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 1 
Abstract 2 

 3 

Atmospheric ions are produced by many natural and anthropogenic sources and their 4 

concentrations vary widely between different environments. There is very little 5 

information on their concentrations in different types of urban environments, how 6 

they compare across these environments and their dominant sources. In this study, we 7 

measured airborne concentrations of small ions, particles and net particle charge at 32 8 

different outdoor sites in and around a major city in Australia and identified the main 9 

ion sources. Sites were classified into seven groups as follows: park, woodland, city 10 

centre, residential, freeway, power lines and power substation. Generally, parks were 11 

situated away from ion sources and represented the urban background value of about 12 

270 ions cm-3.  Median concentrations at all other groups were significantly higher 13 

than in the parks. We show that motor vehicles and power transmission systems are 14 

two major ion sources in urban areas. Power lines and substations constituted strong 15 

unipolar sources, while motor vehicle exhaust constituted strong bipolar sources. The 16 

small ion concentration in urban residential areas was about 960 cm-3. At sites where 17 

ion sources were co-located with particle sources, ion concentrations were inhibited 18 

due to the ion-particle attachment process. These results improved our understanding 19 

on air ion distribution and its interaction with particles in the urban outdoor 20 

environment.  21 

 22 

Keywords: small ions, aerosol, charged particle, urban environment. 23 

24 



 3 

1. Introduction 1 
 2 

Atmospheric ions are formed mainly by ionization of air molecules by cosmic rays 3 

from space and alpha radiation from natural radioactive materials such as Rn-222 4 

emanating from the ground and its airborne progeny. These ions are soon attracted to 5 

water molecules in the air to form singly-charged molecular clusters smaller than 6 

about 1 nm in size, known as ‘small ions’ (Iribarne et al, 1980). Once produced, small 7 

ions attach to aerosols in the air, producing charged particles in the form of 8 

intermediate and large ions in the size range between 2 nm and 1 µm in diameter. 9 

Under natural, stable conditions, atmospheric ions are present in concentrations of 10 

about 300-400 cm-3 but this may increase to a few thousand cm-3 in the presence of 11 

natural and anthropogenic ion sources such as waterfalls (Laakso et al., 2006) and 12 

overhead power lines (Fews et al, 1999; Jayaratne et al., 2008), respectively.  13 

 14 

Increased small ion concentrations have been found in forest regions in conjunction 15 

with nucleation events that occur during the daytime due to biogenic volatile organic 16 

compound precursors such as pinic acid. Vana (2006) found a high percentage of 17 

negatively charged particles in the size range 2.6 nm to 5 nm during a nucleation burst 18 

at a boreal forest station in Finland. Horrak et al. (2007) investigated small ion 19 

concentration and naturally charged nanometre-sized aerosol in a boreal forest at the 20 

Hyytiälä SMEAR station in Finland and showed that variations in small ion 21 

concentration could be explained by changes in ion loss due to attachment to aerosols. 22 

Tammet et al. (2006) measured ionization rates in a coniferous forest, and found 23 

values of 5.6 cm-3 s-1 at 2 m and 3.9 cm-3 s-1 at 14 m above the tree line with most of 24 

the small ions attached to aerosol particles. The origin of these ions in forest 25 



 4 

environments is uncertain (Suni et al, 2007), and has been attributed to vegetation 1 

(Wang et al, 2006) or radon efflux from the ground (Hirsikko et al., 2007), or both. 2 

 3 

High voltage components in the power transmission network are a reported source of 4 

corona ions. The presence of elevated small ion concentration in the air downwind of 5 

power lines has been directly measured with ion monitors (Carter et al., 1988; 6 

Jayaratne et al, 2008) and indirectly estimated by measuring the static dc electric 7 

fields at the ground (Fews et al, 1999, 2002). Carter (1988) measured air ion 8 

concentrations near a 500 kV dc test line and found small ion concentraion of up to 9 

1.5 x 105 cm-3 and particle charge concentrations of a few tens of thousands cm-3. 10 

Similarly, Suda and Sunaga (1990) measured large ion concentrations near a 750 kV 11 

dc test line and found concentrations as high as 104 ions cm-3 at a distance of 200 m 12 

downwind of the line. Grabarczyk et al. (2004) measured ion concentrations near high 13 

voltage ac lines using a Gerdien-type intermediate/large ion counter. They reported 14 

concentrations of the order of 103 cm-3 near two 110 and 220 kV lines and of the order 15 

of 104 cm-3 near a 400 kV line. Jayaratne et al (2008) measured net small ion 16 

concentrations under power lines at 41 sites and reported that the absolute small ion 17 

concentrations at approximately 76% of the sites exceeded the absolute mean urban 18 

outdoor value. 19 

 20 

Combustion sources, hot surfaces and flames are all reported sources of ions (Maricq, 21 

2006; Fialkov, 1997; Peineke and Schmidt-Ott, 2008). Therefore, it is not surprising 22 

that motor vehicle exhausts produce significant quantities of small ions and charged 23 

particles (Yu et al, 2004; Jung and Kittelson, 2005; Maricq, 2006) These studies on 24 

diesel and petrol vehicles showed that ions of both signs were emitted at roughly 25 



 5 

equal rates.  Approximately 60-80% of the emitted soot particles were electrically 1 

charged, with near equal numbers of positive and negative charges. Israelsson and 2 

Lelwala (1999) measured space charge concentrations as a function of horizontal 3 

distance from a highway used by gasoline engine vehicles. They found maximum 4 

concentrations of 625 ions cm-3 at the roadside, decreasing exponentially to 125 cm-3 5 

at a downwind distance of 1 km from the highway. Hirsikko et al (2007) measured 6 

small ion concentration at an urban location about 100 m away from a major road, and 7 

reported that median positive and negative small ion concentrations during weekdays 8 

were 590 and 630 cm-3 respectively, and 632 and 696 cm-3 respectively over the 9 

weekends. These values, devrived by Hirsikko et al (2007), may be compared with the 10 

positive and negative small ion concentrations of 248 and 208 cm-3 and 280 and 231 11 

cm-3 , respectively, found at rural outdoor locations by Fews et al (2005) and Horrak 12 

et al (1998). Small ion concentrations in polluted environments are generally lower 13 

than in clean environments due to attachment to particles. For example, Retalis et al 14 

(2009) analysed 17 years of data obtained in Athens, Greece, and reported mean 15 

concentrations of 189 and 151 cm-3 for positive and negative small ions respectively. 16 

Horrack et al (2000) monitored air ions at a sparsely populated rural location in 17 

Estonia and reported that both the mean mobility and the total small ion concentration 18 

showed a marked diurnal variation of a single wave shape with a maximum in the 19 

nighttime and a minimum in the afternoon. The nocturnal high concentrations were 20 

attributed to the accumulation of radon and thoron near the ground under calm 21 

atmospheric conditions.   22 

 23 

It is clear that small ions are affected by a range of conditions and vary between 24 

different locations in the urban environment. However, there is very little information 25 



 6 

on their concentrations in different types of urban environments, how they compare 1 

across these environments and their dominant sources. This study was conducted in a 2 

large urban area with the aim of addressing these gaps in our knowledge. These 3 

specific aims were: (1) to investigate the differences in ion concentrations in different 4 

types of outdoor environments, (2) to identify specific sources that give rise to 5 

relatively high concentrations of ions and (3) to study how aerosol particle 6 

concentrations affect the small ion concentration.  7 

 8 

2. Methods 9 

 10 

2.1 Measurement Sites 11 

 12 

Positive/negative and total small ions concentrations (hereafter denoted n+/n- and nt), 13 

particle number and charge concentrations were measured in real time at 32 different 14 

outdoor sites in and around a major city in Australia over a period of two years. The 15 

sites were classified into groups as shown in Table 1 together with the total number of 16 

sites in each group. 17 

 18 

Monitoring was carried out for up to 12 h at each site. The main aim of this study was 19 

to compare air ion concentrations at several diverse location types and to identify the 20 

main sources of these ions in the urban environment. Atmospheric ion concentrations 21 

show a marked diurnal variation with higher values and higher standard deviations 22 

during the night than the daytime (Horrack et al, 2000). In order to avoid these 23 

variations, all measurements reported in this paper were restricted to daylight hours. 24 

Sampling was carried out at a height of about 1 m above the ground under fair 25 
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weather conditions, with the air temperature between 20ºC to 30ºC. A brief 1 

description of the various sites and location groups follows. 2 

 3 

Parks: These four sites were located outside the city centre and consisted of open 4 

grassy areas away from trees. They were at least 200 m away from the nearest 5 

vehicular traffic and residential areas with no power lines in the vicinity. 6 

 7 

Woodlands: These sites were generally wooded environments within suburban areas. 8 

The instruments were placed in small clearings surrounded by eucalyptus and 9 

stringybark trees, at least 500 m away from the nearest human activities. 10 

 11 

City Centre: These five sites were all within the central business district, close to 12 

busy roads, intersections and surrounded by buildings. 13 

 14 

Residential: These three sites were situated within residential areas. One site was 15 

situated close to the city centre and the other three sites in the suburbs. All sites were 16 

surrounded by residential dwellings. 17 

 18 

Freeways: These seven sites were all located 2-5 m away from the edge of multi-lane 19 

freeways carrying 100-150 vehicles min-1 of which 10% to 25% consisted of heavy 20 

duty diesel vehicles. The measurements reported here, were carried out on the 21 

downwind sides of the roads. 22 

 23 

Power lines: These five sites were all near overhead high voltage ac power lines. 24 

These lines were double circuit, strung on steel lattice towers, running along creek 25 
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valleys, open parkland and cleared pathways through forest and bush land. The 1 

energized voltage was in the two ranges 220 to 330 kV (transmission voltage) and 110 2 

to 132 kV (sub-transmission voltage). Line heights varied between 10 and 25 m. All 3 

measurements were carried out in the downwind directions, at a distance of 20-30 m 4 

from the power lines. 5 

 6 

Power substations: These measurements were carried out immediately outside the 7 

perimeter fences of high voltage substations, about 30 m away from the high voltage 8 

transformers in the downwind direction. The environments near three such substations 9 

were monitored. 10 

 11 

2.2 Instrumentation 12 

 13 

Small ion concentrations were measured by two Alphalab air ion counters that were 14 

factory-calibrated just prior to the measurement campaign. This instrument has a 15 

dynamic range of 10 – 106 ions cm-3 with a minimum detectable charge concentration 16 

of 10 ions cm-3 and a response time of 2 s at a sampling rate of 0.8 L s-1. The 17 

minimum characterisable mobility of the unit is 0.5 cm2 V-1 s-1, which corresponds to 18 

a detectable maximum ion size of 1.6 nm. The instrument has the capability of 19 

monitoring negative and positive ions separately, but not simultaneously. Hence, two 20 

instruments were used to measure both n+ and n- separately at each measurement 21 

point.  22 

 23 

A TSI 3068 aerosol electrometer was used to measure the net particle charge 24 

concentration. This instrument draws ambient air through a particle filter and 25 



 9 

determines the total net charge present on aerosol particles in the size range 2 nm to 5 1 

μm. Particle charge concentration is estimated under the assumption that each charged 2 

particle carries a unit charge. The nominal response time is about 1 s. Aerosol particle 3 

number concentration was monitored with a TSI-3782 water-based condensation 4 

particle counter (CPC) that can detect airborne particles down to a size of 10 nm in 5 

number concentrations up to 5 x 104 cm-3. The time response of the instrument is less 6 

than 3s. Particle number size distributions were measured at some of the sites with a 7 

TSI 3936 scanning mobility particle sizer (SMPS), using a TSI electrostatic classifier 8 

and CPC. Particles in the size range from 4 to 160 nm were measured in 100 size bins.  9 

 10 

In this study, all data were logged at 1 s intervals and stored on a laptop computer. 11 

 12 

2.3 Data analysis 13 

 14 

Median values of each of the four parameters - positive and negative small ions, 15 

particle number and charge concentrations were calculated for each location group, 16 

together with their respective 1st and 3rd quartile (Q1 and Q3) values. The relationship 17 

between n+ and n- were tested using a simple linear regression analysis. The 18 

differences between the regression coefficients of the groups were compared. The 19 

differences between the group means were tested using a Students t-test. 20 

 21 

3. Results and Discussion 22 

 23 

Fig 1 shows typical example time series of n+ and n- at four different sites. In addition 24 

to the type of source, measured air ion concentrations at a point is expected to depend 25 
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on a wide range of conditions such as the distance to the source, wind conditions and 1 

humidity. Although, it was not the aim of this study to acquire long-term data to 2 

predict complete temporal variations at each type of site or to investigate the effects of 3 

all parameters that control the concentrations, our results illustrated some important 4 

features and showed some consistent differences between the different types of sites. 5 

The lowest concentrations were found at the parks, with average n+ and n- values of 6 

50 and219 cm-3, respectively. This yielded a net n- of 169 cm-3 and an nt of 269 cm-3. 7 

The maximum nt were found at the power line and substation sites. We measured ions 8 

at five power line sites. Only one of these sites showed the small ion concentration 9 

and particle charge concentration that were significantly higher than background, 10 

indicating that the line at this site contained a corona ion source. At the other four 11 

sites, the concentrations were close to the parks values, suggesting that negligible ion 12 

emissions were present. Considering the clear difference in small ion concentration 13 

measured at these sites, we classified them into two groups: power line sites with 14 

corona (PC) and power line sites with negligible or no-corona (PNC).  At site PC, the 15 

corona was clearly of one sign (positive) as shown in Fig 1(b). Jayaratne et al (2008) 16 

investigated small ion concentrations at 41 different power line sites and showed that 17 

less than 1 in 4 sites exhibited concentrations that were more than double the 18 

background values. 19 

 20 

Table 2 gives a site summary of n+ and n- as measured by the air ion counters, the net 21 

particle charge concentration as measured by the aerosol electrometer and the aerosol 22 

particle number concentration as measured by the CPC. For each of the sites, we 23 

determined the median values of each of the four parameters. Median values were 24 

considered more appropriate than mean values because they imparted less importance 25 
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to the presence of concentration spikes that were recorded, especially when sampling 1 

close to ion sources such as power lines and freeways (Fig 1). Note that the net 2 

particle charge concentration is the difference between the number concentrations of 3 

positively and negatively charged particle concentrations and is not representative of 4 

the total number of charged particles. The values shown in Table 2 are median values 5 

for the 1 s data points at all the sites in each group.  Also shown are the respective Q1 6 

and Q3 values. 7 

 8 

In discussing the results shown in this table, we look at each type of site in turn: 9 

 10 

Parks: Sites in this group most closely approximated what may be termed the ‘urban 11 

background’. This is reflected by the relatively low median values of particle number 12 

concentration (3890 cm-3), n+ (50 cm-3) and n- (219 cm-3) observed. The variance in 13 

the time series of the parameters was also lower than in the other groups, indicating 14 

the absence of nearby ion and particle sources.  15 

 16 

Woodlands:  Although sites in this group were more distant from anthropogenic 17 

sources than in all other groups, a relatively high particle number concentration and 18 

small ion concentration were recorded. Compared to the urban background (in the 19 

parks), n- (424 cm-3) was not significantly different but n+ (301 cm-3) was significantly 20 

higher. The high particle number concentration is indicative of nanoparticles formed 21 

from volatile organic and biogenic precursors in the atmosphere during the daytime as 22 

has been reported by many workers (Mäkelä et al, 1997; Kulmala et al, 1998; Suni et 23 

al, 2007). Fig 2 shows a particle number size distribution obtained at a site surrounded 24 

by eucalyptus trees during one of the monitoring sessions using the SMPS close to 25 
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mid-day. Note the normal background accumulation mode at about 50 nm together 1 

with the nucleation mode at about 18 nm that was observed only during this time of 2 

the day, confirming that the high particle number concentration was due to enhanced 3 

nucleation. At this stage, we have no reason to link the high nt and the particle number 4 

concentration, although there is some evidence for such an association in the literature 5 

(Laakso et al, 2004; Suni et al, 2007).  6 

 7 

City Centre: All five sites in this group showed above background small ion 8 

concentration of both signs with a preponderance of negative ions. This was also 9 

reflected by the net negative charge carried on particles. The n+ value, although lower 10 

than n-, was significantly higher than background. 11 

 12 

Residential: Residential areas generally include ion and particle sources related to 13 

human activities such as motor vehicles, cooking and electrical appliances like 14 

transformers and air conditioners and it is expected that ion and particle number 15 

concentrations in these areas are mostly determined by these processes. Sites in this 16 

group showed n+ and n-, and particle concentrations significantly higher than that of 17 

the urban background. The average concentrations were: n+: 601 cm-3, 12 times higher 18 

than background; n-: 361 cm-3, 1.8 times higher than background; and particle number 19 

1.78 x 104 cm-3, 4.5 times higher than background. The Student’s t-tests showed that 20 

each of these parameters was significantly higher than the corresponding background 21 

values at the confidence level of 99%.  22 

 23 

Freeways: All seven sites near freeways showed ions of both signs with 24 

concentrations well above background values. The observed median n+ and n- were 25 
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481 cm-3 and 589 cm-3, respectively.  The nt (1070 cm-3) was three times higher than 1 

background. The time series showed sharp n+ and n- peaks, up to four times of the 2 

average values (see Fig 1a and Fig 3) and observations showed that these excursions 3 

generally coincided with the passage of heavy duty trucks. It is interesting to note that 4 

n+ and n- spikes often coincided with each other in time, suggesting that they were 5 

from the same source. This is consistent with the experimental studies that have 6 

shown that vehicles emit ions of both signs at roughly equal rates (Yu et al, 2004; 7 

Jung and Kittelson, 2005; Maricq, 2006). This is further confirmed by the low net 8 

charged particle concentrations recorded by the aerosol electrometer. As explained 9 

earlier, the net particle charge concentration is the difference between the number 10 

concentrations of positively and negatively charged particle concentrations and is not 11 

representative of the total number of charged particles. Thus, for example, although 12 

the total charged particle concentration near a freeway is expected to be large, our 13 

measured median value is only -50 cm-3 which is relatively low when compared to the 14 

other groups. From our data, we can only infer that the number of negatively charged 15 

particles exceeded the positively charged particles by 50 cm-3. Fig 3 shows examples 16 

of 15 min time series of n+ and n- obtained at four of the freeway sites. 17 

 18 

Power lines: Fig 4 shows typical 10-min time series of n+ and n- observed at the four 19 

power line sites. Sites 1, 2 and 3 refer to power line sites with no corona, PNC, while 20 

PC is the site with the strong positive corona source. The n+ and n- values at the PNC 21 

sites were similar to the woodland sites and this was not surprising as these three sites 22 

were not very far from wooded areas.  At site PC, n+ was well above background with 23 

median values nearly 70 times higher than in the parks. The positive sign of ions is 24 

consistent with observations under other ac power lines, such as Fews et al (2002). 25 
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The time series showed large fluctuations with spikes of magnitude 400 times higher 1 

than the urban background. These spikes very often coincided with wind gusts and 2 

their origin is discussed in Jayaratne et al (2009). The n- value was only marginally 3 

higher than background. Consequently, the net charged particle concentration was 4 

also positive and of magnitude 1000-2000 cm-3. The n- value at site PC was very 5 

similar to that at the PNC sites and, so, has not been shown in Fig 4. Note the stark 6 

difference when a corona source is present. 7 

 8 

Substations: All three substation sites showed small ion concentrations well above 9 

background values with a predominantly negative sign. This was in contrast to the 10 

power line PC site which was clearly positive. A possible explanation for this 11 

difference is that, unlike a power line, the substations included many high voltage 12 

electrical devices such as transformers and capacitors that may exhibit different 13 

corona initiation processes to power lines. 14 

 15 

Total Ion Concentration and Comparison between Groups 16 

 17 

Fig 5 is a graphical display that enables a comparison of nt of the various groups. 18 

Assuming that parks represented the urban background, we see that woodlands, cities, 19 

residential, freeways, power lines PNC, power line PC and substations showed 20 

median nt that were 280%, 160%, 350%, 400%, 190%, 1360% and 400% higher. The 21 

difference between each of these groups and the background was tested using a 22 

Students t-test and all of them were found to be statistically significant at a confidence 23 

level exceeding 99%. As described in the previous section, the higher nt in the 24 

woodland, power line and substation groups have possible explanations. However, the 25 
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observation of the higher nt of the residential group over the city centre group requires 1 

an explanation. We noted that the particle number concentration in the city centre 2 

group (3.91 x 104 cm-3) was significantly higher than in the residential group (1.78 x 3 

104 cm-3). This may be attributed to a higher density of traffic in the city centre in 4 

comparison to the residential area.  In the presence of large concentrations of particles 5 

in the air, small ions are likely to be attached, forming charged particles that are not 6 

detected by the air ion counters. This observation is also consistent with Retalis et al 7 

(2009) and Hirsikko et al (2007) in other polluted urban locations who found that nt 8 

decreased when particle charge concentrations increased during the rush hour. The nt 9 

values at the substation and power line PC sites were respectively 8 and 13 times 10 

higher than background. The results proved the existence of strong ion sources in 11 

these two groups. Power line PNC sites were not significantly different to the 12 

background.  13 

 14 

Correlation between n+ and n- 15 

 16 

Fig 6 shows n- plotted against the simultaneous value of n+ at four different sites - 17 

urban background (park) group, freeway group, power line PC group and substation 18 

group. Compared to the background site (R2=0.48), the freeway site showed a high 19 

correlation coefficient (R2=0.68), suggesting that both sign of ions were emitted from 20 

the same source. A regression analysis showed a strong relationship between the two 21 

parameters (P<0.01).  Nevertheless, the power line PC and substation site showed the 22 

least significant correlations between the positive and negative ions, with R2 values of 23 

0.0039 and 0.0089 respectively. These results indicate the presence of only one strong 24 

unipolar ion source at each of these two sites. 25 
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 1 

It is clear that the sign and magnitude of the small ion concentrations in different 2 

environments are determined mainly by the type and intensity of both ion and particle 3 

sources that are present. Once produced, small ions are depleted by recombination and 4 

by attachment. While some sources of ions such as power lines are unipolar, others 5 

such as motor vehicles are bipolar. Thus, near busy roads, small ion concentrations 6 

are severely reduced due to both recombination and ion-particle attachment. On the 7 

other hand, ions associated with corona emission from power lines are less likely to 8 

neutralise quickly because their oppositely charged partners are not available. The 9 

effect of ions from power lines has been detected at distances of over 500 m (Fews et 10 

al, 1999).  11 

 12 

In order to understand and assess these effects better, in Fig 7, we present the particle 13 

number concentration and nt for the different sites in the same figure. The substation 14 

and power line PC produced the highest nt, while the highest particle number 15 

concentrations were observed near freeways and in the city centre, which is to be 16 

expected owing to the dominant impact of motor vehicle traffic in these areas. 17 

Compared to the park (urban background), both the residential and woodlands groups 18 

showed higher nt and particle concentrations as discussed previously. It is interesting 19 

to look at the ratio of nt to particle number concentration, together with the regression 20 

coefficient R2 of n+ versus n- relationships for the various groups. An intense ion 21 

source in the absence of a particle source, such as at power lines and substations, have 22 

a large ion/particle ratio while, in the presence of a particle source, irrespective of an 23 

ion source, such as near a freeway and in the city centre, this ratio is small. A large R2 24 

value implies that there is a bipolar ion source, such as near a freeway.  25 
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 1 

The results in Fig 7, together with the information on the ion/particle ratios and the 2 

regression coefficients R2 of the n+ versus n- relationships for the various groups are 3 

summarised in Table 3. Based on this summary, we classified the eight location 4 

groups into three categories. The first two categories were clearly different to each 5 

other and to the rest. To the first category we assigned the freeway and city centre 6 

groups as they both showed high particle number concentrations (> 3x104 cm-3) and 7 

bipolar ion sources with relatively high R2 values (>0.25). The power line PC and 8 

substation groups were assigned to the second category as they both showed nt that 9 

were significantly higher than all other groups (>2x103 cm-3) with a high ion/particle 10 

ratio (>0.2) and relatively low R2 values (<0.05) indicating the presence of a strong 11 

unipolar ion source with no significant particle source. The rest of the groups, with 12 

relatively low values of all parameters, we assigned to the third category. 13 

 14 

To summarize our findings, sample 15-min time series of nt at eight different sites 15 

with the readings averaged over 1 min intervals are shown in Fig 8. The figure 16 

illustrates the relative nt to be expected. The power line graphs for PC (power lines 17 

with corona) and PNC (power lines with no corona) are shown separately. The three 18 

upper traces are consistent relative to each other and clearly stand out from the other 19 

five groups. While, there was always some overlap in nt between these five groups, in 20 

general the parks showed the lowest nt with the other three groups in-between the 21 

parks and the freeway values. The mean nt ranged from 270 cm-3 at parks to 3650 cm-3 22 

at power line PC. 23 

 24 

 25 



 18 

4. Conclusions 1 

 2 

Both n+ and n-, net particle charge and fine particle number concentrations were 3 

measured at several urban sites. The sign of net particle charge generally followed the 4 

sign of the dominant small ions. The net particle charge was high when ions of only 5 

one sign were produced (power line PC, substations), and low when ions of both signs 6 

were produced (freeways). The relatively high nt found near freeways suggested that 7 

the corresponding total particle charge was also relatively high. 8 

 9 

The highest nt was found at the power line PC site, followed by substations, freeways 10 

and residential. Both signs of charge were observed near freeways and in the city 11 

while predominantly one sign was observed under corona emitting power lines and 12 

substations. Positive and negative ions were strongly correlated when they both 13 

originated from the same source (motor vehicles).  Woodlands exhibited a special 14 

pattern that may be attributed to a nucleation process from biogenic precursors from 15 

vegetation. This generally occurs around mid-day when the number of nanoparticles 16 

increases sharply together with nt in the atmosphere, although the connection between 17 

these two is not very clear at this time. 18 

 19 

In summary, small ion concentration varies among different locations in the urban 20 

outdoor environment. Motor vehicles and power transmission systems are believed to 21 

be the two major ion sources in the urban environment. Fewer ions were observed at 22 

sites where ion sources coexisted with particle sources due to ion-particle attachment 23 

effects. These results improved our understanding of the concentration and 24 
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distribution of small ions and their interaction with particles in the urban outdoor 1 

environment. 2 

 3 

 4 
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Table 1: List of site type groups. 1 

 2 

Group No of sites 

Parks 4 

Woodlands 4 

City Centre 5 

Residential 3 

Freeways 7 

Power lines 5 

Power substations 3 

 3 

4 



 25 

Table 2: Median concentrations of the measured parameters in each group of sites, 1 

together with the respective first quartile (Q1) and third quartile (Q3) values. 2 

All values are in cm-3. A negative value in the net charged particle concentration 3 

reflects a net negative charge. 4 

 5 

Group Parameter Median Q1 Q3 

PARKS 

n+ 50 36 70 
n- -219 -407 -212 

Net Particle Charge -72 -92 -55 
Particle Number 3,890 2,184 6,080 

WOODLANDS 

n+ 301 238 336 
n- -424 -483 -337 

Net Particle Charge -69 -102 -49 
Particle Number 11,100 10,800 11,500 

CITY CENTRE 

n+ 99 68 128 
n- -251 -327 -158 

Net Particle Charge -13 -50 13 
Particle Number 39,100 35,100 44,525 

RESIDENTIAL 

n+ 601 556 656 
n- -361 -406 -304 

Net Particle Charge -391 -395 -233 
Particle Number 17,800 17,100 18,500 

FREEWAYS 

n+ 481 413 564 
n- -589 -676 -518 

Net Particle Charge -50 -150 44 
Particle Number 58,000 49,638 70,363 

POWERLINES 
PNC 

n+ 59 41 81 
n- -449 -511 -375 

Net Particle Charge -138 -175 -100 
Particle Number 9,950 8,870 10,856 

POWERLINE 
PC 

n+ 3,430 2,267 4,544 
n- -229 -452 -179 

Net Particle Charge 1,275 865 1,570 
Particle Number 15,400 12,300 19,300 

 
SUBSTATIONS 

 
 

n+ 67 82 485 
n- -1,016 -2,407 -1,232 

Net Particle Charge -213 -534 -206 
Particle Number 6,495 6,166 8,000 

 6 

7 
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Table 3: Properties of the location groups classified into three types. 1 

 2 

Category Groups 

Particle 
Number 

Concentration 
(cm-3) 

nt 
(cm-3) 

nt /Particle 
Number 

Ratio 

R2 value 
for n+ vs. n- 

1 
Freeways 

City Centre 
>3x104 <1x103 <0.1 >0.25 

2 
Power line C 

Substations 
<2x104 >2x103 >0.2 <0.05 

3 

Parks 

Woodlands 

Power lines NC 

Residential 

<2x104 <1x103 <0.1 0.05-0.25 

 3 

4 
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Figure Captions 1 
 2 

Fig 1: Typical time series of n+ and n- measured at 1 s intervals at  3 

four different sites. 4 

 5 

Fig 2: Particle number size distribution measured in a eucalyptus woodland 6 

environment close to mid-day, showing the characteristic nucleation mode that is 7 

attributed to biogenic precursors. 8 

 9 

Fig 3: 15 min time series of n+ and n- at four freeway sites. 10 

 11 

Fig 4: 10 min time series of n+ and n- at three power line sites with no corona source 12 

(PNC) and one site with a corona source (PC). 13 

 14 

Fig 5: The nt values (sum of n+ and n-) of various groups. 15 

 16 

Fig 6: The n+ and n- values at four different sites (Note that the X and Y-axes have 17 

different scales). 18 

Fig 7: The nt value and particle number concentration for the different groups.  19 

 20 

Fig 8: Time series of nt at eight different sites, shown as 1 min averages. 21 

 22 
 23 

 24 

 25 

 26 
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Fig 2 1 
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Fig 3 1 
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Fig 4 1 
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 Fig 5 1 
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Fig 6 1 
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Fig 7 
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Fig 8 
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