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Abstract 1 

This study reports the potential toxicological impact of particles produced during biomass 2 

combustion by an automatic pellet boiler and a traditional logwood stove under various 3 

combustion conditions using a novel profluorescent nitroxide probe BPEAnit. This probe is 4 

weakly fluorescent, but yields strong fluorescence emission upon radical trapping or redox 5 

activity. Samples were collected by bubbling aerosol through an impinger containing 6 

BPEAnit solution, followed by fluorescence measurement. The fluorescence of BPEAnit was 7 

measured for particles produced during various combustion phases, at the beginning of 8 

burning (cold start), stable combustion after refilling with the fuel (warm start) and poor 9 

burning conditions. For particles produced by the logwood stove under cold-start conditions 10 

significantly higher amounts of reactive species per unit of particulate mass were observed 11 

compared to emissions produced during a warm start. In addition, sampling of logwood 12 

burning emissions after passing through a thermodenuder at 250oC resulted in an 80-100% 13 

reduction of the fluorescence signal of BPEAnit probe, indicating that the majority of reactive 14 

species were semivolatile. Moreover, the amount of reactive species showed a strong 15 

correlation with the amount of particulate organic material. This indicates the importance of 16 

semivolatile organics in particle-related toxicity. Particle emissions from the pellet boiler, 17 

although of similar mass concentration, were not observed to lead to an increase in 18 

fluorescence signal during any of the combustion phases.  19 
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Introduction 1 

Due to increasing energy demand, and recognition of climatic effects from fossil fuel 2 

combustion, there is need for alternative energy sources.  Within that scope biomass 3 

combustion is regaining importance as being a source of renewable energy. Biomass 4 

combustion for heating purposes is common in countries with a colder climate, where it 5 

presents a significant source of both gaseous and particulate pollutants affecting in that way 6 

local air quality and health (1, 2). While there are many epidemiological and toxicological 7 

studies linking particles, in general, with various adverse health outcomes (e.g., (3, 4)), 8 

evaluations of potential health impacts of particles produced during biomass combustion are 9 

somewhat limited. However, several studies have indicated that exposure to biomass 10 

combustion particulate matter (PM) leads to reactive oxygen species (ROS) generation, DNA 11 

damage, lipid peroxidation and release of proinflammatory cytokines in lung cells (5-8).  A 12 

review on the health effects of wood smoke by Naeher et al. (9) points out that although there 13 

is enough evidence linking biomass smoke exposure with adverse health effects, there is 14 

insufficient amount of data to judge the relative toxicity of biomass combustion particulate 15 

emissions compared to particles produced from other combustion sources. Kocbach et al. (10) 16 

have reported that wood smoke and traffic-derived particles induce a similar proinflammatory 17 

response in monocytes, although with different response patterns. However, a recent review 18 

article by Kocbach Bolling et al. (11) emphasizes a need to explore more how combustion 19 

conditions and the type of fuel and combustion appliance influence the toxicological potential 20 

of the emitted particles.  21 

The underlying mechanisms for particle-related health effects are still not entirely 22 

understood, but a widely accepted hypothesis for the adverse health outcomes induced by 23 

particles is that they are able to generate ROS and, thus, induce oxidative stress within 24 

affected cells (12, 13). In addition, several studies have shown that particles may also contain 25 

ROS, presenting a direct cause of oxidative stress (14-16). Therefore, the amount of particle-26 



4 
 

related ROS is an important parameter in assessing the potential toxicological impact of 1 

particulate matter. 2 

The aim of this study was to assess the potential of particles produced by an automatic pellet 3 

boiler and a logwood stove to cause oxidative stress as measured by a novel profluorescent 4 

nitroxide probe, BPEAnit. BPEAnit and other profluorescent nitroxides are weakly 5 

fluorescent compounds, but exhibit strong fluorescence emission upon radical trapping or 6 

redox activity (17-19). Recently, BPEAnit was applied in the assessment of oxidative 7 

potential of combustion-derived particles, namely, cigarette smoke and diesel exhaust 8 

particles (20, 21), where the amount of BPEAnit converted to a fluorescent product served as 9 

a measure of oxidative activity of PM. However, it should be noted that, as being an abiotic 10 

assay, BPEAnit method can measure only PM’s inherent oxidative potential, it cannot reflect 11 

the total oxidative activity that requires the PM interaction with the cellular matrix to be 12 

considered.   13 

In many developed countries where biomass combustion for heating purposes is widely in 14 

use, automatic pellet boilers and traditional wood stoves are common residential combustion 15 

appliances. In general, automatic appliances exhibit well regulated combustion conditions 16 

with higher combustion efficiencies and thus decreased emissions of products of incomplete 17 

combustion. For example, Johansson et al. (22) reported that mass concentrations of 18 

particulate matter were up to 180 times larger for an old-type wood boiler compared to a 19 

modern wood pellet burner. Furthermore, under ideal operating conditions, the automatic 20 

burners were found to emit particles dominated by alkali metal salts (KCl, K2SO4) (23). 21 

Traditional wood stoves, on the other hand, are manually fed with fuel, experiencing less 22 

controlled combustion conditions resulting in highly variable emissions with higher relative 23 

fractions of organic species and soot compared to the automatic burners. Several studies have 24 
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reported that the organic fraction can contribute in excess of 50% of the total particle mass 1 

(24, 25). 2 

 3 

Experimental 4 

Wood burners. The traditional wood stove used in this study (Carena, Tiba, Switzerland) 5 

had a nominal power output of 8 kW and was batch fired with beech logs (moisture content 6 

20%). The fire was ignited from the top (ignition of small pieces of wood which were put on 7 

top of the logs). This type of ignition has been observed to reduce total PM emissions by 50 – 8 

80% compared to traditional bottom-up ignition (26). In Switzerland, the top-down burning 9 

method has been proposed as a method for reducing the contributions of particulate matter 10 

emissions from traditional wood stoves to national emission inventories. For the majority of 11 

measurements involving logwood, the fuel was combusted in four sequential batches, each 12 

batch having a fuel load of 2-3 kg. Each complete combustion cycle consisted of a cold start 13 

(start-up and stable burning) phase and three restarts (warm starts). During the start-up phase 14 

of the cold start (approximately the first 15 min of burning) temperature in the combustion 15 

chamber was still quite low  (< 400oC) such that emissions and heat output were highly 16 

unstable, whereas combustion became more stable in the second (stable) phase of cold-start 17 

burning. Once the system was suitably warmed, a second batch of fuel was loaded into the 18 

stove, onto the existing warm charcoal bed and stable burning was achieved more quickly. 19 

This process was repeated and then a fourth and final batch was loaded into the stove under 20 

conditions intended to simulate poor operation of the appliance. These non-standard 21 

combustion conditions were induced by partly closing the air inlet to approximately 25% of 22 

the maximum value.  23 

The automatic pellet boiler (LPK 15, Liebi, Switzerland) had a nominal power of 15 kW and 24 

was automatically fed with wood pellets (approx. 8 mm in diameter and 15 – 20 mm in 25 
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length, moisture content 6.8%). The air was provided and controlled through a two-stage air 1 

supply: the primary air supply was injected in the fuel bed while the secondary air supply was 2 

injected in the combustion chamber. The combustion cycle consisted of a start-up phase 3 

(beginning of burning), a stable burning phase and a poor burning phase (achieved by 4 

restricting the air intake).  5 

According to European type-tests (EN303-5), both wood burners were operated with a 6 

constant chimney draft of 12 Pa.  7 

 8 

Sampling setup and instrumentation. The experimental setup is shown in Figure 1. The 9 

exhaust air first passed a heated (150oC) PM10 cyclone. After this, a two-stage dilution system 10 

was used to deliver the aerosol from the stack of the wood burners to the instruments. The 11 

first-stage dilution was performed under heated conditions (150oC), to prevent condensation 12 

and particle growth, while the second-stage dilution was performed at room temperature 13 

(both VKL 10, Palas, Germany). It should be noted that heated dilution might not be the most 14 

suitable for applications regarding health effects of PM as it minimizes the particle 15 

partitioning of semivolatile species, which have been identified to play an important role in 16 

PM toxicity (27, 28). However, it has been adopted as a standard dilution method when 17 

sampling combustion aerosols as it produces the most reproducible particle number emission 18 

results. 19 

Particle number concentration and particle geometric mean diameter were measured after the 20 

dilution systems in real-time (2 s time resolution) using a Diffusion Size Classifier (DiSC; 21 

Matter Engineering) (29). Particle size distribution was monitored using a Scanning Mobility 22 

Particle Sizer (SMPS) consisting of a TSI 3071 Electrostatic Classifier and TSI 3022 23 

Condensation Particle counter. The total mass concentration was measured with a Tapered 24 
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Element Oscillating Microbalance (TEOM; Series 1400ab, Thermo Scientific).  TEOM data 1 

were averaged for each 30 s time period. 2 

An Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (AMS) was used 3 

for the on-line quantification of the submicron non-refractory aerosol components (30). The 4 

term ‘non-refractory’ is assigned to those species that evaporate rapidly at 600oC under 5 

vacuum conditions. The AMS provided concentrations of particulate organic matter and the 6 

average mass spectra for the ensemble of submicron particles (PM1) with a typical time 7 

resolution of 15 s. A particle collection efficiency of the AMS was found to be 1 based on 8 

intercomparisons with the other aerosol instrumentation. In this paper, use of AMS data has 9 

been limited to quantifying the contribution of the organic fraction to total PM. A detailed 10 

analysis of the AMS data will be shown elsewhere. 11 

A thermodenuder (TD; Dekati Ltd.) consisting of a heated tube followed by an activated 12 

charcoal section was used to remove semivolatile organic compounds from the particles at a 13 

preselected aerosol temperature (250oC). The non-volatile fraction of PM remaining after the 14 

TD was monitored by a second DiSC.  15 

 16 



8 
 

Figure 1. A schematic representation of the experimental setup. 1 
 2 

BPEAnit assay. A new profluorescent nitroxide probe, 9-(1,1,3,3-tetramethylisoindolin-2-3 

yloxyl-5-ethynyl)-10-(phenylethynyl)anthracene (BPEAnit) was used to detect ROS in PM 4 

produced during biomass combustion. The BPEAnit and its methyl adduct (BPEAnit-Me), 5 

which was used for calibration purposes, were synthesised as described previously (31). An 6 

evaluation of the probe as a means of detecting particle bound ROS has been described 7 

previously (21). Samples were collected by bubbling aerosol through an impinger containing 8 

20 mL of 4µM BPEAnit solution. Immediately after sampling the fluorescence of the 9 

solution was measured. For emissions produced during each of combustion phases, both test 10 

and control (HEPA-filtered) samples were collected. In most cases a third sample, taken after 11 

the thermodenuder, was also collected. The sampling flow rate was 1 L min-1 and the 12 

sampling durations were between 10 – 30 min (depending on the combustion phase). A 13 

warm-start sampling started approximately 5 minutes after the logs were introduced into the 14 

stove, while a poor burning sampling normally began at about 15 minutes after adding the 15 

last batch of logwood into the stove. The solvent used in all experiments was ASC grade 16 

dimethyl sulfoxide (DMSO; Sigma). Impingers used in this study were custom made and 17 

consisted of a Quickfit Dreschel bottle head, with sintered nozzle top (pore size of 100 – 160 18 

µm) and were modified to fit a Quickfit 75 mL test tube (Barloworld Scientific). 19 

Fluorescence measurements. BPEAnit has a fluorescence excitation maximum at 430 nm, 20 

and fluorescence emission maxima at 485 and 513 nm. Fluorescence spectra were recorded 21 

using a USB2000+ fiber-optic spectrometer combined with a cuvette holder, a pulsed xenon 22 

lamp (all Ocean Optics) and a narrow bandpass filter at 430 nm (Edmund Optics). 23 

Calibration curve. A calibration curve was obtained by plotting known concentrations of 24 

fluorescent derivative of BPEAnit (BPEAnit-Me) against the fluorescence intensity at 485 25 

nm. This calibration curve was used to calculate the amount of BPEAnit that was converted 26 
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to a fluorescent product when exposed to wood burning PM (assuming that all fluorescence 1 

products of BPEAnit have a quantum yield similar to BPEAnit-Me). 2 

Based on the difference of fluorescence signal between the test and control sample, the 3 

amount of ROS for each phase was calculated and normalised to the PM mass calculated 4 

from the TEOM data.   5 

 6 

Results 7 

Particle emissions. Examples of particle emissions from the logwood stove and the 8 

automatic pellet boiler in terms of their mass concentration, number concentration and 9 

geometric mean diameter (D(GMD)) are shown in Figure 2. The graphs show the measured 10 

values obtained after dilution and all the reported concentrations are also after dilution. 11 

During the cold start (beginning of burning), the mass concentration of particles coming from 12 

logwood burning was around 100 µg m-3 or lower, with a rapid increase of mass 13 

concentration up to several hundred µg m-3 upon refilling the stove with logs (Fig. 2A, black 14 

). The number concentration for logwood burning particles was between 3 × 104 and 5 × 105 15 

cm-3 (Fig. 2 B, black) and the D(GMD) was between 20 and 160 nm (Fig. 2 C, black). Poor 16 

burning conditions were induced by reducing the intake air approximately 15 min after 17 

loading the last batch of logs into the stove. Interestingly, this resulted in a substantial 18 

decrease in particle number and mass. Reducing the air intake reduces the air flow into the 19 

stack from the combustion chamber. This might be the reason for the observed decrease in 20 

particle number and mass concentrations. 21 

Particle emissions coming from the automatic pellet boiler resulted in a strong and sharp peak 22 

in mass concentration at the beginning of burning (start-up) reaching up to 2200 µg m-3. 23 

During stable burning, the particle mass concentration was around 100 µg m-3, becoming less 24 

stable and 2-3 times higher during poor burning (Fig. 2 A, grey). Particle number 25 
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concentration and D(GMD)  during stable burning were around 2.2 × 105 cm-3 and 100 nm, 1 

respectively, and were quite uniform during this phase. During poor burning, both particle 2 

number concentration and diameter varied significantly with the number concentration in the 3 

range of 2 × 105 and 6 × 105 cm-3, and the D(GMD) varying between 90 and 170 nm (Fig. 2 B 4 

and C, grey). 5 

 6 
Figure 2. Examples of mass concentration (A), number concentration (B) and geometric 7 

mean diameter (D(GMD); C)  for particles from logwood burning in the traditional 8 

logwood stove (black) and the automatic pellet boiler (grey). The graphs show the 9 

values after dilution. Dotted lines denote the time periods at which samples for each 10 

phase of logwood burning were normally taken. 11 

 12 

ROS from logwood burning particles. The amount of BPEAnit being converted to a 13 

fluorescent product was normalized with respect to PM mass (as measured by the TEOM) 14 

providing a measure of ROS concentration. Given that the collection efficiency of impingers 15 
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is less than 100%, a correction for mass loss during sampling was required (for details on the 1 

procedure see Supporting Information). 2 

Figure 3 shows average ROS concentrations for cold and warm-start logwood burning 3 

particles. It can be seen that the cold-start phase resulted in much higher ROS concentrations 4 

than the warm-start phase, especially during the stable burning phase. ROS concentrations 5 

related to particle emissions from the stable phase of the cold start (4000 ± 260 nmol mg-3) 6 

were about 3 times higher than ROS concentrations from start-up phase of cold start (1230 ± 7 

100 nmol mg-3), and about 9 -18 times higher than the ROS concentrations from the warm-8 

start burning (450 ± 250 nmol mg-3 and 220 ± 50 nmol mg-3) phases. ROS concentrations for 9 

poor burning are not shown in the graph as they resulted in large variations between repeats 10 

(0 – 3100 nmol mg-1). 11 

 12 

Figure 3.  Average ROS concentrations of logwood burning particle emissions for cold 13 

and warm start. Warm start 1 and 2 present sampling after refilling the stove for the 14 

first and second time. Error bars present one standard error (n=4). 15 
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Correlation between ROS and organics. In addition to control and test samples, in most of 1 

the cases a third sample, collected after passing the aerosol through the thermodenuder (TD), 2 

was also obtained. The purpose of the TD was to remove semivolatile organics condensed 3 

onto particles. The particles from logwood burning showed a significant reduction (85 – 4 

100%) of fluorescence emission of BPEAnit after the TD compared to the particles that had 5 

not passed through the TD.  Figure 4 shows the fluorescence intensity of BPEAnit from two 6 

samples taken simultaneously, one with and one without the TD placed in front of it. The fact 7 

that sampling after the TD results in very small or no increase of BPEAnit fluorescence 8 

compared to the baseline fluorescence (Figure 4; black curve) indicates the role of 9 

semivolatile organic species condensed in the oxidative capacity of PM. 10 

 11 

 12 

Figure 4.  Fluorescence emission of BPEAnit when sampling with and without a 13 

thermodenuder.  14 

 15 

 16 

The role of the volatile organic fraction was further investigated by plotting for each sample 17 

the amount of ROS against the amount of organics (Figure 5). The amount of organic 18 

material was calculated by integrating the mass concentration of organics as measured by the 19 

AMS over the sampling time and multiplying by the sampling flow rate of the impinger 20 
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setup. Considering the large differences in ROS concentrations for each burning phase (see 1 

Figure 3), a correlation between ROS and organics is presented for each phase separately in 2 

Figure 5.  Results for the warm-start phase 1 and 2 are plotted on the same graph (Figure 5. 3 

C), as the difference in their ROS concentrations is not statistically significant. While there is 4 

a rather weak correlation between ROS and organics for the start-up phase of the cold start 5 

(Figure 5. A), ROS and organics for the stable phase of the cold start (Figure 5. B) and 6 

especially for the warm start (Figure 5. C) show a strong correlation (r = 0.850 and 0.989, 7 

respectively, where r is the Pearson correlation coefficient). It is important to note that, while 8 

the scale on the y-axis is the same, the scale on the x-axis is not, and the difference in the 9 

slopes for Figure 5 B and C (see equations in the Figures) indicates the difference in the 10 

reactivity of the organic species related to these burning phases, with organics from the stable 11 

phase of the cold start being much more reactive than organics from warm-start burning. It is 12 

difficult to draw conclusions for the start-up phase of cold start due to the weak correlation 13 

and limited number of data points. 14 

 15 

 16 
 17 

Figure 5. Correlation between the amount of ROS and the amount of organics for start-18 

up phase of cold-start (A), stable phase of cold-start (B) and warm-start (C) logwood 19 

burning. 20 

 21 

 22 
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ROS from pellet burning particles. Figure 6 shows the fluorescence intensity of BPEAnit 1 

after sampling emissions coming from the automatic pellet boiler. The fluorescence intensity 2 

of both the control (HEPA-filtered) and the test sample are slightly higher than the baseline 3 

fluorescence intensity of BPEAnit (i.e. fluorescence intensity prior to sampling), but there is 4 

no difference in fluorescence intensity between the control and the test sample, indicating that 5 

particles from combustion in the automatic pellet boiler do not contain detectable levels of 6 

ROS or other redox active species. The example shown in the Figure 6 is for the beginning of 7 

the burning (start-up), the same result was observed for stable and poor burning, and also 8 

observed for prolonged sampling periods (~1h). 9 

 10 

 11 

Figure 6. Fluorescence intensity of BPEAnit after sampling emissions from the 12 

automatic pellet boiler.  13 

 14 

 15 

Discussion 16 

In this study we show that particulate emissions produced by a traditional logwood stove 17 

induce an increase in fluorescence of BPEAnit, indicating the presence of ROS and other 18 

redox active species in these particles. On the other hand, particles produced by the automatic 19 

pellet boiler did not induce an increase in BPEAnit fluorescence. This indicates that within 20 
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the detection limit of this method there are no ROS present in these particles and suggests 1 

that particulate emissions from pellet boilers have a lower toxicological potential than 2 

emissions from logwood stoves. One of the reasons for these observations might be the 3 

different combustion temperature. The temperature of the combustion chamber in the 4 

automatic pellet boiler was around 1050oC during stable burning and around 950oC during 5 

poor burning, while the temperatures in the combustion chamber of the traditional logwood 6 

stove peaked at 650 – 750oC (Figure S2 in Supporting Information). Also, during the cold 7 

start of logwood burning, the maximum temperature in the combustion chamber was 8 

substantially lower (400 – 500oC) than during the warm-start burning (650 – 750oC).  This 9 

might be the reason why cold-start emissions resulted in much higher ROS concentrations 10 

than the warm-start emissions. A similar trend in ROS concentrations was observed by 11 

Surawski et al. (20), who found that ROS concentrations related to diesel PM tend to 12 

decrease as the engine load and subsequently the combustion  temperature increases.  13 

 14 

Interestingly, particles produced during the start-up phase of the cold start had 3 times lower 15 

ROS per PM mass than the stable phase of the cold start. This was observed even though the 16 

temperature in the combustion chamber during the start-up was lower than the temperature 17 

during stable burning. We infer that this discrepancy between our previously stated 18 

hypothesis and the start-up phase of cold start is an artefact incurred by the dilution system. 19 

Given that start-up flue gas temperatures during the first 15 min averaged 80oC while first-20 

stage dilution temperature was 150oC, it is likely that a significant fraction of any 21 

semivolatile species were volatilised during the first-stage dilution process. The flue gas 22 

temperature for all other burning phases was higher than 150oC. So evaporation of 23 

semivolatile species during dilution might be an explanation for the lower ROS concentration 24 

observed start-up phase of cold start than for cold-start stable burning. 25 
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ROS concentrations were plotted against the logwood combustion chamber temperature 1 

averaged for each sampling interval and, as shown in Figure 7, a  strong negative correlation 2 

(r = -0.876) is obtained. This supports our hypothesis that higher temperature of the 3 

combustion chamber will result in lower ROS concentrations. It is important to mention that 4 

due to the aforementioned differences between the flue gas and the dilution temperature, ROS 5 

concentrations obtained for the start-up phase of cold-start burning were excluded from the 6 

Figure.   7 

 8 

 9 
Figure 7. Correlation between the combustion chamber temperature and ROS 10 

concentration for logwood burning. Error bars present one standard deviation.  11 

 12 

 13 

Another important observation from this study is the 80 – 100% reduction of BPEAnit 14 

fluorescence intensity when the volatile fraction of the logwood burning particles is removed 15 

by a thermodenuder at 250oC. This suggests that ROS observed during our measurements are 16 

related to the volatile (i.e. organic) components of the PM. A significant reduction in PM 17 

oxidative potential after thermal conditioning was also observed by Biswas and co-workers 18 

(27) who used a dithiothreitol (DTT) assay to measure the oxidative potential of particulate 19 

matter produced by heavy–duty vehicles. As a further support of the role of organic species in 20 
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particle induced oxidative stress, we observed strong correlations (r = 0.85 and 0.99) between 1 

the amount of ROS and the mass fraction of organic species in the PM during cold-start 2 

stable combustion and warm-start combustion (Figure 5 B and C). Also, it should be noted 3 

that the x-axis scales in Figure 5 B and C are not equal and that the slope of the fitted curve 4 

for stable phase of the cold-start (Figure 5 B) is about 8 times higher than the warm-start 5 

burning slope (Figure 5 C). This difference in the slopes suggests that there is a difference in 6 

the reactivity or in the abundance of reactive species between organic fractions of particles 7 

coming from cold and warm-start burning.   8 

In previous studies involving the BPEAnit assay employed here the oxidative potential of 9 

particles in cigarette smoke and diesel exhaust was investigated (20, 21). In comparison with 10 

this study, particles from sidestream cigarette smoke (21) have 4-9 and 30-80 times less ROS 11 

per unit of mass than particles produced during warm-start and cold-start logwood 12 

combustion, respectively. Diesel exhaust particles generated under full engine load were 13 

found to have similar ROS concentrations as sidestream cigarette smoke particles (~50 nmol 14 

mg-1) (20). On the other hand, diesel exhaust particles generated during idling were found to 15 

have ROS concentrations similar to those observed for stable phase of cold-start logwood 16 

burning. The main difference between diesel exhaust particles generated under full engine 17 

load and during idling was in the occurrence of the nucleation mode during idling. While 18 

diesel exhaust PM generated under full engine load consisted only of accumulation mode, the 19 

important feature of the size distribution for PM generated during engine idling was a strong 20 

nucleation mode occurrence and a reduction in the accumulation mode particle concentration. 21 

Nucleation mode particles contribute very little to PM mass and are composed mainly of 22 

organic (semivolatile) species. The significant increase of ROS concentration for particles 23 

generated during idling was associated with the semivolatile species present in the nucleation 24 

mode. In this study we have observed a decrease of the ROS concentration upon removal of 25 
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the semivolatile species. Both studies indicate a strong link between semivolatile species and 1 

ROS and therefore the importance of semivolatiles in the oxidative potential of the particulate 2 

matter. 3 
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