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Coast Control for Mass Rapid Transit Railways with Searching 

Methods 

 

K.K. Wong T.K. Ho 

 

Abstract: With the daily commercial and social activities in the metropolitan cities, regulation 

of train service in Mass Rapid Transit Railways is necessary to maintain the service and fulfil the 

demand of passenger flow.  Dwell-time adjustment at stations is one commonly used approach 

to regulate the train service but its control space is very limited.  Coasting control is a viable 

means to meet the specific run-time in an inter-station run.  The current practice is to start 

coasting at a fixed distance from the departed station, hence, it is only optimal with respect to a 

nominal operational condition of train schedule but not the current service demand.  The 

advantage of coasting can only be fully taken when coasting points are determined in real-time.  

However, identifying the necessary starting point(s) for coasting under the constraints of current 

service conditions is no simple task because train movement is governed by a large number of 

factors.  This paper studies the feasibility and performance of classical and heuristic searching 

measures to locate coasting point(s), with the aid of a single train simulator, according to 

specified inter-station run times. 

 

List of symbols 

X, Ψ, Ω sets on the solution space 

Vc minimum coasting speed 

Vrm re-motoring speed 

F objective function 

xi optimum coasting point 

di  search direction 
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1

z
z  Golden ratio 

α reflection factor  

γ expansion factor 

β contraction factor 

 

1 Introduction 

 

With the rising population and growth of economy in most developing, or even developed, 

countries, a reliable and efficient means of transportation is necessary to meet the expanding 

commercial, industrial and social activities.  Mass Rapid Transit Railway systems (or metro) are 

currently one of the major means of mass transportation in most commercial and industrial cities 

around the world.  Since the trains run on exclusive tracks, the service is usually free of 

congestion and hence a reliable and regular service has become an expectation in life.  Indeed, 

any delays or interruptions on railway service may bring a city to a standstill, which may also 

carry a significant economic loss and substantially affect daily lives. 

 

In order to maximise the capacity of the rail line and provide a reliable service for passengers 

throughout the day, regulation of train service to maintain steady service headway is essential.  

Service headway is often referred as one of the indicators for the quality of train service.  Small 

service headway implies a high train frequency for passengers.   

 

Adjustment to dwell times at stations is one of possible practices to maintain the headway 

regularity in metro systems because of its simplicity, regardless of other system constraints and 

parameters, such as traction equipment characteristics and signalling constraints.  However, 

dwell times cannot be extended or shortened without limitation as the quality of train service 

may worsen as a result.  From the viewpoint of passengers, a longer run-time is more preferable 
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than a longer station waiting time if ever a trip has to be lengthened, particularly at off-peak 

hours.  In addition, train-doors have to be kept open as long as a train is still at station.  Energy 

loss from the air-conditioning, either in form of cooling or heating, through the open train-doors 

at stations accounts for substantial proportion of the electricity bill. 

 

Coast control [1-2] is another possible approach to regulate headway by allowing the train to 

accomplish an inter-station run within a specific run-time through turning off the traction motors 

at a certain point (i.e. coasting point).  Energy reduction comes as a bonus for electrified lines 

while the train spends less time on motoring.  Another advantage of coasting control on the 

reduction of maintenance cost of braking equipment was exploited in another study [3].  Since 

the coasting point(s) is/are usually pre-determined prior to the daily train operation [4], it is only 

optimal with respect to a nominal operational condition of train schedule but not the current 

service demand which varies throughout the day.  Thereby, the extent of time regulation is 

somewhat limited and the advantage of coasting can only be fully taken when coasting points are 

determined in real-time, taking into account the imminent needs of the train service.   In other 

words, identifying the coasting point(s) to achieve a run-time as close to the specific one as 

possible with the minimum computational demand is essential to coast control. 

 

A number of advanced techniques have been proposed recently to improve train operation in 

terms of service quality and energy consumption.  A fuzzy logic control system [5] has been 

adopted to determine safe and accurate train speed control.  Simulation results reveal that the 

number of changes of notches to regulate the train speed is reduced and hence the riding comfort 

is improved in comparison with PID control.  A GA-based method [6] was proposed to 

synthesise a coasting lookup table in an inter-station run.  The lookup table provides the 

locations where coasting, motoring or braking should commence.  This study is primarily to 

minimise energy consumption in an inter-station run.  With this coast control, a better train 
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operation can be achieved when comparing with the conventional fixed-point coast control.  

The result also shows that the energy consumption obtained by coast control is even better than 

that achieved by fuzzy control.   However, the suitability for real-time control and hence 

robustness to changing service demand were not discussed in details. 

 

Train movement is governed by a large number of factors, such as track geometry, signalling, 

traction equipment characteristics, power supply and speed restrictions [7-9].  Some of them are 

position-dependent whilst the others are speed-dependent.  As the coasting control is to alter the 

speed profile of the train at a particular position, formulation of an analytical model to connect 

the coasting points and their corresponding run-time and energy consumption and then applying 

appropriate optimisation techniques is very much impractical, if not entirely impossible.  

Further consideration of uncertainties, like human behaviour and equipment delay, only makes 

matters more complicated.  Having ruled out an analytical approach, searching methods are the 

potential candidates to attain the optimal coasting points according to the real-time operational 

conditions.   Despite numerous successful applications of heuristic methods, classical search 

methods are not to be neglected without extensive investigation in this study. 

 

This paper presents the applications of both direct and heuristic search methods on locating 

single, or multiple if necessary, coasting point for an inter-station run with specified run-time and 

thus the comparisons of their performance.  Such coasting control allows individual train 

control by requesting each train to meet its inter-station run-times while the run-times are derived 

from a central controller.  The objective of this study is to explore possible ways to trade-off 

between computation time and the quality of the searched outcomes for the purpose of real-time 

control.  Further, this study also discusses the appropriate algorithms in accordance with the 

track layout characteristics and inter-station distances, as well as their respective limitations.  

As the coast control is applied to each train independently, a single train simulator is a sufficient 
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tool for the evaluation of the searching methods. 

 

2 Coast control 

 

Train movement in an inter-station run includes three operation modes, motoring, coasting and 

braking.  Run-time and energy consumption required for this simple run depends on the 

proportion of these modes of operation.  Fig. 1 illustrates a typical inter-station run and it 

consists of 4 phases: (1) acceleration from a complete stop to maximum permissible speed; (2) 

maintaining the speed as close to the maximum permissible speed as possible; (3) coasting, 

where there is slight deceleration due to frictional resistance to the motion; and (4) deceleration 

to a complete stop by the application of brake.  Phases (1) and (4) are essential and hence 

compulsory in an inter-station run. As well as depending on the train’s traction equipment 

characteristics, phases (1) and (4) are constrained by available adhesion and passenger comfort.   

In a short inter-station run, phase (2) may not exist and coasting starts once the train attains a 

certain speed.  On the other hand, coasting may bring the train speed down to such an extent 

that re-motoring is necessary to take the train to the next station (i.e. repeated phases (1) and (3)).  

The location where coasting commences may thus drastically change the speed profile of the 

inter-station run, leading to wide range of possible run-times and energy consumption. 

 

Fig. 2 shows the speed profile of a flat-out run between two stations, as well as those with three 

possible coasting point assignments.  It is evident that different coasting points alter the speed 

profile significantly.  One of the speed profiles even indicates re-motoring.  As the motoring 

time is shortened because of coasting, energy saving is possible at the expense of run-time.  Fig. 

3 illustrates the possible time differences for three coasting points.  Generally, the run-time can 

be extended when coasting is allowed to start sooner.  The range of run-time resulting from 

coast control provides headway regulation and possible energy reduction for the operators.  
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Depending on the traction drive system, an energy saving of 30% can be attained with only a 5% 

increase in run-time [10]. 

 

2.1 Solution space 

Theoretically, any point between the two stations is a possible solution for coasting.  Fig. 4 

shows that the solution set X may contain all points between A and D.  Even if a certain 

distance resolution is imposed so that X is a finite set, the solution space is still large for any 

searching method.  A number of subsets of X can be excluded from the space to make the 

searching process more feasible. 

 

If a train starts coasting at a low speed, it is very likely that it will re-motor before it reaches the 

next station.  The unnecessary turn-on/off of the traction drives is not desirable in practice 

because it will hasten the tear-and-wear of both the electrical and mechanical components.  

Re-motoring should thus be kept to minimal as much as possible.  In addition, energy reduction 

is not guaranteed with too much re-motoring.  To ensure the train has sustained sufficient 

momentum prior to coasting, a train is allowed to start coasting only when it reaches a minimum 

coasting speed Vc.  In other words, coasting is prohibited from points A and B, as indicated in 

Fig. 4, and the set of the possible points between A and B, denoted as Ψ, can be excluded from Χ.  

The size of Ψ is thus determined by Vc, which is a pre-defined system parameter.  When the 

inter-station distance is so short that only one coasting point is needed, run-time decreases and 

energy consumption increases monotonically if the coasting point shifts from the starting station 

to the next.  The necessary coasting point to trade off run-time and energy consumption can be 

attained by simple optimisation techniques, except for some extreme track-related conditions, 

such as drastic changes of speed restrictions or steep slopes along the line, because there are no 

local optima obscuring the global one. 
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On the other end of the speed profile, after a train has entered the braking region, it cannot start 

coasting or it will overshoot the station and miss the stopping mark completely unless excessive 

braking is applied, which may over-strain the braking system and, more importantly, cause 

passenger discomfort.  Therefore, at the approach of a station, there is a distance, between 

points C and D, on which the set of points Ω can also be discounted from X.  However, point C 

is not a fixed parameter and it largely depends on how the train trajectory has gone before the 

train starts braking, in which the coasting point plays a decisive part.  During the search, point 

C may be defined as a specific point on the braking profile for simplicity. Alternatively, it can be 

made a variable, estimated by the most updated location of the coasting point in the search. 

 

With a longer inter-station distance, multiple coasting points may be required, which inevitably 

turns the solution space multi-dimensional.  However, there are no specific rules on the number 

of coasting points.  From Fig. 4, Vrm is an operation parameter for multiple coasting point 

identification.  When the train speed falls below Vrm from coasting, it is allowed to re-motor to 

ensure sufficient momentum to go on.  It should be noted the train spends more time in 

motoring mode and hence consumes more energy when multiple coasting points are allowed.  

Vrm is not used to eliminate the solution space in the searching process and it just ensures the 

next possible coasting point is located.  Moreover, the location of the first coasting point 

inevitably affects that of the second and so on.  Further, the solution space for the next coasting 

point varies with the location of the previous coasting point. 

 

2.2 Objective function 

In order to evaluate the possible solution, an objective function is necessary.  In this study, the 

objective function is to determine how close the chosen coasting point is to lead to the desired 

run-time and it is quantified in the equation (1).  F is a non-negative quantity and a smaller 

value implies a fitter solution.  Other definitions for F are equally valid if other consideration is 
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taken into account.   

       
D
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T
TT

F
−

=          (1) 

where  is the desired run-time (sec) and  is the run-time achieved by the updated solution 

(sec).  Since the run time may be either above or below the desired values in a particular run, 

the absolute sign is in place to nullify the polarity effect.  

DT gT

 

3 Searching methods 

 

To locate the necessary coasting point for real-time control under a specified run time constraint, 

classical searching methods and heuristic approaches are adopted and the searching problem can 

be divided into single and multiple dimensional searches.  In this section, three classical 

methods and a heuristic one are introduced as the tools to identify the coasting point for train 

service regulation.  In general, there are two major approaches, direct and indirect searches.  

 

With the direct search or numerical methods, the coasting solution is obtained in a step-wise 

manner, and the value of the cost function F is improved at each step.  The direct search 

methods do not require an explicit evaluation of any partial derivatives of the function, but 

instead rely on values of the cost function F, gained from previous iterations.  These methods 

basically use the cost function values to obtain numerical approximations to the derivatives of 

the cost function.  Dichotomous search, Golden section search, Fibonacci search and Simplex 

method are examples of direct search. 

 

Indirect or analytic search method, on the other hand, attempts to reach the necessary coasting 

point by calculation, without test or guess.  It is based on the analysis of the special properties 
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of the cost function F at the position of the extremum.  In the simplest case, the tangent plane at 

the optimum is horizontal, that is the first partial derivatives of the cost function exists [11] and it 

can be defined as follows: 

0=
∂
∂

= ixxx
F  

where xi is the optimum coasting point under the specified operational constraints on coasting 

control for service regulation.  Gradient method is one of the examples of the indirect search, in 

which it selects the search direction di using the polarity of the value of partial derivatives of the 

cost function F with respect to the independent variables x, and the information gained from 

previous iterations.  

 

Simulated Annealing (SA), Genetic Algorithm (GA), Tabu Search (TS) and Simulated Evolution 

(SE) are well-known heuristic approaches [12].  They solve problems by trial-and-error with 

certain rules-of-thumb or guidelines and they often have an intuitive justification.  One of the 

main differences between classical and heuristic methods is that the mathematical model is 

essential in the former, whilst it is not necessary for the latter.  Moreover, classical methods 

always provide the best solution but heuristic approaches obtain a good, rather than the best, 

solution satisfying the defined constraints.  Nonetheless, the common feature of these two 

approaches is the iterative nature. 

 

3.1 One-dimensional search 

Since the distance between stations is rather short in metro system (i.e. the solution space is 

small), a single coasting point is usually adequate for service regulation.  In general, the run 

time and energy demand monotonically decreases and increases respectively when the coasting 

point move away from the starting station.  Hence, this single-variable problem can be simply 

accomplished by classical optimisation methods.  With one-dimensional search on coasting 
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control, the Bi-section (Golden and Fibonacci) and Gradient based searching methods are 

deemed to be appropriate.  With the Gradient-based methods, the cost function F has one 

variable (i.e. coasting point) only and the inter-station run time is a function of the coasting point.  

However, the continuity and hence differentiability of the function cannot be guaranteed.  A 

point-by-point evaluation of F on the solution space is thus required.  Besides, the applicability 

of Bi-section method is limited to functions which are unimodal (i.e. the function has only one 

global optimum point). 

 

3.1.1 Golden section search 

With the application of this algorithm on coasting control, the fitness of two initial coasting 

points are first determined and then used for further search of new coasting point.  These two 

coasting points are obtained from either end on the solution space with the spacing of a golden 

ratio.  The basic idea of the Golden section method [13-14] is that the solution space is divided 

into two unequal parts, whereas the ratio of the larger of the two segments to the total length of 

the interval should be the same as the ratio of the smaller to the larger segment.  

 

Assume the solution space consists of a length z which composes of two segments z1 and z2, as 

shown in Fig. 5, the Golden section requires that  

1

21

z
z

z
z

=  (2) 

21 zzz +=  (3) 

Equation (2) gives 

2
2

1 zzz ×=  (4) 

By substituting for z from equation (3) into (4) and normalizing with z2
2, the following equation 

is obtained. 
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This quadratic equation can be solved for the ratio z1/ z2.  The positive root is 

618033989.0
2

1 =







z
z  (6) 

Now assume the fitter coasting point is located between points a and b, the searching process 

with the Golden section method is listed as follows: - 

1. Two initial coasting points, x and y, are placed with the “golden ratio” spacing (i.e. 0.618) 

from either end on the solution space between a and b, as shown in Fig. 5, the solution space 

z will then be reduced to a fraction of 0.618.  

2. Assume F(x) is smaller than F(y), y replaces b and the new solution space z1 becomes (a, y). 

3. The process is repeated and the new solution space z1 is further reduced by the golden ratio 

until the obtained coasting point satisfies the expected run time requirement of train 

operation. 

To achieve a smaller solution space, the last estimate should be placed symmetrically at the 

middle of the solution space.  The final guess of coasting point then provides an additional 

reduction on the solution space. 

 

3.1.2 Fibonacci search 

The concept of Fibonacci search [14-15] is very similar to that of the Golden section search.  

The main difference is that the reduction ratio on the solution space at each iteration is 

predetermined and optimised according to the given number of iterations with Fibonacci search.  

The arrangement of the search point (i.e. coasting point) within the new search interval is shown 

in Fig. 6.  
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To help illustrate how the reduction ratio at each iteration is devised, the iterations are shown in 

reverse order whereas; xn and xn-1 are the last pair of estimates.  Point “y” is one end of the 

solution space and the successive new coasting points attained (i.e. xn-2, xn-1 and xn) at iterations 

are assumed to be a fitter solution for the sake of simplicity.  Hence, the new solution space 

becomes (xn-3, y), (xn-2, y) and (xn-1, y) through the iterations.  The searching process repeats 

until the obtained coasting point satisfies the expected run time requirement of train operation. 

 

From Fig. 6, the interval of uncertainty Ln-1 is (xn-2, y) and the final search interval is defined as,  

2
1 ε+

= −n
n

L
L  (7) 

Ln is the length of the interval of uncertainty after the nth iteration and ε represents the smallest 

distance by which two evaluations may be separated and still be distinguished from one another.  

The symmetry requirement for the search interval is  

nnn LLL += −− 12  (8)  

Combining equations (7) and (8),  

ε−=− nn LL 32  (9) 

It is possible to work backward to determine the required size for any intermediate interval of 

uncertainty.  

ε253 −=− nn LL  

ε384 −=− nn LL  

It can then be generalised as 

ε11 −+− −= knkkn FLFL  (10) 

The coefficients Fk+1 and Fk-1 can be obtained by 

11 −+ += kkk FFF                     k = 1,2,3,…n (11) 
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and F0 = F1 = 1 

Fibonacci method provides a specific reduction ratio on the solution space at each iteration, and 

the interval of uncertainty can be used to plan the evaluation spacing if the maximum number of 

iterations is determined in advance.  In general, Fibonacci search method retains one of the two 

ends of interval from the previous iterations and therefore requires only one new estimate of 

coasting point in a new iteration. 

 

3.1.3 Gradient based search 

With the Gradient-based method [16], a certain derivative must be adopted to enable the search.  

In this application, the derivative should relate the control variable (i.e. coasting point) to the 

consequence (i.e. run time).  Hence, the gradient required is given in equation (12).  The two 

initial coasting points are chosen randomly and the gradient is obtained with them.  The search 

direction of the updated coasting point depends on the polarity and the magnitude of the 

gradient,  

locationCoasting
TimeRunGradient

∆
∆

=  (12) 

The length of the next step can then be calculated by, 

[ ]{ }ExpectedoutFlat timeRuntimeRunGradientlengthStep −×= −
−1  (13) 

The new coasting point can be obtained by the following equation 

lengthSteplocationcoastingOldlocationcoastingNew +=  (14)  

In general, the step size varies with the difference between the run time attained by the latest 

iteration and the expected one.  Therefore, the Gradient method is likely to require a smaller 

number of iterations to achieve the same level of convergence when compared with other 

methods.  However, the drawback of this algorithm is that the step length and search direction 

cannot be defined in the searching process when there is no change on the run-time attained from 
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two successive iterations (i.e. the gradient is zero) and the searching process will be terminated.  

It can be shown in Fig. 7 that the train is forced to operate in coasting between points a and b 

even in a flat-out run because train speed is confined by the lower speed restriction.  Even if the 

coasting point is chosen at any location between points a and b, the speed profile of train behind 

point b is likely to be the same and so is the run time,  

 

3.2 Multi-dimensional search 

3.2.1 Nelder and Mead’s method 

It is an extension of the simplex method for the purpose of multi-dimensional search.  A set of 

(n+1) mutually equidistant points in n-dimensional space is known as a regular simplex.  Thus, 

in two-dimensional problem, the simplex is an equilateral triangle and in a 3-dimensional space, 

it is a regular simplex tetrahedron.  The idea is to compare the return value of the fitness 

function at the (n+1) vertices of the simplex and move the simplex towards the optimum point 

during the iterative process.  The vertices of the simplex represent the multiple coasting points 

on coasting control and each vertex is in two-dimensional form (i.e. a pair of coasting point) in 

this application for the sake of simplicity.  The original simplex method maintains a regular 

simplex at each stage.  Nelder and Mead [17] proposed several modifications to the method in 

which it allows the simplices to become non-regular.  The result is a very robust and direct 

search method and it is extremely powerful provided that the number of variables does not 

exceed 5 or 6. 

 

In order to locate multi-coasting points with this algorithm, three basic operations, reflection (α), 

expansion (γ) and contraction (β), are applied to reshape and resize the simplex.  The simplex 

takes on a new shape and/or size when a vertex is replaced by a better one with respect to the 

three factors α, γ and β corresponding to the three operations.  The searching process will repeat 

until the new vertex satisfies the expected run-time requirement in an inter-station run.  There 
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are no specific rules to assign the factors of expansion, reflection and contraction.  Nevertheless, 

these three factors cannot be too small because a fast convergence may not be attained, nor can it 

be too large because the generated solution (i.e. a pair of coasting point) may be out of the 

boundary of the solution space.  Details of the setting of α, γ and β are given in the Appendix. 

 

3.3 Heuristic method 

3.3.1 Genetic algorithm 

Genetic algorithm (GA) [18-19] is an evolutionary algorithm that resembles biological processes 

to optimise a cost function.  It is applicable in solving one and multi-dimensional searching 

problems.  It allows a population composed of many individuals (solution of problem) to evolve 

to a state that optimise the fitness.  There are two basic steps to have the genes evolved through 

successive generations, selection and replacement.  The former is to decide which genes in the 

generation are deemed to be fit to produce off-springs whilst the latter is to allow the genes with 

the worst fitness to vanish in order to make room for the better off-springs to compete and 

survive.  A new generation thus consists of the surviving and the reproduced genes of the 

previous generation.  Through natural evolution process by mutation, crossover or other 

possible evolution methods, an individual with better fitness may be generated. 

 

Using GA, every possible solution (i.e. gene) in a problem is considered as an individual.  

Fitness function is the selection criteria to determine the fittest genes for further evolution.  The 

other important components of GA include initial population, fitness evaluation and generation 

evolution. 

  

3.3.2 Coasting point identification by GA 

When applying GA in coasting control, gene can be designed in any format but it should be well 

defined to the problem.  As coasting point(s) is/are searched for train service regulation in an 
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inter-station run, locations of coasting points should be integrated into the gene for evolution.  

In this study, gene is encoded in binary format and it represents the relative position to start 

coasting between stations.  Attention on the assignment of the length of gene representation is 

quite important since gene generation error may arise if it is achieved by recombination of two 

genes of unequal length. (i.e. new genes generated may be out of the boundaries of the solution 

space). 

 

4 Application of searching methods 

 

4.1 Simulation setup 

A number of tests have been carried out to comprehensively study the performance of the 

searching methods on coasting point identification.  Computation time required and quality of 

the search outcomes are the key performance indicators. 

 

In order to evaluate the train movement upon the chosen coasting points, a single train simulator, 

developed in Visual Basic, has been adopted.  The train simulator calculates the details of train 

movement throughout the inter-station run, taking into account all factors affecting train 

movement, such as track geometry and traction equipment characteristics.  The simulator, 

providing full set of user interfaces, is integrated into the searching methods.  The input 

interfaces allow the definition on track layout, train information, traction equipment 

characteristics and selection of inter-station run.  One of them is illustrated in Fig. 8, whilst the 

input and output interfaces for coast control are incorporated and shown in Fig. 9.  The 

allowable range of run time with the flat-out runs, as well as the operation with minimum 

coasting speed, is determined as the reference for service regulation prior to the definition of 

run-time setting.  The simulation is run on IBM-compatible PC with PIII CPU.  A time-step of 

0.2 sec is employed in the simulator as a balance between reasonable computation time and 
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sufficient resolution of the solution.  

 

4.2 Tests 

Working with the train simulator, short and long inter-stations run with two different track 

layouts are chosen for investigation in a number of studies.  These two inter-station track 

conditions are given in Tables 1 and 2. 

 

To simply investigate the basic function of coast control in a preliminary study, the track 

geometry effect on the train movement calculation is neglected and the result reveals the 

application of a single coasting point control with different searching methods to achieve a 

specific run time requirement, in term of a certain run time extension with respect to the flat-out 

runs.  Train is not allowed to operate in coasting mode until its speed exceeds the minimum 

coasting speed which is 45kph.  

 

Single-coasting-point searches are undertaken with the Golden section, Fibonacci, Gradient 

method and GA.  With GA, resolution on the coasting-position representation depends on the 

number of binary bits used, which is directly related to the distance between stations.  The 

resolution of one metre is set. 

 

The next study is to examine the relationship between the coast control and track layout.  The 

two inter-station conditions are the same as in the previous study and their corresponding track 

layout characteristics are shown in Tables 3 and 4.  Their related flat-out operation and desired 

run-time requirement are listed in Tables 5 and 6.  Again, the four search methods with single 

coasting point identification are applied. 

 

The third study is to explore the performance of multi-coasting-point control.  The inter-station 
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conditions and track layouts remain.  Two multi-dimensional search methods, Nelder and Mead 

method and GA, are applied.  The advantages and limitations of multi-coasting command 

application are also examined in the study.  A fitness value, as defined in equation (1), of 0.01, 

and a maximum number of iterations of 20 is required in all tests. 

       

5 Results and discussions 

 

5.1 Results 

a) Preliminary test 

The run-time requirements for a short and long inter-station run, as well as the desired fitness 

value is 0.01 are achieved.  The results are summarised in Table 7.  As each iteration requires 

a simulation run with the single train simulator and each simulation run takes similar CPU time, 

number of iterations is therefore a convenient time measurement unit for performance indicator.  

The average number of iterations is only applicable for Gradient method and GA since a new 

solution depends on the gradient of the cost function and genetic information of the previous 

solution respectively. 

 

From the simulation results, the classical and heuristic methods provide an acceptable solution 

with a reasonable average number of iterations.  In general, the classical searching methods 

offer a smaller average number of iterations.  The possibility of GA to achieve a fitter solution 

is reduced when the search is approaching to the desired solution.  Since the coasting solution 

with GA is in binary representation of distance within the genes and the bits carry 

binary-weighted significance on the distance according to their locations, some of the useful 

genetic characteristics may be discarded when the mutation (reversion) of a bit is assigned to the 

most significant ones when the search is approaching the required solution.  The randomly 

assigned initial population within GA is also accounted for the total number of iterations.  
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Simulation results also reveal that the average number of iterations is the lowest with the 

Gradient method.  The step length and search direction of a new coasting solution with 

Gradient method depend on the difference between the current and previous run-times with their 

corresponding coasting solutions, but not the solution space.  In other words, the step size 

between the current and new coasting solution becomes larger when the difference between run 

time of the current coasting location and the expected one increases.  Nevertheless, the solution 

space with the Golden section and Fibonacci search is reduced with a specific ratio.  The 

number of iterations in all tests with these two methods are always the same.  

 

b) Track geometry 

The simulation results with extreme track geometry are shown in Tables 8 and 9.  Again, both 

the classical and heuristic methods can provide the desired solution within a reasonable average 

number of iterations.  The average number of iterations with classical method is also smaller 

than that with the heuristic method.  From Tables 7, 8 and 9, it is obvious that the average 

number of iterations with the Golden section, Fibonacci and Gradient method increase when the 

track layout is taken into account because the train movement is affected with the track layout 

and hence the run time is not necessarily monotonically related with the corresponding coasting 

location.  As a result, the required fitness may not be achieved even with the maximum number 

of iterations in GA.  

 

Further, it is worth noting that the average number of iterations with the track layout of positive 

slopes to achieve the same fitness is smaller than that with the negative one.  The gradient force 

with the track layout of positive slope and the other train resistances are all opposite to the train 

movement and hence slows down the train speed.  Run-time thus decreases monotonically if the 

coasting point is shifted from the starting station to the next and hence the search is more 

significantly uni-directional.  Nevertheless, the gradient force with the track layout of negative 
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slopes is against the other train resistances and it thus provides lower energy consumption with 

the same operation constraints in an inter-station run.  In addition, a direct relationship between 

the current and a new coasting solution cannot be easily obtained and thus more iterations are 

needed.     

 

c) Multi-coasting point     

From the results summarised in Tables 10 and 11, GA provides a lower average number of 

iterations and a fitter solution than the Nelder and Mead method in general.  The searching 

performance with the Nelder and Mead method is limited with the three operation factors: 

reflection, expansion and contraction, when resizing and reshaping the simplex during the 

iterative process.  A new solution is more likely to be trapped out from the desired solution with 

Nelder and Mead methods when it is getting closer to the optimum, if the three operation factors 

are set to larger values.  Nevertheless, the possibility of finding the optimum solution is higher 

with GA as it only depends on the resolution of solution. 

 

In a short inter-station run, the algorithms usually produce a single coasting solution even they 

are designed to search for multiple coasting-points (i.e. the second coasting point is located 

within the first coasting) since there is not enough space to accommodate more coasting points.  

Further, it is reasonable that the location of single coasting point is more or less far away from 

the starting station to maintain the train speed, when compared with multiple coasting point 

control.      

 

Even though these two methods obtain the solution within an acceptable number of iterations, 

the energy consumption of the corresponding train movement is roughly 20% higher than that 

with the single coasting point for the same run-time requirement in a long inter-station run.  The 

Golden and Nelder and Mead methods are applied for the comparison between the single and 
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multiple coasting point control.  The results are summarised in Table 12 and Figures 10 and 11.  

The train spends more time at high speed with single coasting point, whilst it has to accelerate 

more at low speed with multiple coasting-points and the power consumption is thus higher.  

Thereby, a faster coast solution with lower energy consumption can be accomplished with single 

coasting point control.  In addition, the second or further coasting points are only necessary 

when a train operates in motoring again to recover the momentum of the train movement from a 

low speed level because of the track geometry.  

 

Even though the application of multiple coasting point control is not the most desirable in term 

of energy consumption, it is still one of the possible measures to provide a bigger solution space.  

To further explore the relationship between the inter-station distance and number of coasting 

points, a very long inter-station run is carried out to identify the necessary coasting solution with 

Golden and Nelder and Mead methods to achieve the operation condition as listed in Table 13.  

The results are illustrated in Fig. 12 and 13.  Simulation result shows the energy consumption 

with multiple coasting point control is 5 ~ 6% less than single coasting point control and it is 

very encouraging.  Hence, multiple coasting point control is more preferable in a very long 

inter-station distance run.   Although there are no specific rules to identify the number of 

coasting points in an inter-station run, it has been shown that an inter-station distance and the 

track geometry are the two key factors in the application of coast control for train service 

regulation. 

 

5.2 Discussions 

Both classical and heuristic methods can provide an acceptable solution with reasonable 

computation time in all cases.  The results show that a smaller average number of iterations can 

be attained with the classical searching methods in single coasting point control.  Gradient 

method provides the solution with the least number of iterations on average.  However, one of 
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the main drawbacks of this algorithm is the step length and search direction cannot be 

determined if the slope of the cost function is not available and hence the searching process is 

terminated.  In other words, a solution is not possible if there is no change on the run time with 

the current and previous coasting solutions.  Therefore, the Gradient method is not applicable 

for an inter-station run with the extreme track geometry and speed restrictions along the line 

since the current and previous guess of coasting locations may be chosen from the same coasting 

region as described in Section 3.1.3. 

 

Even though Golden section and Fibonacci methods are not the fastest means to obtain the 

solution when compared with the Gradient method, they are more applicable for practical 

implementation because they are not limited by the track geometry along the line and they only 

depend on the distance in an inter-station run.  Hence, they are more robust and reliable than the 

other methods.  Moreover, they obtain the solution within 10 iterations in all cases, which is 

sufficient for the operators to find the coasting solution when a train stops at stations.  

Therefore, the two Bi-section methods are the best to produce a single coasting solution for the 

regulation of train schedule, especially in a metro railway system where the inter-station 

distances are usually short. 

 

Simulation results also reveal that multiple coasting point control is also useful for train service 

regulation.  A long inter-station distance is needed to provide enough space for the multiple 

coasting solutions.  The second or further coasting points are only necessary when the train 

speed slows down to a certain speed level from the first coasting and a train operates in motoring 

again.  Since the location of first coasting point inevitably affects that of the second and so on, 

the solution space of the optimal coasting control becomes complicated.  A lower average 

number of iterations cannot be achieved with Nelder and Mead method because of the operation 

factors of the simplex, when compared with GA.  Further, a lower energy consumption of train 
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movement cannot be achieved with multiple coast control when an inter-station distance is not 

long enough to release more available solution space. 

 

5.3 Practical implementation 

In practice, this “coast control” system can be an independent supervisory tool for individual 

train service regulation, implemented at train-level, likely on train-borne computers, and 

integrated in the Automatic Train Operation (ATO) with direct interface with the Automatic Train 

Supervision (ATS) control centre.  It is not safety critical and its recommended actions are 

safeguarded by the other systems like Automatic Train Protection (ATP).  The allowed run time 

between stations is forwarded to the train-borne “coasting control” system from the central 

control centre when the train stops at stations and the “coasting control” system then determines 

an appropriate speed profile accordingly.  Two sets of input are required for coast control, static 

and dynamic.  The former consists of track layout and traction equipment characteristics which 

are loaded onto the train-borne computer in advance; whilst the latter contains traffic conditions 

and operational requirements which are attained from the central control centre. 

 

As repeated train movement calculation is needed to identify the coasting command within the 

course of the search, a fast microprocessor platform is necessary to quicken up the searching 

process for on-line implementation as there are only 30 seconds or less to find the coasting 

solution when train stops at stations.  Selection of searching algorithms is of course a key 

concern from the viewpoint of software development.  Their advantages and limitations of both 

classical and heuristic methods have been stated.  An advanced high-level language such as C, 

C++, and Pascal can be used for software development.  Further, a duplicate and hot standby 

hardware and software are expected to enhance the system availability and reliability. 
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6 Conclusions 

 

We have presented classical and heuristic approaches to identify the necessary coasting points 

for service regulation in a railway metro system and revealed the feasibility of their application 

on coasting control.  Based on the studies with different searching methods, inter-station 

distance and characteristics of track layout are the two important factors on the choice of 

searching methods for coasting control.  The study shows that the average number of iterations 

is smaller with the Gradient based method.  The main drawback is that the searching process 

terminates with Gradient based method if the slope of the cost function is not available in a 

search.  Golden and Fibonacci methods, however, are more robust than the Gradient based 

methods as they only depend on the size of the solution space.  The additional advantage of 

Fibonacci method is the reduction scale on the solution space in each iteration is maximised with 

the given number of iterations in a search.  

 

On the other hand, the results also deduce that the heuristic approach, GA, offers a lower average 

number of iterations and a fitter solution with multiple coasting point control when compared 

with the classical one, Nelder and Mead method.  Nevertheless, the distance in an inter-station 

run is the prime concern because there is not enough room to accommodate multi-coasting 

commands if the distance between stations is short.  Moreover, the energy demand in a long 

inter-station run is slightly lower with multi-coasting points.  

 

Railway system consists of numerous sub-systems which require stringent real-time monitoring 

and control because of the demanding safety standards.  The results show that the searching 

methods are capable of providing reasonably good and fast coasting solution(s) for flexible 

online train scheduling control with the aid of a train simulator according to the operation 

requirements in all cases of the tests.  In practice, dynamic coasting control has not yet been 
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commonly applied in service regulation.  It can be integrated in the on-board Automatic Train 

Operation (ATO) system and the coasting control command for the next inter-station run can be 

obtained when a train stops at a station.  Even though it may not be the solution to all problems 

of the same nature, it certainly offers an alternative to the operators.  In addition, dynamic 

coasting control is more flexible and efficient in the regulation of train schedule as it adapts to 

the current train service demand and its additional advantage is that energy saving can be 

achieved.  From the application viewpoint, the search of coasting points within a multiple 

inter-station run under a specific overall run-time is a challenging proposition.  The search 

problem becomes multi-dimensional and the solution space is huge. 
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Appendix 

Operation factors of the Nelder and Mead method 

 

The effects of the three operation factors of the Nelder & Mead method on the searching 

performance, in terms the average number of iterations and fitness (cost), are investigated here.  

There is no specific rule on assigning these three operation factors and their specific range are 

listed as follows: -  

1. Reflection factor, α > 0; 

2. Expansion factor, γ > 1; 

3. Contraction factor, 0 < β < 1 

In order to define an appropriate range of value of the operation factors for coasting points 

search, 4 sets of operation factors have been chosen at regular intervals and 5 tests have been 

carried out to reach the specific cost value in each case under the same track layout conditions as 

in Tables 1 and 2.  

Nelder and Mead 
α γ β α γ β α γ β α γ β 

 

0.2 1.2 0.2 0.4 1.4 0.4 0.6 1.6 0.6 0.8 1.8 0.8 
Average number 

of iterations 
10.3 11.3 8.7 12* 

Fitness 0.0098 0.016 0.02 0.018 
Table A  Average number of iterations with different sets of operation factors 
* A specific fitness value cannot be attained in some tests up to the maximum number of 
iterations. 

 

The result shows that a lower fitness and reasonable average number of iterations can be attained 
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with smaller values on operation factors.  Though a smaller average number of iterations can be 

reached with larger values of the operation factors, the possibility of finding the optimal solution 

is limited as the generated solution is more likely to be trapped out from the expected solution 

when the updated solution is close to the optimal point.  Furthermore, the generated solution 

may be out of the boundary of the solution space if the three operation factors are set to a larger 

value.  Hence, smaller values of operation factors are necessary to trade off between the number 

of iterations and the fitness.  As a result, the three operation factors α, γ and β are set at 0.2, 1.2 

and 0.2 respectively. 

 

   
                   

 
 
 

                                                                        
                              
 
 
                       
 

Fig. 1 Speed profile of a simple inter-station run 
 
                                  
                                             

        
                             

          
                       

           
            

 
 

 
Fig. 2 Speed profiles of flat-out run and some possible coasting-points 
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Fig. 3 Run-time extensions with some possible coasting points 

 

 

 
 
 
 
 
 
 
 
 
 

Fig. 4 The range of possible coasting point 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Golden section search 
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Fig. 6 Sequence of uncertainty intervals in a Fibonacci search 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Coasting assignments without adjustment on run time 
 

 
Fig. 8 Input interface for track layout characteristic 
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Fig. 9 Output interface with coast control performance 

 
Fig. 10 Speed profile of train with single coast control 

 
Fig. 11 Speed profile of train with multiple coast control 

 

 
Fig. 12 Speed profile of train with single coast control in a very long inter-station run 

 
Fig. 13 Speed profile of train with multiple coast control in a very long inter-station run 
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Short inter-station run 

Inter-station distance: 1.1 km 
Max. line speed: 80 kph 

Min. coasting speed: 50 kph 
Slope effect r 

Flat-out operation 81.8 sec and 181.37 MJ 
Run time extension 8% (i.e. 88 sec) 

Table 1 Short inter-station operation conditions 

 

Long inter-station run 
Inter-station distance: 9 km 

Max. line speed: 130 kph 
Min. coasting speed: 50 kph 

Slope effect r 
Flat-out operation 309 sec and 1004.6 MJ 

Run time extension 12% (i.e. 346sec) 
Table 2 Long inter-station operation conditions 

 
 

Section (m) Slope (%) 
0 ~ 150 0.3 

150 ~ 600 1.08 
600 ~ 1100 0.3 

Table 3 Track layout of a short inter-station run 
 
 

Section (m) Slope (%) 
0 ~ 125 0 

125 ~ 1325 0.76 
1325 ~ 6225 0.8 
6225 ~ 6975 0.76 
6975 ~ 7775 0 
7775 ~ 8475 0.2 
8475 ~ 8675 0.11 
8675 ~ 9025 0 

Table 4 Track layout of a long inter-station run 
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Short inter-station run 
Slope effect Table 3 with positive value 

Flat-out operation 82.4 sec and 233.75 MJ 
Run time extension 7% (i.e. 88 sec) 

Long inter-station run 
Slope effect Table 4 with positive value 

Flat-out operation 334.6 sec and 1198.23 MJ 
Run time extension 3.5% (i.e. 346 sec) 

Table 5 Short and long inter-station condition with positive slope effect 
 
 

Short inter-station run 
Slope effect Table 3 with negative value 

Flat-out operation 80 sec and 169.9 MJ 
Run time extension 10% (i.e. 88 sec) 

Long inter-station run 
Slope effect Table 4 with negative value 

Flat-out operation 292.6 sec and 668.1 MJ 
Run time extension 18.2% (i.e. 346 sec) 

Table 6 Short and long inter-station condition with negative slope effect 
 
 

Searching 
methods 

Average number of 
iterations 

Run time with the corresponding 
coasting solution (sec) 

Short inter-station run 
Golden* 4 88.4 

Fibonacci* 4 88.4 
Gradient 2.8 87.8 ~ 88.2 

GA  5.6 89 
Long inter-station run 

Golden* 4 344.6 
Fibonacci* 4 344.6 
Gradient 3.4 345.6 ~ 347.4 

GA  11.8 346 ~ 349 
Table 7 Average number of iterations with no track effect 

*Average is not applicable as the number of iterations is the same of all tests 
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Searching 
methods 

Average number of 
iterations 

Run time with the corresponding 
coasting solution (sec) 

Short inter-station run with positive slope (i.e. uphill) 
Golden* 6 88.4 

Fibonacci* 6 88.6 
Gradient 3.2 87.8 ~ 88.4 

GA  10.3 86 ~ 89 
Long inter-station run with positive slope (i.e. uphill) 

Golden* 6 345.8 
Fibonacci* 6 345.6 
Gradient 4.2 346.2 ~ 347.4 

GA  6.9 347 
Table 8 Average number of iterations with positive track layout 

*Average is not applicable as the number of iterations is the same of all tests. 

 

 

Searching 
methods 

Average number of 
iterations 

Run time with the corresponding 
coasting solution (sec) 

Short inter-station run with negative slope (i.e. downhill) 
Golden* 6 87.8 

Fibonacci* 6 88 
Gradient 3.5 87.8 ~ 88.2 

GA**  5 87 ~ 88 
Long inter-station run with negative slope (i.e. downhill) 

Golden* 9 346.2 
Fibonacci* 10 346.8 
Gradient 6.3 344.8 ~ 347 

GA**  6.3 346 ~ 350 
Table 9 Average number of iterations with negative track layout 

*Average is not applicable as the number of iterations is the same of all tests. 
**The required fitness of 0.01 cannot be achieved at the maximum number of iterations. 
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Searching 
methods 

Average number of 
iterations 

Run time with the corresponding 
coasting solution (sec) 

Short inter-station run with no slope 
Nelder & Mead 13.67 86.2 ~ 87.6 

GA 6.3 88 ~ 90 
Short inter-station run with positive slope (i.e. uphill) 

Nelder & Mead 7.17 87.2 ~ 88 
GA 5.56 88 ~ 89 
Short inter-station run with negative slope (i.e. downhill) 

Nelder & Mead 9.8 86.6 ~ 87.2 
GA 6 87 ~ 88 

Table 10 Average number of iterations with multi coasting point control in a short inter-station 
run 

 
 
 

Searching 
methods 

Average number of 
iterations 

Run time with the corresponding 
coasting solution (sec) 

Long inter-station run with no slope 
Nelder & Mead 9.6 344.2 ~ 348.4 

GA 8.2 346 ~ 348 
Long inter-station run with positive slope (i.e. uphill) 

Nelder & Mead 12.75 344.6 ~ 346.8 
GA 12.1 347 ~ 348 
Long inter-station run with negative slope (i.e. downhill) 

Nelder & Mead 8.5 343 ~ 348.4 
GA 9.8 346 ~ 350 

Table 11  Average number of iterations with multi coasting point control in a long inter-station 
run 

Remark: The required fitness of 0.01 may not be attained at the maximum number of iterations 
in both methods. 
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Inter-station distance: 9 km 
Max. line speed: 160 kph 

Run time extension 35% run time of the flat out run 
Single point Multi point Energy consumption of train 

movement with the corresponding 
coasting solution (MJ) 

1089.9  
(see Figure 10)

1306.7  
(see Figure 11) 

Searching method Golden  Nelder and Mead 

Table 12 Comparison of the train movement performance with single and multi coast control to 
achieve the same run time requirement 

 
 

Inter-station distance: 30 km 
Max. line speed: 160 kph 

Run time extension 30% run time of the flat out run 
Single point Multi point Energy consumption of train 

movement with the corresponding 
coasting solution (MJ) 

2675.8  
(see Figure 12)

2535  
(see Figure 13) 

Searching method Golden search Nelder and Mead 

Table 13 Comparison of the train movement performance with single and multi coast control in a 
very long inter-station run 
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