi and Mallen [45] for examples where this technique was used to study metal 

enrichment, and Wang et al [6] where it was used for studying PAH spatial distribution. 

Mielke and co-workers [31, 32] used kriging (geostatistics) to plot a contour diagram of multiple metal 

accumulation in central New Orleans, United States, and compared the results with Louisiana Educational 

Assessment Program (LEAP) scores (scholastic achievement). With the use of correlation analysis, they 

were able to show that there was a strong inverse relationship between learning achievement of students 

attending schools in a particular community and the quantity of multiple metals accumulated in the soil 

environments of that community. This was particularly valid for Pb [32]. It was also demonstrated that 

the most disadvantaged communities were more adversely affected by soil Pb than other communities, 

since, according to census data, most of the members of those communities were living in areas with 

elevated soil Pb values [32]. The study did not attempt to identify pollutant sources. 

Facchinelli, Sacchi and Mallen [45] performed a classic study in the Piemonte region of Italy. Using 

geostatistics and GIS software, they plotted various contour maps of metal occurrences on a regional 

scale. They also indicated highways, rock exposures of various types and cultivated areas. With the aid of 

Principal Components Analysis (PCA) and matrix rotation they were able to identify the main metal 

contributors to both the upper and lower soil levels as natural parent rocks, agricultural activity (mainly 



 8 

viticulture) and transportation/industry, in that order. Cluster Analysis (CA) confirmed these findings. 

Cluster Analysis is often used to confirm the results of PCA in other studies [7, 45]. 

Wang, Qin and Sang [7] studied the accumulation and sources of heavy metals in the industrial city of 

Xuzhou in China. Three main sources were indicated by PCA after rotation of matrices. These were the 

natural background, traffic, and coal-burning activities, in that order. Again, the results from PCA were 

confirmed by CA [7]. Contour maps were also used to effectively display the pollution levels derived 

from two possible sources. Similarly, Zheng, Chen and He [40] used semivariograms (a geostatistical 

technique, which is more recently known simply as variograms) to derive maps depicting spatial 

variability of different metals in topsoils from Beijing, and PCA and partial correlation analysis to attempt 

to identify sources. 

Van Meirvenne and Goovaerts [44] proposed a scheme for estimating the probability that a particular site 

may exceed the regulatory limit for any contaminant, using soft indicator kriging, a specialised 

application of kriging analysis. As they pointed out, sampling campaigns may be very costly [35, 44] and 

the proposed technique can be used as a tool for improving the cost-effectiveness of a sampling regime. 

Other researchers, too, saw the need for such techniques. For example, Tao Chen et al attempted to 

develop a methodology for limiting the number of repeat samplings necessary for adequate environmental 

monitoring using co-kriging and ArcGIS [35].   

Geostatistical tools have also been used successfully for the interpretation of spatial distribution of PAHs. 

Wang et al [6] studied distribution patterns of PAHs in topsoils of the Tianjin area of China using a 

specialised kriging procedure, factorial kriging analysis (FKA), to study various soil parameters, 

including total organic carbon (TOC) and pH, at varying spatial scales. FKA allowed the successful 

interpretation of the distribution patterns of individual PAHs by the construction of contour maps, but 

failed to deliver clear spatial distribution patterns for the combined group of the 16 high-priority PAHs 

( PAH16) as defined by USEPA. To enable the investigators to study the distribution of the total PAHs, 

the results were subjected to PCA and three latent variables extracted; high molecular weight (HMW) 

PAHs, low molecular weight (LMW) PAHs and anthracene on PC1, PC2 and PC3 respectively. Using 

these three variables, successful contour maps could again be constructed, leading to useful conclusions 

concerning possible sources and pollution patterns arising as a consequence.  

Yu et al [71] and Zhang et al [33] studied PAHs and metals respectively, using GIS techniques to draw 

contour maps, but employed multivariate statistics (PCA with Varimax rotation) to identify sources.  

These two studies and that of Wang et al [6] mentioned above, show that, although geostatistical 

techniques can be usefully applied in soil studies, classical multivariate techniques are still often needed 

for a more focused approach. 
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Yu et al [71] investigated PAH pollution in Guiyu city, Guangdong. The aim of the study was to 

investigate the distribution, concentration, profile and source of PAHs in the Guiyu soil affected by E-

waste recycling. The investigators constructed a contour map using GIS technology, but the most useful 

results were obtained by the application of multivariate techniques (PCA, variance analysis and Pearson 

correlation) on the total PAH content for each sampling site. After PCA, the PAHs reverted to three 

latent variables related to molecular weight, which, again, could be related to particular sources [71]. 

Zhang et al [33] performed a similar study in the Fuyang valley of Zheijang Province in East China.  This 

area has had intensive copper and zinc smelting activity for over fifty years and previous geostatistical 

studies failed to distinguish between pollutant sources. Using PCA, they isolated four principal 

components (factors) which explained 90% of the variance in the data. Three of these could be related to 

smelting, coal combustion, and the bedrock underlying the soil; a fourth was less clearly defined. Soil 

physicochemical properties was thought to be an important factor in obscuring clear identification of 

pollutant sources [33]. Most of the above studies sought to identify the most important sources of 

pollution, but did not attempt to calculate the actual pollutant contributions from each source. Such an 

analysis could be indicative of the actual impact of each source on pollutant concentrations at the receptor 

site and could provide very useful information when considering mitigating measures.  Other techniques 

which would have been extremely beneficial for evaluating the impact of pollutants and their sources are 

the various multicriteria decision making methods (MCDM). These are discussed in greater detail below 

(see Section 3.3). 

3.1.2. Distribution studies without geostatistics. 

As explained above, geostatistical methods require extensive sampling and are usually applied on a 

regional scale [34]. This can be a very costly exercise [35, 44]. Furthermore, in some cases, it may not be 

possible or useful to construct maps for a particular study [38]. Multivariate analytical techniques are 

designed for the interpretation of multivariate datasets on soils even without the assistance of 

geostatistics.  

In general, PCA is the workhorse for the multivariate analysis of complex soil information. Almost all of 

the examples already cited in Section 3.1.1 employed this basic tool to expand on results obtained from 

various geostatistical techniques. PCA can be combined with other multivariate techniques as well. CA is 

often used to confirm findings by PCA [1, 7, 34, 45]. PROMETHEE and GAIA are specialized forms of 

PCA which have also been used for evaluating pollutants in soils and sediments [10, 38, 50]. It has been 

shown that the use of one chemometrics techniques alone on soil data can still lead to extremely useful 

information on the quality of the soil [1, 22, 23, 34, 66]. 
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Soil contamination does not occur only on the surface but also at depth [33, 34]. Metals are mobilised and 

transported through soil profiles by different mechanisms [17] and consequently contamination profiles 

may be quite complex. Sielaff and Einax [34] used a number of multivariate strategies to study three-

dimensional relationships between elements, soil features and parent materials in a study of the polluted 

surroundings of a former cement and phosphate fertilizer factory. They used, inter alia, cluster analysis 

(CA), linear discriminant analysis (LDA) and PCA with varimax rotation to evaluate a high-dimensional 

data set containing the results of three-dimensional soil sampling. Three soil profiles were sampled in the 

vicinity of a former fertilizer plant, with the view to investigate whether previously identified pollutants 

were mobilized and moved vertically within the soil profile. To this end, a few lateral sampling locations 

were chosen, and many vertical samples were taken from these locations. Univariate analysis merely 

revealed that the Cd content exceeded the limiting value. With cluster analysis (CA), however, it was 

possible to detect enrichment in Ca, Cd, Cu, F, Na, P, Pb and Zn some 10 years after cessation of 

activities at the fertilizer plant. CA combined with linear discriminant analysis (LDA) differentiated 

between soil samples according to parent material and pollution state, and PCA with varimax rotation 

could discriminate between lateral sample location and vertical depth. The results of the multivariate 

analysis were confirmed by the application of sequential extraction [34].  

An interesting and quite unique three-dimensional study of geological cores [66] using chemometrics 

techniques involved cores taken from six playa
*
 salt lakes in central Australia and analysed for eight 

different elements using the XRF technique. The dataset was subjected to PCA and Fuzzy Clustering. 

Fuzzy Clustering is an unsupervised technique for classification of objects; that is, it separates objects in a 

dataset into a number of classes nominated by the user, but without prior training of the model. The 

resulting distribution pattern of the data objects from the playa lakes clearly indicated the presence of 

three classes of objects, which could be interpreted sensibly both chemically and geologically as having 

been derived from sand, clay and evaporites [66]. This study did not involve anthropogenic contamination 

by heavy metals, but is mentioned here for the singular use of a particular chemometrics technique as 

applied to three-dimensional soil samples, the application of which may be useful in environmental soil 

studies. 

Chen et al [22] studied soil quality as it relates to trace metal content in the surface soils of Hong Kong 

with the help of CA. They showed that urban and orchard soils were most enriched in anthropogenic trace 

metals while rural and forest soils were least enriched. The high content of anthropogenic trace metals in 

orchard soils were ascribed to agricultural applications of pesticides, fertilizers and animal manure. This 

finding is similar to that of Facchinelli et al [45]  and Navarro et al [11]. The latter evaluated historical 

                                                
*
 A playa lake or pan is a dry lake bed consisting of alkali salts or common salt intermingled with fine sediments. 
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soil and sediment data gathered from 1996 to 2003 from the Ebro river basin in northern Spain. The 

chemical species under investigation included PAHs and various organochlorines (OCs). With the help of 

PCA and correlation analysis, three contamination profiles were identified which persisted over a number 

of years. One of these appeared to be associated with chemicals used in agriculture [11].  

Conversely, Carlosena et al [1] confirmed Pb as the most distinctive metal arising from road traffic 

pollution in La Coruòa, NW Spain. This early study made extensive use of CA and PCA. In a later study, 

Ljung et al [26] mainly applied CA when evaluating multiple metal accumulations (MMA) in children’s 

playgrounds in Uppsala, Sweden. Chen et al [23] also investigated heavy metal pollution in urban parks 

of Beijing employing PCA and CA and demonstrated that historic parks (those older than 100 years) 

exhibited greater accumulation of anthropogenic heavy metals than younger parks. Wang et al [55] found 

support for the theory that PAHs may be distributed by a distillation–type process whereby lower 

molecular weight varieties were transported atmospherically over greater distances than higher molecular 

weight PAHs in Dalian, China. They primarily made use of CA to study the distribution and extent of 

these pollutants [55]. 

The studies cited above were all performed without the aid of geostatistics but still provided greatly 

expanded information on the nature of various forms of contamination, in a variety of scenarios. The 

expensive and exact sampling regimes and map construction required for the application of geostatistics 

was thus obviated. Most of these studies would, however, have benefited from source contribution 

investigations and MCDM analysis to estimate the detrimental impact of specific sources and suggest 

possible mitigating measures. 

3.2. Identification of pollutant sources, their contributions, and chemometrics 

Inherent in the study of pollutants is the attempt to identify the sources responsible for certain distribution 

patterns. To date, PCA has been the most commonly used multivariate tool for this purpose in soil studies 

[2, 6, 7, 11, 34, 45, 66, 71] and has been mainly applied for the purpose of identification. However, it is 

also possible to determine quantitatively the loading of each variable on each source, and the contribution 

of that source to the total pollutant concentration.  

Factor Analysis (FA) has been applied as a statistical technique to identify a relatively small number of 

factors (latent variables) that can be used to represent the actual sources of contamination [14]. Three 

common methods source apportionment techniques that are based on factor analysis are: Positive Matrix 

Factorisation (PMF) [72-74], UNMIX [73], and PCA with Multiple Linear Regression Analysis 

(PCA/MLR), which is also known as Principal Component Analysis/Absolute Principal Component 
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Scores (PCA/APCS) [14, 63, 73, 75, 76]. Of these methods, PCA/APCS has been the technique most 

widely used for soil studies [2, 12, 14, 33, 36, 38, 74, 75].  

PCA/APCS requires an initial PCA to be performed on the standardized data [73, 74, 76]. The PC matrix 

is then rotated using varimax rotation, which retains the orthogonality of the axes and hence the 

independence of the latent variables (or sources)[2, 63, 74, 76].  The rotation of the matrix realigns the 

matrix axes with the adjusted model parameters after the removal of the non-significant variables and thus 

clarifies the variable loading on each source [33]. Once this step has been completed, it is possible to 

identify the individual sources based on their chemical profiles. These chemical profiles may be defined 

variously by mathematical procedures [77], literature values [2, 62, 75, 77, 78] or diagnostic ratios [2, 3, 

55, 62, 75, 77, 79]. Topographical  [11, 45] or underlying rock features [14, 34, 38, 45, 66] are also strong 

indicators of possible sources, as are various human activities [11, 14, 22, 45, 75, 79, 80].  

The application of Principal Component Analysis (PCA) to environmental data is associated with 

significant setbacks because its outcomes are correlated with but not proportional to source contributions 

Anderson et al (2002) [81]. Consequently, PCA results cannot be used directly for source apportionment. 

However, when PCA is coupled with absolute principal component scores or multi-linear regression, it 

becomes a powerful tool for source identification and source apportionment [12, 14, 38, 63, 74, 75]. 

Therefore, source apportionment studies in soil analysis utilizing conventional PCA have been quite 

limited.  

Pujari and Deshpande [14] conducted a study on groundwater contamination in the vicinity of a landfill 

site in Nagpur, India. Strictly speaking, the study was concerned with water quality, but since the source 

of water contamination was directly dependent on the soil quality, this study may be used as an 

illustration of the application of PCA/APCS. The authors identified five factors contributing to chemical 

species in the groundwater. The interplay of the landfill, sanitary practices and parent rocks on the water 

quality was illustrated and the danger of the contamination of groundwater leaching through an 

unconfined aquifer in such an environment was demonstrated [14]. Other examples of the application of 

PCA/APCS are discussed below. 

Zhou, Guo and Liu [12] conducted a large study on the marine sediments of Hong Kong harbours, 

incorporating many important procedures for the evaluation of the anthropogenic impact on sediment 

quality. Particular care was taken to distinguish between the natural contribution from parent materials 

and the man-made enrichment of heavy metals by appropriate pretreatment of data and the application of 

suitable Enrichment Factors (EFs) [12]. Three pollutant sources were identified by PCA with varimax 

rotation. The most important factor was derived from industrial runoff mainly caused by the electronics 

industries, riparian runoff and vehicle exhaust, it affected the most confined waterways; the second factor 
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appeared to be derived from a far wider area and was considered to arise from the weathering of 

underlying rock. The third factor could be linked to effluent discharge from textile factories and paint, and 

affected the confined southern harbours [12]. The contributions from each of these sources were then 

calculated using PCA/APCS. Estimates were cross-checked using observed values and were found to 

have uncertainties of generally less than 8%. This study addresses many of the issues and difficulties 

inherent in the statistical analysis of heavy metal pollution and is a valuable background source for similar 

studies. 

Mostert [38] investigated the quality of children’s playgrounds in south-east Queensland, Australia, using 

PCA with Varimax rotation for identifying sources of metals and PAHs, and estimating the contribution 

of each source with PCA/APCS. It was found that the main source of the metal content in playground 

surfaces was the natural background derived from underlying rock formations and from dissolved salts in 

the marine air associated with the proximally-situated ocean, while vehicular emissions contributed the 

majority of the PAHs. 

Wang et al [8] used a slightly different procedure, FA with non-negative constraints, for determining 

sources of PAH pollution in Dalian, China, followed by MLR. Conventional FA can return negative 

values after matrix factorization, which, in practice, loses physical meaning. FA with non-negative 

constraints avoids this problem, but suffers from the disadvantage that factor axes are no longer 

orthogonal [8]; thus, the sources can no longer be regarded as independent. 

Zhang et al [33] carried out a study of an area in eastern China with a long history of metallurgical 

activity, containing a number of clearly identifiable potential sources of soil pollutants. The aim of the 

study was to examine the possible problems involved in source identification of soil inorganic pollutants 

using a multivariate statistical approach. PCA with Varimax rotation identified four main sources of 

heavy metal pollution; metallurgy, coal combustion, “chemical mobility” and parent materials, in that 

order. Unfortunately, perhaps because of the exploratory nature of the study, the authors did not attempt 

to calculate the source contributions.  

It is evident from the above discussion that source apportionment and receptor modelling is an 

underutilised technique in soil studies. It is therefore suggested that this methodology be far more widely 

applied as has already been the case in atmospheric studies [63, 72, 73, 75, 76, 78, 82].  In this context, it 

is important to note that , in recent years, the PMF receptor model, which was developed by Paatero and 

his group (Paatero and Tapper, 1993)[83] and used frequently by Hopke and his co-workers (Hopke  

(2003), Kim et al. (2001), Kim, Hopke and Edgerton (2004) and Ramadan et al. (2003) [68, 82, 84, 85] to 

identify and quantify sources of  air pollutants have found increasing application in soil analysis. For 

example, Wang et al. (2009)[86] applied the technique to PAH data derived from soil analysis. The PAH 
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sources showed markedly different source contributions during summer and winter. Thus the three 

dominant sources, with percentage contribution in parenthesis during the winter were: coal-fired engine 

(72%), traffic average (20%) and gasoline (8%) while the corresponding summer sources were: coal 

combustion (46%), diesel engine (30%) and gasoline (24%). (The dominant PAH in each of the summer 

sources was: retene, phenanthrene and benzo (g,h,i) perylene respectively. 

Vaccaro et al (2007) [87]measured pH and a suite of major and minor elements including, Hg, C, H, N, 

Si, Ca, K, Fe, Mg, Ti, S, P, Pb, Zn, Cu, Ni, Mn, Cr, Na, Al, V, Co, As, Cd, and used PMF to identify their 

sources in soil samples.  The identified sources were: a  contamination source (indicated by the presence 

of Mn, As, V, Fe, Ni and Co), a polluting source rich in Hg, Pb, Zn, Cu, P and Cd, and an 

organic/biogenic source , evident from the predominance of C, H, N, S in the source profile and a source 

consisting of Si, Ca, K, Fe, Mg, Ti and Al, which reflected the local geo-morphology and typical minerals 

in the area. By combining the results from the PMF analyses with GIS-based geo-statistical analyses, the 

authors showed the potential use of this approach in the interpretation of soil polluting sources. 

Lu et al (2008) [88]also applied PMF to compositional data matrix consisting of 24 soil properties- 8 

physical, 13 chemical and 3 biological properties. Two factors were required to model the original data 

satisfactorily. The first was characterised by coarse-textured slightly acidic and physically loose soil while 

the second consisted of fine-textured, slightly acidic and physically compact soil. The authors showed that 

the results obtained with PMF for this dataset was physically more meaningful that those obtained with 

comparable models such as PCA and Target transform analysis (TFA).  

Apart from PCA/APCS and PMF, another receptor model used in literature to source identification and  

source apportionments of elements involved the application of target transform factor analysis method to 

urban road dust. Since the majority the elements measured originated from soil, the study is reviewed 

briefly in the current work. Hopke et al (1980) [29] measured 35 elements in 30 subsamples of road dust 

and analysed the results using target transformation factor analysis. The elements include: Sb, As, Ba, Br, 

Ca, Cd, Ce, Cs, Cr, Co, Dy, Eu, Ga, Hf, Fe, La, Pb, Lu, Mn, Hg, Ni, K, Rb, Sm, Sc, Se, Ag, Na, Sr, Tb, 

Th, U, Yb, Zn and Zr, and the primary sources and source contributions of the elements in the dust 

samples are: soil (76%), cement (5%), rust (7.7%), tire wear (7.2%), automobile exhaust emissions 

(1.5%) and salt (0.3%). 

3.3. Mitigating measures and chemometrics. 

Much environmental work in soils is primarily involved with monitoring the environment [3, 11, 26, 31, 

32, 45, 57, 67, 77, 89-91]. The ultimate aim, however, is to alleviate or eliminate the effects of pollution 

on the environment and on human health. When the sources have been identified and their contributions 
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estimated, it may be possible to either eliminate or modify the source so that the emission of pollutants is 

minimised. This has been the approach of environmental agencies and the intent of regulatory measures 

all over the world [52, 54, 61, 92-98]. 

Multivariate tools may, however, be used to craft a more focused strategy, especially if the pollutant 

sources are dispersed and pervasive [11, 45]. Consider, for instance, the problem presented to 

municipalities with cities established on parent rock that are enriched in metals, and the necessity of 

providing safe environments for human recreation [25, 26, 28, 38]. Municipalities have approached this 

issue in different ways. Some do not attempt to control the soil quality by replacement or other means 

[26], others cover recreational areas with sand, which is regularly replaced [25] and others still, dig up 

underlying soils and fill the space with bark chips [38].  These are situations in which municipalities and 

city councils as the decision makers could well use multivariate analysis to assist them in effective 

planning. Ranking Analysis (also known as Multi Criteria Decision Making, or MCDM) is a suitable tool 

for such a purpose.  MCDM allows the user to model data by selecting, weighting and optimizing 

parameters in order to reach appropriate outcomes for addressing difficult scenarios and to present a 

variety of possible solutions. By using MCDM in the above example, it could be shown that the 

procedure of removing soil and replacing it by bark reduced the metal content of recreational areas in the 

most effective way of all, and that increasing the moisture content of the surface by irrigation or similar 

measures would be highly beneficial as well [38]. 

MCDM is as yet virtually unknown in soil studies, although it has been used for atmospheric studies [50, 

67, 80, 99] and studies in fuel efficiency and exhaust emissions [99-101]. It has been applied, for instance, 

to the study of urban sediments resulting from stormwater runoff [10, 50], and also, to highlight existing 

good practices in the management of recreational spaces [38].  

A number of MCDM models are available. Some common methods include  elimination et choix 

traduisant la realité (ELECTRE), simple multiattribute ranking technique (SMART), and preference 

ranking organisation method for enrichment evaluation (PROMETHEE), Hasse diagram technique 

(HDT), multiple attribute utility theory (MAUT), and analytical hierarchy process (AHP) [69]. The 

PROMETHEE program and GAIA, its graphic, PCA-type output program, is considered to be one of the 

most robust and generally applicable [69, 102, 103] MCDM methods. This model has been used in 

studies specifically involving soils, sediments and groundcover in urban environments [10, 38, 50].  

Herngren and his co-workers [10, 50] used the PROMETHEE and GAIA methods to study pollutant 

loading on urban sediments in south-east Queensland, Australia. They were able to show correlations 

between particle size, metal accumulation and organic content and propose methods for dealing with the 

build-up of pollutants in urban environments., Using the same methods, Mostert [38], was able to show 
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that measures enacted by the owners of public recreational areas were effective since treated surfaces 

showed a much diminished metal content in comparison to the metal content of the natural background. 

MCDM methods are still very limited in their use, and this is perhaps because, as multivariate techniques, 

they are still fairly unknown. They are, however, powerful tools that can provide practical guidance for 

compromise solutions where there are many considerations, which may involve ethical and subjective 

issues as well as scientific findings [69]. This is well demonstrated by results from the use of the 

PROMETHEE and GAIA combination [10, 38, 50]. 

 

PROMETHEE is a non-parametric method of data analysis whereas PCA is a parametric method, which 

is therefore constrained by rules of normal distribution. The principal differences between 

PROMETHEE/GAIA and PCA are illustrated in Table 1 and 2 and in Figures 1 - 3. Table 3 is the data 

matrix used for generating Figures 1 – 3.  Table  3 shows the PAH concentrations of soil samples from 

sites S1-S15, while Figures 1, 2 and 3 are respectively, the PCA biplot obtained from the standardised 

data, the PROMETHEE ranking result obtained without data pre-treatment and the GAIA biplot. As can 

be seen from Figure 1, the PCA shows that there are broadly two clusters of site, which are separated 

from each other on PC1. One set (e.g.S11 and S5) has high positive PC1 scores, while the other, generally 

has low positive or negative PC1 scores. In addition, the vectors for BgP, BAP, and Chr are oriented in 

the same direction suggesting that they provide similar information about the sites. Similar conclusions 

can be drawn from the GAIA biplot (Figure 3). However, the result of the GAIA plot differs from that of 

the PCA biplot in two major ways. Firstly, S11 and S5 have negative PC1 scores because the variables 

used for the plot were minimised (i.e.sites with lower concentrations of PAHs were preferred over those 

with higher concentrations. Secondly, the GAIA biplot had an additional vector, pi - the decision axis, 

which is oriented in the direction of the best ranked sites (S6 and S8) and opposite to the least ranked sites 

(S11 and S5). It is also noteworthy that the PROMETHEE results (Figure 2) reinforced this observation 

(sites S5 and S11 ranked last with almost identical Ф values while S13 and S6 ranked first with almost 

similar Ф values). Thus, PROMETHEE and GAIA provided information that can be used for pattern 

recognition and ranking analysis. Such information aids the decision making processes. 

4. Concluding Remarks. 

Soil studies have hitherto made only limited use of various chemometrics techniques to enhance results 

obtained by classical univariate analysis. Where multivariate techniques have been employed, 

geostatistical tools have been preferred, although good results have been obtained using common 

methods, of which PCA and CA proved to be the most widely used. Generally, chemometrics methods 
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have been used to study distribution of pollutants and identification of sources; little has been done on the 

quantification of source contributions, although it has been proven to be entirely possible to make such 

estimates  after PCA analysis and matrix rotation or PMF analysis [12, 14, 38, 73] . Other versatile 

methods are also available [73, 84, 85] and could be explored with valuable outcomes.. As clearly 

demonstrated by the few soil related studies PROMETHEE and GAIA are very useful and informative 

techniques; as exemplified by the ever increasing applications in the allied fields of water and air quality 

investigations. The software is readily available (http:www.visualdecision.com) and would be of 

considerable benefit for modelling solutions to complex problems where a variety of considerations 

impact on the ultimate decision. These are methods that are well suited for application in environmental 

studies of soil pollutants. Methods discussed briefly in the review are more fully explained in the 

Appendix below.  

 

APPENDIX 

Geostatistics. 

Geostatistics considers the spatial dependence of samples or analytical measurements on each other. 

All geostatistical tools such as variograms, inverse-square interpolation, kriging and GIS technology are 

designed to construct maps. In the context of environmental analysis, these maps are contour maps of 

contaminant concentration. Viable maps for such a purpose can only be created if a large quantity of soil 

data is available, for which the geographical position of each data point is accurately known. To obtain 

such information, a paper map must either be constructed and each data point correctly represented 

thereon (a tedious and specialised task which requires surveying equipment that is seldom used outside 

the discipline of geology or surveying), or else, the data point coordinates (latitude/longitude) can be 

located using modern global positioning instrumentation. The coordinates must then be plotted onto a 

digital map, and the concentration contours of the chemical species being investigated may then be 

generated by suitable software (MapInfo or ArcGIS).The software is designed using the principles 

inherent in the geostatistical techniques mentioned above.  

 

The latter is the methodology widely applied in the environmental studies discussed in section 3.1.1 

above. If the money for a large sampling program is available, as well as the necessary equipment and 

software, this is a most effective visual tool and therefore very popular. There are, however, drawbacks to 

the methodology quite apart from the cost and required equipment. Contour maps can only model one 

chemical species at a time, or a summed group of compounds. It is therefore often still necessary to use 

some form of multivariate analysis to discover inverse relationships or latent variables and to distinguish 
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between pollutant sources or evaluate the impacts of those sources. On the other hand, the techniques 

discussed in section 3.1.2 above did not require the intensive sampling regime or the mapping framework 

at all. It is therefore entirely possible to obtain valid scientific analysis using only classical multivariate 

techniques. 

 

Variograms 

The basic means of quantifying this spatial dependence, is the variogram (formerly known as the 

semivariogram). The variogram describes the average of the squared differences of two values that are 

calculated as a function of the distance between them, and this is the basis of all geostatistical calculations 

[39].  

The values for the variogram are calculated experimentally from the following formula [39]: 
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where γ is the variogram function,  xi   are the data values,  xi+h    is the data value at distance h from xi  and 

n (h)  is the total number of value pairs that are included in the comparison. 

The theoretical relationships between the γ-value, the variance σ
2
 and the so-called covariance are given 

by the equation [39]   
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The derivation of the above equation is explained in detail by Wellmer [39] and interested readers are 

referred to his work, which also elaborates on the different types of variograms used for different 

applications.  

Variograms are a robust statistical technique and small deviations do not significantly affect final results, 

but, generally, the requirement is that data distribution be relatively dense and, for geological 

applications, at least 30 drill holes are required in order to calculate meaningful variograms in several 

orientations. This will, of course provide considerably more data points than 30, for drill cores can be 

evaluated at any number of sections; note, however, that a variogram is calculated on the difference 

between data points. 

 

Inverse Squared Distance Weighting Method 

Strictly speaking, Inverse Squared Distance cannot be considered a geostatistical method, as it exploits 

the relationship between decreasing influence with increasing distance [39]. This is an empirical 
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technique and consists of multiplying the various data values with a weighting factor, adding the 

products, and then dividing this sum with the sum of the weighting factors. The grades are weighted by 

the inverse value of the square of the distance between them. The resulting equation is written [39]: 
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 is the average grade or value, Gi are the individual values and di  is the distance between the values. 

 

Kriging 

The kriging method is named after the South African geostatistician  Daniel J. Krige. It is a technique for 

determining the best linear unbiased estimator with minimal estimation variance. It can be used on a point 

as well as on a block. A block is simulated by numerous points that are then integrated.  In the point 

kriging method, a reference point P is selected in a block, and the grade of the block is estimated by the 

kriging technique. In block kriging, the size of the block is taken into consideration. Only point kriging 

will be discussed here and further details can be obtained elsewhere [39]. Point kriging can be performed 

with a mean value (if the area being studied exhibits no obvious trends) or without a mean value (where 

clear trends are identified or there are clearly definable low- and high-grade zones). 

Kriging uses a linear equation system that can be written in matrix notation (K), which contains all the 

variances σii and covariances σij of all the points  xi (I = 1,2,3…n) around the reference point P that are 

included in the weighting.  σij is the covariance between the values xi and xj and σii are the covariances of 

a point with respect to itself (where h=0) and thus identical with the variances. The kriging matrix (K)  is 

then multiplied with a vector , λ, which includes all the weighting factors, which are derived from either 

the Inverse Squared Distance Method or a variogram. The vector also contains the so-called Lagrange 

multiplier for cases where kriging is performed without a mean. 

The following equation then holds [39]: 

 

 K × λ = D   Equation 4 

 

where D is a vector which contains the covariances of the reference point P to all the other points that are 

being taken into consideration.  From this equation the accumulation value for point P at the centre of the 

block can then be estimated employing linear algebra. 
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Principal component analysis (PCA)  

Principal Component Analysis (PCA) is a well-known multivariate data display method [104]. It effects 

data reduction by transforming an original data matrix into a set of linear, orthogonal latent variables 

referred to as Principal Components (PCs). Each PC produces for each object a characteristic value called 

a score, and for each variable a characteristic value called a loading. Both scores loadings may have 

positive and negative values for objects and variables respectively.   The PCs are chosen such that the  

first PC explains most data variance and so on sequentially with  the following PCs. Depending on the 

preference of the user, the objects and variables may be displayed together (biplot) or separately (scores 

or loadings plots). Such plots indicate relationships between objects or loadings or between objects and 

loadings as the case may be. Thus, it is a valuable tool for the recognition and elucidation of patterns in 

physical and chemical characteristics of soil samples. 

Fuzzy clustering analysis  

Fuzzy Clustering (FC) is a non-hierarchical cluster method, i.e., clusters are formed either by merging 

small groupings into larger ones or, conversely, by subdividing large clusters. Traditionally, classification 

implies that an object has a unique membership of a class i.e., the object’s membership of any other class 

is zero. However, the fuzzy clustering models attempt to assign a degree of class membership for an 

object over a number of classes. The data matrix is submitted to processing by a membership function and 

the objects are classified into the number of classes selected by the user. The membership (m) values are 

displayed on a scale of 0 (no membership) to 1. In addition, the method is able to test the robustness of an 

object in a class by modifying the membership function to accommodate the multiple class membership. 

This  method is particularly useful  for the classification and selection of samples with multiple class 

membership i.e. fuzzy samples.  

Principal Components Analysis /Absolute Principal Component Scores (PCA/ACPS) 

Factor analysis in conjunction with varimax rotation and multilinear regression are mathematical 

algorithms employed for source apportionment [14, 63, 76, 105].  

The main aim of applying PCA to datasets is to derive a limited number of components which explain a 

majority of the total variance in the original variables, and thus reduce the dimensionality of the data [76]. 

In order for this reduction to be useful, the new variables (PCs) must have substantive interpretations. 

However, very often, the components resulting from the initial PCA do not have unique or 

straightforward interpretations. For this reason, it is useful to rotate the PCs resulting from the PCA after 

discarding of non-significant PC’s. The remaining few significant PCs [78], are then rotated to maximise 

they interpretability [76].   
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Many methods are available for the rotation of PCs. These may be classed as either orthogonal rotations, 

where the components remain uncorrelated with one another, or, oblique rotations, where PC’s are 

allowed to be intercorrelated [76]. Orthogonally rotated PCs may be employed in subsequent regression 

or correlation analysis without concern that multicollinearities will confound the results, which is not the 

case for oblique component scores.  Techniques such as varimax rotation, which results in orthogonal 

rotations, are therefore typically used with multilinear analysis for the purpose of calculating source 

contributions. Oblique component scores cannot be used for this purpose, since intercorrelation between 

the PCs may confound results, but they may yield more readily interpretable components in cases where 

independent PCs cannot [76]. 

The PCA/APCS method calculates the contribution of the different sources by performing multiple 

linear regression on the scaled scores after rotation [105]. For scaling, rotated scores of an artificial 

sample with concentrations equal to zero for all variables, are subtracted from the real sample scores for 

all sources. This transformation returns positive scores for all sources. Thus, the absolute factor scores are 

used as independent variables and  multiple linear regressions [76, 105] are performed using the 

concentration of chemical species as dependent variables in accordance with the following equation  

[106]. 
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Where p = 1, 2, …., n, bi0  the constant term of the multiple regression for chemical species ,i, represents 

the average contribution of the species from sources that were not determined by the principal component 

analysis, bpi is the multiple linear regression coefficient for the source p and chemical species,i, APCSp is 

the absolute principal component score of the rotated factor p for a sample, APCSp x bpi   gives the 

contribution of source p to Ci. The values of Ci, bio and bpi should have the same dimensions as the 

original concentration of the chemical species. 

Ranking analysis – PROMETHEE and GAIA 

Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) and Graphical 

Analysis for Interactive Assistance (GAIA) are the techniques discussed below. PROMETHEE, an 

outranking method, ranks objects (actions) on the basis of a set of criteria (variables) and is often coupled 

to the PCA display tool, GAIA [69, 102, 103]. Each variable must be modelled separately: the objects are 

ranked top-down or bottom up. It is also necessary to choose a preference function for ranking the objects 

and a weighting (default value = 1) that must be applied to the variables by the user. The preference is 

selected according to a “preference function”, six of which are available in the procedure [67]. The 

preference functions are described in terms of their shape for instance U-shaped, V-shaped, etc., which 
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reflects a particular mathematical treatment of individual measurements and maxima and minima to 

determine their relative importance. For the V-shaped preference function, for instance, all measurements 

are regarded as equally important up to a cut-off value (the “indifference threshold”). The preference 

functions are crucial because they define how much one object is to be preferred to others [102].  Initially, 

the objects for each variable in the data matrix are compared by subtraction in all possible ways to 

produce a difference matrix. Then, the steps in the following ranking procedure are similar to those 

discussed fully elsewhere [69, 103]. The PROMETHEE procedure can produce either PROMETHEE 1 

outranking flows, which include the possibility where an object, a, cannot be compared with, b, but both 

have the same rank order; or, the more familiar rank order PROMETHEE II where this option is excluded 

and a rank order index, Ф, is obtained for each object. To produce a GAIA PCA biplot the rank order of 

the object from PROMETHEE is decomposed into a matrix form (not the same as the original data 

matrix), and this is then submitted to PCA, which produces the GAIA PC1 versus PC2 biplot. 

GAIA thus displays the PROMETHEE results as a simple principal component analysis biplot that also 

incorporates a decision vector, Π (pi), which appears in the biplot as a highlighted axis, pointing in the 

direction of the most preferred decision. Pi is determined on the basis of the chosen parameters and the 

weightings allocated. This is a useful device, since objects, which are the most preferred are indicated 

more clearly than by the PROMETHEE display. Also, objects can be classified according to categories, 

which simplify the display and enable the user to view different scenarios as they would develop using 

different categories of objects or variables. 

This method is particularly useful for the selection of sites, ranking of sites and prioritization of remedial 

actions. 

Positive Matrix Factorisation (PMF) 

Various authors have explained PMF modelling in details (see, e.g. [72, 74]) 

 In its simple form, the PMF equation can be written as: 

X = GF + E        

Where X = concentration data matrix for n number of samples and m chemical species; E = matrix of 

residuals; G= source contribution matrix for p sources and n number of samples, and  

F = source profile matrix for p sources and m chemical species. 

PMF resolves the receptor modelling problem by minimising an object function Q so that:  

   n     m 

Q = ∑ ∑ (eij / sij)
2
  

   
i=1  j=1 

where sij is the uncertainty in the jth chemical species in the ith sample and,  
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    p 

eij = χij – ∑  gik  fk j 

     
k=1 

is the part of the data variance that was not explained by the model. In addition to weighting the data 

points individually, PMF constrains the results to be always non-negative. This constrain reduces the 

rotational ambiguity in the factor analysis problem with the view to obtaining physically realistic 

solutions. It also ensures that the outcomes are positive since the concentrations of chemical species in 

environmental data cannot be negative.  

The principal objective of the application of PMF analysis to a data matrix with n number of samples and 

m number of chemical species is to resolve the number of p independent sources as well as the values of 

gik (source contribution) and fkj (source profile) that best fit the concentration data, χij. . Thus the number 

of pollutant sources and the contribution of each source to each sample obtained from a sampling site can 

be evaluated. This method is particularly useful for source identification and source apportionment of 

environmental pollutants. 
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