
Elliptic Curves, Group Law, and

Efficient Computation

by

Hüseyin Hışıl

Bachelor of Computer Engineering (Izmir Institute of Technology) – 2003
Master of Computer Engineering (Izmir Institute of Technology) – 2005

Thesis submitted in accordance with the regulations for the

Degree of Doctor of Philosophy

Information Security Institute
Faculty of Science and Technology

Queensland University of Technology

24 April 2010

Keywords

Elliptic curve, group law, point addition, point doubling, projective coordinates, rational maps,

birational equivalence, Riemann-Roch theorem, rational simplification, ANSI C language, x86

assembly language, scalar multiplication, cryptographic pairing computation, elliptic curve

cryptography.

i

ii

Abstract

This thesis is about the derivation of the addition law on an arbitrary elliptic curve and

efficiently adding points on this elliptic curve using the derived addition law. The outcomes

of this research guarantee practical speedups in higher level operations which depend on point

additions. In particular, the contributions immediately find applications in cryptology.

Mastered by the 19th century mathematicians, the study of the theory of elliptic curves

has been active for decades. Elliptic curves over finite fields made their way into public key

cryptography in late 1980’s with independent proposals by Miller [Mil86] and Koblitz [Kob87].

Elliptic Curve Cryptography (ECC), following Miller’s and Koblitz’s proposals, employs

the group of rational points on an elliptic curve

in building discrete logarithm based public key cryptosystems. Starting from late 1990’s, the

emergence of the ECC market has boosted the research in computational aspects of elliptic

curves. This thesis falls into this same area of research where the main aim is to speed up the

additions of rational points on an arbitrary elliptic curve (over a field of large characteristic).

The outcomes of this work can be used to speed up applications which are based on elliptic

curves, including cryptographic applications in ECC.

The aforementioned goals of this thesis are achieved in five main steps. As the first step,

this thesis brings together several algebraic tools in order to derive the unique group law of

an elliptic curve. This step also includes an investigation of recent computer algebra packages

relating to their capabilities. Although the group law is unique, its evaluation can be performed

using abundant (in fact infinitely many) formulae. As the second step, this thesis progresses

the finding of the best formulae for efficient addition of points. In the third step, the group

law is stated explicitly by handling all possible summands. The fourth step presents the

algorithms to be used for efficient point additions. In the fifth and final step, optimized software

implementations of the proposed algorithms are presented in order to show that theoretical

speedups of step four can be practically obtained. In each of the five steps, this thesis focuses

on five forms of elliptic curves over finite fields of large characteristic. A list of these forms and

their defining equations are given as follows:

(a) Short Weierstrass form, y2 = x3 + ax+ b,

(b) Extended Jacobi quartic form, y2 = dx4 + 2ax2 + 1,

(c) Twisted Hessian form, ax3 + y3 + 1 = dxy,

(d) Twisted Edwards form, ax2 + y2 = 1 + dx2y2,

iii

(e) Twisted Jacobi intersection form, bs2 + c2 = 1, as2 + d2 = 1,

These forms are the most promising candidates for efficient computations and thus considered in

this work. Nevertheless, the methods employed in this thesis are capable of handling arbitrary

elliptic curves.

From a high level point of view, the following outcomes are achieved in this thesis.

- Related literature results are brought together and further revisited. For most of the cases

several missed formulae, algorithms, and efficient point representations are discovered.

- Analogies are made among all studied forms. For instance, it is shown that two sets of

affine addition formulae are sufficient to cover all possible affine inputs as long as the

output is also an affine point in any of these forms. In the literature, many special cases,

especially interactions with points at infinity were omitted from discussion. This thesis

handles all of the possibilities.

- Several new point doubling/addition formulae and algorithms are introduced, which are

more efficient than the existing alternatives in the literature. Most notably, the speed of

extended Jacobi quartic, twisted Edwards, and Jacobi intersection forms are improved.

New unified addition formulae are proposed for short Weierstrass form. New coordinate

systems are studied for the first time.

- An optimized implementation is developed using a combination of generic x86-64

assembly instructions and the plain C language. The practical advantages of the proposed

algorithms are supported by computer experiments.

- All formulae, presented in the body of this thesis, are checked for correctness using

computer algebra scripts together with details on register allocations.

iv

Table of Contents

Front Matter i

Keywords . i

Abstract . iii

Table of Contents . v

List of Figures . ix

List of Tables . xi

List of Algorithms . xiii

Declaration . xv

Previously Published Material . xvii

Acknowledgements . xix

1 Introduction 1

1.1 Motivation . 2

1.2 Aims and outcomes . 4

1.3 Roadmap . 7

2 Elliptic Curves 9

2.1 Weierstrass form . 9

2.2 Group law . 11

2.3 Forms of elliptic curves . 13

2.3.1 Short Weierstrass form . 14

2.3.2 Extended Jacobi quartic form . 16

2.3.3 Twisted Hessian form . 17

2.3.4 Twisted Edwards form . 18

2.3.5 Twisted Jacobi intersection form . 20

2.3.6 Coverage of different forms . 21

2.4 Scalar multiplication . 23

2.5 Conclusion . 23

3 A toolbox for group laws 25

3.1 Computer Algebra Systems . 26

3.2 Automated derivations . 26

3.3 Minimal total degree . 32

v

3.4 Automated validations . 35

3.5 Finding more formulae . 36

3.6 Brain teasers . 37

3.7 Conclusion . 39

4 Group law in affine coordinates 41

4.1 Short Weierstrass form . 42

4.2 Extended Jacobi quartic form . 44

4.3 Twisted Hessian form . 51

4.4 Twisted Edwards form . 56

4.5 Twisted Jacobi intersection form . 63

4.6 Conclusion . 69

5 Group law in projective coordinates 73

5.1 Twisted Edwards form . 74

5.1.1 Homogeneous projective coordinates, E 74

5.1.2 Inverted coordinates, E i . 76

5.1.3 Extended homogeneous projective coordinates, Ee 77

5.1.4 Mixed homogeneous projective coordinates, Ex 82

5.1.5 Comparison and remarks . 83

5.2 Extended Jacobi quartic form . 86

5.2.1 Homogeneous projective coordinates, Q 86

5.2.2 Extended homogeneous projective coordinates, Qe 88

5.2.3 Mixed homogeneous projective coordinates, Qx 90

5.2.4 Weighted projective coordinates, Qw . 91

5.2.5 Comparison and remarks . 93

5.3 Twisted Jacobi intersection form . 95

5.3.1 Homogeneous projective coordinates, I 95

5.3.2 Modified homogeneous projective coordinates, Im 97

5.3.3 Comparison and remarks . 98

5.4 Twisted Hessian form . 99

5.4.1 Homogeneous projective coordinates, H 100

5.4.2 Extended homogeneous projective coordinates, He 102

5.4.3 Comparison and remarks . 104

5.5 Short Weierstrass form . 105

5.5.1 Homogeneous projective coordinates, P 106

5.5.2 Jacobian coordinates, J . 107

5.5.3 Comparison and remarks . 109

5.6 Conclusion . 111

6 Experimental results 115

6.1 Hardware and programming environment . 115

6.2 Finite field arithmetic . 116

6.3 Elliptic curve operations . 118

vi

6.4 Scalar multiplication . 120

6.4.1 Experiment1: Scalar multiplication with variable base-point 120

6.4.2 Experiment2: Scalar multiplication with fixed base-point 121

6.5 Conclusion . 122

7 A case study on pairing computation 125

7.1 Choice of curve and the group law . 126

7.2 Line computations for Tate pairing . 127

7.2.1 The Miller values . 127

7.2.2 Encapsulated computations in homogeneous projective coordinates . . . 129

7.3 Curve generation . 130

7.4 Comparison and conclusion . 131

8 Conclusion 133

8.1 Summary of research and outcomes . 133

8.2 Future research ideas . 135

A Mathematical definitions 137

A.1 Preliminaries . 137

A.2 Birational equivalence and isomorphism . 138

A.3 Riemann-Roch theorem . 139

A.4 Divisor class group . 141

A.5 Arithmetic of ideals . 142

B Elliptic Curve Cryptography 145

B.1 Elliptic curve cryptosystems . 146

B.1.1 Key-pair generation . 146

B.1.2 Diffie-Hellman key exchange . 147

B.1.3 ElGamal cryptosystem . 147

B.1.4 Elliptic curve digital signature algorithm 148

B.2 Discrete Logarithms . 149

B.2.1 Growth of order . 150

B.2.2 Shanks’ baby-step/giant-step attack . 150

B.2.3 Random walks and Pollard’s rho attack 150

B.2.4 Pohlig-Hellman attack . 151

B.2.5 Isomorphism attacks . 152

B.2.6 Index calculus method . 153

B.2.7 Fixed versus random curves . 153

B.3 Cryptographic pairings . 154

C Computer algebra scripts 157

C.1 Short Weierstrass form . 157

C.2 Extended Jacobi quartic form . 161

C.3 Twisted Hessian form . 170

vii

C.4 Twisted Edwards form . 176

C.5 Twisted Jacobi intersection form . 181

C.6 Scripts for Chapter 7 . 188

Bibliography 191

viii

List of Figures

2.1 Short Weierstrass form elliptic curve y2 = x3 − 4x+ 3 over R. 15

2.2 Extended Jacobi quartic form elliptic curve y2 = −100x4 + 40x2 + 1 over R. . . 15

2.3 Twisted Hessian form elliptic curve −6x3 + y3 + 1 = −4xy over R. 15

2.4 Twisted Edwards form elliptic curve 5x2 + y2 = 1− 100x2y2 over R. 15

2.5 Twisted Jacobi intersection form elliptic curve 3.2s2 + c2 = 1, 2.2s2 + d2 = 1

over R. 15

6.1 Sample F2256−587 operation: Divide-by-2 with no conditional statement. 118

B.1 Pollard’s rho illustration: a rho-like shape where t ≈
√
πn/8 is the tail length

and s ≈
√
πn/8 is the cycle length. 151

ix

x

List of Tables

2.1 Statistics on the coverage of some forms with two curve constants. 22

2.2 Statistics on the coverage of some forms with a single curve constant. 22

5.1 Operation counts for twisted Edwards form in different coordinate systems. . . 84

5.2 Operation counts for twisted Edwards form with a = ±1 in different coordinate

systems. 84

5.3 Operation counts for extended Jacobi quartic form in different coordinate systems. 94

5.4 Operation counts for extended Jacobi quartic form with a = −1/2 in different

coordinate systems. 94

5.5 Operation counts for (twisted) Jacobi intersection form with b = 1 in different

coordinate systems. 99

5.6 Operation counts for twisted Hessian form in different coordinate systems. . . . 105

5.7 Operation counts for (twisted) Hessian form with a = 1 in different coordinate

systems. 105

5.8 Operation counts for short Weierstrass form in different coordinate systems. . . 110

5.9 Operation counts for short Weierstrass form with a = −3 in different coordinate

systems. 110

5.10 Operation counts in selected coordinate systems for each form. 112

5.11 Cost estimate of SMUL per bit of scalar in M. 112

6.1 Estimated cost comparison of various field operations. 117

6.2 Sample elliptic curves over F2256−587. 118

6.3 Selected operation counts for the most frequently accessed operations. 119

6.4 Cycle-counts (rounded to the nearest one thousand) for 256-bit scalar

multiplication with variable base-point . 120

6.5 Cycle-counts (rounded to the nearest one thousand) for 256-bit scalar

multiplication with fixed base-point . 122

xi

xii

List of Algorithms

2.2.1 The addition law for Weierstrass form in affine coordinates 12

2.4.1 Left-to-right binary method for scalar multiplication 23

4.1.1 Addition law in affine coordinates for short Weierstrass form 44

4.2.1 Addition law in affine coordinates for extended Jacobi quartic form 49

4.3.1 Addition law in affine coordinates for twisted Hessian form 55

4.4.1 Addition law in affine coordinates for twisted Edwards form 61

4.5.1 Addition law in affine coordinates for twisted Jacobi intersection form 68

B.1.1 Elliptic Curve Key-pair Generation. 146

B.1.2 Elliptic Curve Diffie-Hellman Key Exchange Scheme. 147

B.1.3 Elliptic Curve ElGamal Encryption. 148

B.1.4 Elliptic Curve ElGamal Decryption. 148

B.1.5 Elliptic Curve Digital Signature Generation. 148

B.1.6 Elliptic Curve Digital Signature Verification. 149

B.3.1 Miller’s algorithm . 155

xiii

xiv

Declaration

The work contained in this thesis has not been previously submitted for a degree or diploma at

any higher education institution. To the best of my knowledge and belief, the thesis contains

no material previously published or written by another person except where due reference is

made.

Signed: . Date: .

xv

xvi

Previously Published Material

The following papers have been published or presented, and contain material based on the

content of this thesis.

[1] Huseyin Hisil, Gary Carter, and Ed Dawson. New formulae for efficient elliptic curve

arithmetic. In INDOCRYPT 2007, volume 4859 of LNCS, pages 138–151. Springer, 2007.

[2] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson. Faster group

operations on elliptic curves. In Australasian Information Security Conference (AISC 2009),

Wellington, New Zealand, January 2009, volume 98, pages 11–19. Conferences in Research

and Practice in Information Technology (CRPIT), 2009, The Best Student-paper Award.

[3] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson. Twisted Edwards

curves revisited. In ASIACRYPT 2008, volume 5350 of LNCS, pages 326–343. Springer, 2008.

[4] Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson. Jacobi quartic

curves revisited. In ACISP 2009, volume 5594 of LNCS, pages 452–468. Springer, 2009.

[5] Craig Costello, Huseyin Hisil, Colin Boyd, Juan Manuel Gonzales Nieto, and Kenneth

Koon-Ho Wong. Faster pairings on special Weierstrass curves. In Pairing 2009, volume 5671

of LNCS, pages 89–101. Springer, 2009.

xvii

xviii

Acknowledgements

I would like to express my sincere gratitude to my principal supervisor Professor Emeritus Ed

Dawson who generously devoted time to the research that I have carried out over the past

three and a half years. Prof. Dawson has always looked at the larger picture when I was only

able to focus on technical details, and continuously guided me with his expertise to a better

understanding of my research topic.

I would like to thank my associate supervisors Dr. Gary Carter and Dr. Kenneth Koon-Ho

Wong for their close interest in my research and uncountable number of helpful suggestions.

Dr. Carter placed ultimate priority on every aspect of my research and provided improvements

to several results of this work at their preliminary stage. Dr. Wong generously shared his

knowledge, suggested many computer algebra tips, and even worked with me in writing several

computer algebra scripts.

I would like to thank Prof. Colin Boyd, Mr. Craig Costello, and Dr. Juan Manuel Gonzalez

Nieto for their joint work in Chapter 7.

I would like to thank Dr. Harry Bartlett, Dr. Siguna Mueller, Assoc. Prof. Mike Scott,

and Dr. Douglas Stebila for taking part in the reading committee and for providing many

useful ideas and suggestions.

Special thanks go to Prof. Saban Eren and Assoc. Prof. Ahmet Koltuksuz who provided

invaluable support and motivation for doing post-graduate research abroad. Many thanks go

to my friends and colleagues at Information Security Institute for forming such a great working

environment. I would like to thank Mr. Hamdi Dibeklioglu who suggested visual improvements

to the illustrations in this thesis.

I thank my parents and my sister for their continued love, for whom this thesis is dedicated

to with the most sincere respect and gratitude. They are the ones who have truly understood

my commitment and dedication into this thesis and have put enourmous efforts into my

education over years with patience and support.

Last, but not least, thanks to all software developers: mostly, to the developers of Eclipse,

MAGMA, Maple, Subversive, and Texlipse. Without these powerful tools it would have taken

ages to make a long type setting and detailed algebraic investigation.

xix

xx

Chapter 1

Introduction

Elliptic curves have been of great interest to algebraists, algebraic geometers, and number

theorists for numerous decades. Since the time of Jacobi (more than 150 years ago) and long

before the emergence of modern cryptography, it was well-known that every elliptic curve is

endowed with a unique group law which turns the points on an elliptic curve into an abelian

group. The binary operation of this group, which is rationally expressed in terms of the

coordinates of points of an elliptic curve, is called the addition law. The addition law turns

out to be efficiently computable for elliptic curves defined over “suitable” fields. In the 20th

century, such elliptic curves found several applications in cryptography.

Cryptography Elliptic Curve Cryptography (ECC) is a main branch of public key

cryptography which employs elliptic curves in the construction of cryptosystems. Fundamental

notions of public key cryptography were developed by Diffie and Hellman [DH76] in 1976,

based on a striking idea of using separate keys for encrypting a plaintext and decrypting

the ciphertext; or for signing a document and verifying the digital signature of the signed

document. Since then, several proposals have been made to realize public key cryptosystems.

The discovery of ECC is due to independent works of Miller [Mil86] and Koblitz [Kob87], see

Appendix B.1. ECC has gained commercial success starting in the 1990s with the release

of internationally recognized standards (such as ANSI X9.62 [Ame05], ANSI X9.63 [Ame01],

FIPS 186-2 [Nat00], IEEE-1363 [Ins00], ISO CD 14888-3 [Int06], and WAP WLTS [Ope99]).

Today, several ECC hardware and software applications can be found in the market place.

A typical ECC implementation has four logical layers: finite field layer, elliptic curve point

operations layer, scalar multiplication layer, and protocol layer. This thesis focuses on

improving the second layer. Cryptographic computations are mainly dominated by point

additions and point doublings. Therefore, these operations are of vital importance for the

efficiency of higher layers: the scalar multiplication layer and the protocol layer. The efficiency

of ECC has been improved over decades and is still an active area of research. ECC related

efficient computations largely cover the direction of this research.

1

2 Chapter 1. Introduction

Cryptanalysis The discrete logarithm of kP with respect to base point P is the integer k.

Computing the discrete logarithm when only kP and P are known, is assumed to be much

harder than computing a scalar multiplication, see Appendix B.2. The security of ECC is

based on the hardness of computing discrete logarithms. In particular, all known methods of

discrete-logarithm computation run in exponential time for carefully selected parameters. As

a consequence, elliptic curve cryptosystems promote a maximum conjectured-security per key-

bit among other types public key cryptosystems. Although this work does not contribute to

faster computation of discrete logarithms, it should be emphasized that all methods of discrete-

logarithm-computation are again dominated by point additions where efficient point additions

are crucial for successful attacks. Elliptic curves are the main ingredients of Lenstra’s integer

factorization (ECM) algorithm [Len87] and Atkin and Morain’s elliptic curve primality proving

(ECPP) algorithm. At the heart of both algorithms, once more efficient point additions are of

paramount importance.

1.1 Motivation

The emphasis on using elliptic curves in cryptography stands on the following observations:

i the discrete logarithm computation can be made intractable for the existing technology,

ii once i is satisfied, the cryptographic operations can still be carried out efficiently.

In the case of i, excluding the algebraic attacks which apply only to some very special

elliptic curves (cf. [Sma99], [FR94], [MVO91]), computing an elliptic curve discrete logarithm

in a large prime order subgroup of an elliptic curve still runs in exponential time with Pollard’s

rho method (cf. [Pol78], [Tes98], [vOW99]), the best algorithm known to date for computing

generic discrete logarithms. As a side-effect the required key length and representation of the

points require far fewer bits in comparison to other public key cryptosystems such as RSA. For

instance, it is generally accepted that 160-bit ECC keys are as secure as 1024-bit RSA keys,

cf. [HMV03]. For higher levels of security, 196-bit, 224-bit, 256-bit ECC keys can also be used

in conjunction with ECC standards. The smaller key sizes is a powerful property of ECC,

which has provided initial motivations for this thesis. Note that the corresponding RSA key

sizes for “the same level of security” increase more rapidly since subexponential time attacks

apply to the case of RSA crpytosystem.

In the case of ii, the cryptographic operations which are typically dominated by scalar

multiplications, can be efficiently computed using the “traditional” Weierstrass form of an

elliptic curve (cf. [CF05, Ch.13]). Roughly speaking (for now), each scalar multiplication

is composed of a few hundred point additions each of which can be performed with 16

multiplications in the underlying finite field. At this stage, it is natural to ask whether the

point addition can be performed using fewer field operations. If this can be achieved then

higher-level operations will automatically be faster as desired. As a prelude (to heighten the

reader’s interest), it can be stated here that this thesis introduces algorithms which require as

few as 8 multiplications rather than 16 and are applicable to many cryptographically-interesting

elliptic curves.

1.1. Motivation 3

Elliptic curves can be represented with several different types of defining equations. Over

fields of large characteristic, the most celebrated five forms of elliptic curves are the following:

1 Short Weierstrass form, y2 = x3 + ax+ b (in variables x and y),

2 Montgomery form, by2 = x3 + ax2 + x (in variables x and y),

3 Extended Jacobi quartic form, y2 = dx4 + 2ax2 + 1 (in variables x and y),

4 Hessian form, x3 + y3 + 1 = 3dxy (in variables x and y),

5 Jacobi intersection form, s2 + c2 = 1, as2 + d2 = 1 (in variables s, c, and d).

Short Weierstrass form has been the choice in most cryptographic standards and in

hardware realizations over decades. This is due to two advantages of the short Weierstrass

form:

i every elliptic curve over a field of characteristic 6= 2, 3 can be represented in short

Weierstrass form,

ii the existing algorithms for performing group operations on some Weierstrass curves were

more efficient in comparison to the others, cf. [CC86] and [CMO98]. The only exception

is the Montgomery form [Mon87] for which Montgomery’s algorithm is faster in some

applications.

Indeed, the picture in ii remained unchanged for a long time. After 2000, however, a series of

studies were conducted to speed up other forms of elliptic curves in certain contexts such as

preventing side channel information leak or parallelization of operations over the computational

units of some hardware (cf. [LS01], [Sma01], [JQ01], [SW03], [BJ03a], [Duq07]). Among these

works, [LS01] presented point doubling algorithms which were more efficient than the point

doubling algorithms known for short Weierstrass form.

In 2006, Montgomery form was integrated into Diffie-Hellman key-exchange and secret-

sharing in [Ber06b], with a speed record at the time. In the same year, competitive formulae

were proposed in [Gau06] for elliptic Kummer lines. Again in the same year, two special cases

of (general) Weierstrass form were considered in [DI06] for efficient computations. The point

doubling and point tripling algorithms in [DI06] were faster than the algorithms known for

short Weierstrass form. So, the list was updated with:

6 Kummer line of y2 = x(x − 1)(x− a4

a4−b4) (in variables x and y),

7 Doche/Icart/Kohel-2 form, y2 = x3 + ax(x + 16) (in variables x and y),

8 Doche/Icart/Kohel-3 form, y2 = x3 + 3a(x+ 1)2 (in variables x and y).

In 2007, Edwards form was introduced in [BL07b] adding a ninth entry to the list of famous

forms:

9 Edwards form, x2 + y2 = c2(1 + dx2y2).

4 Chapter 1. Introduction

Besides its several advantages, Edwards form has also broken the speed barrier of the short

Weierstrass form. Even faster algorithms were introduced in [BL07c]. Shortly after, Edwards

form was generalized to twisted Edwards form ax2 + y2 = 1 + dx2y2 which covers more curves

and provides additional benefits.

In conclusion, spanning the period 2000 to late 2006—when this research commenced—

several studies provided evidence of a more efficient “future” for elliptic curves. These studies

have been a major motivation of this thesis.

In this thesis, the computer algrebra has been used as a powerful tool for studying the

selected models. Developments in this area have been an important motivation. Especially,

the map compositions and newly added implementations of Riemann-Roch computations

are performed with computer algebra packages MAGMA [BCP97] and Maple [MAP08]. In

addition, the latest rational simplification techniques from 2006 are also used in making the

investigation faster, see [MP06].

1.2 Aims and outcomes

The main aim of this thesis is revisiting the elliptic curve group law with an emphasis on

designing more efficient point additions. To achieve this aim the research is split into the

following successive tasks:

- Collecting algebraic tools in order to find maps between curves using the Riemann-Roch

theorem;

- Developing computer algebra tools to automate the group law derivation using the derived

maps and the well-known group law of Weierstrass form elliptic curves;

- Finding a systematic way of simplifying rational expressions to make a “simple” statement

of the group law;

- Developing an algorithm for each form in order to make a complete description of the

group law by appropriately handling all possible summands;

- Developing inversion-free algorithms in various coordinate systems for each form and

comparing each coordinate system in terms of efficiency in suitable contexts;

- Developing optimized high-speed software implementations in order to support

theoretical results.

In each of these tasks, this thesis focuses on five forms of elliptic curves over finite fields of

large characteristic. These five forms are the following:

1 Short Weierstrass form, y2 = x3 + ax+ b (in variables x and y),

2 Extended Jacobi quartic form, y2 = dx4 + 2ax2 + 1 (in variables x and y),

3 Twisted Hessian form, ax3 + y3 + 1 = dxy (in variables x and y),

4 Twisted Edwards form, ax2 + y2 = 1 + dx2y2 (in variables x and y),

1.2. Aims and outcomes 5

5 Twisted Jacobi intersection form, bs2 + c2 = 1, as2 + d2 = 1 (in variables s, c and d).

There are several other forms of elliptic curves which are not specifically studied (or not even

mentioned) in this work. This is due to the experience gained in this work and in many other

studies that the above five forms are the most promising candidates for efficient computations.

Nevertheless, the methods employed in this thesis are capable of handling an arbitrary form

of an elliptic curve defined over an arbitrary field, embedded in a two-or-more-dimensional

algebraic space.

Partial outcomes of this thesis have already appeared in published papers and have been

presented at relevant conferences which have been listed on page xvii. In particular, partial

contributions of [1] and [2] appears in Chapter 5. The contributions of [3] and [4] specifically

appear in §5.1 and §5.2 of Chapter 5, respectively. In addition, the implementation introduced

in [4] is a part of a more general software project explained in Chapter 6. Finally, Chapter 7

is based on [5]. The results in these papers will be used hereafter without further pointers.

From a high level point of view, the following outcomes are achieved in this thesis.

- Fragmented results in the literature about the group law on elliptic curves are brought

together. In this context, each form is revisited by following a common notation and

a similar treatment. This approach leads to the discovery of several missed formulae,

algorithms, and efficient point representations in the previous works.

- Analogies are made among all studied forms. For instance, it is shown that two sets of

addition formulae are sufficient to cover the affine part of the curve given in any of these

forms, see Chapter 4. This is an analogous observation to [BL95], which applies not only

to short Weierstrass form but also to the other four forms.

- It is well-known that the addition law on an elliptic curve is a morphism, i.e. there

always exists a way of adding two arbitrary points. In the literature, many special cases,

especially interactions with points at infinity, were omitted from discussion. This thesis

describes the corresponding morphism for each form explicitly in affine coordinates (see

Chapter 4).

- ♣ Several new point doubling/addition formulae and algorithms are introduced, which

are more efficient than the existing alternatives in the literature, see Chapters 4 and 5.

- An optimized implementation is developed using a combination of generic x86 assembly

and plain C languages. Several experiments using this implementation have supported

the practical advantages of the proposed algorithms (see Chapter 6).

- All formulae presented in the body of this thesis are checked for correctness using

computer algebra scripts which are also provided as an appendix for the convenience

of the reader. In fact, the presented computer scripts make several details —such as the

register allocations— accessible to programmers, see Appendix C.

Since the main contribution of the thesis is efficient computations, the ♣-marked item

requires more discussion of the contributions as follows:

6 Chapter 1. Introduction

- Short Weierstrass form y2 = x3 + ax + b. Affine unified addition formulae (i.e.

point addition formulae which can be used for almost all doublings and additions)

were previously studied in homogeneous projective coordinates taking 12M + 5S + 1D

in [BJ02] and 11M + 6S + 1D in [BL07a]. Here, the notations for M, S, D, and a are

borrowed from [BL07b]. M, S, D means multiplication, squaring, addition, respectively.

The operation count is improved to 11M + 5S + 1D in the same coordinate system.

Furthermore, a unified addition algorithm which takes 7M+9S+1D is presented for the

first time in modified Jacobian coordinates. The latter algorithm shows that modified

Jacobian coordinates are more suitable for unified additions than homogeneous projective

coordinates for most applications.

- Special short Weierstrass form y2 = cx3+1. A new point doubling formulae is introduced

for the non-standard short Weierstrass curve y2 = cx3 + 1. The proposed doubling

formulae shares several common subexpressions with the line functions which arise in

Tate pairing computations. A combined point doubling and line computation takes only

(k + 3)M + 5S where k is the embedding degree. This is an improvement over the best

literature proposal of (k + 3)M + 8S in [ALNR09]. In terms of operation counts, this is

so far the best for pairing computations.

- Extended Jacobi quartic form y2 = dx4 + 2ax + 1. A 2M + 5S + 1D point doubling

algorithm is proposed in homogeneous projective coordinates. The proposed algorithm

is capable of working for arbitrary curve constants and in this context, improves upon

the 3M + 6S + 3D (reported as 11M) algorithm in [CC86]. Several point addition

algorithms are proposed in this thesis in homogeneous projective coordinates and

extended homogeneous projective coordinates. The best results are obtained in the

latter coordinate system. In fact, this coordinate system is considered for extended

Jacobi quartic curves for the first time in this thesis. A dedicated addition algorithm

takes 7M + 3S + 3D in extended homogeneous projective coordinates. This is also an

improvement over the corresponding 16M + 2D, 10M + 3S + 3D, and 9M + 2S + 3D

algorithms in [CC86], [BJ03a], and [Duq07], respectively. Furthermore, an efficient

technique to benefit from fast doublings in homogeneous projective coordinates and

fast additions in extended homogeneous projective coordinates is described, following

a similar construction in [CMO98]. It is important to emphasize here that these results

are obtained not only by considering different coordinate systems but also by searching

for lower degree doubling and addition formulae in affine coordinates and then adapting

them to suitable coordinate systems. The proposed algorithms are applicable for all

elliptic curves having a point of order 2. For special cases of a and d, in particular for

a = ±1/2 or d = ±1, even more striking results are obtained, which again improves upon

other works in the literature.

- Twisted Hessian form ax3 +y3 +1 = dxy. An 11M point addition algorithm is proposed,

improving upon the 12M+ 1D algorithm in [BL07a]. For Hessian form, i.e. when a = 1,

7M + 1S and 3M + 6S doubling algorithms are proposed, improving upon the standard

6M + 3S algorithm, cf. [Sma01].

1.3. Roadmap 7

- Twisted Edwards form ax2 + y2 = 1 + dx2y2. A 9M + 2D point addition algorithm is

proposed, improving upon the 9M + 1S + 1D algorithm in [BL07c]. In the case a = −1

the operation count is further improved to a remarkable 8M which is so far the best

addition algorithm (excluding differential-additions which fall into a somewhat different

“category” of comparison, cf. [Mon87]). Finally, efficient ways of mixing homogeneous

projective and extended homogeneous projective coordinates are shown as in the extended

Jacobi quartic case.

- Twisted Jacobi intersection form bs2 + c2 = 1, as2 + d2 = 1. Usually these curves were

studied only for the case b = 1. This thesis revisits Jacobi intersection form with its

generalized version, i.e. with arbitrary b. This modification only marginally increases

the coverage of this form. On the other hand, describing elliptic curves which can be

represented in this form becomes easier. In particular, every elliptic curve having 3 points

of order 2 can be represented in twisted Jacobi intersection form. For the case b = 1, a

2M+5S+1D doubling algorithm is presented which improves —for very small D— upon

the 4M + 3S and 3M + 4S alternatives given in [LS01] and [BL07a], respectively. An

11M addition algorithm which improves upon the 13M+2S+1D in [LS01] is introduced

in extended homogeneous projective coordinates, based on new affine addition formulae.

Note that these remarks are only the most outstanding outcomes of this thesis. Additional

contributions and comparisons for each form are omitted here. For full details see Chapter 5.

1.3 Roadmap

The rest of this thesis is structured as follows.

Chapter 2 provides formal definitions for background concepts which will be frequently

accessed in the subsequent chapters. In particular, the most important concept of study in

this thesis, the group law, is defined. Weierstrass forms of selected curves are presented along

with birational maps.

Chapter 3 brings together several computational tools which are beneficial in developing

efficient ways of deriving group laws on elliptic curves. These tools will be central to Chapters 4,

5, and 7.

Chapter 4 presents low-degree point addition formulae for fixed forms of elliptic curves and

states a complete addition algorithm in affine coordinates for each form by suitably handling

all division by zero exceptions and interactions with the point(s) at infinity.

Chapter 5 presents several new inversion-free point addition formulae together with various

operation counts. Chapter 5 also provides a collection of selected formulae from the literature.

Chapter 6 provides several details on the implementation of elliptic curve arithmetic in the

light of new results from Chapters 4 and 5. The aim is to show that ECC applications can

benefit practically from the proposed methods. A secondary aim is to compare and contrast

different elliptic curve models in terms of their efficiency, space consumption, and sensitivity to

varying environmental constraints (e.g. minimizing side channel information leak or memory

requirements).

8 Chapter 1. Introduction

Chapter 7 is a case study about efficient pairing computation on the j-invariant zero curve

y2 = cx3 + 1. In particular, Chapter 7 introduces new formulae that facilitate a faster Tate

pairing computation on this curve.

Chapter 8 concludes this thesis with a summary of the contributions and future research

directions.

The thesis contains three appendices. Appendix A provides formal definitions for

background algebraic concepts which will be frequently accessed in the main body of the

thesis. In particular, the most important objects of study in this thesis –elliptic curves– are

defined. Appendix A also summarizes the main results from Gröbner basis theory which will

be needed in Chapter 3 for tool development. Appendix B reviews basic concepts of ECC,

elliptic curve discrete logarithm problem, and cryptographic pairings. Appendix C provides

computer scripts to verify the formulae presented in this thesis.

Chapter 2

Elliptic Curves

This chapter provides formal definitions for background concepts which will be frequently

accessed in the subsequent chapters. In particular, the most important concept of study in

this thesis, the so-called group law, is defined. This law makes the points forming an elliptic

curve into a group on which efficient addition of points will gradually come into play as the

main theme of this thesis. To assist this theme five celebrated forms of elliptic curves are

presented together with their important properties. These five forms are the basis of the study

in the remainder of the thesis for efficient implementation of point addition on elliptic curves.

The definitions and notations for more fundamental concepts

and important theorems can be found in Appendix A.

The notation is adapted from [Sil94], [Sti93], and [CF05]. The rest of the chapter is

organized as follows. §2.1 describes the Weierstrass form of an elliptic curve. §2.2 summarizes

the well known group law on Weierstrass curves. §2.3 presents the relation of the selected forms

of elliptic curves to the general Weierstrass curve. Many of the maps in §2.3 are computed

independently and documented in this thesis. §2.4 defines the scalar multiplication on an

elliptic curve. Conclusions are drawn in §2.5.

2.1 Weierstrass form

Throughout this subsection, K denotes a field of arbitrary characteristic and L an algebraic

extension of K.

Definition 2.1.1. Let a1, a3, a2, a4, a6 ∈ K. A Weierstrass curve defined over K is the curve

EW,a1,a3,a2,a4,a6
: v2 + a1uv + a3v = u3 + a2u

2 + a4u+ a6.

A Weierstrass curve is non-singular if and only if for every u1, v1 ∈ K (closure of K) with

v2
1+a1u1v1+a3v1−(u3

1+a2u
2
1+a4u1+a6) = 0, the partial derivatives 2v1+a1u1+a3 and a1v1−

9

10 Chapter 2. Elliptic Curves

3u2
1−2a2u1−a4 do not vanish simultaneously (see the Jacobi criterion in [CF05, Lemma 4.49]).

The singularity check can be done algebraically by computing ∆ = −b22b8−8b34−27b26+9b2b4b6

where b2 = a2
1+4a2, b4 = a1a3+2a4, b6 = a2

3+4a6, and b8 = a2
1a6−a1a3a4+4a2a6+a2a

2
3−a2

4.

A Weierstrass curve is non-singular if and only if ∆ 6= 0. The notation EW,a1,a3,a2,a4,a6
will

be abbreviated as EW when a1, a3, a2, a4, a6 are understood. The projective closure of EW is

given by the equation

EW,a1,a3,a2,a4,a6
: V 2W + a1UVW + a3VW

2 = U3 + a2U
2W + a4UW

2 + a6W
3.

A point (U : V : W) with U, V ∈ K and W ∈ K\{0} on EW corresponds to the affine point

(U/W, V/W) on EW. The point (0 : 1 : 0) on EW is non-singular. This point is called the

point at infinity and is denoted by ∞. The point ∞ is K-rational. There are no other points

on EW with W = 0.

With a slight abuse of notation, EW(L), the set of L-rational points on EW is denoted by

EW(L) = {(u, v) ∈ L2 | v2 + a1uv + a3v = u3 + a2u
2 + a4u+ a6} ∪ {∞}.

An elliptic curve is denoted by its affine part hereafter by assuming that its projective closure

is understood.

For a fixed field K and a fixed curve C/K, the genus is an invariant of C and is a useful

tool for classification purposes. Curves of a particular genus are typically loosely classified

with respect to birational equivalence which preserves several algebraic properties but not

necessarily an isomorphism. At this point, it is natural to ask whether an arbitrary genus-1

curve is birationally equivalent to a non-singular curve (preferably to a plane curve). The

following theorem provides a celebrated answer.

Theorem 2.1.2 (Weierstrass form of an elliptic curve). Let C/K be a genus 1 curve with a

K-rational point. There exist a1, a3, a2, a4, a6 ∈ K such that

K(C) ∼= K(EW,a1,a3,a2,a4,a6
).

Thus, C is birationally equivalent over K to EW.

Proof. The proof follows from an application of Theorem A.3.6, see [Sil94, §III.3.3] and [CF05,

§4.4.2 and §13.1]. Also see Appendix A for the notation and relevant definitions.

It is also natural to ask when are two Weierstrass curves isomorphic over K.

Theorem 2.1.3. Let EW,a1,a3,a2,a4,a6
and EW′,A1,A3,A2,A4,A6

be Weierstrass curves defined

over K, as in Definition 2.1.1. EW and EW′ are isomorphic over K if and only if there exists

2.2. Group law 11

c ∈ K\{0} and r, s, t ∈ K such that

A1 = (a1 + 2s)/c,

A2 = (a2 − sa1 + 3r − s2)/c2,
A3 = (a3 + ra1 + 2t)/c3,

A4 = (a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st)/c4,

A6 = (a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1)/c
6.

If such c, r, s, t exist then the maps

ψ : EW → EW′ , (u, v) 7→
“u− r

c2
,
v − s(u− r)− t

c3

”

, (2.1)

φ : EW′ → EW, (u′, v′) 7→
“

c2u′ + r, c3v′ + c2su′ + t
”

(2.2)

are the desired isomorphisms defined over K.

Proof. See [Sil94, Table 1.2, III.1].

Definition 2.1.4. The morphism φ in Theorem 2.1.3 is called the admissible change of

variables.

Definition 2.1.5. Assume that c, r, s, t exist such that c ∈ K\{0} and r, s, t ∈ K in the setting

of Theorem 2.1.3. Then, the curves EW and EW′ are called twists. Let L be a finite extension

of K with [L : K] = d. Assume that c ∈ L\{0} and r, s, t ∈ L. If EW and EW′ are isomorphic

over L where d is minimal then EW and EW′ are called twists of degree d. Assuming that

an appropriate d exists, quadratic twists are twists of degree 2, cubic twists are twists of

degree 3, and so on.

Twists are identified with the j-invariant which will be defined next. Let EW and EW′ be

curves defined as in Definition 2.1.1. The j-invariant of EW is given by j(EW) = (b22−24b4)
3/∆.

This is a tool to algebraically check whether the desired c, r, s, t exist such that c ∈ K\{0} and

r, s, t ∈ K. Now, if j(EW) 6= j(EW′) then EW is not isomorphic over K (not even over K)

to EW′ . If j(EW) = j(EW′) then EW is isomorphic over K to EW′ (see any of the reference

books given in Appendix A). For more details on the type of twists that elliptic curves admit,

see [CF05].

2.2 Group law

This section presents the group law on elliptic curves. Let EW be a Weierstrass form elliptic

curve with the point at infinity ∞ ∈ EW(L). The identity element is the point ∞. To specify

this choice the identity is denoted by O. Every point in EW(L) has a unique inverse which

can be computed by the unary operation “−”. A computation of this operation requires case

distinctions. In particular, −O = O. Let P1 = (u1, v1) ∈ EW. Then −P1 = (u1,−v1 − a1u1 −
a3). A computation of the binary operation “+” requires somewhat more case distinctions.

These cases are summarized in Algorithm 2.2.1. Using this algorithm, it can be verified that

P1 + P2 = P2 + P1 and (P0 + P1) + P2 = P0 + (P1 + P2) for all Pi ∈ EW(K). Geometric and

algebraic verifications of the group axioms are given in many textbooks, cf. [Ful69] and [SS98].

12 Chapter 2. Elliptic Curves

Algorithm 2.2.1: The addition law for Weierstrass form in affine coordinates

input : P1, P2,O ∈ EW,a1,a3,a2,a4,a6
(K).

output : P3 = P1 + P2.

if P1 = O then return P2.1

else if P2 = O then return P1.2

else if u1 = u2 then3

if v1 6= v2 then return O.4

else if 2v1 + a1u1 + a3 = 0 then return O.5

else6

λ← (3u2
1

+ 2a2u1 − a1v1 + a4)/(2v1 + a1u1 + a3).7

u3 ← λ2 + a1λ− a2 − 2u1.8

v3 ← λ(u1 − u3)− v1 − a1u3 − a3.9

return (u3, v3).10

end11

else12

λ← (v1 − v2)/(u1 − u2).13

u3 ← λ2 + a1λ− a2 − u1 − u2.14

v3 ← λ(u1 − u3)− v1 − a1u3 − a3.15

return (u3, v3).16

end17

Definition 2.2.1. The unary operation − is called the negation law. The binary operation

+ is called the addition law. Together with a fixed identity element these two laws become

the building blocks of the group law which turns EW in to an additively written abelian

group.

Both the negation and addition laws require case distinctions. The sets of formulae handling

some of these cases will be assigned special names hereafter.

Definition 2.2.2. If a set of formulae can only be used without any case distinction to carry

out the operation

• “−” for all but finitely many points in EW then such formulae are called the point-

negation formulae. The operation carried out is called the point-negation.

• “+” for all but finitely many pairs of equal points and not for any pair of distinct points in

EW×EW then such formulae are called the point-doubling formulae. For instance, see

lines 7, 8, 9 in Algorithm 2.2.1. The operation carried out is called the point-doubling.

• “+” for all but finitely many pairs of distinct points in EW × EW then such formulae

are called the dedicated point-addition formulae. For instance, see lines 13, 14, 15

in Algorithm 2.2.1. The operation carried out is called the dedicated point-addition.

• “+” for all but finitely many pairs of not necessarily distinct points in EW × EW then

such formulae are called the unified point-addition formulae. For instance, see [SS98,

Remark III.3.1]. The operation carried out is called the unified point-addition.

For economical reasons the “point-” and even the “formulae” part of each term will

sometimes be dropped assuming that the meaning is clear from the context.

2.3. Forms of elliptic curves 13

Theorem 2.2.3. Let EW/K be an elliptic curve. Then the addition law and the negation law

define morphisms

+ : EW × EW → EW and − : EW → EW

(P1, P2) 7→ P1 + P2 P1 7→ −P1.

Proof. See [Sil94, Theorem III.3.6] for a proof.

When speaking of one of these terms, say, a unified addition, it may be the case that the

denominators vanish and produce division by zero in affine coordinates. Similarly, it may be

the case in projective coordinates where all coordinates of the sum turn out to be zero. Since

the addition law is a morphism by Theorem 2.2.3 it is always possible to switch to another set

of formulae to compute the correct output. See also Definition A.2.2 or [Sil94, Remark 3.1].

Therefore, when stating the addition law on an elliptic curve all cases should be considered

carefully. Chapter 4 will provide more details on this.

2.3 Forms of elliptic curves

This section provides examples of different forms of genus 1 curves:

• Short Weierstrass form, y2 = x3 + ax+ b, §2.3.1

• Extended Jacobi quartic form, y2 = dx4 + 2ax2 + 1, §2.3.2,

• Twisted Hessian form, ax3 + y3 + 1 = dxy, §2.3.3,

• Twisted Edwards form, ax2 + y2 = 1 + dx2y2, §2.3.4,

• Twisted Jacobi intersection form, bs2 + c2 = 1, as2 + d2 = 1, §2.3.5.

With a distinguished K-rational point and resolved singularities (if any), the projective

closure of all of these shapes are elliptic curves provided K has a suitable characteristic. These

aspects will be detailed in each subsection.

In cryptography, two birationally equivalent genus 1 curves are usually treated as the same

curve since both curves necessarily have the same group structure. In algebraic geometry,

however, these two curves are distinct objects even if they are isomorphic. This thesis follows

the latter nomenclature. To prevent ambiguity, the term “form” will be used instead of the

term “curves”.

This section explicitly describes the birational equivalence of each curve between each of

these forms and some Weierstrass curve. Some of the birational maps are borrowed from

the literature resources while some others are derived by computer algebra tools which use

Theorem 2.1.2 for this purpose. Applied examples on the explicit derivation of the maps will

be presented in §3.2 of Chapter 3. Therefore, further discussion is omitted in this section. On

the other hand, pointers to the literature are provided in §2.3.6. It is convenient to note here

that for each one of the studied forms the identity element and the presented maps comply

with the revisited/computed/proposed formulae in Chapters 3, 4, 5, and 7.

14 Chapter 2. Elliptic Curves

It is still possible to substantially extend the list of the given forms. Indeed, a very recent

preprint [CV09] explains a derivation of group laws for many more forms. However, the listed

forms at the beginning of this section are still the best when it comes to efficient computations.

An illustration of sample curves over the real numbers R in each form is depicted in

Figures 2.1 to 2.5 in the respective order of the list at the start of this section. The figures are

drawn using Maple v.12. (Note that depending on the selected curve constants the presented

shapes may look considerably different. The curve in Figure 2.5 lies in the intersection of the

surfaces drawn.)

2.3.1 Short Weierstrass form

Throughout this subsection, K denotes a fixed field with char(K) 6= 2, 3 and L an algebraic

extension of K. Let a, b ∈ K.

Definition 2.3.1. A short Weierstrass curve defined over K is the curve

ES,a,b : y2 = x3 + ax+ b.

This curve is non-singular if and only if 4a3 + 27b2 6= 0. The j-invariant is given by

6912a3/(4a3 + 27b2) ∈ K. The projective closure of ES is given by the equation

ES,a,b : Y 2Z = X3 + aXZ2 + bZ3.

A point (X : Y : Z) with Z 6= 0 on ES corresponds to the affine point (X/Z, Y/Z) on ES. The

point Ω = (0: 1 : 0) on ES is non-singular and is always L-rational. There are no other points

on ES with Z = 0.

With a slight abuse of notation, ES(L), the set of L-rational points on ES is denoted by

ES(L) = {(x, y) ∈ L2 | y2 = x3 + ax+ b} ∪ {Ω}.

To this end, the short Weierstrass form is nothing but a special case of EW. However, it turns

out that every Weierstrass curve EW,a1,a3,a2,a4,a6
/K is isomorphic over K to a short Weierstrass

curve ES,a′,b′ where a′ = (24(2a4 + a1a3) − (a2
1 + 4a2)

2)/48 and b′ = ((a2
1 + 4a2)

3 − 36(2a4 +

a1a3)(a
2
1 + 4a2) + 216(a2

3 + 4a6))/864 via the admissible change of coordinates given by the

polynomial maps

φ : EW → ES,a′,b′ , (u, v) 7→
“

u+
a2
1 + 4a2

12
, v +

a1u+ a3

2

”

, (2.3)

ψ : ES,a′,b′ → EW, (x, y) 7→
“

x− a2
1 + 4a2

12
, y − a1(x− a2

1
+4a2

12
) + a3

2

”

. (2.4)

See [Sil94, §III.1]. It is trivial to check that φ ◦ ψ = idES
and ψ ◦ φ = idEW

. Here id is the

identity map. Both maps φ and ψ are regular at all points satisfying ES,a′,b′ . Therefore, both

φ and ψ define morphisms by Definition A.2.2. Also note that the point at infinity on EW

corresponds to the point at infinity on ES,a′,b′ and the curves are isomorphic over K.

It would be possible to find a curve ES,a′′,b′′/K which is birationally equivalent over K to

one of the other selected forms given at the beginning of this section. On the other hand,

2.3. Forms of elliptic curves 15

Figure 2.1: Short Weierstrass form
elliptic curve y2 = x3 − 4x + 3 over
R.

Figure 2.2: Extended Jacobi quartic
form elliptic curve y2 = −100x4 +
40x2 + 1 over R.

Figure 2.3: Twisted Hessian form
elliptic curve −6x3 + y3 + 1 = −4xy
over R.

Figure 2.4: Twisted Edwards form
elliptic curve 5x2 + y2 = 1 − 100x2y2

over R.

Figure 2.5: Twisted Jacobi intersection form elliptic
curve 3.2s2 + c2 = 1, 2.2s2 + d2 = 1 over R.

16 Chapter 2. Elliptic Curves

using EW for the very same purpose leads to “simpler” maps in some cases. Therefore, EW

is preferred hereafter. The cases where ES is preferred are actually no different than the case

EW since ES,a,b = EW,0,0,0,a,b.

2.3.2 Extended Jacobi quartic form

Throughout this subsection, K denotes a fixed field of odd characteristic and L an algebraic

extension of K. Let d, a ∈ K. Assume that d is a square in L unless stated otherwise.

Definition 2.3.2. An extended Jacobi quartic curve defined over K is the curve

EQ,d,a : y2 = dx4 + 2ax2 + 1.

This curve is non-singular if and only if d(a2 − d) 6= 0. The j-invariant is given by 64(a2 +

3d)3/(d(a2 − d)2) ∈ K. The projective closure of EQ is given by the equation

EQ,d,a : Y 2Z2 = dX4 + 2aX2Z2 + Z4.

A point (X : Y : Z) with Z 6= 0 on EQ corresponds to the affine point (X/Z, Y/Z) on EQ. The

point (0 : 1 : 0) on EQ is singular. Using the standard “blow-up” techniques (see [Ful69, §7.3])

the singularity can be resolved. The resolution of singularities produces two points which are

labeled as Ω1 and Ω2. It is convenient to note here that two “blow-up”s are necessary and

sufficient to resolve the singularities. There are no other points on EQ with Z = 0.

A way of removing the singularity is by using the projective curve given by the equations

ẼQ,d,a : Y 2 = dT 2 + 2aX2 + Z2, X2 = TZ.

A point (X : Y : T : Z) with Z 6= 0 on ẼQ corresponds to the affine point (X/Z, Y/Z) on EQ.

Fix δ ∈ K such that δ2 = d. The points (0 : δ : 1 : 0) and (0 : − δ : 1 : 0) correspond to Ω1 and

Ω2 on the desingularization of EQ. There is no other point on ẼQ with Z = 0.

Another way of removing the singularity is by using the weighted projective curve

ÊQ,d,a : Y 2 = dX4 + 2aX2Z2 + Z4.

A point (X : Y : Z) with Z 6= 0 on ÊQ corresponds to the affine point (X/Z, Y/Z2) on EQ.

The points (1 : δ : 0) and (1 : − δ : 0) on ÊQ correspond to Ω1 and Ω2 on the desingularization

of EQ. There are no other points on ÊQ with Z = 0.

With a slight abuse of notation, EQ(L), the set of L-rational points on EQ is denoted by

EQ(L) = {(x, y) ∈ L2 | y2 = dx4 + 2ax2 + 1} ∪ {Ω1,Ω2}

where Ω1,Ω2 are points at infinity.

Remark 2.3.3. The points Ω1, Ω2 on the desingularization of EQ; the points (1 : δ : 0), (1 : −
δ : 0) on ÊQ; and the points (0 : δ : 1 : 0), (0 : − δ : 1 : 0) on ẼQ are L-rational if and only if d

is a square in L.

2.3. Forms of elliptic curves 17

The curve EQ is birationally equivalent over K to the Weierstrass curve

EW : v2 = u(u2 − 4au+ 4a2 − 4d)

via the maps

ψ : EQ → EW, (x, y) 7→
“2y + 2

x2
+ 2a,

4y + 4

x3
+

4a

x

”

, (2.5)

φ : EW → EQ, (u, v) 7→
“

2
u

v
, 2(u− 2a)

u2

v2
− 1

”

. (2.6)

It is trivial to check that φ ◦ ψ = idEQ
and ψ ◦ φ = idEW

. The map ψ is regular at all points

on EQ except (0, 1) which corresponds to ∞ on EW. At first glance, it may seem that ψ is

not regular at (0,−1). However, as explained in Definition A.2.2, it is possible to alter ψ to

successfully map all points on EQ except (0, 1). For instance, the point (0,−1) can be sent to

EW with an alternative map given by

ψ′ : EQ → EW, (x, y) 7→
“2dx2 + 2a(1 + y)

y − 1
,
4a(dx2 + 2a)− 4d(1− y)

(1− y)2 x
”

. (2.7)

The map φ is regular at all points on EW except in one case. Before investigating this case

observe that the point (0, 0) on EW can be sent to EQ with an alternative map given by

φ′ : EW → EQ, (u, v) 7→
“ 2v

(u− 2a)2 − 4d
,
u2 − 4(a2 − d)
(u− 2a)2 − 4d

”

. (2.8)

The map φ is not regular at two points of the form (u, v) with u 6= 0 and v = 0. These

exceptional points correspond to two points at infinity on the desingularization of EQ. From

Remark 2.3.3 and Definition A.2.2 it follows that φ is a morphism if d is a non-square in K.

Every Weierstrass curve v2 = u3 + a2u
2 + a4u is birationally equivalent over K to

EQ,(a2

2
−4a4)/16,−a2/4. The shape v2 = u3 + a2u

2 + a4u covers all elliptic curves (over K)

having at least one point of order two. Therefore every elliptic curve of even order can be

written in Jacobi quartic form. This extended model covers more isomorphism classes than

the Jacobi model EQ,k2,−(k2+1)/2.

Notes Jacobi and Abel worked on generalizing the results known for the circle y2 = (1− x2)

to the quartic curve y2 = (1 − x2)(1 − k2x2). This form of elliptic curves is known as the

Jacobi model. A Jacobi quartic curve given by y2 = x4 + 2ax2 + 1 and its generalized version

extended Jacobi quartic curve y2 = dx4 + 2ax2 + 1 are studied in [BJ03a]. Billet and Joye

remark that every elliptic curve of even order can be written in extended Jacobi quartic form.

2.3.3 Twisted Hessian form

Throughout this subsection, K denotes a fixed field with char(K) 6= 2, 3 and L an algebraic

extension of K. Let a, d ∈ K. Assume that a has three distinct cube roots in L unless stated

otherwise.

Definition 2.3.4. A twisted Hessian curve defined over K is the curve

EH,a,d : ax3 + y3 + 1 = dxy.

18 Chapter 2. Elliptic Curves

This curve is non-singular if and only if a(d3 − 27a)3 6= 0. The j-invariant is given by

d3(d3 + 216a)3/(a(d3 − 27a)3) ∈ K. The projective closure of EH is given by the equation

EH,a,d : aX3 + Y 3 + Z3 = dXY Z.

A point (X : Y : Z) with Z 6= 0 on EH corresponds to the affine point (X/Z, Y/Z) on EH. Fix

α ∈ L such that α3 = a. Fix ω ∈ L such that ω3 = 1 and ω 6= 1. The points Ω1 = (−1/α : 1 : 0),

Ω2 = (−ω/α : 1 : 0), and Ω3 = (−1/(ωα) : 1 : 0) are non-singular. There are no other points on

EH with Z = 0.

With a slight abuse of notation, EH(L), the set of L-rational points on EH is denoted by

EH(L) = {(x, y) ∈ L2 | ax3 + y3 + 1 = dxy} ∪ {Ω1,Ω2,Ω3}

where Ω1,Ω2,Ω3 are points at infinity.

Remark 2.3.5. The points Ω1, Ω2, Ω3 on EH are simultaneously L-rational if and only if a has

three distinct cube roots in L. Only one of these three points is L-rational if and only if a has

a unique cube root in L.

The curve EH is birationally equivalent over K to the Weierstrass curve

EW : v2 = u3 − d4+216da
48 u+ d6

−540d3a−5832a2

864

via the maps

ψ : EH → EW, (x, y) 7→
“ (d3 − 27a)x

3(3 + 3y + dx)
− d2

4
,
(d3 − 27a)(1− y)
2(3 + 3y + dx)

”

, (2.9)

φ : EW → EH, (u, v) 7→
“ 18d2 + 72u

d3 − 12du− 108a + 24v
, 1− 48v

d3 − 12du− 108a + 24v

”

. (2.10)

It is trivial to check that φ ◦ ψ = idEH
and ψ ◦ φ = idEW

. The map ψ is regular at all points

on EH except (0,−1) which corresponds to ∞ on EW . The map φ is regular at all points on

EW except the three points of the form (u, v) with d3 − 12du− 108a+ 24v = 0 assuming that

a is a cube in K. These exceptional points correspond to the three points at infinity on EH.

From Remark 2.3.5 and Definition A.2.2 it follows that φ is a morphism if a is a non-cube in

K.

Notes Twisted Hessian form was introduced by Bernstein, Kohel, and Lange in [BKL09] as

a generalization of Hessian curves.

2.3.4 Twisted Edwards form

Throughout this subsection, K denotes a fixed field of odd characteristic and L an algebraic

extension of K. Let a, d ∈ K. Assume that both a and d are squares in L unless stated

otherwise.

Definition 2.3.6. A twisted Edwards curve defined over K is the curve

EE,a,d : ax2 + y2 = 1 + dx2y2.

2.3. Forms of elliptic curves 19

This curve is non-singular if and only if ad(a− d) 6= 0. The j-invariant is given by 16(a2 +

14ad+ d2)3/(ad(a− d)4) ∈ K. The projective closure of EE is given by the equation

EE,a,d : aX2Z2 + Y 2Z2 = Z4 + dX2Y 2.

A point (X : Y : Z) with Z 6= 0 on EE corresponds to the affine point (X/Z, Y/Z) on EE. The

points (0 : 1 : 0) and (1 : 0 : 0) on EE are singular even if ad(a − d) 6= 0. Using the standard

“blow-up” techniques (see [Ful69, §7.3]) the singularities can be resolved. The resolution of

singularities produces four points (see [BBJ+08]) which are labeled as Ω1, Ω2, Ω3, and Ω4. It

is convenient to note here that a single “blow-up” for each of the points (0 : 1 : 0) and (1 : 0 : 0)

is necessary and sufficient to resolve the singularities. There are no other points on EE with

Z = 0.

A way of removing the singularities is by using the projective curve given by the equations

ẼE,a,d : aX2 + Y 2 = Z2 + dT 2, XY = TZ.

A point (X : Y : T : Z) with Z 6= 0 on ẼE corresponds to the affine point (X/Z, Y/Z) on EE.

Fix α, δ ∈ K such that α2 = a and δ2 = d. The points (δ : 0 : α : 0), (−δ : 0 : α : 0), (0 : δ : 1 : 0),

and (0 : − δ : 1 : 0) on ẼE correspond to Ω1, Ω2, Ω3, and Ω4 on the desingularization of EE.

With a slight abuse of notation, EE(L), the set of L-rational points on EE is denoted by

EE(L) = {(x, y) ∈ L2 | ax2 + y2 = 1 + dx2y2} ∪ {Ω1,Ω2,Ω3,Ω4}

where Ω1,Ω2,Ω3,Ω4 are points at infinity.

Remark 2.3.7. The points Ω1, Ω2, Ω3, Ω4 on the desingularization of EE; and the points

(δ : 0 : α : 0), (−δ : 0 : α : 0), (0 : δ : 1 : 0), (0 : − δ : 1 : 0) on ẼE are L-rational if and only if both

a and d are squares in L.

Theorem 2.3.8 (Bernstein et al., [BBJ+08]). Every twisted Edwards curve over K is

birationally equivalent over K to the Montgomery curve given by By2 = x3 + Ax2 + x for

some A,B ∈ K. Conversely, every Montgomery curve over K is birationally equivalent over K

to a twisted Edwards curve.

From Theorem 2.3.8, it can be deduced that every twisted Edwards curve is birationally

equivalent over K to the Weierstrass curve

EW : = u3 + 2(a+ d)u2 + (a− d)2u

via the maps

ψ : EE → EW, (x, y) 7→
“

(1 + y)2
1− dx2

x2
, 2(1 + y)2

1− dx2

x3

”

, (2.11)

φ : EW → EE, (u, v) 7→
“

2
u

v
,
u− a+ d

u+ a− d
”

. (2.12)

It is trivial to check that φ ◦ ψ = idEE
and ψ ◦ φ = idEW

. The map ψ is regular at all points

on EE except (0, 1) which corresponds to ∞ on EW . At first glance, it may seem that ψ is

20 Chapter 2. Elliptic Curves

not regular at (0,−1). However, as explained in Definition A.2.2, it is possible to alter ψ to

successfully map all points on EE except (0, 1). For instance, the point (0,−1) can be sent to

EW with an alternative map given by

ψ′ : EE → EW, (x, y) 7→
“

(a− d)1 + y

1− y , 2(a− d)
a− dy2

(1− y)2x
”

. (2.13)

The map φ is regular at all points on EW except in two cases. Before investigating these two

cases observe that the point (0, 0) on EW can be sent to EE with an alternative map given by

φ′ : EW → EE, (u, v) 7→
“ 2v

(u− 2a)2 − 4d
,
u2 − 4(a2 − d)
(u− 2a)2 − 4d

”

. (2.14)

The map φ is not regular at two points of the form (u, v) with u 6= 0 and v = 0. These

exceptional points correspond to two points at infinity on the desingularization of EE. The

map φ is not regular at two points of the form (u, v) with u = d − a. These exceptional

points correspond to the other two points at infinity on the desingularization of EE. From

Remark 2.3.7 and Definition A.2.2 it follows that φ is a morphism if both d and ad are non-

squares in K.

Notes Building on the historical works of Euler and Gauss, Edwards introduced the normal

form x2+y2 = c2(1+x2y2) of elliptic curves together with an explicit addition law on this curve

in [Edw07]. Edwards also showed that every elliptic function field is equivalent to the function

field of this curve for some c provided that K is algebraically closed. In [BL07b], Bernstein

and Lange introduced Edwards form elliptic curves defined by x2 + y2 = c2(1 + dx2y2) where

c, d ∈ K with cd(1 − dc4) 6= 0, covering more curves than original Edwards curves when

K is finite. Twisted Edwards form was introduced by Bernstein et al. in [BBJ+08] as a

generalization of Edwards curves. The facts about the resolution of singularities or the points

at infinity or the coverage of these curves or the group structure have already been studied in

different generalities in [Edw07], [BL07b], [BBJ+08], and [BBLP08]. Also see [BL07a].

2.3.5 Twisted Jacobi intersection form

Throughout this subsection, K denotes a fixed field of odd characteristic and L an algebraic

extension of K. Let b, a ∈ K. Assume that both −a and −b are squares in L unless stated

otherwise.

Definition 2.3.9. A twisted Jacobi intersection curve defined over K is the curve

EI,b,a : bs2 + c2 = 1, as2 + d2 = 1.

This curve is non-singular if and only if ab(a− b) 6= 0. The j-invariant is given by 256(a2−
ab+ b2)3/(ab(a− b))2 ∈ K. The projective closure of EI is given by the equations

EI,b,a : bS2 + C2 = Z2, aS2 +D2 = Z2.

A point (S : C : D : Z) with Z 6= 0 on EI corresponds to the affine point (S/Z,C/Z,D/Z)

2.3. Forms of elliptic curves 21

on EI. Fix α, β ∈ K such that α2 = −a and β2 = −b. The points Ω1 = (1: β : α : 0),

Ω2 = (1: −β : α : 0), Ω3 = (1: β : −α : 0), and Ω4 = (1: −β : −α : 0) are non-singular. There

are no other points on EI with Z = 0.

With a slight abuse of notation, EI(L), the set of L-rational points on EI is denoted by

EI(L) = {(s, c, d) ∈ L3 | bs2 + c2 = 1, as2 + d2 = 1} ∪ {Ω1,Ω2,Ω3,Ω4}

where Ω1,Ω2,Ω3,Ω4 are the points at infinity.

Remark 2.3.10. The points Ω1, Ω2, Ω3, Ω4 on EI are L-rational if and only if both −a and −b
are squares in L.

The curve EI is birationally equivalent over K to the Weierstrass curve

EW : v2 = u(u− a)(u− b)

via the maps

ψ : EI → EW, (s, c, d) 7→
“ (1 + c)(1 + d)

s2
,− (1 + c)(1 + d)(c+ d)

s3

”

, (2.15)

φ : EW → EI, (u, v) 7→
“ 2v

ab− u2
, 2u

b− u
ab− u2

− 1, 2u
a− u
ab − u2

− 1
”

. (2.16)

It is trivial to check that φ ◦ ψ = idEI
and ψ ◦ φ = idEW

. The map ψ is regular at all points

on EI except (0, 1, 1) which corresponds to ∞ on EW . At first glance, it may seem that ψ is

not regular at some other points with zero s-coordinate: (0,−1, 1), (0, 1,−1), and (0,−1,−1).

However, as explained in Definition A.2.2, it is possible to alter ψ to successfully map all points

except (0, 1, 1). For instance, the points (0,−1, 1), (0, 1,−1), (0,−1,−1) can be sent to EW

with an alternative map given by

ψ′ : EI → EW, (s, c, d) 7→
“

b
1 + d

1− c , b
a(1− c)− b(1 + d)

(1− c)2 s
”

, (2.17)

ψ′′ : EI → EW, (s, c, d) 7→
“

a
1 + c

1− d , a
b(1− d)− a(1 + c)

(1− d)2 s
”

. (2.18)

The map φ is regular at all points on EW except the points of the form (u, v) with u2 = ab.

These exceptional points correspond to the four points at infinity on EI if ab is a square in K.

From Remark 2.3.10 and Definition A.2.2 it follows that φ is a morphism if ab is a non-square

in K.

Every elliptic curve having three points of order 2 is birational to a twisted Jacobi

intersection curve.

Notes An elliptic curve can be represented generically as the intersection of two quadrics

[Was03, §2.5.4]. See [LS01], [CC86], and [BJ03a] for cryptographic applications of Jacobi

intersection form.

2.3.6 Coverage of different forms

Assume that K is a finite field with q elements. Further assume that char(K) 6= 2, 3. Table 2.1

and Table 2.2 summarize the coverage of selected forms over K. Most of the results are collected

22 Chapter 2. Elliptic Curves

from approximations or statistics in the literature, cf. [BBJ+08], [GM00], [CV09]. For some

of the entries such as y2 = x3 + ax + b and x2 + y2 = 1 + dx2y2, the exact numbers of

isomorphism classes are known. For instance, see [RS09]. The first columns of both tables

describe the elliptic curve by its defining equation. The second and third columns estimate

the number of distinct j-invariants covered by these forms. This information is typically used

for a classification of elliptic curves over K. Note that equal j-invariants do not guarantee an

isomorphism over K if K is not algebraically closed. The last column in each table estimates the

number of distinct isomorphism classes for each form. There are approximately 2q isomorphism

classes of all elliptic curves over K, cf. [HMV03]. The rows are sorted with respect to the last

column in descending order. The ordering of entries in the first column of Table 2.1 is also

used for the ordering of the subsections of §2.3.

Table 2.1: Statistics on the coverage of some forms with two curve constants.

Curve equation Condition
of isomorphism

classes (≈)

y2 = x3 + ax+ b - 2q 2.00q

y2 = dx4 + 2ax2 + 1 - 4q/3 1.33q

ax3 + y3 + 1 = dxy
q ≡ 1 mod 3 0.76q

0.88q
q ≡ 2 mod 3 q

ax2 + y2 = 1 + dx2y2 q ≡ 1 mod 4 5q/6
0.79q

q ≡ 3 mod 4 3q/4

bs2 + c2 = 1, as2 + d2 = 1 - 0.33q

Table 2.2: Statistics on the coverage of some forms with a single curve constant.

Curve equation Condition
of isomorphism

classes (≈)

y2 = dx4 ± x2 + 1 - 0.80q

y2 = x3 − 3x+ b - 3q/4 0.75q

±x2 + y2 = 1 + dx2y2 q ≡ 1 mod 4 2q/3
0.71q

q ≡ 3 mod 4 3q/4

y2 = −x4 + 2ax2 + 1 - 0.66q

±x3 + y3 + 1 = dxy
q ≡ 1 mod 3 q/6

0.58q
q ≡ 2 mod 3 q

y2 = x4 + 2ax2 + 1 - 0.31q

±s2 + c2 = 1, as2 + d2 = 1 - 0.31q

Note that the standardized NIST curves are only expressible in short Weiertsrass form

y2 = x3 − 3x + b over a standardized base field. The scope of this thesis is not limited to a

2.4. Scalar multiplication 23

particular class of elliptic curves and therefore all of the listed forms are considered in detail.

2.4 Scalar multiplication

Let E be an elliptic curve over K. A point P can be multiplied by a scalar as [k]P =
∑k

i=1 P .

Efficient computation of [k]P is an active research area in ECC implementations since a

majority of the computational power is spent on this operation. A standard double-and-add

technique to compute k-folds of P is presented in Algorithm 2.4.1.

Algorithm 2.4.1: Left-to-right binary method for scalar multiplication

input : k = (kt−1, . . . , k1, k0)2, P ∈ E(K).

output: Q← [k]P .

Q← O.1

for i = t− 2 to 0 do2

Q← [2]Q.3

if ki = 1 then4

Q← Q+ P .5

end6

end7

return Q.8

Although scalar multiplications are not the main topic of this thesis, they will come into

play in Chapter 6 for performing efficiency oriented benchmarks of various other forms of

elliptic curves over finite fields. In particular, a windowed version of Algorithm 2.4.1 will be

used to decrease the number of point additions. For details on windowed scalar multiplications

see [HMV03] and [BSS99]. In windowed scalar multiplication algorithms, the window width

w typically controls the overall performance and the space needed for precomputation. The

w-LtoR integer recoding algorithm in [Ava05] will also be incorporated to scan the digits of the

scalar k from the most significant bit to the least. This algorithm allows the integer recoding

to be performed on-the-fly as the steps of scalar multiplication progress.

2.5 Conclusion

This chapter reviewed elliptic curves with an emphasis on different ways of representing

them. Although designed to serve as a background chapter, §2.3 of this chapter also provided

contributions. §2.3 presented five forms of elliptic curves together with their transformation to

the Weierstrass form via worked maps. The main contribution is that several fragmented results

in the literature are brought together under a strictly followed notation using similar treatment

for each case. The presented maps are further studied in detail to state all exceptional points

where computational problems arise. §2.3 also contained a generalization for Jacobi intersection

form to cover a slightly wider class of curves. Finally, §2.4 defined the scalar multiplication

operation which will be needed in Chapter 6.

24 Chapter 2. Elliptic Curves

Chapter 3

A toolbox for group laws

Every elliptic curve is endowed with a group law1 which turns the point set of an elliptic curve

into an abelian group. The binary operation on this group is named the addition law. In the

case of elliptic curves, the addition law can be rationally expressed.

The group operations are typically performed on a short Weiertrass curve. The reason

is that every elliptic curve can be shaped into a Weierstrass form plane curve by preserving

the initial group structure. As a consequence, a description of the group law for other forms

of elliptic curves has not received as much attention as the Weierstrass form. On the other

hand, other forms of elliptic curves might allow a more efficient group law than what can be

achieved with the short Weierstrass form. Indeed, there have been proposals in the literature

supporting this claim. In particular, see [Mon87], [LS01], [DI06], and [BL07b]. Therefore, it

is worth studying the topic in detail to search for more results. At this stage, it is helpful to

have a toolbox which makes the desired investigation easier.

This chapter brings together several computational tools which are beneficial in developing

efficient ways of computation on elliptic curves. These tools will be central to Chapters 4, 5,

and 7. The approach will be algebraic rather than geometric, and the emphasis lies on the

development of computer algebra routines to derive the desired group laws. In this direction,

§3.2 outlines an automated method to derive the group laws on elliptic curves and provides case

studies. §3.3 revisits rational simplification techniques by Monagan and Pearce [MP06] in the

context of efficient automated group law derivation to detect useful formulae. §3.4 shows how to

validate worked formulae in MAGMA [BCP97] and Maple [MAP08] systems based on a similar

strategy from [BL07a]. §3.5 provides a method to derive alternative formulae for point doubling

and addition on elliptic curves. §3.6 brings together the most commonly used operation

counting patterns to further optimize sequences of operations by trading multiplications with

cheaper operations such as squarings or additions in field K. Conclusions are drawn in §3.7.

1unique up to a choice of a rational point on the curve.

25

26 Chapter 3. A toolbox for group laws

3.1 Computer Algebra Systems

Computer algebra systems have evolved very rapidly starting from 1970’s with applications

to different areas of science such as computer science, physics, mathematics. Relevant to the

purpose of this thesis, the main breakthrough is the construction of Gröbner basis theory which

have found many applications over the past fourty years and have been widely implemented.

Today’s computer algebra systems contain high level routines that makes it possible to

accomplish the aformentioned goal of this chapter in a succinct manner. In particular, this

thesis uses MAGMA [BCP97] and Maple [MAP08] systems. Both system can compute the

Weierstrass form of an elliptic curve. This capability will later be used in §3.2. MAGMA

has useful functions to manipulate algebraic varieties in an arbitrary space. MAGMA is also

supportive for numeric exercises such as point counting or finding the order of points on an

elliptic curve. MAPLE includes simple map composition mechnanisms which shrinks the code

size. Many ready-to-run examples are provied to show how the desired computations can be

performed in a few lines of computer algebra commands.

3.2 Automated derivations

This section outlines how to derive the group law on an elliptic curve embedded in a suitable

affine space. The method simply uses Riemann-Roch computations, see Appendix A. In a

rough sense, this can be viewed as a “conversion” of the well known group law for Weierstrass

curves to the corresponding group law on a birationally equivalent curve using rational

mappings.

The following theorem shows how to find the affine part of the addition law on an arbitrary

elliptic curve.

Theorem 3.2.1. Let W/K and M/K be affine curves. Assume that W and M , each with a

fixed K-rational point, are elliptic curves. Assume that W and M are birationally equivalent

over K. Let φ : W → M and ψ : M → W be maps such that φ ◦ ψ and ψ ◦ φ are equal to

the identity maps idM and idW , respectively. Let +W : W ×W →W be the affine part of the

unique addition law on W . The affine part of the unique addition law on M is given by the

compositions

+M = φ ◦+W ◦ (ψ × ψ). (3.1)

Before giving the proof, the following lemma will be useful.

Lemma 3.2.2. If two irreducible algebraic curves M and W are birationally equivalent then

K(W) ∼= K(M) and K(W ×W) ∼= K(M ×M).

Proof. For the isomorphism K(M) ∼= K(W) see the proof of Theorem 10 in [CLO07, §5.5].

The isomorphism ψ∗ : K(W) → K(M) is constructed via the pullback map ψ∗(f) = f ◦ ψ
where f ∈ K(W). In the same fashion, the map ψ∗ × ψ∗ : K(W ×W)→ K(M ×M) given by

(ψ∗×ψ∗)(g) = g ◦ (ψ×ψ) where g ∈ K(W ×W), is an isomorphism by the universal property

of products, cf. [Mus01, Theorem 28.5].

3.2. Automated derivations 27

Proof of Theorem 3.2.1. Let P1 and P2 be points on M . By the definition of φ, ψ, and +W ,

the following equalities hold

P1 +M P2 = (idM)(P1 +M P2) = (φ ◦ ψ)(P1 +M P2) = φ(ψ(P1 +M P2))

= φ(ψ(P1) +W ψ(P2))

= (φ ◦+W ◦ (ψ × ψ))(P1, P2) if defined. (3.2)

The construction (3.2) works for all but finitely many pair of points. The rest of the claim

follows from Lemma 3.2.2 and from the unicity of the addition law.

The negation law can be computed accordingly.

For simplicity assume that W is in Weierstrass form

EW,a1,a3,a2,a4,a6
: y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6

which is a nonsingular model for W . Assume also that the rational mapping +W defined by

+W : W ×W →W

(P1, P2) 7→ P1 + P2,

gives the group law. By Theorem 2.2.3 of Chapter 2, +W is a morphism, i.e. the group law

is defined for all of W ×W . Noting that +W is already known explicitly for W , determining

+M depends only on the definition of W , φ and ψ. Therefore, these definitions are crucial to

have the automated derivation work. In the general case, Riemann-Roch computations always

guarantee a transformation to a non-singular almost-Weierstrass form given by c0y
2 + a1xy +

a3y = c2x
3 +a2x

2 +a4x+a6 with c0, c2, ai ∈ K, cf. [Sil94, Theorem 3.1]. After this step, Nagell

reduction can be applied (partially) to rescale c0 and c2 to 1, cf. Algorithm 7.4.10 in [Coh93].

An open source implementation by Bruin is available in MAGMA, see in particular the CrvEll

package. An alternative method based on integral basis computations is given in [vH03]. An

open source implementation by Hoeij is available in Maple, see in particular the algcurves

package. The latter implementation requires M to be a plane curve. Also see [DL06] for more

applications on SINGULAR [GPS09].

Next, several examples will be presented to show how to automate the group law derivation.

This section is limited to examples on MAGMA and Maple. On the other hand, it should be

possible to write similar scripts in other computer algebra systems.

Example 3.2.3. The following MAGMA script constructs a cubic curve defined by M : bx2y+

xy2+ax+y = 0; ensures that the curve is of genus 1; computes suitable W : v2 = u(u−4/b)(u−
4a/b2), φ = (2v/(4u − bu2), b2v/(2bu− 8)), ψ = (−4y/(b2x),−8y(bx + y)/(b3x)); and verifies

that M and W are birational:

> K<a,b>:=FieldOfFractions(PolynomialRing(Rationals(),2));

> SM<x,y>:=AffineSpace(K,2);

> M:=ProjectiveClosure(Curve(SM,[b*x^2*y+x*y^2+a*x+y]));

> assert Genus(M) eq 1;

> W,psi:=EllipticCurve(M,M![0,1,0]);

28 Chapter 3. A toolbox for group laws

> phi:=Inverse(psi);

> assert Expand(phi*psi) eq IdentityMap(W);

> assert Expand(psi*phi) eq IdentityMap(M);

The definition of the maps φ and ψ depends on the point (0 : 1 : 0) represented by M![0,1,0]

in the script. However, the group structure ofM is independent of this choice, cf. [Sti93, Ch.VI].

Example 3.2.4. The following MAGMA script constructs a curve M in twisted Jacobi

intersection form; ensures that the curve is of genus 1; computes suitable W : v2 = u3 +b4(2a−
b)/(a2(a− b)2)u2 + b8/(a3(a− b)3)u, φ = (−2(a− b)2a2(ua3 − uba2 + b4)b2v/(v2a9 − 4v2ba8 +

6v2b2a7+a6b4u2−4a6v2b3−2a5b5u2+a5v2b4+b6u2a4+2b8ua3−2b9ua2+b12), (v2a9−4v2ba8+

6v2b2a7 +a6b4u2−4a6v2b3−4a5b5u2+a5v2b4 +5b6u2a4−2a3b7u2+2b8ua3−4b9ua2+2b10ua+

b12)/(v2a9−4v2ba8+6v2b2a7+a6b4u2−4a6v2b3−2a5b5u2+a5v2b4+b6u2a4+2b8ua3−2b9ua2+

b12),−(v2a9 − 4v2ba8 + 6v2b2a7 − 4a6v2b3 − a6b4u2 + a5v2b4 + 2a5b5u2 − b6u2a4 − 2b8ua3 +

2b9ua2−b12)/(v2a9−4v2ba8+6v2b2a7+a6b4u2−4a6v2b3−2a5b5u2+a5v2b4+b6u2a4+2b8ua3−
2b9ua2 + b12)), ψ = (b4(1− c)/(a(a− b)(ac+ db− a+ b)),−b7s/(a2(a− b)2(ac+ db− a+ b)));

and verifies that M and W are birational:

> K<a,b>:=FieldOfFractions(PolynomialRing(Rationals(),2));

> SM<s,c,d>:=AffineSpace(K,3);

> M:=ProjectiveClosure(Curve(SM,[b*s^2+c^2-1,a*s^2+d^2-1]));

> assert Genus(M) eq 1;

> W,psi:=EllipticCurve(M,M![0,1,1,1]);

> phi:=Inverse(psi);

> assert Expand(phi*psi) eq IdentityMap(W);

> assert Expand(psi*phi) eq IdentityMap(M);

This example uses a more general view of algebraic curves. In particular, an algebraic curve

is the locus of points in Kn (affine n-space over K), determined by independent polynomial

functions h1, . . . , hn−1 in n variables with coefficients in K. The curve is defined by setting each

hi = 0. In this script, n = 3. The polynomial functions are defined as h1(s, c, d) = bs2 + c2− 1

and h2(s, c, d) = as2 + d2 − 1 where a, b are in K.

Example 3.2.5. Since every algebraic curve is of dimension 1, it is always possible to eliminate

all but two of the variables (using hand calculations or resultants or Gröbner basis eliminations).

This approach produces a birationally equivalent plane curve (up to isomorphism) defined by a

single equation in two variables. Note that singularities may be introduced in this process. For

example, the following Maple script constructs the quartic curve M : y2 = abx4− (a+ b)x2 + 1

and computes suitable W : v2 = u3 − (a2 + 14ab+ b2)u2/3 + 2(a3 − 33ab2 − 33a2b + b3)u/27,

φ = (18v/(a2 − 34ab+ b2 − 6ua− 6ub+ 9u2), (−26ab− 12ua+ 5a2 − 12ub+ 5b2 − 9u2)/(a2 −
34ab+ b2 − 6ua− 6ub+ 9u2)), ψ = ((x2b − 6 + x2a+ 6y)/(3x2), (4 − 2x2a− 2x2b− 4y)/x3):

> with(algcurves):

> t:=Weierstrassform(y^2-(a*b*x^4-(a+b)*x^2+1),x,y,u,v):

> W:=t[1]: psi:=(t[2],t[3]): phi:=(t[4],t[5]):

Examples 3.2.3, 3.2.4, and 3.2.5 showed how to prepare for the computation of the right-

hand side of (3.1). It is now easy to derive group laws for elliptic curves defined by various

3.2. Automated derivations 29

different type of equations with the help of computer algebra. The following examples show

how to compute +M in (3.1).

Example 3.2.6. Consider the derivation of the group law for twisted Jacobi intersection curve

EI,b,a. The coordinate functions s1, c1, d1, s2, c2, d2 for EI,b,a × EI,b,a are labeled as s1, c1,

d1, s2, c2, d2. The coordinate functions u1, v1, u2, v2 for EW,0,0,−a−b,ab,0 × EW,0,0,−a−b,ab,0

are labeled as u1, v1, u2, v2. The following Maple script defines W, C, phi, psi, psipsi to

represent W = EW,0,0,−a−b,ab,0, M = EI,b,a, φ, ψ, and ψ × ψ, respectively.

> a1:=0: a3:=0: a2:=-a-b: a4:=a*b: a6:=0:

> W:=(u,v)->(v^2+a1*u*v+a3*v-(u^3+a2*u^2+a4*u+a6)):

> C:=(s,c,d)->(b*s^2+c^2-1,a*s^2+d^2-1):

> phi:=(u,v)->(-2*v/(u^2-a*b),(u^2-2*b*u+a*b)/(u^2-a*b),(u^2-2*a*u+a*b)/(u^2-a*b)):

> psi:=(s,c,d)->(a*(1+c)/(1-d),-a^2*s*(1+c)*(c+d)/((1-d)^2*(1+d))):

> psipsi:=(s1,c1,d1,s2,c2,d2)->(psi(s1,c1,d1),psi(s2,c2,d2)):

In this example, W , φ, and ψ are copied from §2.3.5 of Chapter 2 to match a standard

choice of the identity element. The example continues to find specialized negation, doubling

and addition formulae.

Negation The following Maple script derives the corresponding negation formulae. The

first line defines the negation formulae for W and the second line applies a simpler version of

Theorem 3.2.1.

> negW:=(u1,v1)->(u1,-v1-a1*u1-a3):

> negM:=phi(negW(psi(s1,c1,d1))):

The negation formulae stored in negM are given by −(s1, c1, d1) = (s3, c3, d3) where

s3 = −2a2s1(1 + c1)(c1 + d1)/((1 − d1)
2(1 + d1)(a

2(1 + c1)
2/(1 − d1)

2
− ab)),

c3 = (a2(1 + c1)2/(1 − d1)
2
− 2ab(1 + c1)/(1 − d1) + ab)/(a2(1 + c1)

2/(1 − d1)
2
− ab),

d3 = (a2(1 + c1)2/(1 − d1)
2
− 2a2(1 + c1)/(1 − d1) + ab)/(a2(1 + c1)

2/(1 − d1)
2
− ab).

Doubling Similarly, the following Maple script derives the corresponding doubling formulae.

The first line defines the doubling formulae for W and the second line applies a simpler version

of Theorem 3.2.1.

> dblW:=(u1,v1)->(((3*u1^2+2*a2*u1+a4-a1*v1)/(2*v1+a1*u1+a3))^2+a1*(3*u1^2+2*a2*u1+a4- \

a1*v1)/(2*v1+a1*u1+a3)-a2-2*u1,(3*u1^2+2*a2*u1+a4-a1*v1)/(2*v1+a1*u1+ \

a3)*(u1-(((3*u1^2+2*a2*u1+a4-a1*v1)/(2*v1+a1*u1+a3))^2+a1*(3*u1^2+ \

2*a2*u1+a4-a1*v1)/(2*v1+a1*u1+a3)-a2-2*u1))-v1-a1*u3-a3):

> dblM:=phi(dblW(psi(s1,c1,d1))):

The doubling formulae stored in dblM are given by [2](s1, c1, d1) = (s3, c3, d3) where

s3 = −2(−(1/2)(3a2(1+c1)
2/(1−d1)

2+2(−a−b)a(1+c1)/(1−d1)+ab)(1−d1)
2(1+d1)(3a(1+c1)/(1−d1)−

(1/4)(3a2(1+c1)
2/(1−d1)

2 +2(−a−b)a(1+c1)/(1−d1)+ab)2(1−d1)
4(1+d1)

2/(a4s2

1
(1+c1)

2(c1 +

d1)
2) − a − b)/(a2s1(1 + c1)(c1 + d1)) + a2s1(1 + c1)(c1 + d1)/((1 − d1)

2(1 + d1)))/(((1/4)(3a2(1 +

c1)
2/(1 − d1)

2 + 2(−a − b)a(1 + c1)/(1 − d1) + ab)2(1 − d1)
4(1 + d1)

2/(a4s2

1
(1 + c1)

2(c1 + d1)
2) −

2a(1 + c1)/(1 − d1) + a + b)2 − ab),

30 Chapter 3. A toolbox for group laws

c3 = (((1/4)(3a2(1 + c1)
2/(1 − d1)

2 + 2(−a − b)a(1 + c1)/(1 − d1) + ab)2(1 − d1)
4(1 + d1)

2/(a4s2

1
(1 +

c1)
2(c1 + d1)

2) − 2a(1 + c1)/(1 − d1) + a + b)2 − 2b((1/4)(3a2(1 + c1)
2/(1 − d1)

2 + 2(−a − b)a(1 +

c1)/(1 − d1) + ab)2(1 − d1)
4(1 + d1)

2/(a4s2

1
(1 + c1)

2(c1 + d1)
2) − 2a(1 + c1)/(1 − d1) + a + b) +

ab)/(((1/4)(3a2(1 + c1)
2/(1− d1)

2 + 2(−a− b)a(1 + c1)/(1− d1) + ab)2(1− d1)
4(1 + d1)

2/(a4s2

1
(1 +

c1)
2(c1 + d1)

2) − 2a(1 + c1)/(1 − d1) + a + b)2 − ab),

d3 = (((1/4)(3a2(1 + c1)
2/(1 − d1)

2 + 2(−a − b)a(1 + c1)/(1 − d1) + ab)2(1 − d1)
4(1 + d1)

2/(a4s2

1
(1 +

c1)
2(c1 + d1)

2) − 2a(1 + c1)/(1 − d1) + a + b)2 − 2a((1/4)(3a2(1 + c1)
2/(1 − d1)

2 + 2(−a − b)a(1 +

c1)/(1 − d1) + ab)2(1 − d1)
4(1 + d1)

2/(a4s2

1
(1 + c1)

2(c1 + d1)
2) − 2a(1 + c1)/(1 − d1) + a + b) +

ab)/(((1/4)(3a2(1 + c1)
2/(1− d1)

2 + 2(−a− b)a(1 + c1)/(1− d1) + ab)2(1− d1)
4(1 + d1)

2/(a4s2

1
(1 +

c1)
2(c1 + d1)

2) − 2a(1 + c1)/(1 − d1) + a + b)2 − ab).

Addition Similarly, the following Maple script derives the corresponding addition formulae.

The first line defines the addition formulae for W and the second line applies Theorem 3.2.1.

> addW:=(u1,v1,u2,v2)->(((v2-v1)/(u2-u1))^2+a1*(v2-v1)/(u2-u1)-a2-u1-u2,(v2-v1)/(u2- \

u1)*(u1-(((v2-v1)/(u2-u1))^2+a1*(v2-v1)/(u2-u1)-a2-u1-u2))- \

v1-a1*u3-a3):

> addM:=phi(addW(psipsi(s1,c1,d1,s2,c2,d2))):

The addition formulae stored in addM are given by (s1, c1, d1) + (s2, c2, d2) = (s3, c3, d3) where

s3 = −2((−a2s2(1 + c2)(c2 + d2)/((1 − d2)
2(1 + d2)) + a2s1(1 + c1)(c1 + d1)/((1 − d1)

2(1 + d1)))(2a(1 +

c1)/(1 − d1) − (−a2s2(1 + c2)(c2 + d2)/((1 − d2)
2(1 + d2)) + a2s1(1 + c1)(c1 + d1)/((1 − d1)

2(1 +

d1)))
2/(a(1 + c2)/(1− d2)− a(1 + c1)/(1 − d1))

2 + a(1 + c2)/(1 − d2) − a − b)/(a(1 + c2)/(1 − d2) −

a(1 + c1)/(1 − d1)) + a2s1(1 + c1)(c1 + d1)/((1 − d1)
2(1 + d1)))/(((−a2s2(1 + c2)(c2 + d2)/((1 −

d2)
2(1+d2))+a2s1(1+c1)(c1 +d1)/((1−d1)2(1+d1)))2/(a(1+c2)/(1−d2)−a(1+c1)/(1−d1))2 −

a(1 + c1)/(1 − d1) − a(1 + c2)/(1 − d2) + a + b)2 − ab),

c3 = (((−a2s2(1 + c2)(c2 + d2)/((1 − d2)
2(1 + d2)) + a2s1(1 + c1)(c1 + d1)/((1 − d1)

2(1 + d1)))
2/(a(1 +

c2)/(1−d2)−a(1+ c1)/(1−d1))
2
−a(1+ c1)/(1−d1)−a(1+ c2)/(1−d2)+a+ b)2 −2b((−a2s2(1+

c2)(c2 + d2)/((1 − d2)
2(1 + d2)) + a2s1(1 + c1)(c1 + d1)/((1 − d1)

2(1 + d1)))
2/(a(1 + c2)/(1 − d2) −

a(1 + c1)/(1 − d1))
2
− a(1 + c1)/(1 − d1) − a(1 + c2)/(1 − d2) + a + b) + ab)/(((−a2s2(1 + c2)(c2 +

d2)/((1 − d2)
2(1 + d2)) + a2s1(1 + c1)(c1 + d1)/((1 − d1)

2(1 + d1)))
2/(a(1 + c2)/(1 − d2) − a(1 +

c1)/(1 − d1))
2
− a(1 + c1)/(1 − d1) − a(1 + c2)/(1 − d2) + a + b)2 − ab),

d3 = (((−a2s2(1 + c2)(c2 + d2)/((1 − d2)
2(1 + d2)) + a2s1(1 + c1)(c1 + d1)/((1 − d1)

2(1 + d1)))
2/(a(1 +

c2)/(1−d2)−a(1+ c1)/(1−d1))
2
−a(1+ c1)/(1−d1)−a(1+ c2)/(1−d2)+a+ b)2 − 2a((−a2s2(1+

c2)(c2 + d2)/((1 − d2)
2(1 + d2)) + a2s1(1 + c1)(c1 + d1)/((1 − d1)

2(1 + d1)))
2/(a(1 + c2)/(1 − d2) −

a(1 + c1)/(1 − d1))
2
− a(1 + c1)/(1 − d1) − a(1 + c2)/(1 − d2) + a + b) + ab)/(((−a2s2(1 + c2)(c2 +

d2)/((1 − d2)
2(1 + d2)) + a2s1(1 + c1)(c1 + d1)/((1 − d1)

2(1 + d1)))
2/(a(1 + c2)/(1 − d2) − a(1 +

c1)/(1 − d1))
2
− a(1 + c1)/(1 − d1) − a(1 + c2)/(1 − d2) + a + b)2 − ab).

The computer-derived formulae are overly involved with many terms which makes them

inefficient in computations. For instance, both addition and doubling formulae have total

degree of the fractions over 50.

Example 3.2.7. The analogous operations can also be performed using MAGMA. Since

MAGMA is a declarative language all necessary objects should be constructed. The script

starts with the construction of a field K = K<a,b> which is a transcendental extension of the

rational field Q. This way MAGMA treats a and b as fixed constants. So, the base field object

is assigned to K. K2 = SW and K3 = SM are the spaces defined over K. These spaces are (defined

as) the ambient of the curves W = W and M = M. The maps φ = phi and ψ = phi are defined

using the map constructor. Note that the definitions of W , φ, and ψ are copied from Chapter 2

3.2. Automated derivations 31

to match a standard choice of the identity element as was the case in Example 3.2.6. Two

assertions after the definitions of phi and psi ensure that W and M are birationally equivalent

over K.

> K<a,b>:=FieldOfFractions(PolynomialRing(Rationals(),2));

> a1:=0; a3:=0; a6:=0; a2:=-(a+b); a4:=a*b;

> SW<u,v>:=AffineSpace(K,2);

> W:=Curve(SW,[v^2+a1*u*v+a3*v-(u^3+a2*u^2+a4*u+a6)]);

> SM<s,c,d>:=AffineSpace(K,3);

> M:=Curve(SM,[b*s^2+c^2-1,a*s^2+d^2-1]);

> phi:=map<W->M|[2*v/(a*b-u^2),2*u*(b-u)/(a*b-u^2)-1,2*u*(a-u)/(a*b-u^2)-1]>;

> psi:=map<M->W|[a*(1+c)/(1-d),(-a*(1+c)/(1-d))*(c+d)/s]>;

> assert Expand(phi*psi) eq IdentityMap(W);

> assert Expand(psi*phi) eq IdentityMap(M);

The script continues to find specialized negation, doubling and addition formulae. The outputs

are omitted here since they are equivalent to the formulae derived by the Maple example.

Negation The following MAGMA script derives the corresponding negation formulae. The

first line defines the negation formulae for W and the second line applies a simpler version of

Theorem 3.2.1.

> negW:=map<W->W|[u,-v-a1*u-a3]>;

> negM:=psi*negW*phi; //i.e. phi o negW o psi.

Doubling Similarly, the following MAGMA script derives the corresponding doubling

formulae. The first two lines define the doubling formulae for W and the third line applies a

simpler version of Theorem 3.2.1.

> L:=(3*u^2+2*a2*u+a4-a1*v)/(2*v+a1*u+a3); u3:=L^2+a1*L-a2-2*u; v3:=L*(u-u3)-v-a1*u3-a3;

> dblW:=map<W->W|[u3,v3]>;

> dblM:=psi*dblW*phi; //i.e. phi o dblW o psi.

Addition Similarly, the following Magma script derives the corresponding addition formulae.

The script constructs (ψ × ψ) =psipsi and the products W ×W =WW, M ×M =MM.

> SWW<u1,v1,u2,v2>:=AffineSpace(K,4);

> WW:= Scheme(SWW,[v1^2+a1*u1*v1+a3*v1-(u1^3+a2*u1^2+a4*u1+a6), \

v2^2+a1*u2*v2+a3*v2-(u2^3+a2*u2^2+a4*u2+a6)]);

> SMM<s1,c1,d1,s2,c2,d2>:=AffineSpace(K,6);

> MM:= Scheme(SMM,[b*s1^2+c1^2-1,a*s1^2+d1^2-1,b*s2^2+c2^2-1,a*s2^2+d2^2-1]);

> psipsi:=map<MM->WW|[a*(1+c1)/(1-d1),(-a*(1+c1)/(1-d1))*(c1+d1)/s1, \

a*(1+c2)/(1-d2),(-a*(1+c2)/(1-d2))*(c2+d2)/s2]>;

The script continues to compute (3.1). The output is omitted here since it is equivalent to the

formulae derived by the Magma example.

> L:=(v2-v1)/(u2-u1); u3:=L^2+a1*L-a2-u1-u2; v3:=L*(u1-u3)-v1-a1*u3-a3;

> addW:=map<WW->W|[u3,v3]>;

> addM:=psipsi*addW*phi; //i.e. phi o addW o (psi x psi).

32 Chapter 3. A toolbox for group laws

The next section is a continuation of Examples 3.2.6 and 3.2.7 for finding more “suitable”

representatives for s3, c3, and d3 among each of the residue classes [s3], [c3], and [d3],

respectively.

3.3 Minimal total degree

Let V be a variety over K and K(V) the function field on V . Recall from Appendix A that

the elements of K(V) are represented by rational functions on V . Since the chief objects of

study are efficient group laws on elliptic curves, V can be fixed to an elliptic curve E or to

the product E × E. Let P ∈ V and f ∈ K(V) such that f is regular at P . Suppose that the

aim is to evaluate f at P efficiently. It is then reasonable to find a suitable f ′ in the residue

class [f] ∈ K(V) and then make the trivial substitution of P to compute f(P) = f ′(P) using

more primitive field operations in K. The computational effort for finding the suitable f ′ can

be neglected here since f ′ can be fixed for many evaluations. Roughly speaking, the fewer

the number of field operations are used for an evaluation of f ′ at P , the more efficient the

evaluation is. The term efficiency here is usually understood as the running time or the space

consumption of an algorithm. Note that other interpretations are possible such as the required

transmission size of some data or consumed energy along the execution. The emphasis here is

on the running time aspect. See also [CMO98].

A common experience for an efficient evaluation of a rational function on a variety at a

randomly chosen non-singular point is that the evaluation takes less time if the numerator

and denominator have lower total degrees, and preferably having no “common factor”, cf.

[CC86]. The numerator and denominator of a rational function in K(V) can be viewed as

polynomial functions in K[V]. These polynomial functions, for the purpose of this work, are

the multivariate polynomial expressions arising in the group law of an elliptic curve. Therefore,

the main emphasis of this chapter is on finding suitable fractions of polynomials with low/lowest

total degree in making a description of the group law. Such expressions will eventually lead

to efficient elliptic curve arithmetic. Note that the arithmetic of elliptic curves is known to

be very efficient and it has attracted a lot of attention over the past few decades. Standard

references are [HMV03] and [CF05]. In this sense, the present work is an attempt to improve

previous upper bounds for efficient computations.

Concerning the numerator and denominator of s3 (or c3 or d3) in Examples 3.2.6 and 3.2.7,

it is intuitive to ask whether the denominator is a unit in the corresponding coordinate ring. If

this is the case, the fraction reduces to a polynomial which allows working in affine coordinates

without inverting elements of K. In large characteristic fields, this turns out to be possible for

negation formulae most of the time. However, for doubling and addition this is not possible

in any of the five forms that are studied in this work. In characteristic 2, however, there are

examples where this occurs for the doubling in some very special cases, cf. [BSS99].

It is also intuitive to ask whether there exists representatives having minimal total degrees

for both the numerators and denominators. The two may not be possible simultaneously,

i.e. among all possible fractions, a fraction with minimal total degree numerator may not

have a minimal total degree denominator (and vice versa). However, there always exist

3.3. Minimal total degree 33

representatives with minimal total degree. This section collects necessary tools from literature

to find such representatives. The computer algebra examples are also provided. Efficiency of

the simplification process is not a major issue as long as the simplification can be done in a

reasonable time.

Two algorithms for simplifying rational expressions, proposed by Monagan and Pearce

in 2006 in [MP06], are adapted in this section since their algorithms perfectly fit the

aforementioned goal of finding formulae with low/lowest total degree of fractions in the

corresponding coordinate ring (i.e. K[M] for negation and doubling; and K[M × M] for

addition). Monagan and Pearce’s first algorithm computes a reduced canonical form (RCF) of

a fraction f/g modulo a proper prime ideal I ⊂ K[x1, . . . , xn] where f, g ∈ K[x1, . . . , xn].

The coordinates x1, . . . , xn can be suitably renamed to s1, c1, d1, s2, c2, d2 in the case of

Example 3.2.4. Using a prime ideal ensures that K[x1, . . . , xn]/I is an integral domain and

thus contains no zero divisors. Note that this is always the case for coordinate rings of elliptic

curves (or their products). Now, let m/h be an RCF for a/b such that ah − bm ≡ 0 mod I

where a, b,m, h ∈ K[x1, . . . , xn] with b, h /∈ I. The algorithm is built on three observations:

1. The colon ideal J = (〈g〉+ I) : 〈f〉 contains an h having no common components with g.

Let {h1, . . . , ht} be a reduced Gröbner basis with respect to a graded monomial ordering.

Each hi is a candidate for h since h ∈ 〈h1, . . . , ht〉.

2. By the definition of a colon ideal, b must divide hia. Thus, mi = hia/b can be

computed using an exact division. Now selecting m/h = mi/hi with min(deg(hi)) gives

a representation which guarantees a minimal total degree for the denominator of m/h

and a removal of all common components. It is convenient to comment that for all curve

models considered in this work, this computation yields a set of formulae having minimal

total degree of fractions, which will be used in Chapters 4 and 5. However, to this end

there is no guarantee that a minimal deg(m) + deg(h) will be obtained.

3. Sometimes adding a common component to the numerator or denominator leads to a

lower total degree sum. This idea is pursued by Monagan and Pearce by a computation

of the reduced Gröbner basis of the module {[m,h] : fh−gm ≡ 0 mod I} with respect to

a term-over-position order. Refer to the original paper [MP06] for details and to [AL96]

for definitions of modules and term-over-position order.

This last modification finds a “good” balance between numerator and denominator.

However, there is still no guarantee that a minimal deg(m) + deg(h) will be obtained.

An implementation of this algorithm comes with Maple v.11+. An open source Maple

implementation is given in Pearce’s thesis [Pea05].

Example 3.3.1. The following Maple script simplifies the automated formulae from

Example 3.2.4 using Monagan/Pearce reduced canonical form algorithm:

> negM,dblM,addM:=simplify([negM,dblM,addM],[M(s1,c1,d1),M(s2,c2,d2)],tdeg(c1,c2,d1,d2));

Negation The simplified negation formulae are given by−(s1, c1, d1) = (−s1, c1, d1). Clearly,

the negation formulae are of minimal total degree since they are linear and they cannot be a

constant map.

34 Chapter 3. A toolbox for group laws

Doubling The simplified doubling formulae are given by

[2](s1, c1, d1) =
“ 2s1c1d1

1− abs41
,
1− 2bs21 + abs41

1− abs41
,
1− 2as21 + abs41

1− abs41

”

.

Addition The simplified addition formulae are given by

(s1, c1, d1) + (s2, c2, d2) =
“s1c2d2 + c1d1s2

1− abs21s22
,
c1c2 − bs1d1s2d2

1− abs21s22
,
d1d2 − as1c1s2c2

1− abs21s22

”

.

In all of these outputs, the total degrees of the denominators are minimized with respect to the

fixed monomial ordering. Without a justification for now, it can be stated that the doubling

formulae are of minimal total degree sum. However, the addition formulae are not.

It is experimentally observed that the rational simplifications for negation and doubling laws

are quite efficient despite several cumbersome Gröbner basis computations. In particular, each

simplification takes less than a second on a Core 2 processor running at 2.66GHz. However,

simplification for addition is rather slow. To speed up the derivation of the addition formulae

the relevant script can be updated as follows to have simplifications for intermediate rational

expressions.

> L:=(v1-v2)/(u1-u2):

> L:=simplify(L,[M(s1,c1,d1),M(s2,c2,d2)],tdeg(c1,c2,d1,d2));

> u3:=L^2+a1*L-a2-u1-u2:

> u3:=simplify(u3,[M(s1,c1,d1),M(s2,c2,d2)],tdeg(c1,c2,d1,d2));

> v3:=L*(u1-u3)-v1-a1*u3-a3:

> v3:=simplify(v3,[M(s1,c1,d1),M(s2,c2,d2)],tdeg(c1,c2,d1,d2));

> addM:=simplify([phi(u3,v3)],[M(s1,c1,d1),M(s2,c2,d2)],tdeg(c1,c2,d1,d2));

Monagan and Pearce’s second algorithm always finds a fraction with minimal total degree

sum of the numerator and denominator. Their algorithm makes a search among all possible

m/n starting from lowest degree 0 assuming that the fraction can be simplified to a constant

in K. If the solution of the resulting system does not give the hypothesized numerator

and denominator, the hypothesized degree is increased by one for both the numerator and

denominator. The procedure is repeated until a solution is found. Then the remaining cases

are explored in a recursive manner. For details see §4 in [Pea05]. An implementation of this

algorithm comes with Maple v.11+. An open source Maple implementation is given in Pearce’s

thesis [Pea05].

Example 3.3.2. The following Maple script2 simplifies the automated addition formulae using

Monagan/Pearce minimal total degree algorithm:

> addM:=simplify(addM,[M(s1,c1,d1),M(s2,c2,d2)],mindeg);

Addition The simplified addition formulae are given by

(s1, c1, d1) + (s2, c2, d2) =
“ s21 − s22
s1c2d2 − c1d1s2

,
s1c1d2 − d1s2c2
s1c2d2 − c1d1s2

,
s1d1c2 − c1s2d2

s1c2d2 − c1d1s2

”

.

2Warning: Maple v.11 and v.12 have internal bugs which are triggered by this example. The problem is
that the minimal total degree implementation uses local variables which clash with the coordinate functions
c1, d1, c2, and d2 resulting in wrong outputs. To surpass these bugs, simply rename c1 to cc1; d1 to dd1; c2
to cc2; and d2 to dd2 in all relevant scripts in this section.

3.4. Automated validations 35

It is experimentally observed that the rational simplification for finding minimal total degree

addition formulae takes less than a second on a Core 2 processor running at 2.66GHz once

the algorithm is fed with initial formulae in canonical form. Using the same algorithm, it can

be checked that the doubling formulae computed above is really of minimal total degree. This

also justifies the claims of Example 3.3.1.

Example 3.3.3. Finally, it is convenient to note that built-in mechanisms of MAGMA can

also remove common components with respect to a monomial order (without a guarantee of

minimal total degree sum of the numerator and denominator). In the following MAGMA

script, the first two lines construct the ring of fractions of the corresponding coordinate rings

K[M] and K[M ×M], respectively. The last three lines simplify the negation, doubling, and

addition formulae which are triggered by the coercion operator, “!”:

> KM:=RingOfFractions(quo<CoordinateRing(M)|Ideal(M)>);

> KMM:=RingOfFractions(quo<CoordinateRing(MM)|Ideal(MM)>);

> [KM!DefiningEquations(negM)[i] : i in [1..#DefiningEquations(negM)]];

> [KM!DefiningEquations(dblM)[i] : i in [1..#DefiningEquations(dblM)]];

> [KMM!DefiningEquations(addM)[i] : i in [1..#DefiningEquations(addM)]];

This script should be run after the relevant scripts of Example 3.2.7. The output is omitted here

since the minimal degree formulae have already been computed and presented in Examples 3.3.1

and 3.3.2.

For other forms of elliptic curves (including the projective representations), it is easy to

modify/parametrize the scripts of §3.2 and of this section, in order to detect “reduced” formulae

for negation, doubling, and addition.

Let L be an algebraic extension of K. The computer derived negation, doubling, and

addition formulae will be used in Chapter 4 to make a complete description of the morphism

+M/L for desingularized curves of genus 1 in several different forms. Selected formulae will

then be used in Chapter 5 for efficiency purposes.

3.4 Automated validations

It is useful to have a validation tool to decide whether two rational functions on a variety are

equivalent. The key tool is described in the following lemma.

Lemma 3.4.1 (Ideal membership). Let G be a Gröbner basis for an ideal I ⊆ K[x1, . . . , xn].

Let f be a polynomial in K[x1, . . . , xn]. Then f ∈ I if and only if the normal form of f by G

is zero.

Proof. The proof follows from basic properties of Gröbner basis. See [CLO07, §2.6].

Let V be a variety and I(V) the ideal of V . Let f, f ′, g, g′ ∈ K[V] such that g, g′ /∈ I(V).

Recall from Chapter 2 that the quotients f/g and f ′/g′ define the same function on V if and

only if f ′g − fg′ ∈ I(V). Now, applying Lemma 3.4.1 answers whether f/g and f ′/g′ are

equivalent functions on V .

36 Chapter 3. A toolbox for group laws

Example 3.4.2. It can be validated that the addition formulae in Examples 3.3.1 and 3.3.2

are coordinate-wise equivalent rational functions on V = M ×M . The following Maple script

implements this validation. Note that the last line defines the quotient relations.

> simplify([

> (s1*c2*d2+c1*d1*s2)*(s1*c2*d2-c1*d1*s2)-(s1^2-s2^2)*(1-a*b*s1^2*s2^2),

> (c1*c2-b*s1*d1*s2*d2)*(s1*c2*d2-c1*d1*s2)-(s1*c1*d2-d1*s2*c2)*(1-a*b*s1^2*s2^2),

> (d1*d2-a*s1*c1*s2*c2)*(s1*c2*d2-c1*d1*s2)-(s1*d1*c2-c1*s2*d2)*(1-a*b*s1^2*s2^2)

>],[b*s1^2+c1^2-1,a*s1^2+d1^2-1,b*s2^2+c2^2-1,a*s2^2+d2^2-1]);

More implementations have already been developed in [BL07a] and several examples are

given in that database.

3.5 Finding more formulae

In §3.3, it was noted how a computation of colon ideals was used for removing common

components of the numerator and denominator of a rational expression modulo a polynomial

ideal. For the purpose of this work, these rational expressions are rational functions on an

elliptic curve M or rational functions on the product M ×M . By using a graded monomial

order and by skipping the module construction phase in the Monagan/Pearce method, it is

possible to minimize the total degree of either the numerator or denominator. More formulae

can then be derived from the other low degree denominators that appear in the reduced Gröbner

basis.

Example 3.5.1. It is convenient to continue with the investigation on twisted Jacobi

intersection form. Consider the polynomials f = s21 − s22 and g = s1c2d2 − c1d1s2 in

K[c1, c2, d1, d2, s1, s2] where K = Q(a, b). Since GCD(f, g) = 1, the fraction f/g does not

simplify in K(c1, c2, d1, d2, s1, s2). Now assume that f/g is a function on EI,b,a : bs2 + c2 −
1, as2 + d2 − 1 where a, b ∈ K with ab(a − b) 6= 0. Let K be the ideal generated by the

relations bs21 + c21 − 1, as21 + d2
1 − 1, bs22 + c22 − 1, as22 + d2

2 − 1. The reduced Gröbner basis of

the colon ideal J = (〈f〉 +K) : 〈g〉 with respect to any graded monomial order must contain

a minimal total degree denominator, see §3.3. In addition, it often contains other low degree

denominators because of the graded order which dominates in reducing the total degree of the

generators. Indeed the generators of the reduced Gröbner basis of J with respect to graded

reverse lexicographical order with c > d > s are given by the sequence G = [c2d1s
2
1s2 −

c1d2s1s
2
2 +(1/b)c1d2s1− (1/b)c2d1s2, c1d2s

2
1s2− c2d1s1s

2
2 +(1/a)c2d1s1− (1/a)c1d2s2, c2s

3
1s2−

(1/(ab))c1d1d2 − (1/b)c2s1s2, d2s
3
1s2 − (1/(ab))c1c2d1 − (1/a)d2s1s2, c1s1s

3
2 − (1/(ab))c2d1d2 −

(1/b)c1s1s2, d1s1s
3
2 − (1/(ab))c1c2d2 − (1/a)d1s1s2, c1c2d1d2 − abs31s2 − abs1s

3
2 + (a +

b)s1s2, c1c2d1s2 + bd2s1s
2
2 − d2s1, c1d1d2s2 + ac2s1s

2
2 − c2s1, c1c2s1s2 + (1/a)d1d2, d1d2s1s2 +

(1/b)c1c2, s
2
1s

2
2 − (1/(ab)), c2d2s1 − c1d1s2, c

2
1 + bs21 − 1, c22 + bs22 − 1, d2

1 + as21 − 1, d2
2 + as22− 1].

By the definition of colon ideal, J trivially contains K. Therefore, the generators of G can be

discarded if they are in K. This can be efficiently detected using Lemma 3.4.1. Observe that

the initial denominator s1c2d2− c1d1s2 is in G. On the other hand, there are several more low

total degree entries which are other candidates for the denominator of equivalent fractions. For

instance, select the entry c1c2s1s2 + (1/a)d1d2. Using a multivariate exact division algorithm

3.6. Brain teasers 37

the new numerator is computed as (c1c2s1s2 + (1/a)d1d2)f/g = (c1s2d2 + s1d1c2)/a. So the

alternative formula is given by (c1s2d2 + s1d1c2)/(d1d2 + ac1c2s1s2). For an exact division

algorithm see Pearce’s thesis [Pea05]. Each one of the other entries gives rise to another

fraction. Even more fractions can be obtained by changing the lexicographical ordering.

3.6 Brain teasers

When it comes to developing a computer program to carry out the group law on an elliptic

curve E, the group law is typically described by an algorithm (possibly containing conditional

statements). This algorithm can be viewed as a sequence of interdependent operations in K.

From a computational aspect, the basic operations associated with K are addition a3, squaring

S, multiplication M, multiplication by small curve constants D, and inversion I. The most

efficient algorithms are typically determined by how many of each field operations I, M, S,

D, and a are sequentially accessed. Because of efficiency considerations, it is convenient to

set some ordering relations between these operations. Practically, it is assumed that I > M,

M > S, M > D, and M > a. To be more precise in comparisons, it is also convenient to set

ratios for these operations such as I = 120M, S = 0.8M, D = 0.2M, and a = 0.1M. However,

these ratios can vary from one implementation to another.

In this section, some short algorithms are isolated from different resources in the literature.

Some of these algorithms turn out to be useful for computing group laws more efficiently. Each

algorithm can be viewed as a brain teaser because it is not clear at the first glance what the

underlying idea of the algorithm is. On the other hand, once the correctness of each approach

is justified the challenge is simplified to recognizing these cases within group laws (hence the

title of this section).

These algorithms will be employed as subalgorithms of several different addition laws in

Chapter 5. There are more variations of each algorithm with altered signs which are omitted

here. The last algorithm (named Type M4) is a contribution of this thesis.

Type S Assume that the following algorithm is executed in three steps and the results are

stored in r1, r2, and r3;

r1 ← A2, r2 ← B2, r3 ← 2A ·B. (3.3)

A preliminary operation count yields 1M + 2S + 1a. On the other hand evaluating (3.3) can

be done with 3S + 3a;

r1 ← A2, r2 ← B2, r3 ← (A+B)2 − r1 − r2.

This algorithm is useful if M−S > 2a. This algorithm has already been used in optimizing the

arithmetic of several different elliptic curve forms, cf. [BL07a]. It will also be used in Chapter 5.

3a also stands for a subtraction or a multiplication or division by a small curve constant.

38 Chapter 3. A toolbox for group laws

Type K This algorithm is attributed to Karatsuba in many resources, cf. [GL09]. This is

due to its resemblance with Karatsuba multiplication;

r1 ← A ·B + C ·D, r2 ← A · C −B ·D. (3.4)

A preliminary operation count yields 4M + 2a. On the other hand, evaluating (3.4) can be

done with only 3M + 5a;

t1 ← A · C, t2 ← B ·D, r1 ← (A+D) · (B + C)− t1 − t2, r2 ← t1 − t2.

This algorithm is useful if M > 3a and is a standard method used in many resources, cf. [BJ03a].

Type M1 This algorithm is taken from [Mon87];

r1 ← 2(A · B −C ·D), r2 ← 2(A · C −B ·D). (3.5)

A preliminary operation count yields 4M+4a. On the other hand, the sum and the difference

of r1 and r2 both factor into two linear components each. Using this observation, evaluating

(3.5) can be done with only 2M + 6a as in [Mon87];

t1 ← A− C, t2 ← B +D, t1 ← t1 · t2, t2 ← A+ C,

t3 ← B −D, t2 ← t2 · t3, r1 ← t1 + t2, r2 ← t1 − t2.

This algorithm is useful if M > a and will be used for optimizing the arithmetic of twisted

Edwards form with a = −1 and of twisted Jacobi intersection form in Chapter 5.

Type M2 This algorithm is a special case of Type M1 and has not been detected in any

elliptic curve related optimizations yet;

r1 ← 2(A2 − C ·D), r2 ← 2A · (C −D). (3.6)

A preliminary operation count yields 2M + 1S + 4a. On the other hand, evaluating (3.6) can

be done with only 2M + 6a;

t1 ← A−D, t2 ← A+ C, t1 ← t1 · t2, t2 ← A+D,

t3 ← A− C, t2 ← t2 · t3, r1 ← t1 + t2, r2 ← t1 − t2.

This algorithm is useful if S > 2a.

Type M3 This algorithm is taken from [Mon87];

r1 ← (A2 −B2)2, r2 ← 4A · B. (3.7)

A preliminary operation count yields 1M + 3S + 2a. On the other hand, evaluating (3.7) can

be done with only 1M + 2S + 3a as in [Mon87];

t1 ← (A−B)2, t2 ← (A+B)2, r1 ← t1 · t2, r2 ← t2 − t1.

This algorithm is useful if S > a.

3.7. Conclusion 39

Type M4 This algorithm is closely related to Type M1;

r1 ← 2(A · B − C ·D), r2 ← 2(D ·E − A · F), r3 ← 2(C · F −B ·E). (3.8)

A preliminary operation count yields 6M + 6a. On the other hand, observe that 2M + 2a

is spent to compute 2(A · B − C · D). Using Type-M1 pattern it is possible to generate

2(A · B − C · D) and 2(A · C − B · D) accessing 2M + 6a. Similarly, 2(D · E − A · F) and

2(D ·A−E ·F) can be computed in 2M+6a. Now 2(C ·F −B ·E) can be written as a linear

combination of 2(B − F) · (C + E), 2(A · C − B ·D), and 2(D · A − E · F). Evaluating (3.8)

can be done with only 5M + 17a;

t1 ← (D +B) · (A−C), t2 ← (D −B) · (A+ C), t3 ← (D + F) · (A− E),

t4 ← (D − F) · (A+E), r1 ← t1 − t2, r2 ← t4 − t3,
r3 ← t3 + t4 − t1 − t2 − 2(B − F) · (C + E).

This algorithm is useful if M > 11a and will be used in the context of twisted Hessian curves

in Chapter 5.

3.7 Conclusion

This chapter has prepared a toolbox for optimizing the arithmetic of elliptic curves given in

some particular form. As the first tool, this chapter has provided a high-level method of finding

group laws on elliptic curves using computer algebra. The method is composed of two stages.

In the first stage, maps between birational curves are used in order to symbolically deduce

the group law for some form of an elliptic curve. In the second stage, rational simplification

methods are employed to find a lowest-degree group law. The notion of finding the lowest-

degree rational expression modulo a prime ideal was developed in [MP06]. To the best of the

authors knowledge, combining two stages and systematically finding the lowest-degree group

laws is an outcome of this thesis. As the second tool, this chapter has isolated several algorithms

from the literature which naturally arise in low-degree group laws. A new brain teaser has been

contributed to the current body of knowledge which will be used in Chapter 5.

In conclusion, this work recommends going through five steps in order to make an efficiency

related study of group laws on elliptic curves;

1. Fix a curve of genus 1 with a rational point lying in a suitable affine or projective space.

2. Derive the group law using Riemann-Roch computations, §3.2.

3. Simplify the negation, doubling, and addition formulae of the group law, §3.3.

4. Make a collection of several equivalent low degree formulae and ensure the equivalence,

§3.4 and §3.5.

5. Detect algorithms to carry out operations efficiently for each of the collected formulae,

§3.6.

As in other areas of mathematics and computer science, there may be several other ways

to approach this goal. In this work, the suggested steps have been applied to all of the

40 Chapter 3. A toolbox for group laws

studied curve models and in many cases the efficiency bounds of several literature resources

are successfully improved. The subsequent chapters 4, 5, and 7 provide further details for each

of the studied forms by making an effective use of the tools of this chapter.

Chapter 4

Group law in affine coordinates

The goal of this chapter is two-fold. The first part of the goal is to find low-degree point addition

formulae for fixed representations of elliptic curves. Some of the formulae are obtained from

literature resources where some others are derived with the tools from Chapter 3. In this

context, each of the sections mainly concentrates on two denominators which naturally arise

when searching for low degree group laws for each elliptic curve form. As the second part

of the goal, the exceptional cases of the selected denominators are explicitly determined and

practical ways of preventing division-by-zero exceptions are studied including pointers to the

literature when possible. This work focuses on five aforementioned forms of elliptic curves in

Chapter 2 which are the most commonly used ones in practical applications.

A complete addition algorithm is presented for each of the forms to handle all possible inputs

including the point(s) at infinity. The complete description of addition law for all curves given

in a particular form can be extracted from the relevant birational maps in §2.3 of Chapter 2

and the discussions on the exceptional points of the birational equivalence. In this context,

exceptions can be handled by first sending the summands on a curve given in a particular

form to the birationally equivalent Weierstrass curve, then carrying out the addition on the

Weierstrass curve where a complete addition algorithm is present in the literature, and finally

sending the sum on the Weierstrass curve to the desired sum on the original curve. Indeed,

this approach implicitly describes a complete addition algorithm on all curves of a particular

form. However, the arithmetic is now dependent on the arithmetic of Weierstrass curves. It

is motivating to make a self-contained complete addition algorithm for each of these forms.

The lemmas presented in §4.1-§4.5 investigate exceptional inputs and make the statement

of a complete addition algorithm easier. These lemmas also provide useful information for

an exception-free implementation. Since the same goals are set for each curve model, it

is not surprising to have analogous results in each section. Therefore, some repetitions are

unavoidable. However, it is still motivating to observe how similar ideas work for almost all

studied forms.

All of the formulae in this chapter involve inversions in the underlying field. In

cryptographic implementations, inversions tend to be significantly more costly than

41

42 Chapter 4. Group law in affine coordinates

multiplications and additions. Therefore, the operation counts are omitted in affine

coordinates. In fact, this chapter serves as a preparation for efficient inversion-free algorithms

which will be given later in Chapter 5.

The conclusions are drawn in §4.6. Further work on other forms are left as a future work.

4.1 Short Weierstrass form

This section presents the group law on ES,a,b in affine coordinates from literature resources. All

formulae in this section plus the summarized results can be found in several books on elliptic

curves. A standard reference is [Sil94]. This section investigates the exceptional summands for

each set of formulae and properly handling the entire set of divide-by-zero exceptions.

Throughout this section, let K be a field with char(K) 6= 2, 3. Recall from Chapter 2 that

a short Weierstrass curve is defined by

ES,a,b : y2 = x3 + ax+ b

where a, b ∈ K with 4a3 + 27b2 6= 0. Recall from Chapter 2 that the set of K-rational points

on ES,a,b is defined by

ES,a,b(K) = {(x, y) ∈ K2 | y2 = x3 + ax+ b} ∪ {Ω}

where Ω is the point at infinity (which is also denoted by ∞ or by O in some other resources).

Identity element and negation The identity element can suitably be taken as Ω. In fact,

this is the only K-rational point on ES,a,b that does not depend on the field of definition. Let

(x1, y1) be a point on ES,a,b. The negative of (x1, y1) is (x1,−y1).

Doubling The doubling formulae on ES,a,b is given by [2](x1, y1) = (x3, y3) where

x3 = ((3x2
1 + a)/(2y1))

2 − 2x1, (4.1)

y3 = ((3x2
1 + a)/(2y1))(x1 − x3)− y1 (4.2)

assuming that y1 6= 0. Note, points with zero y-coordinate are of order 2. These formulae are

not of minimal total degree.

Dedicated addition Further let (x2, y2) be a point on ES,a,b. The addition formulae on

ES,a,b are given by (x1, y1) + (x2, y2) = (x3, y3) where

x3 = ((y1 − y2)/(x1 − x2))
2 − x1 − x2, (4.3)

y3 = ((y1 − y2)/(x1 − x2))(x1 − x3)− y1 (4.4)

assuming that x1 − x2 6= 0. These formulae do not work for identical summands hence the

name dedicated. These formulae are of minimal total degree.

4.1. Short Weierstrass form 43

If (x1, y1) + (x2, y2) is the point at infinity then x1 − x2 = 0. Otherwise, (x1, y1) + (x2, y2)

would be an affine point since it can be shown using the relations y2
1 = x3

1 + ax1 + b and y2
2 =

x3
2 + ax2 + b that the algebraic expressions for (x3, y3) satisfy y2

3 = x3
3 + ax3 + b. The converse,

however, does not necessarily apply. This means that if x1 − x2 = 0 then (x1, y1) + (x2, y2)

may not be a point at infinity. Therefore it is worth investigating the exceptional cases. The

denominators of (4.3) and (4.4) vanish for some summands which are described in the following

lemma explicitly.

Lemma 4.1.1. Fix x1, y1 ∈ K such that y2
1 = x3

1 + ax1 + b. Let x2, y2 ∈ K such that

y2
2 = x3

2 + ax2 + b. It follows that x1 − x2 = 0 if and only if (x2, y2) = (x1, y1) or (x2, y2) =

(x1,−y1) = −(x1, y1).

Proof. Trivial.

Unified addition Alternative addition formulae on ES,a,b are given by (x1, y1) + (x2, y2) =

(x3, y3) where

x3 = ((x2
1 + x1x2 + x2

2 + a)/(y1 + y2))
2 − x1 − x2 (4.5)

y3 = ((x2
1 + x1x2 + x2

2 + a)/(y1 + y2))(x1 − x3)− y1 (4.6)

assuming y1 + y2 6= 0, see [Sil94, Remark 3.6.1] and [BJ02]. These formulae work for identical

summands in most of the cases hence the name unified.

If (x1, y1) + (x2, y2) is the point at infinity then y1 + y2 = 0. Otherwise, (x1, y1) + (x2, y2)

would be an affine point since it can be shown using the relations y2
1 = x3

1 + ax1 + b and y2
2 =

x3
2 + ax2 + b that the algebraic expressions for (x3, y3) satisfy y2

3 = x3
3 + ax3 + b. The converse,

however, does not necessarily apply. This means that if y1 + y2 = 0 then (x1, y1) + (x2, y2)

may not be a point at infinity. Therefore it is worth investigating the exceptional cases. The

denominators of (4.5) and (4.6) vanish for some summands which are described in the following

lemma explicitly.

Lemma 4.1.2. Let a, b ∈ K with 4a3 + 27b2 6= 0. Fix x1, y1 ∈ K such that y2
1 = x3

1 + ax1 + b.

Fix θ ∈ K such that 4θ2x1 = x3
1 + 4b − 4y2

1. Let x2, y2 ∈ K such that y2
2 = x3

2 + ax2 + b. It

follows that y1 + y2 = 0 if and only if (x2, y2) = (x1,−y1) or (x2, y2) = (−x1/2 + θ,−y1) or

(x2, y2) = (−x1/2− θ,−y1).

Proof. ⇒ : Assume that y1 + y2 = 0. Then, y2 is determined to be −y1. Using the equation

y2
2 = x3

2 +ax2 +b one gets x3
2 +ax2 +b− (−y1)2 = (x2−x1)(x2−x′1)(x2−x′′1). The exceptional

cases are obtained by extracting x′1 and x′′1 in terms of x1. ⇐ : The claims follow trivially by

substitution.

Exception handling in the general case Algorithm 4.1.1 provides a complete addition

on all elliptic curves over K with char(K) 6= 2, 3. The point that appears as Ω is the point at

infinity which serves as the identity element. This algorithm or its verbal explanation can be

found in many literature resources. For instance, see [Sil94], [Ins00].

44 Chapter 4. Group law in affine coordinates

Algorithm 4.1.1: Addition law in affine coordinates for short Weierstrass form

input : P1, P2, Ω ∈ ES,a,b(K).

output : P1 + P2.

if P1 = Ω then return P2.1

else if P2 = Ω then return P1.2

else if x1 = x2 then3

if y1 6= y2 then return Ω.4

else if y1 = 0 then return Ω.5

else6

x3 ← ((3x2
1

+ a)/(2y1))2 − 2x1.7

y3 ← ((3x2
1

+ a)/(2y1))(x1 − x3)− y1.8

return (x3, y3).9

end10

else11

x3 ← ((y1 − y2)/(x1 − x2))2 − x1 − x2.12

y3 ← ((y1 − y2)/(x1 − x2))(x1 − x3)− y1.13

return (x3, y3).14

end15

More formulae It has already been noted that the presented doubling formulae are not of

minimal total degree. A set of minimal-degree point doubling formulae is given by 2(x1, y1) =

(x3, y3) where

x3 =
x1

4
− 9bx1

4y2
1

− a3x2
1 − a
4y2

1

, (4.7)

y3 =
y1
2
− 3b+ 2ax1

2y1
− x3

3x2
1 + a

2y1
(4.8)

assuming that y1 6= 0. These formulae are adapted from [CLN09]. The total degree of x3 drops

from 6 to 5 and y3 from 9 to 7.

Furthermore, if c ∈ K such that c2 = b the doubling formulae can be written by

x3 = x1(µ− µ2) + aσ, (4.9)

y3 = (y1 − c)µ3 + aδ − c (4.10)

with µ = (y1 +3c)/(2y1), σ = (a−3x2
1)/(2y1)

2, δ = (3x1(y1−3c)(y1 +3c)−a(9x2
1 +a))/(2y1)

3.

A slightly modified version of these formulae will later be used in Chapter 7 for efficient Tate

pairing computation.

4.2 Extended Jacobi quartic form

This section presents the group law on EQ,d,a in affine coordinates. It also investigates the

exceptional summands for each formula and provides a complete addition algorithm for all

extended Jacobi quartic curves by properly handling an entire set of divide-by-zero exceptions.

In addition, practical ways of preventing these exceptions are explained.

Throughout this section, let K be a field of odd characteristic. Recall from Chapter 2 that

4.2. Extended Jacobi quartic form 45

an extended Jacobi quartic curve is defined by

EQ,d,a : y2 = dx4 + 2ax2 + 1

where a, d ∈ K with d(a2 − d) 6= 0. Assume that d is a square in K. Recall from Chapter 2

that the set of K-rational points on the desingularization of EQ,d,a is defined by

EQ,d,a(K) = {(x, y) ∈ K2 | y2 = dx4 + 2ax2 + 1} ∪ {Ω1,Ω2}

where Ω1,Ω2 are points at infinity.

Identity element and negation The identity element can suitably be taken as (0, 1). Let

(x1, y1) be a point on EQ,d,a. The negative of (x1, y1) is (−x1, y1).

Doubling The doubling formulae on EQ,d,a are given by [2](x1, y1) = (x3, y3) where

x3 =
2x1y1

2− y2
1 + 2ax2

1

, (4.11)

y3 =
2y2

1(y
2
1 − 2ax2

1)

(2− y2
1 + 2ax2

1)
2
− 1 (4.12)

assuming that 2− y2
1 + 2ax2

1 6= 0. These formulae do not depend on the curve constant d and

are of minimal total degree. By the curve equation the denominator 2−y2
1 +2ax2

1 is equivalent

to 1− dx4
1. This denominator can also be used if the total degree is not of concern.

The identity element is the point (0, 1) which can be determined by solving y2
1 = dx4

1 +

2ax2
1 + 1 and (x3, y3) = (x1, y1) for x1 and y1 where x3 and y3 are given by (4.11) and (4.12).

Affine points of order 2 can be determined by solving y2
1 = dx4

1+2ax2
1+1 and (x3, y3) = (0, 1)

for x1 and y1 where x3 and y3 are given by (4.11) and (4.12). The point (0,−1) is of order 2.

There are no other affine points of order 2. There are three points of order 2 in total (over a

sufficiently large finite extension of K). Therefore, both points at infinity Ω1 and Ω2 have to

be of order 2.

The four points of the form (x, 0) are of order 4 which can be determined by solving

y2
1 = dx4

1 + 2ax2
1 + 1 and (x3, y3) = (0,−1) for x1 and y1 where x3 and y3 are given by (4.11)

and (4.12). There are twelve points of order 4 in total (over a sufficiently large finite extension

of K). Therefore two-times-the-remaining-eight-points must be either Ω1 or Ω2. These eight

affine points can be explicitly determined by solving y2
1 = dx4

1 +2ax2
1 +1 and 2−y2

1 +2ax2
1 = 0

for x1 and y1. These points are the only exceptions of (4.11) and (4.12). The following remark

is immediate.

Remark 4.2.1. [2](x1, y1) is a point at infinity if and only if 2− y2
1 + 2ax2

1 = 0.

Remark 4.2.1 does not extend to the case of generic additions. However, it is still useful in

proving some lemmas regarding the generic addition formulae which will be presented next.

46 Chapter 4. Group law in affine coordinates

Dedicated addition Further let (x2, y2) be a point on EQ,d,a. The addition formulae on

EQ,d,a is given by (x1, y1) + (x2, y2) = (x3, y3) where

x3 =
x2

1 − x2
2

x1y2 − y1x2
, (4.13)

y3 =
(x2

1 + x2
2)(y1y2 − 2ax1x2)− 2x1x2(1 + dx2

1x
2
2)

(x1y2 − y1x2)2
(4.14)

assuming that x1y2 − y1x2 6= 0. These formulae are of minimal total degree. These formulae

do not work for identical summands hence the name dedicated.

If (x1, y1)+(x2, y2) is a point at infinity then x1y2−y1x2 = 0. Otherwise, (x1, y1)+(x2, y2)

would be an affine point since it can be shown using the relations y2
1 = dx4

1 + 2ax2
1 + 1 and

y2
2 = dx4

2 + 2ax2
2 + 1 that the algebraic expressions for (x3, y3) satisfy y2

3 = dx4
3 + 2ax2

3 + 1.

The converse, however, does not necessarily apply. This means that if x1y2 − y1x2 = 0 then

(x1, y1) + (x2, y2) may not be a point at infinity. Therefore it is worth investigating the

exceptional cases. The denominators of (4.13) and (4.14) vanish for some summands which are

described in the following lemma explicitly.

Lemma 4.2.2. Let a, d ∈ K with d(a2 − d) 6= 0. Fix δ ∈ K so that δ2 = d. Fix x1 ∈ K\{0}
and y1 ∈ K such that y2

1 = dx4
1 +2ax2

1 +1. Let x2, y2 ∈ K such that y2
2 = dx4

2 +2ax2
2 +1. Then

x1y2 − y1x2 = 0 if and only if (x2, y2) ∈ S where

S =
ˆ

(x1, y1), (−x1,−y1), (1

δx1

,
y1
δx2

1

), (
−1

δx1

,
−y1
δx2

1

)
˜

.

Proof. ⇒ : Assume that x1y2 − y1x2 = 0. Solving the system of equations x1y2 − y1x2 = 0,

y2
1 = dx4

1 + 2ax2
1 + 1 for x2 and y2 gives S. All entries in S are defined since x1 6= 0.

⇐ : The claim follows trivially by substitution.

The following lemma shows that if one of the summands is of odd order then in the presence

of an exception, the other summand is always of even order.

Lemma 4.2.3. Let a, d, x1, y1, x2, y2 be defined as in Lemma 4.2.2. Assume that P1 = (x1, y1)

is a fixed point of odd order. Assume that P2 ∈ S\{P1}. Then P2 is of even order.

Proof. First note that points at infinity are of order 2. Assume that P1 = (x1, y1) is a fixed

point of odd order hence not a point at infinity. Suppose that P2 is of odd order hence not a

point at infinity. It follows that P1 ± P2, M = 2P1, and N = 2P2 are all of odd order hence

not points at infinity.

Assume that P2 ∈ S\{P1}. So, P2 6= P1. In addition, x1y2 − y1x2 = 0 by Lemma 4.2.2.

It follows that P1 6= −P2, for otherwise, x1y2 − y1x2 = 2x1y1 = 0 which means that x or y is

zero. But then P1 would be of even order since x1 6= 0.

Note that y2 = y1x2/x1 is defined since x1 6= 0, by the definition. Using this relation

4.2. Extended Jacobi quartic form 47

together with (4.11), (4.12), and the curve equation gives 1

x(N)2 =
(2x2y2)

2

(2− y2
2 + 2ax2

2)
2

=
(2x2y2)

2

(2− y2
2 + 2ax2

2)
2 + 4(y2

2 − (dx4
2 + 2ax2

2 + 2))
=

(2x2y2)
2

(y2
2 − 2ax2

2)
2 − 4dx4

2

=
(2x2

y1x2

x1
)2

((y1x2

x1
)2 − 2ax2

2)
2 − 4dx4

2

=
(2x1y1)

2

(2− y2
1 + 2ax2

1)
2

= x(M)2,

y(N) =
2y2

2(y2
2 − 2ax2

2)

(2− y2
2 + 2ax2

2)
2
− 1 =

2y2
2(y2

2 − 2ax2
2)

(y2
2 − 2ax2

2)
2 − 4dx4

2

− 1 =

2(y1x2

x1
)2((y1x2

x1
)2 − 2ax2

2)

((y1x2

x1
)2 − 2ax2

2)
2 − 4dx4

2

− 1 =
2y2

1(y
2
1 − 2ax2

1)

(2− y2
1 + 2ax2

1)
2
− 1 = y(M).

Hence, M = ±N . But then M ∓ N = 2P1 ∓ 2P2 = 2(P1 ∓ P2) = (0, 1). Since P1 6= ±P2, it

follows that P1 ∓ P2 is a point of order 2, a contradiction. In conclusion, P2 ∈ S\{P1} is of

even order provided that P1 is of odd order.

A practical solution is now provided to prevent the exceptional cases of (4.13) and (4.14).

Lemma 4.2.4. Let K be a field of odd characteristic. Let EQ,d,a be an extended Jacobi quartic

curve defined over K. Let P1 = (x1, y1) and P2 = (x2, y2) be points on EQ,d,a. Assume that

P1 and P2 are of odd order with P1 6= P2. It follows that x1y2 − y1x2 6= 0.

Proof. Assume that P1 and P2 are of odd order with P1 6= P2. Suppose that x1 = 0 and

x2 = 0. Then, P1 = P2 = (0, 1), contradiction. So, either x1 6= 0 or x2 6= 0. The claim then

follows from Lemma 4.2.2 and Lemma 4.2.3 (by swapping P1 and P2 when necessary).

Unified addition Alternative addition formulae on EQ,d,a are given by (x1, y1)+ (x2, y2) =

(x3, y3) where

x3 =
x1y2 + y1x2

1− dx2
1x

2
2

, (4.15)

y3 =
(y1y2 + 2ax1x2)(1 + dx2

1x
2
2) + 2dx1x2(x

2
1 + x2

2)

(1− dx2
1x

2
2)

2
(4.16)

assuming that 1 − dx2
1x

2
2 6= 0. These formulae work for identical summands in most of the

cases hence the name unified.

If (x1, y1) + (x2, y2) is a point at infinity then 1− dx2
1x

2
2 = 0. Otherwise, (x1, y1) + (x2, y2)

would be an affine point since it can be shown using the relations y2
1 = dx4

1 + 2ax2
1 + 1 and

y2
2 = dx4

2 + 2ax2
2 + 1 that the algebraic expressions for (x3, y3) satisfy y2

3 = dx4
3 + 2ax2

3 + 1.

The converse, however, does not necessarily apply. This means that if 1 − dx2
1x

2
2 = 0 then

(x1, y1) + (x2, y2) may not be a point at infinity. Therefore it is worth investigating the

exceptional cases. The denominators of (4.15) and (4.16) vanish for some summands which are

described in the following lemma explicitly.

Lemma 4.2.5. Let a, d ∈ K with d(a2 − d) 6= 0. Fix δ ∈ K so that δ2 = d. Fix x1 ∈ K\{0}
and y1 ∈ K such that y2

1 = dx4
1 +2ax2

1 +1. Let x2, y2 ∈ K such that y2
2 = dx4

2 +2ax2
2 +1. Then

1x(N) means the x-coordinate of the point N .

48 Chapter 4. Group law in affine coordinates

1− dx2
1x

2
2 = 0 if and only if (x2, y2) ∈ S′ where

S′ =
ˆ

(
1

δx1

,
−y1
δx2

1

), (
−1

δx1

,
y1
δx2

1

), (
1

δx1

,
y1
δx2

1

), (
−1

δx1

,
−y1
δx2

1

)
˜

.

Proof. ⇒ : Assume that 1 − dx2
1x

2
2 = 0. Solving the system of equations 1 − dx2

1x
2
2 = 0,

y2
1 = dx4

1 + 2ax2
1 + 1 for x2 and y2 gives S′. All entries in S′ are defined since x1 6= 0.

⇐ : The claim follows trivially by substitution.

This lemma and Lemma 4.2.2 excludes x1 = 0. If so, 1− dx2
1x

2
2 6= 0 as desired.

The following lemma shows that if one of the summands is of odd order then in the presence

of a vanished denominator, the other summand is always of even order.

Lemma 4.2.6. Let a, d, x1, y1, x2, y2 be defined as in Lemma 4.2.5. Assume that P1 = (x1, y1)

is a fixed point of odd order. Assume that P2 = (x2, y2) ∈ S′. Then P2 is of even order.

Proof. First note that points at infinity are of order 2. Assume that P1 = (x1, y1) is a fixed

point of odd order hence not a point at infinity. Suppose that P2 is of odd order hence not a

point at infinity. It follows that P1 ± P2, M = 2P1, and N = 2P2 are all of odd order hence

not points at infinity.

Assume that P2 ∈ S′. Then, 1− dx2
1x

2
2 = 0 by Lemma 4.2.5 and it follows that P1 6= ±P2,

for otherwise, 1− dx4
1 = 2− y2

1 + 2ax2
1 = 0 and P1 would be of even order by Remark 4.2.1.

Note that x1 6= 0 since 1− dx2
1x

2
2 = 0 (also true by definition). So, x2

2 = 1/(dx2
1) is defined.

Using this relation together with (4.15), (4.16), and the curve equation gives

x(N)2 =
(2x2y2)

2

(1− dx4
2)

2
=

4x2
2(dx

4
2 + 2ax2

2 + 1)

(1− dx4
2)

2
=

4 1

dx2
1

(d(1

dx2
1

)2 + 2a 1

dx2
1

+ 1)

(1− d(1

dx2
1

)2)2
=

4x2
1(dx

4
1 + 2ax2

1 + 1)

(1− dx4
1)

2
=

(2x1y1)
2

(1− dx4
1)

2
= x(M)2,

y(N) =
(y2

2 + 2ax2
2)(1 + dx4

2) + 4dx4
2

(1− dx4
2)

2
=

((dx4
2 + 2ax2

2 + 1) + 2ax2
2)(1 + dx4

2) + 4dx4
2

(1− dx4
2)

2
=

((d(1

dx2
1

)2 + 2a 1

dx2
1

+ 1) + 2a 1

dx2
1

)(1 + d(1

dx2
1

)2) + 4d(1

dx2
1

)2

(1− d(1

dx2
1

)2)2
=

((dx4
1 + 2ax2

1 + 1) + 2ax2
1)(1 + dx4

1) + 4dx4
1

(1− dx4
1)

2
=

(y2
1 + 2ax2

1)(1 + dx4
1) + 4dx4

1

(1− dx4
1)

2
= y(M).

Hence, M = ±N . But then M ∓ N = 2P1 ∓ 2P2 = 2(P1 ∓ P2) = (0, 1). Since P1 6= ±P2, it

follows that P1∓P2 is a point of order 2, contradiction. In conclusion, P2 ∈ S′ is of even order

provided that P1 is of odd order.

In the following lemma, with reasonable assumptions, it is shown that exceptions can be

prevented regardless of any assumption on the curve constants.

Lemma 4.2.7. Let K be a field of odd characteristic. Let EQ,d,a be an extended Jacobi quartic

curve defined over K. Let P1 = (x1, y1) and P2 = (x2, y2) be points on EQ,d,a. Assume that

P1 and P2 are of odd order. It follows that 1− dx2
1x

2
2 6= 0.

4.2. Extended Jacobi quartic form 49

Proof. Assume that P1 and P2 are of odd order. Assume that x1x2 = 0 then 1 − dx2
1x

2
2 6= 0

as desired. From now on assume that x1x2 6= 0. The claim follows from Lemma 4.2.5 and

Lemma 4.2.6 (by swapping P1 and P2 when necessary).

Exception handling in the general case Algorithm 4.2.1 provides a complete addition

on all extended Jacobi quartic curves. The correctness of the algorithm follows from two

Algorithm 4.2.1: Addition law in affine coordinates for extended Jacobi quartic form

input : P1, P2,Ω1,Ω2 ∈ EQ,d,a(K) and fixed δ ∈ K such that δ2 = d.

output : P1 + P2.

if P1 ∈ {Ω1, Ω2} then Pt ← P1, P1 ← P2, P2 ← Pt.1

if P2 = Ω1 then2

if P1 = Ω1 then return (0, 1).3

else if P1 = Ω2 then return (0,−1).4

else if P1 = (0, 1) then return Ω1.5

else if P1 = (0,−1) then return Ω2.6

else return (−1/(δx1), y1/(δx2
1
)).7

else if P2 = Ω2 then8

if P1 = Ω1 then return (0,−1).9

else if P1 = Ω2 then return (0, 1).10

else if P1 = (0,−1) then return Ω1.11

else if P1 = (0, 1) then return Ω2.12

else return (1/(δx1),−y1/(δx2
1
)).13

else if x1y2 − y1x2 6= 0 then14

x3 ← (x2
1
− x2

2
)/(x1y2 − y1x2).15

y3 ← ((x2
1

+ x2
2
)(y1y2 − 2ax1x2)− 2x1x2(1 + dx2

1
x2
2
))/(x1y2 − y1x2)2.16

return (x3, y3).17

else if 1− dx2
1
x2
2
6= 0 then18

x3 ← (x1y2 + y1x2)/(1 − dx2
1x2

2).19

y3 ← ((y1y2 + 2ax1x2)(1 + dx2
1
x2
2
) + 2dx1x2(x2

1
+ x2

2
))/(1 − dx2

1
x2
2
)2.20

return (x3, y3).21

else22

if P2 = (1/(δx1), y1/(δx2
1
)) then return Ω1.23

else return Ω2.24

end25

observations. Firstly, when a point at infinity is involved as the sum or as one of the summands

along the lines 2 to 13, it is tedious but straightforward to check that the output of the

algorithm is correct using the implicit technique mentioned at the start of the chapter. Line 1

conditionally swaps the inputs to eliminate half of the input-wise symmetric branches. The

second observation is that glueing together the unified addition and the dedicated addition

formulae is enough to handle all exceptions when both of the summands and the sum are affine

points. This fact follows from Lemma 4.2.5 and Lemma 4.2.2 by observing that #(S′∩S) = 2.

This means that if (x2, y2) ∈ S′ ∩ S then the output must be a point at infinity (lines 23 and

24) since there are exactly two points at infinity. The remaining exceptional cases which occur

at (x2, y2) ∈ S′\(S′ ∩ S) are handled by the dedicated addition formulae (lines 15 and 16).

Similarly the exceptions at (x2, y2) ∈ S\(S′ ∩ S) are handled by the unified addition formulae

(lines 19 and 20).

The points at infinity on the desingularized projective closure of EQ,d,a are not defined over

K if d is not a square in K. Having noted this, the following lemma implies that these addition

50 Chapter 4. Group law in affine coordinates

formulae are complete2 provided that d is not a square in K.

Lemma 4.2.8. Let d, x1, x2 ∈ K. Assume that d is non-square. Then 1− dx2
1x

2
2 6= 0.

Proof. Suppose that 1− dx2
1x

2
2 = 0. So d, x1, x2 6= 0. But then d = (1/(x1x2))

2, contradiction.

Algorithm 4.2.1 complies with the completeness criterion since only the lines 19 to 21 are

necessary in this case. Note that the assumption on the curve constant d limits the number of

curves in extended Jacobi quartic form for which the unified addition formulae are complete.

Algorithm 4.2.1 also complies with Lemma 4.2.7. If P1 and P2 are points of odd order then

only the lines 19 to 21 are necessary. This technique applies to all extended Jacobi quartic

curves.

Algorithm 4.2.1 also complies with Lemma 4.2.4. If P1 and P2 are distinct points of odd

order then only the lines 15 to 17 are necessary. This technique applies to all extended Jacobi

quartic curves. The doubling formulae (4.11) and (4.12) are enough to handle the special case

P1 = P2.

More formulae Using the tools of Chapter 3, it is possible to derive other low-degree

addition formulae;

x3 =
e(x2

1 − x2
2) + f(x1y2 + y1x2)

e(x1y2 − y1x2) + f(1− dx2
1x

2
2)

(4.17)

assuming that e(x1y2 − y1x2) + f(1 − dx2
1x

2
2) 6= 0 where e, f ∈ K such that ef 6= 0. The

analogous formulae for y3 can be derived by using the square of the same denominator. In

fact, it is still possible to derive many more low-degree addition formulae for y3;

y3 =
y1y2 + 2ax1x2 ±

√
dx2

1 ±
√
dx2

2

(1∓
√
dx1x2)2

∓
√
dx2

3, (4.18)

y3 =
(x2

1 − x2
2)

2 − (x1y2 − y1x2)(x
3
1y2 − y1x3

2)

x1x2(x1y2 − y1x2)2
, (4.19)

y3 =
(x1 − x2)

2

(x1y2 − y1x2)2
(y1y2 − 2ax1x2 + 1 + dx2

1x
2
2)− 1, (4.20)

y3 =
2(x1y1 − x2y2)− (x1y2 − y1x2)(y1y2 + 2ax1x2)

(x1y2 − y1x2)(1 − dx2
1x

2
2)

, (4.21)

y3 =
(x1 − x2)(y1 + y2 + dx1x2(x

2
1y2 + y1x

2
2))

(x1y2 − y1x2)(1 − dx2
1x

2
2)

− 1, (4.22)

y3 =
(1±

√
dx1x2)(x1y1 − x2y2 ±

√
dx3

1y2 ∓
√
dy1x

3
2)

(x1y2 − y1x2)(1− dx2
1x

2
2)

∓
√
dx2

3, (4.23)

y3 =
(x1 − x2)(1 ±

√
dx1x2)

(x1y2 − y1x2)(1− dx2
1x

2
2)

(y1 + y2 ±
√
dx2

1y2 ±
√
dy1x

2
2)∓

√
dx2

3 − 1. (4.24)

The formulae (4.18) and (4.20) will be recalled in §5.2 of Chapter 5. The other formulae tend

to include more subexpressions which are not commonly shared. Therefore, their evaluation

turns out to be more costly and thus not considered hereafter.

2i.e. these formulae define the addition law

4.3. Twisted Hessian form 51

Literature notes Other results related to the affine formulae for extended Jacobi quartic

form can be found in the literature. Some pointers are [Jac29], [WW27], [Yui88], and [MM99].

The dedicated addition formulae presented in this section are essentially the same formulae

used by Chudnovsky and Chudnovsky in [CC86, 4.10i, p.418] with the minor detail that the

formulae in this section are given in affine coordinates, the curve equation is y2 = dx4+2ax2+1

rather than y2 = x4+a′x2+b′, and the identity is the point (0, 1) rather than a point at infinity.

4.3 Twisted Hessian form

This section presents the group law on EH,a,d in affine coordinates. It also investigates the

exceptional summands for each set of formulae and provides a complete addition algorithm for

all twisted Hessian curves by properly handling an entire set of divide-by-zero exceptions. In

addition, practical ways of preventing these exceptions are explained.

Throughout this section, let K be a field with char(K) 6= 2, 3. Recall from Chapter 2 that

a twisted Hessian curve is defined by

EH,a,d : ax3 + y3 + 1 = dxy

where a, d ∈ K with a(27a − d3) 6= 0. Assume that a is a cube in K. Recall from Chapter 2

that the set of K-rational points on EH,a,d is defined by

EH,a,d(K) = {(x, y) ∈ K2 | ax3 + y3 + 1 = dxy} ∪ {Ω1,Ω2,Ω3}

where Ω1,Ω2,Ω3 are points at infinity.

Identity element and negation The identity element can suitably be taken as (0,−1). In

fact, this is the only K-rational point on EH,a,d that does not depend on the field of definition.

Let (x1, y1) be a point on EH,a,d. The negative of (x1, y1) is (x1/y1, 1/y1).

Doubling The doubling formulae on EH,a,d are given by [2](x1, y1) = (x3, y3) where

x3 = (x1 − y3
1x1)/(ay1x

3
1 − y1), (4.25)

y3 = (y3
1 − ax3

1)/(ay1x
3
1 − y1). (4.26)

assuming that ay1x
3
1 − y1 6= 0, see [BKL09]. These formulae do not depend on the curve

constant d and are of minimal total degree. By the curve equation the denominator ay1x
3
1− y1

is equivalent to y1(dx1y1 − y3
1 − 2) and is of the same degree. This denominator can also be

used if desired.

To study the order of points at infinity tripling formulae are needed which are presented

next.

52 Chapter 4. Group law in affine coordinates

Tripling Let (x1, y1) be a point on EH,a,d. The tripling formulae on EH,a,d are given by

[3](x1, y1) = (x3, y3) where

x3 =
x1y1((1− ax3

1)
2 + (y3

1 − ax3
1)(y

3
1 − 1))

(1− ax3
1)

2 + (y3
1 − ax3

1)(y
3
1 − 1)− (y3

1 − 1)2(1− ax3
1)
, (4.27)

y3 =
y3
1(1− ax3

1)
2 − (y3

1 − ax3
1)(1 − y3

1)

(1− ax3
1)

2 + (y3
1 − ax3

1)(y
3
1 − 1)− (y3

1 − 1)2(1− ax3
1)

(4.28)

assuming that (1−ax3
1)

2 +(y3
1−ax3

1)(y
3
1 −1)− (y3

1−1)2(1−ax3
1) 6= 0. These tripling formulae

are adapted from [BKL09]. These formulae do not depend on the curve constant d.

The two points of the form (0, y) (excluding the identity) and three points of the form (x, 0)

are of order 3 which can be determined by solving ax3
1 + y3

1 + 1 = dx1y1 and (x3, y3) = (0,−1)

for x1 and y1 where x3 and y3 are given by (4.27) and (4.28). There are eight points of order

3 in total (over a sufficiently large finite extension of K). Therefore the remaining 3 points of

order 3 have to be the points at infinity Ω1, Ω2, and Ω3.

Dedicated addition Further let (x2, y2) be a point on EH,a,d. The addition formulae on

EH,a,d are given by (x1, y1) + (x2, y2) = (x3, y3) where

x3 = (y1x
2
2 − x2

1y2)/(x1y
2
2 − y2

1x2), (4.29)

y3 = (x1y1 − x2y2)/(x1y
2
2 − y2

1x2). (4.30)

assuming that x1y
2
2−y2

1x2 6= 0. These formulae are of minimal total degree and do not depend

on d. These formulae do not work for identical summands hence the name dedicated.

If (x1, y1)+(x2, y2) is a point at infinity then x1y
2
2−y2

1x2 = 0. Otherwise, (x1, y1)+(x2, y2)

would be an affine point since it can be shown using the relations ax3
1 + y3

1 + 1 = dx1y1 and

ax3
2 + y3

2 + 1 = dx2y2 that the algebraic expressions for (x3, y3) satisfy ax3
2 + y3

2 + 1 = dx2y2.

The converse, however, does not necessarily apply. This means that if x1y
2
2 − y2

1x2 = 0 then

(x1, y1) + (x2, y2) may not be a point at infinity. Therefore it is worth investigating the

exceptional cases. The denominators of (4.29) and (4.30) vanish for some summands which are

described in the following lemma explicitly.

Lemma 4.3.1. Let a, d ∈ K with a(27a− d3) 6= 0. Fix ω ∈ K\{1} so that ω3 = 1. Fix α ∈ K

so that α3 = a. Fix x1, y1 ∈ K\{0} such that ax3
1 + y3

1 + 1 = dx1y1. Let x2, y2 ∈ K such that

ax3
2 + y3

2 + 1 = dx2y2. Now, x1y
2
2 − y2

1x2 = 0 if and only if (x2, y2) ∈ S where

S =
ˆ

(x1, y1), (ωx1,
y1
ω

), (
x1

ω
, ωy1), (

α

ax1

,
y1
αx1

), (
ωα

ax1

,
y1

ωαx1

), (
α

aωx1

,
ωy1
αx1

)
˜

.

Proof. ⇒ : Assume that x1y
2
2 − y2

1x2 = 0. Solving the equations x1y
2
2 − y2

1x2 = 0 and ax3
2 +

y3
2 + 1 = dx2y2 simultaneously for x2 and y2 gives S. Note that the last three entries are equal

to −(1
αy1

, αx1

y1
), −(1

ωαy1
, ωαx1

y1
), −(ω

αy1
, αx1

ωy1
), respectively. All entries in S are defined since

x1y1 6= 0. ⇐ : The claim follows trivially by substitution.

The following lemma shows that if one of the summands is of odd order then in the presence

of an exception, the other summand is always of even order.

4.3. Twisted Hessian form 53

Lemma 4.3.2. Let a, d, x1, y1, x2, y2 be defined as in Lemma 4.3.1. Assume that P1 = (x1, y1)

is a fixed point of odd order such that 3 ∤ #〈P1〉. Assume that P2 = (x2, y2) ∈ S\{P1}. Then,

P2 /∈ 〈P1〉.

Proof. Note that the points at infinity (over the extension of K where they exist) are of order

3. Assume that P1 = (x1, y1) is a fixed point of odd order such that 3 ∤ #〈P1〉 hence not a

point at infinity. Suppose that P2 ∈ 〈P1〉 hence not a point at infinity. It follows that P1±P2,

M = 3P1, and N = 3P2 are all in 〈P1〉 hence not points at infinity.

Assume that P2 ∈ S\{P1}. P2 6= ±P1. Using the dedicated tripling formulae, it is easy to

check by substitutions (of five possible algebraic expressions for P2 in S) that either 3P1 = 3P2

or 3P1 = −3P2. Then, either 3(P1−P2) = (0,−1) or 3(P1+P2) = (0,−1). Then, P1±P2 /∈ 〈P1〉,
contradiction. In conclusion, P2 /∈ 〈P1〉.

A practical solution is now provided to prevent the exceptional cases of (4.29) and (4.30).

Lemma 4.3.3. Let EH,a,d be a twisted Hessian curve defined over K. Let P1 = (x1, y1) and

P2 = (x2, y2) be points on EH,a,d. Assume that P1 and P2 are of odd order such that P1 6= P2,

3 ∤ #〈P1〉, and 3 ∤ #〈P2〉. It follows that x1y
2
2 − y2

1x2 6= 0.

Proof. Assume that P1 6= P2, 3 ∤ #〈P1〉, and 3 ∤ #〈P2〉. Suppose that x1 = 0 and x2 = 0.

Then, either P1 = P2 = (0,−1) or P2 = (0,−ω) or P2 = (0,−1/ω), all are contradictions.

So, either x1 6= 0 or x2 6= 0. Suppose that y1y2 = 0. Then, either P1 or P2 is of order 3,

contradiction. So, y1y2 6= 0. Therefore, either x1y1 6= 0 or x2y2 6= 0. The claim then follows

from Lemma 4.3.1 and Lemma 4.3.2 (by swapping P1 and P2 when necessary).

Unified addition Alternative addition formulae on EH,a,d are given by (x1, y1) + (x2, y2) =

(x3, y3) where

x3 = (x1 − y2
1x2y2)/(ax1y1x

2
2 − y2), (4.31)

y3 = (y1y
2
2 − ax2

1x2)/(ax1y1x
2
2 − y2). (4.32)

assuming that ax1y1x
2
2 − y2 6= 0. These formulae work for identical summands in most of the

cases hence the name unified.

If (x1, y1)+(x2, y2) is a point at infinity then ax1y1x
2
2−y2 = 0. Otherwise, (x1, y1)+(x2, y2)

would be an affine point since it can be shown using the relations ax3
1 + y3

1 + 1 = dx1y1 and

ax3
2 + y3

2 + 1 = dx2y2 that the algebraic expressions for (x3, y3) satisfy ax3
3 + y3

3 + 1 = dx3y3.

The converse, however, does not necessarily apply. This means that if ax1y1x
2
2 − y2 = 0

then (x1, y1) + (x2, y2) may not be a point at infinity. Therefore it is worth investigating the

exceptional cases. The denominators of (4.31) and (4.32) vanish for some summands which are

described in the following lemma explicitly.

Lemma 4.3.4. Let a, d ∈ K with a(27a− d3) 6= 0. Fix ω ∈ K\{1} so that ω3 = 1. Fix α ∈ K

so that α3 = a. Fix x1, y1 ∈ K\{0} such that ax3
1 + y3

1 + 1 = dx1y1. Let x2, y2 ∈ K such that

ax3
2 + y3

2 + 1 = dx2y2. Now, ax1y1x
2
2 − y2 = 0 if and only if (x2, y2) ∈ S′ where

S′ =
ˆ

(
1

αy1
,
αx1

y1
), (

1

ωαy1
,
ωαx1

y1
), (

ω

αy1
,
αx1

ωy1
), (

α

ax1

,
y1
αx1

), (
ωα

ax1

,
y1

ωαx1

), (
α

aωx1

,
ωy1
αx1

)
˜

.

54 Chapter 4. Group law in affine coordinates

Proof. ⇒ : Assume that ax1y1x
2
2 − y2 = 0. Solving the system of equations ax1y1x

2
2 − y2 = 0,

ax3
2 + y3

2 + 1 = dx2y2 for x2 and y2 gives S′. Note that the last three entries are equal to

−(1
αy1

, αx1

y1
), −(1

ωαy1
, ωαx1

y1
), −(ω

αy1
, αx1

ωy1
), respectively. Then, all entries in S′ are defined since

x1y1 6= 0. ⇐ : The claim follows trivially by substitution.

This lemma and Lemma 4.3.1 excludes x1y1 = 0. The following lemma states the

exceptional cases for the excluded situation.

Lemma 4.3.5. In Lemma 4.3.4 assume that x1y1 = 0. Then ax1y1x
2
2 − y2 = 0 if and only if

(x2, y2) ∈ [(−1
α , 0), (−1

ωα , 0), (−ω
α , 0)]. Each of these points is of order 3.

Proof. Trivial.

The following lemma shows that if one of the summands is selected suitably then in the

presence of a vanished denominator, the other summand is not in the subgroup generated by

the original summand.

Lemma 4.3.6. Let a, d, x1, y1, x2, y2 be defined as in Lemma 4.3.4. Assume that P1 = (x1, y1)

is a fixed point of odd order such that 3 ∤ #〈P1〉. Assume that P2 = (x2, y2) ∈ S′. Then,

P2 /∈ 〈P1〉.

Proof. See the proof of Lemma 4.3.2. The only difference is P2 is selected from S′.

In the following lemma, it is shown that exceptions can be prevented regardless of any

assumption on the curve constants.

Lemma 4.3.7. Let EH,a,d be a twisted Hessian curve defined over K. Let P1 = (x1, y1) and

P2 = (x2, y2) be points on EH,a,d. Assume that P1 and P2 are of odd order such that 3 ∤ #〈P1〉
and 3 ∤ #〈P2〉. It follows that ax1y1x

2
2 − y2 6= 0.

Proof. Assume that P1 and P2 are of odd order such that 3 ∤ #〈P1〉 and 3 ∤ #〈P2〉. If x1y1 = 0

then from Lemma 4.3.5 it follows that ax1y1x
2
2 − y2 6= 0. If x1y1 6= 0 then the claim follows

from Lemma 4.3.4 and Lemma 4.3.6 (by swapping P1 and P2 when necessary).

Exception handling in the general case Algorithm 4.3.1 provides a complete addition

on all twisted Hessian curves. The correctness of the algorithm follows from two observations.

Firstly, when a point at infinity is involved as the sum or as one of the summands along the lines

2 to 25, it is tedious but straightforward to check that the output of the algorithm is correct

using the implicit technique mentioned at the start of the chapter. Line 1 conditionally swaps

the inputs to eliminate half of the input-wise symmetric branches. The second observation is

that glueing together the unified addition and the dedicated addition formulae is enough to

handle all exceptions when both of the summands and the sum are affine points. Also notice

that the exceptions of Lemma 4.3.5 are handled properly. This fact follows from Lemma 4.3.1

and Lemma 4.3.4 by observing that #(S′ ∩ S) = 3. This means that if (x2, y2) ∈ S′ ∩ S
then the output must be a point at infinity (lines 35 and 37) since there are exactly three

points at infinity. The remaining exceptional cases which occur at (x2, y2) ∈ S′\(S′ ∩ S) are

4.3. Twisted Hessian form 55

Algorithm 4.3.1: Addition law in affine coordinates for twisted Hessian form

input : P1, P2,Ω1,Ω2,Ω3 ∈ EH,a,d(K) and fixed α, ω ∈ K such that α3 = a and ω3 = 1 with ω 6= 1.

output : P1 + P2.

if P1 ∈ {Ω1, Ω2,Ω3} then Pt ← P1, P1 ← P2, P2 ← Pt.1

if P1 = Ω1 then2

if P2 = Ω1 then return (−1/α, 0).3

else if P2 = Ω2 then return (−1/(ωα), 0).4

else if P2 = Ω3 then return (−ω/α, 0).5

else if P2 = (0,−1) then return Ω1.6

else if P2 = (0,−ω) then return Ω2.7

else if P2 = (0,−1/ω) then return Ω3.8

else return (αy2/(ax2), 1/(αx2)).9

else if P1 = Ω2 then10

if P2 = Ω1 then return (−1/(ωα), 0).11

else if P2 = Ω2 then return (−ω/α, 0).12

else if P2 = Ω3 then return (−1/α, 0).13

else if P2 = (0,−1/ω) then return Ω1.14

else if P2 = (0,−1) then return Ω2.15

else if P2 = (0,−ω) then return Ω3.16

else return (αy2/(ωax2), ω/(αx2)).17

else if P1 = Ω3 then18

if P2 = Ω1 then return (−ω/α, 0).19

else if P2 = Ω2 then return (−1/α, 0).20

else if P2 = Ω3 then return (−1/(ωα), 0).21

else if P2 = (0,−ω) then return Ω1.22

else if P2 = (0,−1/ω) then return Ω2.23

else if P2 = (0,−1) then return Ω3.24

else return (ωαy2/(ax2), 1/(ωαx2)).25

else if x1y2
2 − y2

1x2 6= 0 then26

x3 ← (y1x2
2 − x2

1y2)/(x1y2
2 − y2

1x2).27

y3 ← (x1y1 − x2y2)/(x1y2
2
− y2

1
x2).28

return (x3, y3).29

else if ax1y1x2
2 − y2 6= 0 then30

x3 ← (x1 − y2
1
x2y2)/(ax1y1x2

2
− y2).31

y3 ← (y1y2
2
− ax2

1
x2)/(ax1y1x2

2
− y2).32

return (x3, y3).33

else34

if P2 = (α/(ax1), y1/(αx1)) then return Ω1.35

else if P2 = (α/(ωax1), ωy1/(αx1)) then return Ω2.36

else return Ω3.37

end38

handled by the dedicated addition formulae (lines 27 and 28). Similarly the exceptions at

(x2, y2) ∈ S\(S′ ∩ S) are handled by the unified addition formulae (lines 31 and 32).

The points at infinity on the projective closure of EH,a,d are not defined over K if a is a

non-cube in K. Having noted this, it was pointed out in [Ber06a] that (4.31) and (4.32) are

complete. Algorithm 4.3.1 complies with the completeness criterion since only the lines 31 to

32 are necessary in this case because these lines are input-wise symmetric versions of (4.31)

and (4.32). Note that the assumption on the curve constant a limits the number of curves in

twisted Hessian form for which the unified addition formulae are complete.

Algorithm 4.3.1 also complies with Lemma 4.3.7. If P1 and P2 are points of odd order then

only the lines 19 to 21 are necessary. This technique applies to all twisted Hessian curves.

Algorithm 4.3.1 also complies with Lemma 4.3.3. If P1 and P2 are distinct points of odd

order then only the lines 15 to 17 are necessary. This technique applies to all twisted Hessian

56 Chapter 4. Group law in affine coordinates

curves. The doubling formulae (4.25) and (4.26) are enough to handle the special case P1 = P2.

More formulae Using the tools of Chapter 3, it is possible to derive other low-degree

addition formulae;

x3 =
e(x1 − y2

1x2y2) + f(x1y1y
2
2 − x2) + g(y1x

2
2 − x2

1y2)

e(ax1y1x2
2 − y2) + f(y1 − ax2

1x2y2) + g(x1y2
2 − y2

1x2)
, (4.33)

y3 =
h(y1y

2
2 − ax2

1x2) + j(ax1x
2
2 − y2

1y2) + k(x1y1 − x2y2)

h(ax1y1x2
2 − y2) + j(y1 − ax2

1x2y2) + k(x1y2
2 − y2

1x2)
(4.34)

assuming that e(ax1y1x
2
2 − y2) + f(y1− ax2

1x2y2) + g(x1y
2
2 − y2

1x2) 6= 0 and h(ax1y1x
2
2 − y2) +

j(y1 − ax2
1x2y2) + k(x1y

2
2 − y2

1x2) 6= 0 where e, f, g, h, j, k ∈ K such that at most one of e, f, g

is zero and at most one of h, j, k is zero. These formulae tend to include more subexpressions

which are not commonly shared. Therefore, their evaluation turns out to be more costly and

thus not considered hereafter.

Literature notes Other results related to the affine formulae for Hessian form x3 +y3 +1 =

dxy can be found in the literature. Those formulae typically use a point at infinity as the

identity element. Moving the identity to (0,−1) yields similar formulae presented in this

section. Some pointers are [CC86], [Sma01], [JQ01]. Generalization from Hessian curves to

twisted Hessian curves is due to Bernstein, Kohel, and Lange [BL07a].

4.4 Twisted Edwards form

This section presents the group law on EE,a,d in affine coordinates. It also investigates the

exceptional summands for each set of formulae and provides a complete addition algorithm for

all twisted Edwards curves by properly handling an entire set of divide-by-zero exceptions. In

addition, practical ways of preventing these exceptions are explained.

Throughout this section, let K be a field of odd characteristic. Recall from Chapter 2 that

a twisted Edwards curve is defined by

EE,a,d : ax2 + y2 = 1 + dx2y2

where a, d ∈ K with ad(a − d) 6= 0. Assume that both a and d are squares in K. Recall from

Chapter 2 that the set of K-rational points on the desingularization of EE,a,d is defined by

EE,a,d(K) = {(x, y) ∈ K2 | ax2 + y2 = 1 + dx2y2} ∪ {Ω1,Ω2,Ω3,Ω4}

where Ω1,Ω2,Ω3,Ω4 are points at infinity.

Identity element and negation The identity element can suitably be taken as (0, 1). Let

(x1, y1) be a point on EE,a,d. The negative of (x1, y1) is (−x1, y1).

4.4. Twisted Edwards form 57

Doubling The doubling formulae on EE,a,d are given by [2](x1, y1) = (x3, y3) where

x3 = 2x1y1/(y
2
1 + ax2

1), (4.35)

y3 = (y2
1 − ax2

1)/(2− y2
1 − ax2

1) (4.36)

assuming that (2 − y2
1 − ax2

1)(y
2
1 + ax2

1) 6= 0, see [BBJ+08] (also see [BL07b], [BBLP07],

[BBLP08]). These formulae do not depend on the curve constant d and are of minimal total

degree. By the curve equation the denominator y2
1 + ax2

1 is equivalent to 1 + dx2
1y

2
1 . Similarly,

the denominator 2− y2
1 − ax2

1 is equivalent to 1− dx2
1y

2
1 . These denominators can also be used

if the total degree is not of concern.

The identity element is the point (0, 1) which can be determined by solving ax2
1 + y2

1 =

1 + dx2
1y

2
1 and (x3, y3) = (x1, y1) for x1 and y1 where x3 and y3 are given by (4.35) and (4.36).

The point (0,−1) is of order 2 which can be determined by solving ax2
1 + y2

1 = 1 + dx2
1y

2
1

and (x3, y3) = (0, 1) for x1 and y1 where x3 and y3 are given by (4.35) and (4.36). There are

three points of order 2 in total (over a sufficiently large finite extension of K). Therefore, two

of the points at infinity have to be of order 2. Ω1 and Ω2 are taken to be of order 2 hereafter.

The two points of the form (x, 0) are of order 4 which can be determined by solving ax2
1 +

y2
1 = 1 + dx2

1y
2
1 and (x3, y3) = (0,−1) for x1 and y1 where x3 and y3 are given by (4.35) and

(4.36). There are twelve points of order 4 in total (over a sufficiently large finite extension of

K). Eight of these points can be explicitly determined to be affine points by solving ax2
1 +y2

1 =

1 + dx2
1y

2
1 and (2− y2

1 − ax2
1)(y

2
1 + ax2

1) = 0 for x1 and y1. Therefore, the remaining two points

of order 4 have to be the points at infinity Ω3 and Ω4. The doubles of the eight points are

either Ω1 or Ω2. The doubles of Ω3 and Ω4 are (0,−1). These points are the only exceptions

of (4.35) and (4.36). The following remark is immediate.

Remark 4.4.1. [2](x1, y1) is a point at infinity if and only if (2− y2
1 − ax2

1)(y
2
1 + ax2

1) = 0.

Remark 4.4.1 does not extend to the case of generic additions. However, it is still useful in

proving some lemmas regarding the generic addition formulae which will be presented next.

Dedicated addition Further let (x2, y2) be a point on EE,a,d. The addition formulae on

EE,a,d are given by (x1, y1) + (x2, y2) = (x3, y3) where

x3 = (x1y1 + x2y2)/(y1y2 + ax1x2), (4.37)

y3 = (x1y1 − x2y2)/(x1y2 − y1x2) (4.38)

assuming that (y1y2 + ax1x2)(x1y2 − y1x2) 6= 0. These formulae are of minimal total degree.

These formulae do not work for identical summands hence the name dedicated.

If (x1, y1) + (x2, y2) is a point at infinity then (y1y2 + ax1x2)(x1y2− y1x2) = 0. Otherwise,

(x1, y1) + (x2, y2) would be an affine point since it can be shown using the relations ax2
1 +

y2
1 = 1 + dx2

1y
2
1 and ax2

2 + y2
2 = 1 + dx2

2y
2
2 that the algebraic expressions for (x3, y3) satisfy

ax2
2 + y2

2 = 1 + dx2
2y

2
2 . The converse, however, does not necessarily apply. This means that if

(y1y2+ax1x2)(x1y2−y1x2) = 0 then (x1, y1)+(x2, y2) may not be a point at infinity. Therefore

it is worth investigating the exceptional cases. The denominators of (4.37) and (4.38) vanish

for some summands which are described in the following lemma explicitly.

58 Chapter 4. Group law in affine coordinates

Lemma 4.4.2. Let a, d ∈ K with ad(a− d) 6= 0. Fix α, δ ∈ K so that α2 = a and δ2 = d. Fix

x1, y1 ∈ K\{0} such that ax2
1 + y2

1 = 1 + dx2
1y

2
1. Let x2, y2 ∈ K such that ax2

2 + y2
2 = 1 + dx2

2y
2
2.

Now, (y1y2 + ax1x2)(x1y2 − y1x2) = 0 if and only if (x2, y2) ∈ S where S =

ˆ

(x1, y1), (−x1,−y1), (
y1
α
,−x1α), (

−y1
α

, x1α), (
1

δy1
,

1

δx1

), (
−1

δy1
,
−1

δx1

)(
1

αδx1

,
−α
δy1

), (
−1

αδx1

,
α

δy1
)
˜

.

Proof. ⇒ : Assume that (y1y2 + ax1x2)(x1y2 − y1x2) = 0. Solving the equations (y1y2 +

ax1x2)(x1y2 − y1x2) = 0 and ax2
2 + y2

2 = 1 + dx2
2y

2
2 simultaneously for x2 and y2 gives S. All

entries in S are defined since x1y1 6= 0. ⇐ : The claims follow trivially by substitution.

The following lemma shows that if one of the summands is of odd order then in the presence

of an exception, the other summand is always of even order.

Lemma 4.4.3. Let a, d, x1, y1, x2, y2 be defined as in Lemma 4.4.2. Assume that P1 = (x1, y1)

is a fixed point of odd order. Assume that P2 ∈ S\{P1}. Then P2 is of even order.

Proof. In [BL07b] (where a = 1) and later in [BBJ+08], it is proven that the points at infinity

(over the extension of K where they exist) are of even order. Assume that P1 = (x1, y1) is a

fixed point of odd order hence not a point at infinity. Suppose that P2 is of odd order hence

not a point at infinity. It follows that P1 ± P2, M = 2P1, and N = 2P2 are all of odd order

hence not points at infinity.

Assume that P2 ∈ S\{P1}. So, P1 6= P2. Plus, (y1y2 + ax1x2)(x1y2 − y1x2) = 0 by

Lemma 4.4.2. It follows that P1 6= −P2, for otherwise, (y1y2+ax1x2)(x1y2−y1x2) = 2x1y1(y
2
1−

ax2
1) = 0 which means that y2

1 − ax2
1 = 0 since x1, y1 6= 0. Using this relation, the doubling

formulae simplifies to (x3, y3) = (x1/y1, 0/(2− 2y2
1)). The output x3 is defined since x1y1 6= 0.

Whenever 0/(2− 2y2
1) is defined, it produces a point of order 4. But then P1 would be of even

order (in particular of order 8). If y1 = ±1 then 0/(2 − 2y2
1) is not defined. However these

cases can be omitted since x1 6= 0 and the only points with y1 = ±1 requires x1 to be zero.

Now,

• In the case y1y2 + ax1x2 = 0, x2 = −y1y2/(ax1) is defined since x1 6= 0 by definition.

Using this relation together with (4.35) and the curve equation gives

x(N) =
2x2y2

1 + dx2
2y

2
2

=
2x2y2
y2
1 + ax2

1

=
2−y1y2

ax1
y2

y2
2 + a(−y1y2

ax1
)2

= − 2x1y1
y2
1 + ax2

1

= − 2x1y1
1 + dx2

1y
2
1

= −x(M).

• In the case x1y2 − y1x2 = 0, y2 = y1x2/x1 is defined since x1 6= 0 by definition. Using

this relation together with (4.35) and the curve equation gives

x(N) =
2x2y2

1 + dx2
2y

2
2

=
2x2y2
y2
2 + ax2

2

=
2x2

y1x2

x1

(y1x2

x1
)2 + ax2

2

=
2x1y1
y2
1 + ax2

1

=
2x1y1

1 + dx2
1y

2
1

= x(M).

By the curve definition, y(M) = ±y(N) since |x(M)| = |x(N)|. Now,

• x(M) = x(N) and y(M) = y(N): M −N = (0, 1). So, M −N = 2P1 − 2P2 = 2(P1 − P2) = (0, 1).

• x(M) = x(N) and y(M) = −y(N): M+N = (0,−1). So, 2(M+N) = 2(2P1+2P2) = 4(P1+P2) = (0, 1).

• x(M) = −x(N) and y(M) = y(N): M + N = (0, 1). So, M + N = 2P1 + 2P2 = 2(P1 + P2) = (0, 1).

• x(M) = −x(N) and y(M) = −y(N): M −N = (0,−1). So, 2(M −N) = 2(2P1 − 2P2) = 4(P1 − P2) =

(0, 1).

4.4. Twisted Edwards form 59

Since P1 6= ±P2, in all cases P1±P2 is of even order, contradiction. In conclusion, P2 ∈ S\{P1}
is of even order provided that P1 is of odd order.

A practical solution is now provided to prevent the exceptional cases of (4.37) and (4.38).

Lemma 4.4.4. Let K be a field of odd characteristic. Let EE,a,d be a twisted Edwards curve

defined over K. Let P1 = (x1, y1) and P2 = (x2, y2) be points on EE,a,d. Assume that P1 and

P2 are of odd order with P1 6= P2. It follows that y1y2 + ax1x2 6= 0 and x1y2 − y1x2 6= 0.

Proof. Assume that P1 and P2 are of odd order with P1 6= P2. Suppose that x1 = 0 and x2 = 0.

Then, either P1 = P2 = (0, 1) or P2 = (0,−1), both are contradictions. So, either x1 6= 0 or

x2 6= 0. Suppose that y1y2 = 0. Then, either P1 or P2 is of even order, contradiction. So,

y1y2 6= 0. Therefore, either x1y1 6= 0 or x2y2 6= 0. The claim then follows from Lemma 4.4.2

and Lemma 4.4.3 (by swapping P1 and P2 when necessary).

Unified addition Alternative addition formulae on EE,a,d are given by (x1, y1) + (x2, y2) =

(x3, y3) where

x3 = (x1y2 + y1x2)/(1 + dx1y1x2y2), (4.39)

y3 = (y1y2 − ax1x2)/(1− dx1y1x2y2) (4.40)

assuming (1−dx1y1x2y2)(1+dx1y1x2y2) 6= 0, see [BBJ+08]. These formulae work for identical

summands in most of the cases hence the name unified.

If (x1, y1)+(x2, y2) is a point at infinity then (1−dx1y1x2y2)(1+dx1y1x2y2) = 0. Otherwise,

(x1, y1) + (x2, y2) would be an affine point by Theorem 3.1 of [BL07b] and by the remark

in [BBJ+08, §6] stating that EE,a,d is isomorphic to EE,1,d/a. The converse, however, does not

necessarily apply. This means that if (1−dx1y1x2y2)(1+dx1y1x2y2) = 0 then (x1, y1)+(x2, y2)

may not be a point at infinity. Therefore it is worth investigating the exceptional cases.

The denominators of (4.39) and (4.40) vanish for some summands which are described in the

following lemma explicitly.

Lemma 4.4.5. Let a, d ∈ K with ad(a− d) 6= 0. Fix α, δ ∈ K so that α2 = a and δ2 = d. Fix

x1, y1 ∈ K\{0} such that ax2
1 + y2

1 = 1+ dx2
1y

2
1. Let x2, y2 ∈ K such that ax2

2 + y2
2 = 1+ dx2

2y
2
2.

It follows that dx1y1x2y2 ∈ {1,−1} if and only if (x2, y2) ∈ S′ where S′ =

ˆ

(
1

δy1
,
−1

δx1

), (
−1

δy1
,

1

δx1

), (
1

αδx1

,
α

δy1
), (
−1

αδx1

,
−α
δy1

), (
1

δy1
,

1

δx1

), (
−1

δy1
,
−1

δx1

), (
1

αδx1

,
−α
δy1

), (
−1

αδx1

,
α

δy1
)
˜

.

Proof. ⇒ : Assume that (1 − dx1y1x2y2)(1 + dx1y1x2y2) = 0. Solving the equations (1 −
dx1y1x2y2)(1+dx1y1x2y2) = 0 and ax2

2 +y2
2 = 1+dx2

2y
2
2 simultaneously for x2 and y2 gives S′.

All entries in S′ are defined since x1y1 6= 0. ⇐ : The claims follow trivially by substitution.

This lemma and Lemma 4.4.2 excludes x1y1 = 0. If so, 1± dx1y1x2y2 6= 0.

The following lemma shows that if one of the summands is of odd order then in the presence

of a vanished denominator, the other summand is always of even order.

Lemma 4.4.6. Let a, d, x1, y1, x2, y2 be defined as in Lemma 4.4.5. Assume that P1 = (x1, y1)

is a fixed point of odd order. Assume that P2 = (x2, y2) ∈ S′. Then, P2 is of even order.

60 Chapter 4. Group law in affine coordinates

Proof. In [BL07b] (where a = 1) and later in [BBJ+08], it is proven that the points at infinity

(over the extension of K where they exist) are of even order. Assume that P1 = (x1, y1) is a

fixed point of odd order hence not a point at infinity. Suppose that P2 is of odd order hence

not a point at infinity. It follows that P1 ± P2, M = 2P1, and N = 2P2 are all of odd order

hence not points at infinity.

Assume that P2 ∈ S′. Then, dx1y1x2y2 ∈ {1,−1} by Lemma 4.4.5 and it follows that

P1 6= ±P2, for otherwise, dx2
1y

2
1 ∈ {1,−1} and P1 would be of even order, see Remark 4.4.1.

Note that x1, y1 6= 0 since dx1y1x2y2 ∈ {1,−1} (also true by definition). So, x2y2 =

±1/(dx1y1) are defined taking the signs independently. Using this relation together with

(4.39) gives

x(N) =
2x2y2

1 + dx2
2y

2
2

=
2 ±1

dx1y1

1 + d(±1

dx1y1
)2

= ± 2x1y1
1 + dx2

1y
2
1

= ±x(M).

By the curve definition, y(M) = ±y(N) since |x(M)| = |x(N)|. Now,

• x(M) = x(N) and y(M) = y(N): M −N = (0, 1). So, M −N = 2P1 − 2P2 = 2(P1 − P2) = (0, 1).

• x(M) = x(N) and y(M) = −y(N): M+N = (0,−1). So, 2(M+N) = 2(2P1+2P2) = 4(P1+P2) = (0, 1).

• x(M) = −x(N) and y(M) = y(N): M + N = (0, 1). So, M + N = 2P1 + 2P2 = 2(P1 + P2) = (0, 1).

• x(M) = −x(N) and y(M) = −y(N): M −N = (0,−1). So, 2(M −N) = 2(2P1 − 2P2) = 4(P1 − P2) =

(0, 1).

Since P1 6= ±P2, in all cases P1 ± P2 is of even order, contradiction. In conclusion, P2 ∈ S′ is

of even order provided that P1 is of odd order.

In the following lemma, with reasonable assumptions, it is shown that exceptions can be

prevented regardless of any assumption on the curve constants.

Lemma 4.4.7. Let K be a field of odd characteristic. Let EE,a,d be a twisted Edwards curve

defined over K. Let P1 = (x1, y1) and P2 = (x2, y2) be points on EE,a,d. Assume that P1 and

P2 are of odd order. It follows that 1± dx1x2y1y2 6= 0.

Proof. Assume that P1 and P2 are of odd order. If x1y1x2y2 = 0 then 1 ± dx1y1x2y2 6= 0

as desired. If x1y1x2y2 6= 0 then the claim follows from Lemma 4.4.5 and Lemma 4.4.6 (by

swapping P1 and P2 when necessary).

Exception handling in the general case Algorithm 4.4.1 provides a complete addition on

all twisted Edwards curves. The correctness of the algorithm follows from two observations.

Firstly, when a point at infinity is involved as the sum or as one of the summands along the lines

2 to 41, it is tedious but straightforward to check that the output of the algorithm is correct

using the implicit technique mentioned at the start of the chapter. Line 1 conditionally swaps

the inputs to eliminate half of the input-wise symmetric branches. The second observation

is that glueing together the unified addition and the dedicated addition formulae is enough

to handle all exceptions when both of the summands and the sum are affine points. This

fact follows from Lemma 4.4.5 and Lemma 4.4.2 by observing that #(S′ ∩ S) = 4. This

means that if (x2, y2) ∈ S′ ∩ S then the output must be a point at infinity (lines 51 to 54)

since there are exactly four points at infinity. The remaining exceptional cases which occur

at (x2, y2) ∈ S′\(S′ ∩ S) are handled by the dedicated addition formulae (lines 43 and 44).

4.4. Twisted Edwards form 61

Algorithm 4.4.1: Addition law in affine coordinates for twisted Edwards form

input : P1, P2,Ω1,Ω2,Ω3,Ω4 ∈ EE,a,d(K) and fixed α, δ ∈ K such that α2 = a and δ2 = d.

output : P1 + P2.

if P1 ∈ {Ω1, Ω2,Ω3,Ω4} then Pt ← P1, P1 ← P2, P2 ← Pt.1

if P2 = Ω1 then2

if P1 = Ω1 then return (0, 1).3

else if P1 = Ω2 then return (0,−1).4

else if P1 = Ω3 then return (−1/α, 0).5

else if P1 = Ω4 then return (1/α, 0).6

else if P1 = (0, 1) then return Ω1.7

else if P1 = (0,−1) then return Ω2.8

else if P1 = (−1/α, 0) then return Ω3.9

else if P1 = (1/α, 0) then return Ω4.10

else return (−1/(αδx1),−α/(δy1)).11

else if P2 = Ω2 then12

if P1 = Ω1 then return (0,−1).13

else if P1 = Ω2 then return (0, 1).14

else if P1 = Ω3 then return (1/α, 0).15

else if P1 = Ω4 then return (−1/α, 0).16

else if P1 = (0,−1) then return Ω1.17

else if P1 = (0, 1) then return Ω2.18

else if P1 = (1/α, 0) then return Ω3.19

else if P1 = (−1/α, 0) then return Ω4.20

else return (1/(αδx1), α/(δy1)).21

else if P2 = Ω3 then22

if P1 = Ω1 then return (−1/α, 0).23

else if P1 = Ω2 then return (1/α, 0).24

else if P1 = Ω3 then return (0,−1).25

else if P1 = Ω4 then return (0, 1).26

else if P1 = (1/α, 0) then return Ω1.27

else if P1 = (−1/α, 0) then return Ω2.28

else if P1 = (0, 1) then return Ω3.29

else if P1 = (0,−1) then return Ω4.30

else return (1/(δy1),−1/(δx1)).31

else if P2 = Ω4 then32

if P1 = Ω1 then return (1/α, 0).33

else if P1 = Ω2 then return (−1/α, 0).34

else if P1 = Ω3 then return (0, 1).35

else if P1 = Ω4 then return (0,−1).36

else if P1 = (−1/α, 0) then return Ω1.37

else if P1 = (1/α, 0) then return Ω2.38

else if P1 = (0,−1) then return Ω3.39

else if P1 = (0, 1) then return Ω4.40

else return (−1/(δy1), 1/(δx1)).41

else if (y1y2 + ax1x2)(x1y2 − y1x2) 6= 0 then42

x3 ← (x1y1 + x2y2)/(y1y2 + ax1x2).43

y3 ← (x1y1 − x2y2)/(x1y2 − y1x2).44

return (x3, y3).45

else if (1− dx1x2y1y2)(1 + dx1x2y1y2) 6= 0 then46

x3 ← (x1y2 + y1x2)/(1 + dx1x2y1y2).47

y3 ← (y1y2 − ax1x2)/(1 − dx1x2y1y2).48

return (x3, y3).49

else50

if P2 = (1/(αδx1),−α/(δy1)) then return Ω1.51

else if P2 = (−1/(αδx1), α/(δy1)) then return Ω2.52

else if P2 = (1/(δy1), 1/(δx1)) then return Ω3.53

else return Ω4.54

end55

62 Chapter 4. Group law in affine coordinates

Similarly the exceptions at (x2, y2) ∈ S− (S′∩S) are handled by the unified addition formulae

(lines 47 and 48).

The points at infinity on the desingularized projective closure of EE,a,d are not defined over

K if d is not a square in K and a is a square in K, see [BBJ+08]. Having noted this, it was proven

in [BL07b] (where a = 1) and later in [BBJ+08] that the unified addition formulae (4.39) and

(4.40) are complete provided that d is not a square in K and a is a square in K. Algorithm 4.4.1

complies with the completeness criterion since only the lines 47 to 49 are necessary in this case.

Note that the assumptions on the curve constants a and d limit the number of curves in twisted

Edwards form for which the unified addition formulae are complete. In [BBJ+08] such curves

are named complete Edwards curves.

Algorithm 4.4.1 also complies with Lemma 4.4.7. If P1 and P2 are points of odd order only

the lines 47 to 49 are necessary. This technique applies to all twisted Edwards curves.

Algorithm 4.4.1 also complies with Lemma 4.4.4. If P1 and P2 are distinct points of odd

order then only the lines 43 to 45 are necessary. This technique applies to all twisted Edwards

curves. The doubling formulae (4.35) and (4.36) are enough to handle the special case P1 = P2.

More formulae Using the tools of Chapter 3, it is possible to derive other low-degree

addition formulae;

x3 =
e(x1y1 + x2y2) + f(x1y2 + y1x2)

e(y1y2 + ax1x2) + f(1 + dx1y1x2y2)
, (4.41)

y3 =
g(x1y1 − x2y2) + h(y1y2 − ax1x2)

g(x1y2 − y1x2) + h(1− dx1y1x2y2)
(4.42)

assuming that (e(y1y2 + ax1x2) + f(1 + dx1y1x2y2))(g(x1y2 − y1x2) + h(1 − dx1y1x2y2)) 6= 0

where e, f, g, h ∈ K such that efgh 6= 0. These formulae tend to include more subexpressions

which are not commonly shared. Therefore, their evaluation turns out to be more costly and

thus not considered hereafter.

Literature notes Other results related to the affine formulae for twisted Edwards curves

can be found in the literature. Bernstein et al. used Edwards curves (i.e. a = 1) in the

ECM method of integer factorization in [BBLP08]. Bernstein et al. introduced the shape

d1(x+y)+d2(x
2+y2) = (x+x2)(y+y2) and presented results on the arithmetic of these curves

when char(K) = 2 in [BLR08]. These curve are named binary Edwards curves. In chronological

order, Das and Sarkar [DS08], Ionica and Joux [IJ08], and Arène et al. [ALNR09] introduced

successively faster formulae for pairing computations. The results in [DS08] and [IJ08] are

based on the unified addition formulae and the doubling formulae with a = 1. The results

in [ALNR09] are based on the dedicated addition formulae and the doubling formulae. The

same reference also provided a geometric interpretation of the group law on twisted Edwards

curves.

4.5. Twisted Jacobi intersection form 63

4.5 Twisted Jacobi intersection form

This section presents the group law on EI,b,a in affine coordinates. It also investigates the

exceptional summands for each set of formulae and provides a complete addition algorithm

for all twisted Jacobi intersection curves by properly handling an entire set of divide-by-zero

exceptions. In addition, practical ways of preventing these exceptions are explained.

Throughout this section, let K be a field of odd characteristic. Recall from Chapter 2 that

a twisted Jacobi intersection curve is defined by

EI,b,a : bs2 + c2 = 1, as2 + d2 = 1

where a, b ∈ K with ab(a− b) 6= 0. Assume that both −a and −b are squares in K. Recall from

Chapter 2 that the set of K-rational points on EI,b,a is defined by

EI,b,a(K) = {(s, c, d) ∈ K3 | bs2 + c2 = 1, as2 + d2 = 1} ∪ {Ω1,Ω2,Ω3,Ω4}

where Ω1,Ω2,Ω3,Ω4 are points at infinity.

Identity element and negation The identity element can suitably be taken as (0, 1, 1).

Let (s1, c1, d1) be a point on EI,b,a. The negative of (s1, c1, d1) is (−s1, c1, d1).

Doubling The doubling formulae on EI,b,a is given by [2](s1, c1, d1) = (s3, c3, d3) where

s3 = 2s1c1d1/(c
2
1 + bs21d

2
1), (4.43)

c3 = (c21 − bs21d2
1)/(c

2
1 + bs21d

2
1), (4.44)

d3 = (2d2
1 − c21 − bs21d2

1)/(c
2
1 + bs21d

2
1). (4.45)

assuming that c21 + bs21d
2
1 6= 0. These formulae are of minimal total degree and do not depend

on the curve constants a and b. By the curve equation the denominator c21 +bs21d
2
1 is equivalent

to 1− abs41 or c21 + d2
1 − c21d2

1 or d2
1 + as21c

2
1. These denominators can also be used.

The points (0,−1, 1), (0, 1,−1), and (0,−1,−1) are of order 2. This can be determined by

solving bs21 + c21 = 1, as21 + d2
1 = 1 and (s3, c3, d3) = (0, 1, 1) for s1, c1, and d1 where s3, c3, and

d3 are given by (4.43), (4.44), and (4.45).

The four points of the form having the c-coordinates equal to zero are of order 4. This can

be determined by solving bs21 + c21 = 1, as21 + d2
1 = 1 and (s3, c3, d3) = (0,−1, 1) for s1, c1, and

d1. Another set of four points having the d-coordinates equal to zero are also of order 4. This

can be determined by solving bs21 + c21 = 1, as21 + d2
1 = 1 and (s3, c3, d3) = (0, 1,−1) for s1, c1,

and d1. There are twelve points of order 4 in total (over a sufficiently large finite extension of

K). Therefore the remaining four points of order 4 have to be the points at infinity Ω1, Ω2,

Ω3, and Ω4. These points are the only exceptions of (4.43), (4.44), and (4.45). The following

remark is immediate.

Remark 4.5.1. [2](s1, c1, d1) is a point at infinity if and only if c21 + bs21d
2
1 = 0.

Remark 4.5.1 does not extend to the case of generic additions. However, it is still useful in

64 Chapter 4. Group law in affine coordinates

proving some lemmas regarding the generic addition formulae which will be presented next.

Dedicated addition Further let (s2, c2, d2) be a point on EI,b,a. The addition formulae on

EI,b,a are given by (s1, c1, d1) + (s2, c2, d2) = (s3, c3, d3) where

s3 = (s21 − s22)/(s1c2d2 − c1d1s2), (4.46)

c3 = (s1c1d2 − d1s2c2)/(s1c2d2 − c1d1s2), (4.47)

d3 = (s1d1c2 − c1s2d2)/(s1c2d2 − c1d1s2) (4.48)

assuming that s1c2d2 − c1d1s2 6= 0. These formulae are of minimal total degree and do not

depend on the curve constants a and b. These formulae do not work for identical summands

hence the name dedicated.

If (s1, c1, d1) + (s2, c2, d2) is a point at infinity then s1c2d2 − c1d1s2 = 0. Otherwise,

(s1, c1, d1) + (s2, c2, d2) would be an affine point since it can be shown using the relations

bs21 + c21 = 1, as21 + d2
1 = 1 and bs22 + c22 = 1, as22 + d2

2 = 1 that the algebraic expressions for

(s3, c3, d3) satisfy bs23 + c23 = 1, as23 + d2
3 = 1. The converse, however, does not necessarily

apply. This means that if s1c2d2 − c1d1s2 = 0 then (s1, c1, d1) + (s2, c2, d2) may not be a

point at infinity. Therefore it is worth investigating the exceptional cases. The denominators

of (4.46), (4.47), and (4.48) vanish for some summands which are described in the following

lemma explicitly.

Lemma 4.5.2. Let a, b ∈ K with ab(a− b) 6= 0. Fix α, β ∈ K so that α2 = −a and β2 = −b.
Fix s1 ∈ K\{0} and c1, d1 ∈ K such that bs21 + c21 = 1 and as21 + d2

1 = 1. Let s2, c2, d2 ∈ K such

that bs22 + c22 = 1, as22 + d2
2 = 1. Now, s1c2d2 − c1d1s2 = 0 if and only if (s2, c2, d2) ∈ S where

S =
ˆ

(s1, c1, d1), (s1,−c1,−d1), (−s1,−c1, d1), (−s1, c1,−d1),

(
1

αβs1
,
d1

αs1
,
c1
βs1

), (
1

αβs1
,
−d1

αs1
,
−c1
βs1

), (
−1

αβs1
,
−d1

αs1
,
c1
βs1

), (
−1

αβs1
,
d1

αs1
,
−c1
βs1

)
˜

.

Proof. ⇒ : Assume that s1c2d2 − c1d1s2 = 0. Solving the equations s1c2d2 − c1d1s2 = 0,

bs22 + c22 = 1 and as22 + d2
2 = 1 simultaneously for s2, c2, and d2 gives S. All entries in S are

defined since s1 6= 0. ⇐ : The claims follow trivially by substitution.

The following lemma shows that if one of the summands is of odd order then in the presence

of an exception, the other summand is always of even order.

Lemma 4.5.3. Let a, b, s1, c1, d1, s2, c2, d2 be defined as in Lemma 4.5.2. Assume that P1 =

(s1, c1, d1) is a fixed point of odd order. Assume that P2 ∈ S\{P1}. Then P2 is of even order.

Proof. Note that points at infinity (over the extension of K where they exist) are of even order.

Assume that P1 = (s1, c1, d1) is a fixed point of odd order hence not a point at infinity. Suppose

that P2 is of odd order hence not a point at infinity. It follows that P1 ± P2, M = 2P1, and

N = 2P2 are all of odd order hence not points at infinity.

Assume that P2 ∈ S\{P1}. So, P1 6= P2. Plus, s1c2d2 − c1d1s2 = 0 by Lemma 4.5.2. It

follows that P1 6= −P2, for otherwise, s1c2d2−c1d1s2 = 2s1c1d1 = 0 which means that c1d1 = 0

since s1 6= 0. But then P1 would be of even order.

4.5. Twisted Jacobi intersection form 65

It is possible to continue in a similar way used in the previous sections however this time

computer algebra will be used. The following Maple script verifies that s(M)2 = s(N)2,

c(M)2 = c(N)2, and d(M)2 = d(N)2.

> Q:=(s,c,d)->(b*s^2+c^2-1,a*s^2+d^2-1):

> sM:=2*s1*c1*d1/(c1^2+b*s1^2*d1^2):

> cM:=(c1^2-b*s1^2*d1^2)/(c1^2+b*s1^2*d1^2):

> dM:=(2*d1^2-c1^2-b*s1^2*d1^2)/(c1^2+b*s1^2*d1^2):

> sN:=2*s2*c2*d2/(c2^2+b*s2^2*d2^2):

> cN:=(c2^2-b*s2^2*d2^2)/(c2^2+b*s2^2*d2^2):

> dN:=(2*d2^2-c2^2-b*s2^2*d2^2)/(c2^2+b*s2^2*d2^2):

> simplify([sM^2-sN^2,cM^2-cN^2,dM^2-dN^2],[s1*c2*d2-c1*d1*s2=0,Q(s1,c1,d1),Q(s2,c2,d2)]);

[0,0,0]

Therefore, s(M) = ±s(N), c(M) = ±c(N), and d(M) = ±d(N) taking the signs independently.
Now,

• s(M) = s(N), c(M) = c(N), d(M) = d(N): M −N = (0, 1, 1). So, M −N = 2P1 − 2P2 = 2(P1 − P2) =

(0, 1, 1);

• s(M) = −s(N), c(M) = c(N), d(M) = d(N): M +N = (0, 1, 1). So, M +N = 2P1 +2P2 = 2(P1 +P2) =

(0, 1, 1);

• s(M) = s(N), c(M) = −c(N), d(M) = d(N): M + N = (0,−1, 1). So, M + N = 2(2P1 + 2P2) =

4(P1 + P2) = (0, 1, 1);

• s(M) = −s(N), c(M) = −c(N), d(M) = d(N): M − N = (0,−1, 1). So, M − N = 2(2P1 + 2P2) =

4(P1 + P2) = (0, 1, 1);

• s(M) = s(N), c(M) = c(N), d(M) = −d(N): M + N = (0, 1,−1). So, M + N = 2(2P1 + 2P2) =

4(P1 + P2) = (0, 1, 1);

• s(M) = −s(N), c(M) = c(N), d(M) = −d(N): M − N = (0, 1,−1). So, M − N = 2(2P1 + 2P2) =

4(P1 + P2) = (0, 1, 1);

• s(M) = s(N), c(M) = −c(N), d(M) = −d(N): M − N = (0,−1,−1). So, M − N = 2(2P1 − 2P2) =

4(P1 − P2) = (0, 1, 1); and

• s(M) = −s(N), c(M) = −c(N), d(M) = −d(N): M + N = (0,−1,−1). So, M + N = 2(2P1 − 2P2) =

4(P1 − P2) = (0, 1, 1).

Since P1 6= ±P2, in all cases P1±P2 is of even order, contradiction. In conclusion, P2 ∈ S\{P1}
is of even order provided that P1 is of odd order.

A practical solution is now provided to prevent the exceptional cases of (4.46), (4.47), and

(4.48).

Lemma 4.5.4. Let K be a field of odd characteristic. Let EI,b,a be a twisted Jacobi intersection

curve defined over K. Let P1 = (s1, c1, d1) and P2 = (s2, c2, d2) be points on EI,b,a. Assume

that P1 and P2 are of odd order with P1 6= P2. It follows that s1c2d2 − c1d1s2 6= 0.

Proof. Assume that P1 and P2 are of odd order with P1 6= P2. Suppose that s1 = 0 and s2 = 0.

Then, P1 = P2 = (0, 1, 1), contradiction. So, either s1 6= 0 or s2 6= 0. The claim then follows

from Lemma 4.5.2 and Lemma 4.5.3 (by swapping P1 and P2 when necessary).

66 Chapter 4. Group law in affine coordinates

Unified addition Alternative addition formulae on EI,b,a are given by (s1, c1, d1) +

(s2, c2, d2) = (s3, c3, d3) where

s3 = (s1c2d2 + c1d1s2)/(1− abs21s22), (4.49)

c3 = (c1c2 − bs1d1s2d2)/(1− abs21s22), (4.50)

d3 = (d1d2 − as1c1s2c2)/(1− abs21s22) (4.51)

assuming that 1 − abs21s22 6= 0. These formulae work for identical summands in most of the

cases hence the name unified.

If (s1, c1, d1)+(s2, c2, d2) is a point at infinity then 1−abs21s22 = 0. Otherwise, (s1, c1, d1)+

(s2, c2, d2) would be an affine point since it can be shown using the relations bs21 + c21 =

1, as21 + d2
1 = 1 and bs22 + c22 = 1, as22 + d2

2 = 1 that the algebraic expressions for (s3, c3, d3)

satisfy bs23 + c23 = 1, as23 + d2
3 = 1. The converse, however, does not necessarily apply. This

means that if 1 − abs21s
2
2 = 0 then (s1, c1, d1) + (s2, c2, d2) may not be a point at infinity.

Therefore it is worth investigating the exceptional cases. The denominators of (4.49), (4.50),

and (4.51) vanish for some summands which are described in the following lemma explicitly.

Lemma 4.5.5. Let a, b, s1, c1, d1, s2, c2, d2 be defined as in Lemma 4.5.2. It follows that 1 −
abs21s

2
2 6= 0 if and only if (s2, c2, d2) ∈ S′ where

S′ =
ˆ

(
1

αβs1
,
−d1

αs1
,
c1
βs1

), (
1

αβs1
,
d1

αs1
,
−c1
βs1

), (
−1

αβs1
,
d1

αs1
,
c1
βs1

), (
−1

αβs1
,
−d1

αs1
,
−c1
βs1

)

(
1

αβs1
,
d1

αs1
,
c1
βs1

), (
1

αβs1
,
−d1

αs1
,
−c1
βs1

), (
−1

αβs1
,
−d1

αs1
,
c1
βs1

), (
−1

αβs1
,
d1

αs1
,
−c1
βs1

)
˜

.

Proof. ⇒ : Assume that 1 − abs21s22 = 0. Solving the equations 1− abs21s22 = 0, bs22 + c22 = 1,

and as22 + d2
2 = 1 simultaneously for s2, c2, and d2 gives S′. All entries in S′ are defined since

s1 6= 0. ⇐ : The claims follow trivially by substitution.

This lemma and Lemma 4.5.2 excludes s1 = 0. If so, 1− abs21s22 6= 0.

The following lemma shows that if one of the summands is of odd order then in the presence

of a vanished denominator, the other summand is always of even order.

Lemma 4.5.6. Let a, b, s1, c1, d1, s2, c2, d2 be defined as in Lemma 4.5.5. Assume that P1 =

(s1, c1, d1) is a fixed point of odd order. Assume that P2 = (s2, c2, d2) ∈ S′. Then, P2 is of

even order.

Proof. The proof is similar to the proof of Lemma 4.5.3. The only difference is that the phrase

s1*c2*d2-c1*d1*s2=0 should be changed to 1-a*b*s1*s1*s2*s2=0 in the Maple script of the

proof of Lemma 4.5.3 and the claim follows.

In the following lemma, with reasonable assumptions, it is shown that exceptions can be

prevented regardless of any assumption on the curve constants.

Lemma 4.5.7. Let K be a field of odd characteristic. Let EI,b,a be a twisted Jacobi intersection

curve defined over K. Let P1 = (s1, c1, d1) and P2 = (s2, c2, d2) be points on EI,b,a. Assume

that P1 and P2 are of odd order. It follows that 1− abs21s22 6= 0.

4.5. Twisted Jacobi intersection form 67

Proof. Assume that P1 and P2 are of odd order. If s1s2 = 0 then 1− abs21s22 6= 0 as desired. If

s1s2 6= 0 then the claim follows from Lemma 4.5.5 and Lemma 4.5.6 (by swapping P1 and P2

when necessary).

Exception handling in the general case Algorithm 4.5.1 provides a complete addition

on all twisted Jacobi intersection curves. The correctness of the algorithm follows from

two observations. Firstly, when a point at infinity is involved as the sum or as one of the

summands along lines 2 to 13, it is tedious but straightforward to check that the output of the

algorithm is correct using the implicit technique mentioned at the start of the chapter. Line 1

conditionally swaps the inputs to eliminate half of the input-wise symmetric branches. The

second observation is that glueing together the unified addition and the dedicated addition

formulae is enough to handle all exceptions when both of the summands and the sum are affine

points. This fact follows from Lemma 4.5.5 and Lemma 4.5.2 by observing that #(S′∩S) = 4.

This means that if (s2, c2, d2) ∈ S′ ∩ S then the output must be a point at infinity (lines 53

to 56) since there are exactly four points at infinity. The remaining exceptional cases which

occur at (s2, c2, d2) ∈ S′\(S′ ∩ S) are handled by the dedicated addition formulae (lines 43 to

45). Similarly the exceptions at (s2, c2, d2) ∈ S\(S′ ∩ S) are handled by the unified addition

formulae (lines 48 to 50).

The points at infinity on the projective closure of EI,b,a are not defined over K if a is not a

square in K. Having noted this, the following lemma implies that these addition formulae are

complete if a is not a square in K.

Lemma 4.5.8. Let a, b, s1, s2 ∈ K. Assume that ab is non-square. Then 1− abs21s22 6= 0.

Proof. See the proof of Lemma 4.2.8 in §4.2.

Algorithm 4.5.1 complies with the completeness criterion since only the lines 48 to 50 are

necessary in this case. Note that the assumption on the curve constants a and d limits the

number of curves in twisted Jacobi intersection form for which the unified addition formulae

are complete.

Algorithm 4.5.1 also complies with Lemma 4.5.7. If P1 and P2 are points of odd order then

all branches are eliminated and the lines 48 to 50 suffice. This technique applies to all twisted

Jacobi intersection curves.

Algorithm 4.5.1 also complies with Lemma 4.5.4. If P1 and P2 are distinct points of odd

order then all branches are eliminated and the lines 43 to 45 suffice. This technique applies

to all twisted Jacobi intersection curves. The doubling formulae (4.55), (4.56), and (4.57) are

enough to handle the special case P1 = P2.

More formulae Using the tools of Chapter 3, it is possible to derive many more low-degree

addition formulae. In the case of doubling, the numerators can also be written in several

alternative ways. However, there exist no formulae of lower total degree to compute any of

these affine coordinates. The following examples are specifically chosen since each of them

share many common subexpressions among their coordinates. More common subexpressions

often reduces the complexity of the evaluation. One set of formulae (independent of a and b)

68 Chapter 4. Group law in affine coordinates

Algorithm 4.5.1: Addition law in affine coordinates for twisted Jacobi intersection form

input : P1, P2, Ω1, Ω2, Ω3, Ω4 ∈ EI,b,a(K) and fixed α, β ∈ K such that α2 = −a and β2 = −b.

output : P1 + P2.

if P1 ∈ {Ω1,Ω2,Ω3,Ω4} then Pt ← P1, P1 ← P2, P2 ← Pt.1

if P2 = Ω1 then2

if P1 = Ω1 then return (0,−1,−1).3

else if P1 = Ω2 then return (0,−1, 1).4

else if P1 = Ω3 then return (0, 1,−1).5

else if P1 = Ω4 then return (0, 1, 1).6

else if P1 = (0, 1, 1) then return Ω1.7

else if P1 = (0, 1,−1) then return Ω2.8

else if P1 = (0,−1, 1) then return Ω3.9

else if P1 = (0,−1,−1) then return Ω4.10

else return (−1/(αβs1), d1/(αs1), c1/(βs1)).11

else if P2 = Ω2 then12

if P1 = Ω1 then return (0,−1, 1).13

else if P1 = Ω2 then return (0,−1,−1).14

else if P1 = Ω3 then return (0, 1, 1).15

else if P1 = Ω4 then return (0, 1,−1).16

else if P1 = (0, 1,−1) then return Ω1.17

else if P1 = (0, 1, 1) then return Ω2.18

else if P1 = (0,−1,−1) then return Ω3.19

else if P1 = (0,−1, 1) then return Ω4.20

else return (1/(αβs1), d1/(αs1),−c1/(βs1)).21

else if P2 = Ω3 then22

if P1 = Ω1 then return (0, 1,−1).23

else if P1 = Ω2 then return (0, 1, 1).24

else if P1 = Ω3 then return (0,−1,−1).25

else if P1 = Ω4 then return (0,−1, 1).26

else if P1 = (0,−1, 1) then return Ω1.27

else if P1 = (0,−1,−1) then return Ω2.28

else if P1 = (0, 1, 1) then return Ω3.29

else if P1 = (0, 1,−1) then return Ω4.30

else return (1/(αβs1),−d1/(αs1), c1/(βs1)).31

else if P2 = Ω4 then32

if P1 = Ω1 then return (0, 1, 1).33

else if P1 = Ω2 then return (0, 1,−1).34

else if P1 = Ω3 then return (0,−1, 1).35

else if P1 = Ω4 then return (0,−1,−1).36

else if P1 = (0,−1,−1) then return Ω1.37

else if P1 = (0,−1, 1) then return Ω2.38

else if P1 = (0, 1,−1) then return Ω3.39

else if P1 = (0, 1, 1) then return Ω4.40

else return (−1/(αβs1),−d1/(αs1),−c1/(βs1)).41

else if s1c2d2 − c1d1s2 6= 0 then42

s3 ← (s2
1
− s2

2
)/(s1c2d2 − c1d1s2).43

c3 ← (s1c1d2 − d1s2c2)/(s1c2d2 − c1d1s2).44

d3 ← (s1d1c2 − c1s2d2)/(s1c2d2 − c1d1s2).45

return (s3, c3, d3).46

else if 1− abs2
1
s2
2
6= 0 then47

s3 ← (s1c2d2 + c1d1s2)/(1 − abs2
1
s2
2
).48

c3 ← (c1c2 − bs1d1s2d2)/(1 − abs2
1s2

2).49

d3 ← (d1d2 − as1c1s2c2)/(1 − abs2
1
s2
2
).50

return (s3, c3, d3).51

else52

if P2 = (1/(αβs1),−d1/(αs1),−c1/(βs1)) then return Ω1.53

else if P2 = (−1/(αβs1),−d1/(αs1), c1/(βs1)) then return Ω2.54

else if P2 = (−1/(αβs1), d1/(αs1),−c1/(βs1)) then return Ω3.55

else return Ω4.56

end57

4.6. Conclusion 69

is given as follows.

s3 = 2s1c1d1/(c
2
1 + d2

1 − c21d2
1), (4.52)

c3 = (c21 − d2
1 + c21d

2
1)/(c

2
1 + d2

1 − c21d2
1), (4.53)

d3 = (d2
1 − c21 + c21d

2
1)/(c

2
1 + d2

1 − c21d2
1). (4.54)

Another set of formulae is given as follows.

s3 = 2s1c1d1/(1− abs41), (4.55)

c3 = (c21 − bs21d2
1)/(1− abs41), (4.56)

d3 = (d2
1 − as21c21)/(1− abs41) (4.57)

Yet another set of formulae (independent of b) is given as follows.

s3 = 2s1c1d1/(d
2
1 + as21c

2
1), (4.58)

c3 = (2c21 − d2
1 − as21c21)/(d2

1 + as21c
2
1), (4.59)

d3 = (d2
1 − as21c21)/(d2

1 + as21c
2
1). (4.60)

Some of these formulae will be used later in Chapter 5. It is possible to provide many more

examples. Indeed some alternative examples will be further mentioned in the following chapter

in which the aim is to investigate inversion-free operation counts on projective coordinates.

In the case of unified addition, observe that the denominator contains s2i . Using the defining

equations 1− abs21s22 can also be written as 1− as21(1 − c22) = 1 − as21 + as21c
2
2 = d2

1 + as21c
2
2 or

1−bs21(1−d2
2) = 1−bs21 +bs21d

2
2 = c21 +bs21d

2
2 or 1− (a/b)(1−c21)(1−c22) = 1− (a/b)+(a/b)c21 +

(a/b)c22 − (a/b)c21c
2
2 or 1− (b/a)(1− d2

1)(1− d2
2) = 1− (b/a) + (b/a)d2

1 + (b/a)d2
2 − (b/a)d2

1d
2
2 or

1− (1− c21)(1− d2
2) = c21 + d2

2− c21d2
2. There exists even more alternatives. However all of these

denominators have a total degree of 4. Plus, the exceptional cases for all of these denominators

are the same. Similar arguments also apply to the case of dedicated addition.

Literature notes Other results related to the affine formulae for twisted Jacobi intersection

form can be found in the literature. The group law on Jacobi intersection curves are typically

derived directly from Jacobi elliptic functions, cf. [Jac29], [WW27], [CC86], and [BJ03a].

4.6 Conclusion

This chapter has provided low-total-degree formulae for elliptic curves in five basic forms of

elliptic curves, namely, short Weierstrass form (§4.1), extended Jacobi quartic form (§4.2),

twisted Hessian form (§4.3), twisted Edwards form (§4.4), and twisted Jacobi intersection form

(§4.5). Besides bringing various formulae together in one chapter, the arithmetic properties

of these formulae have also been studied algebraically. This is achieved by the determination

of exceptional summands explicitly, the showing of how exceptional cases (such as additions

involving the points at infinity) can be handled, the clarification of how these exceptions

70 Chapter 4. Group law in affine coordinates

can be prevented under reasonable assumptions, and a complete addition algorithm in affine

coordinates.

Complete addition by exception handling Although the complete addition algorithms

on Weierstrass curves were well documented in the literature, other representations had

only been studied in the case of some particular addition formulae and in many resources

the exceptional situations were simply omitted. This chapter has studied the topic from

a wider perspective. In particular, complete addition algorithms; Algorithm 4.2.1 in §4.2,

Algorithm 4.3.1 in §4.3 Algorithm 4.4.1 in §4.4, Algorithm 4.5.1 in §4.5, have been developed

for the first time.

In order to build these algorithms each section has developed two alternative formulae

covering the affine part of the curve. By covering the affine part it is meant that (the sequence

of points) S′∩S composed of element(s) forcing the condition P1 +P2 being a point at infinity

at an occurrence of a vanished denominator. See the lemmas in each section for detail. In fact,

the addition of an affine point (x1, y1) with one of the entries in the first half of S′ (or S) yields

an affine point although they produce division-by-zero exceptions with the relevant formulae.

The second half of entries also produce division-by-zero exceptions but the sum this time is

a point at infinity. These facts have been left implicit in the text to minimize repetition but

explicitly used while designing the complete addition algorithms for elliptic curves covered by

a particular form.

Complete addition by assumption(s) on the curve constant(s) Excluding the

Weierstrass form, new complete addition formulae are provided for each form using only a

single set of addition formulae. This property was first stated for some Edwards curves by

Bernstein and Lange in [BL07b]. Later the same idea was extended to suitable classes of elliptic

curves in twisted Edwards form in [BBJ+08] and to twisted Hessian form in [BL07a]. This

chapter has extended the same idea for suitable classes of elliptic curves in extended Jacobi

quartic and twisted Jacobi intersection forms, see §4.2 and §4.5. This technique forces the

point(s) at infinity to be defined over a proper extension of K but not over K itself. Therefore,

all points on the selected curve are affine points. The second part of the technique is composed

of finding a single set of addition formulae with denominators which cannot vanish for any pair

of summands.

Exception prevention At this point, having dedicated addition formulae which do not work

for some special summands might seem unnecessary. However, it will be shown in Chapter 5

that dedicated addition formulae lead to inversion-free algorithms which are as fast or even

faster than unified addition formulae. For simplicity in implementations, it is desirable to

have a condition for which the number of exceptional cases is minimal when using dedicated

addition formulae. Each section has introduced sufficient assumptions to have P1 = P2 as the

only exceptional case to be handled. (Of course, in the case of short Weierstrass form, the point

at infinity is also handled separately since it is always involved in the arithmetic as the identity

element.) In speed oriented implementations, distinguishing P1 = P2 is no problem because

it is a standard method to switch to faster doubling formulae in inversion-free coordinate

4.6. Conclusion 71

systems, see Chapter 5. In addition, the same technique removes all exceptional cases for the

unified addition formulae under suitable assumptions. In cryptographic applications, attention

is typically restricted to a large prime order subgroup of the curve. This criterion covers a

variety of different assumptions by further simplifying the exception prevention techniques

introduced in this chapter.

72 Chapter 4. Group law in affine coordinates

Chapter 5

Group law in projective

coordinates

Elliptic curves became increasingly employed in cryptology in the 1980’s, and since then there

has been a series of incremental studies to speed up the arithmetic of elliptic curves. This

chapter uses the tools from Chapter 3 and the group laws in affine coordinates from Chapter 4

in order to develop efficient group laws for elliptic curves over fields of large characteristic.

This chapter also provides a collection of selected algorithms from the literature to provide a

summary of the recent advances. The work is limited to studying five forms of elliptic curves

which have already been discussed in Chapter 4. It should be possible to extend this work to

many other curve models including those of small characteristic. This is left as future work.

In what follows some terms related to the group law on elliptic curves will be extensively

used. In particular, the term unified is used to emphasize that point addition formulae remain

valid when two input points are identical, see [CF05, §29.1.2]. Therefore, unified addition

formulae can be used for point doubling. The term dedicated is used to emphasize that point

addition formulae are not unified. The term re-addition is used to emphasize that a point

addition has already taken place and some of the previously computed data is cached, see

[BL07b]. The term redundant is used to emphasize that unnecessary computational data is

added to a projective representation of a point. The notations are adapted from [CMO98],

[BL07b], and [BBJ+08].

This chapter studies the arithmetic of selected elliptic curve forms in suitable coordinate

systems. Some coordinate systems (such as Qe in §5.2.2) are introduced in this chapter.

Some other coordinate systems (such as J in §5.5.2) are already studied in the literature.

Even for such systems this chapter introduces new algorithms which are practical in some

applications. For the quartic models ax2 + y2 = 1 + dx2y2 and y2 = dx4 + 2ax2 + 1, the

optimum speeds are achieved in a proposed approach using mixed homogeneous projective

coordinates. For each of these forms the extended homogeneous projective coordinates are

introduced which significantly improve the speed of point additions. The slowing down in

73

74 Chapter 5. Group law in projective coordinates

point doubling is remedied by mixing extended homogeneous projective coordinates with

homogeneous projective coordinates, see §5.1 and §5.2 for details. The twisted Hessian form

also exhibits some of these properties. However, in most situations, the proposed optimizations

in homogeneous projective coordinates are more interesting than the proposed optimizations in

extended homogeneous projective coordinates or modified homogeneous projective coordinates,

see §5.4. Jacobi intersection form can provide improved speeds in both homogeneous projective

coordinates and modified homogeneous projective coordinates. The speed of this form is close

to the speed of Jacobi quartic form, see §5.3. The arithmetic of Weierstrass form has been

extensively studied over decades. Therefore it is extremely unlikely to find faster algorithms

with arbitrary curve constants. On the other hand, it is still possible to improve the speed of

unified additions. The improvements for Weierstrass form are covered in §5.5. Each of these

section contains tables to compare literature results with the results from this thesis. The

entries which are not cited are the contributions of this thesis.

Since all formulae in this chapter are inversion-free they never cause division by zero

exceptions. However, this does not mean that the correct output will always be produced.

Some special inputs force all output coordinates be zero producing an n-tuple which is not

even a point on the underlying space. When this occurs, the results from Chapter 4 will be

recalled to show how to guarantee the correct output under some reasonable assumptions. If

those assumptions are not satisfied then the complete affine addition algorithms in Chapter 4

can be incorporated to explicitly handle all such special cases.

5.1 Twisted Edwards form

The arithmetic of twisted Edwards curves is studied under four different point representations

in this section, each system having its own advantages. The homogeneous projective coordinate

system from [BBJ+08] (also see [BL07b]) is revisited with additional results in §5.1.1. This

system allows fast doubling and additions and thus is interesting for efficient implementation.

Similarly, the inverted coordinate system from [BBJ+08] (also see [BL07c]) is revisited with

additional results in §5.1.2. This system allows faster additions in comparison to homogeneous

projective coordinates. Both systems require three coordinates to represent points. The

extended homogeneous projective coordinate system is proposed in §5.1.3. This system uses

more space by representing each point using four coordinates. On the other hand, the additions

in extended coordinates are faster than the three-coordinate systems. Finally, the mixed

coordinate system which is proposed in §5.1.4 benefit from the faster doublings in homogeneous

projective coordinates and faster addition algorithms in extended homogeneous projective

coordinates. Conclusions are drawn in §5.1.5 together with pointers to the literature.

5.1.1 Homogeneous projective coordinates, E
In [BL07b] where a = 1 and later in [BBJ+08], homogeneous coordinates are considered for

efficiency. In this system, each point (x, y) on ax2 + y2 = 1 + dx2y2 is represented with the

triplet (X : Y : Z) which corresponds to the affine point (X/Z, Y/Z) with Z 6= 0. These triplets

satisfy the homogeneous projective equation aX2Z2 + Y 2Z2 = Z4 + dX2Y 2. For all nonzero

5.1. Twisted Edwards form 75

λ ∈ K, (X : Y : Z) = (λX : λY : λZ). The identity element is represented by (0 : 1 : 1). The

negative of (X : Y : Z) is (−X : Y : Z). This coordinate system is denoted by E throughout the

text.

Doubling in E Let (X1 : Y1 : Z1) with Z1 6= 0 satisfy aX2Z2 + Y 2Z2 = Z4 + dX2Y 2. Then

[2](X1 : Y1 : Z1) = (X3 : Y3 : Z3) where

X3 = 2X1Y1(2Z
2
1 − Y 2

1 − aX2
1),

Y3 = (Y 2
1 − aX2

1)(Y 2
1 + aX2

1),

Z3 = (Y 2
1 + aX2

1)(2Z2
1 − Y 2

1 − aX2
1) (5.1)

assuming Z3 6= 0. These formulae are obtained from (4.35) and (4.36). It was proven in

[BBJ+08] that Z3 is always nonzero if a is a square in K and d is not a square in K. Also by

Lemma 4.4.7, Z3 is always nonzero if (X1 : Y1 : Z1) is of odd order regardless of the assumptions

on a and d (of course, ad(a− d) 6= 0).

These formulae do not depend on d. Therefore keeping d arbitrary has no effect on the cost

of (5.1). Evaluating (5.1) takes 3M + 4S + 1D + 7a in [BBJ+08];

B ← (X1 + Y1)
2, C ← X2

1 , D ← Y 2
1 , E ← aC, F ← E +D, H ← Z2

1 ,

J ← F − 2H, X3 ← (B − C −D) · J, Y3 ← F · (E −D), Z3 ← F · J.

If a = 1 then the doubling takes 3M+4S+6a by computing X3 as (B−F) ·J , see [BL07b].

If a = −1 then the doubling again takes 3M + 4S + 6a;

A← 2Z2
1 , B ← Y 2

1 , C ← X2
1 , D ← B + C, E ← B − C, F ← A− E,

X3 ← ((X1 + Y1)
2 −D) · F, Y3 ← D · E, Z3 ← E · F.

Dedicated addition in E Further let (X2 : Y2 : Z2) with Z2 6= 0 satisfy aX2Z2 + Y 2Z2 =

Z4 + dX2Y 2. Then, (X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 : Y3 : Z3) where

X3 = (X1Y2 − Y1X2)(X1Y1Z
2
2 +X2Y2Z

2
1),

Y3 = (Y1Y2 + aX1X2)(X1Y1Z
2
2 −X2Y2Z

2
1),

Z3 = Z1Z2(X1Y2 − Y1X2)(Y1Y2 + aX1X2) (5.2)

assuming Z3 6= 0. These formulae are obtained from (4.37) and (4.38). By Lemma 4.4.4,

Z3 6= 0 if (X1 : Y1 : Z1) 6= (X2 : Y2 : Z2) and both summands are of odd order.

Evaluating (5.2) takes 11M + 2D + 9a;

A← X1 · Z2, B ← Y1 · Z2, C ← Z1 ·X2, D ← Z1 · Y2, E ← A ·B,
F ← C ·D, G← E + F, H ← E − F, J ← (A− C) · (B +D) −H,

K ← (A+D) · (B + aC)− E − aF, X3 ← G · J, Y3 ← H ·K, Z3 ← J ·K.

Additionally, if Z2 = 1 then it takes 9M + 2D + 9a.

If a = 1 then the dedicated addition takes 11M+8a by computingK as (A+D)·(B+C)−G.

Additionally, if Z2 = 1 then it takes 9M + 8a.

If a = −1 then the dedicated addition again takes 11M + 8a by computing K as (A+D) ·
(B − C)−H . Additionally, if Z2 = 1 then it takes 9M + 8a.

76 Chapter 5. Group law in projective coordinates

Unified addition in E Alternatively, (X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 : Y3 : Z3) where

X3 = Z1Z2(X1Y2 + Y1X2)(Z
2
1Z

2
2 − dX1X2Y1Y2),

Y3 = Z1Z2(Y1Y2 − aX1X2)(Z
2
1Z

2
2 + dX1X2Y1Y2),

Z3 = (Z2
1Z

2
2 − dX1X2Y1Y2)(Z

2
1Z

2
2 + dX1X2Y1Y2) (5.3)

assuming Z3 6= 0. These formulae are obtained from (4.39) and (4.40). It was proven in

[BBJ+08] that Z3 6= 0 if a is a square in K and d is not a square in K. Also by Lemma 4.4.7,

Z3 6= 0 if both (X1 : Y1 : Z1) and (X2 : Y2 : Z2) are of odd order.

Evaluating (5.3) takes 10M + 1S + 2D + 7a in [BBJ+08];

A← Z1 · Z2, B ← A2, C ← X1 ·X2, D ← Y1 · Y2, E ← dC ·D, F ← B −E,
G← B + E, X3 ← A · F · ((X1 + Y1) · (X2 + Y2)− C −D), Y3 ← A ·G · (D − aC),

Z3 ← F ·G.
Additionally, if Z2 = 1 then it takes 9M + 1S + 2D + 7a.

If a = 1 then the unified addition takes 10M + 1S + 1D + 7a and, additionally, if Z2 = 1

then it takes 9M + 1S + 1D + 7a, see add-2007-bl-3 in [BL07a].

If a = −1 then the unified addition takes 10M + 1S + 1D + 6a —saving an extra a— by

first computing U = C +D then reusing it as X3 ← A · F · ((X1 + Y1) · (X2 + Y2) − U) and

Y3 ← A ·G · U . Additionally, if Z2 = 1 then it takes 9M + 1S + 1D + 6a.

5.1.2 Inverted coordinates, E i

In [BL07c] where a = 1 and later in [BBJ+08], inverted coordinates are also considered for

efficiency. In this system, each point (x, y) on ax2 + y2 = 1 + dx2y2 is represented with

the triplet (X : Y : Z) which corresponds to the affine point (Z/X,Z/Y) with Z 6= 0. These

triplets satisfy the homogeneous projective equation X2Z2 + aY 2Z2 = X2Y 2 + dZ4. For all

nonzero λ ∈ K, (X : Y : Z) = (λX : λY : λZ). The identity element is represented by the vector

(1, 0, 0). The negative of (X : Y : Z) is (−X : Y : Z). This coordinate system is denoted by E i

throughout the text.

Doubling in E i Let (X1 : Y1 : Z1) with X1Y1Z1 6= 0 satisfy X2Z2 + aY 2Z2 = X2Y 2 + dZ4.

Then, [2](X1 : Y1 : Z1) = (X3 : Y3 : Z3) where

X3 = (X2
1 − aY 2

1)(X2
1 + aY 2

1),

Y3 = 2X1Y1(X
2
1 + aY 2

1 − 2dZ2
1),

Z3 = 2X1Y1(X
2
1 − aY 2

1) (5.4)

assuming X3Y3Z3 6= 0. These formulae are obtained from (4.35) and (4.36). In the case a = 1

and d a non-square in K, handling the exceptions is described in [BL07c].

Evaluating (5.4) takes 3M + 4S + 2D + 6a in [BBJ+08];

A← X2
1 , B ← Y 2

1 , U ← aB, C ← A+ U, D← A− U, E ← (X1 + Y1)
2 − A−B,

X3 ← C ·D, Y3 ← E · (C − (2d)Z2
1), Z3 ← D ·E.

If a = 1 then the doubling takes 3M + 4S + 1D + 5a by computing E as (X1 + Y1)
2 − C,

see [BL07c].

5.1. Twisted Edwards form 77

If a = −1 then the doubling again takes 3M+4S+1D+5a by computing E as (X1+Y1)
2−D

and replacing U ← aB, C ← A+ U , D ← A− U with C ← A−B, D ← A+B.

Dedicated addition in E i Further let (X2 : Y2 : Z2) with X1Y1Z1 6= 0 satisfy X2Z2 +

aY 2Z2 = X2Y 2 + dZ4. Then, (X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 : Y3 : Z3) where

X3 = Z1Z2(X1X2 + aY1Y2)(X1Y1Z
2
2 − Z2

1X2Y2)

Y3 = Z1Z2(X1Y2 − Y1X2)(X1Y1Z
2
2 + Z2

1X2Y2)

Z3 = (X1Y1Z
2
2 − Z2

1X2Y2)(X1Y1Z
2
2 + Z2

1X2Y2) (5.5)

assuming X3Y3Z3 6= 0. These formulae are obtained from (4.37) and (4.38).

Evaluating (5.5) takes 11M + 2D + 9a;

A← X1 · Z2, B ← Y1 · Z2, C ← Z1 ·X2, D ← Z1 · Y2, E ← A ·B, F ← C ·D,
G← E + F, H ← E − F, X3 ← ((A+ aD) · (B + C)− E − aF) ·H,

Y3 ← ((A− C) · (B +D)−H) ·G, Z3 ← G ·H.

Additionally, if Z2 = 1 then it takes 9M + 2D + 9a.

If a = 1 then the dedicated addition takes 11M + 8a by computing X3 as ((A+D) · (B +

C)−G) ·H . Additionally, if Z2 = 1 then it takes 9M + 8a.

If a = −1 then the dedicated addition takes 11M+8a by computing X3 as ((A−D) · (B +

C)−H) ·H . Additionally, if Z2 = 1 then it takes 9M + 8a.

Unified addition in E i Alternatively, (X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 : Y3 : Z3) where

X3 = (X1X2 − aY1Y2)(X1Y1X2Y2 + dZ2
1Z

2
2)

Y3 = (X1Y2 + Y1X2)(X1Y1X2Y2 − dZ2
1Z

2
2)

Z3 = Z1Z2(X1Y2 + Y1X2)(X1X2 − aY1Y2) (5.6)

assuming X3Y3Z3 6= 0. These formulae are obtained from (4.39) and (4.40). In the case a = 1

and d a non-square in K, handling the exceptions is described in [BL07c].

Evaluating (5.6) takes 9M + 1S + 2D + 7a in [BBJ+08];

A← Z1 · Z2, B ← dA2, C ← X1 ·X2, D← Y1 · Y2, E ← C ·D, H ← C − aD,
F ← (X1 + Y1) · (X2 + Y2)− C −D, X3 ← (E +B) ·H, Y3 ← (E −B) · F,

Z3 ← A ·H · F.

Additionally, if Z2 = 1 then it takes 8M + 1S + 2D + 7a.

If a = 1 then the unified addition takes 9M + 1S + 1D + 7a. Additionally, if Z2 = 1 then

it takes 8M + 1S + 1D + 7a.

If a = −1 then the unified addition takes 9M + 1S + 1D + 6a by replacing H ← C − aD
with H ← C +D and then computing F as (X1 + Y1) · (X2 + Y2)−H . Additionally, if Z2 = 1

then it takes 8M + 1S + 1D + 6a.

5.1.3 Extended homogeneous projective coordinates, Ee

In this system, each point (x, y) on ax2 + y2 = 1 + dx2y2 is represented with the quadruplet

(X : Y : T : Z) which corresponds to the affine point (X/Z, Y/Z) with Z 6= 0. These

78 Chapter 5. Group law in projective coordinates

quadruplets satisfy the homogeneous projective equation aX2Z2 + Y 2Z2 = Z4 + dX2Y 2.

The auxiliary coordinate is defined by T = XY/Z. For all nonzero λ ∈ K, (X : Y : T : Z) =

(λX : λY : λT : λZ). The identity element is represented by (0 : 1 : 0 : 1). The negative of

(X : Y : T : Z) is (−X : Y : − T : Z). This coordinate system is denoted by Ee throughout

the text. Given (X : Y : Z) in E passing to Ee can be performed in 3M + 1S by computing

(XZ, Y Z,XY,Z2). Given (X : Y : T : Z) in Ee passing to E is cost-free by simply ignoring T .

Doubling in Ee Let (X1 : Y1 : T1 : Z1) with Z1 6= 0 and T1 = X1Y1/Z1 satisfy aX2Z2 +

Y 2Z2 = Z4 + dX2Y 2. Then [2](X1 : Y1 : T1 : Z1) = (X3 : Y3 : T3 : Z3) where

X3 = 2X1Y1(2Z
2
1 − Y 2

1 − aX2
1),

Y3 = (Y 2
1 − aX2

1)(Y 2
1 + aX2

1),

T3 = 2X1Y1(Y
2
1 − aX2

1),

Z3 = (Y 2
1 + aX2

1)(2Z2
1 − Y 2

1 − aX2
1) (5.7)

assuming Z3 6= 0. These formulae are obtained from (4.35) and (4.36). It can be deduced

from [BBJ+08] that Z3 6= 0 if a is a square in K and d is not a square in K. Also by

Lemma 4.4.7, Z3 6= 0 if (X1 : Y1 : T1 : Z1) is of odd order.

Evaluating (5.7) takes 4M + 4S + 1D + 7a;

A← X2
1 , B ← Y 2

1 , C ← 2Z2
1 , D ← aA, E ← B +D, F ← B −D,

G← C − E, H ← (X1 + Y1)
2 − A−B, X3 ← G ·H, Y3 ← E · F, T3 ← F ·H,

Z3 ← E ·G.

This algorithm is essentially the same as the 3M + 4S + 1D point doubling in [BBJ+08]. The

extra multiplication E ·H is required to generate the auxiliary coordinate T3.

If a = 1 then the doubling takes 4M + 4S + 6a by first removing D ← aA and then

replacing E ← B +D, F ← B −D, H ← (X1 + Y1)
2 −A−B with E ← B +A, F ← B −A,

H ← (X1 + Y1)
2 − E, respectively.

If a = −1 then the doubling again takes 4M+ 4S+ 6a by first removing D ← aA and then

replacing E ← B +D, F ← B −D, H ← (X1 + Y1)
2 −A−B with E ← B −A, F ← B +A,

H ← (X1 + Y1)
2 − F , respectively.

Dedicated addition in Ee Further let (X2 : Y2 : T2 : Z2) with Z2 6= 0 and T2 = X2Y2/Z2

satisfy aX2Z2 + Y 2Z2 = Z4 + dX2Y 2. Then, (X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2) =

(X3 : Y3 : T3 : Z3) where

X3 = (X1Y2 − Y1X2)(T1Z2 + Z1T2),

Y3 = (Y1Y2 + aX1X2)(T1Z2 − Z1T2),

T3 = (T1Z2 − Z1T2)(T1Z2 + Z1T2),

Z3 = (X1Y2 − Y1X2)(Y1Y2 + aX1X2) (5.8)

assuming Z3 6= 0. These formulae are obtained from (4.37) and (4.38). By Lemma 4.4.4,

Z3 6= 0 if (X1 : Y1 : T1 : Z1) 6= (X2 : Y2 : T2 : Z2) and both summands are of odd order.

Evaluating (5.8) takes 9M + 1D + 7a;

5.1. Twisted Edwards form 79

A← X1 ·X2, B ← Y1 · Y2, C ← Z1 · T2, D ← T1 · Z2, E ← D + C,

F ← (X1 − Y1) · (X2 + Y2) +B − A, G← B + aA, H ← D − C, X3 ← E · F,
Y3 ← G ·H, Z3 ← F ·G, T3 ← E ·H.

Additionally, if Z2 = 1 then it takes 8M + 1D + 7a.

If a = 1 then the dedicated addition takes 9M + 7a in the usual sense. Additionally, if

Z2 = 1 then it takes 8M + 7a.

If a = −1 then the dedicated addition takes 8M + 10a by trading 1M with 3a;

A← (Y1 −X1) · (Y2 +X2), B ← (Y1 +X1) · (Y2 −X2), C ← 2Z1 · T2,

D← 2T1 · Z2, E ← D + C, F ← B −A, G← B + A, H ← D − C,
X3 ← E · F, Y3 ← G ·H, T3 ← E ·H, Z3 ← F ·G.

The optimization that leads to the removal of the extra multiplication is similar to the

optimizations in [Mon87] and [BL07a, add-2007-bl-4]. Additionally, if Z2 = 1 then it takes

7M + 10a.

Unified addition in Ee Alternatively, (X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2) =

(X3 : Y3 : T3 : Z3) where

X3 = (X1Y2 + Y1X2)(Z1Z2 − dT1T2),

Y3 = (Y1Y2 − aX1X2)(Z1Z2 + dT1T2),

T3 = (X1Y2 + Y1X2)(Y1Y2 − aX1X2),

Z3 = (Z1Z2 − dT1T2)(Z1Z2 + dT1T2) (5.9)

assuming Z3 6= 0. These formulae are obtained from (4.39) and (4.40). It can be deduced

from [BBJ+08] that Z3 6= 0 if a is a square in K and d is not a square in K. Also by

Lemma 4.4.7, Z3 6= 0 if (X1 : Y1 : T1 : Z1) is of odd order.

Evaluating (5.9) takes 9M + 2D + 7a;

A← X1 ·X2, B ← Y1 · Y2, C ← dT1 · T2, D ← Z1 · Z2,

E ← (X1 + Y1) · (X2 + Y2)−A−B, F ← D − C, G← D +C, H ← B − aA,
X3 ← E · F, Y3 ← G ·H, Z3 ← F ·G, T3 ← E ·H.

Additionally, if Z2 = 1 then it takes 8M + 2D + 7a.

If a = 1 then the unified addition takes 9M + 1D + 7a in the usual sense. Additionally, if

Z2 = 1 then it takes 8M + 2D + 7a.

If a = −1 then the dedicated addition takes 8M + 1D + 9a;

A← (Y1 −X1) · (Y2 −X2), B ← (Y1 +X1) · (Y2 +X2), C ← (2d)T1 · T2,

D ← 2Z1 · Z2, E ← B − A, F ← D − C, G← D +C, H ← B + A,

X3 ← E · F, Y3 ← G ·H, Z3 ← F ·G, T3 ← E ·H.

The optimization that leads to the removal of the extra multiplication is similar to the

optimizations in [Mon87] and [BL07a, add-2007-bl-4]. Additionally, if Z2 = 1 then it takes

7M + 1D + 9a.

More Formulae Using the presented two different addition formulae for computing x3 and

another two for y3 in affine coordinates, it is possible to produce hybrid addition formulae from

80 Chapter 5. Group law in projective coordinates

(4.37), (4.38), (4.39), and (4.40). The hybrid formulae are given by

(x1, y1) + (x2, y2) =

„

x1y1 + x2y2
y1y2 + ax1x2

,
y1y2 − ax1x2

1− dx1y1x2y2

«

= (x3, y3), (5.10)

(x1, y1) + (x2, y2) =

„

x1y2 + y1x2

1 + dx1y1x2y2
,
x1y1 − x2y2
x1y2 − y1x2

«

= (x3, y3). (5.11)

Ee analogs of (5.10) and (5.11) lead to similar speeds and are excluded from further

discussion.

Parameter selection Choosing curve constants with extremely small sizes or extremely

low (or high) hamming weight can be used to eliminate the computational overhead of a field

multiplication to some extent. For instance see [BJ03b], [BJ03a], [DIK06]. See also [BBJ+08,

§7] for an alternative strategy for the selection of constants. When using Ee the situation is

even better if a = −1; 1M+1D can be saved rather than just 1D. Consider a twisted Edwards

curve given by

ax2 + y2 = 1 + dx2y2.

The map (x, y) 7→ (x/
√
−a, y) defines the curve,

−x2 + y2 = 1 + (−d/a)x2y2.

This map can be constructed if −a is a square in K. It is worth pointing out here that the

curve −x2+y2 = 1+(−d/a)x2y2 corresponds to the Edwards curve x2+y2 = 1+(d/a)x2y2 via

the map (x, y) 7→ (ix, y) if i ∈ K with i2 = −1. For such curves the new addition algorithms

in extended coordinates improve upon the 10M + 1S + 1D point addition algorithm given

in [BL07a, add-2007-bl-4] for a = 1.

Further benefits of the extended coordinates are summarized as follows.

Extreme optimizations On some architectures additions in K may not be negligible.

Furthermore, it is always better if multiplications by curve constants can be eliminated.

Otherwise a programmer is often forced to select curve constants of tiny sizes still having

D as an overhead. In extended coordinates this problem can be solved. For instance, consider

the 8M + 1D + 9a unified addition algorithm with a = −1. Assuming that (X2 : Y2 : T2 : Z2)

is the base point one can cache (Y2−X2), (Y2 +X2), (2Z2), and (2dT2) after the first addition

to save 1D+3a in each of the consecutive re-additions. The unified re-additions will then take

only 8M+5a. The extra space required for these cached values can also be eliminated. Observe

that none of the coordinates in (X2 : Y2 : T2 : Z2) are ever accessed once all of the cached values

are employed in unified re-additions. Therefore the cached values can be destructively stored

within the registers holding X2, Y2, T2, and Z2. (It is interesting to note that the original

coordinates X2, Y2, and Z2 can still be recovered from the cached (Y2 −X2), (Y2 +X2), (2Z2)

by linear operations if needed at some other time.) This is also common for the entries in a

precomputed table of small multiples of the base point, i.e. the coordinates of each point in

the lookup table should be altered in a similar way. Since the additions in this lookup table

are accessed frequently the extra effort in computing (Y2 −X2), (Y2 +X2), (2dT2), and (2Z2)

5.1. Twisted Edwards form 81

will be recovered starting from the second addition. Each subsequent access to this algorithm

will then save 1D + 4a. This approach eliminates the sensitivity of the algorithm to changes

in D. In addition, this approach also works for the dedicated addition algorithm with a = −1

in §5.1.3. This approach cannot be applied in full generality to the other algorithms. For

instance, recall the 10M+1S+2D+7a unified addition algorithm in homogeneous projective

coordinates given in §5.1.1;

A← Z1 · Z2, B ← A2, C ← X1 ·X2, D← Y1 · Y2, E ← dC ·D, F ← B − E,
G← B + E, X3 ← A · F · ((X1 + Y1) · (X2 + Y2)− C −D), Y3 ← A ·G · (D − aC),

Z3 ← F ·G.

Here C and D are used for the computation of X3 and Y3. In addition, C and D depend

on both summands. Therefore dC · D cannot be cached in a similar fashion for the addition

algorithms in extended coordinates.

Parallelism in Ee with a = −1 The proposed extended coordinate system possesses a high

level of parallelism if a = −1. Despite the computational overhead of the additional coordinate,

the increase in the number of coordinates comes with lower total degree formulae. Exploiting

this property the unified addition (5.9) costs an effective 2M + 1D+ 2a using four processors;

Cost Step Processor 1 Processor 2 Processor 3 Processor 4

1 R1 ← Y1 −X1 R2 ← Y2 −X2 R3 ← Y1 + X1 R4 ← Y2 + X2

1M 2 R5 ← R1 ·R2 R6 ← R3 ·R4 R7 ← T1 · T2 R8 ← Z1 · Z2

1D 3 idle idle R7 ← (2d)R7 R8 ← 2R8

4 R1 ← R6 −R5 R2 ← R8 − R7 R3 ← R8 + R7 R4 ← R6 + R5

1M 5 X3 ← R1 ·R2 Y3 ← R3 ·R4 T3 ← R1 ·R4 Z3 ← R2 ·R3

Note that the third step can be eliminated if 2Z2 and kT2 are precomputed. Then R7 ← T1 ·T2

is computed as R7 ← T1 · (kT2) and R8 ← Z1 · Z2 as R8 ← Z1 · (2Z2). The updated cost is

then an effective 2M + 2a.

The dedicated addition (5.8) costs an effective 2M + 3a using four processors;

Cost Step Processor 1 Processor 2 Processor 3 Processor 4

1 R1 ← Y1 −X1 R2 ← Y2 + X2 R3 ← Y1 + X1 R4 ← Y2 −X2

1M 2 R5 ← R1 ·R2 R6 ← R3 ·R4 R7 ← Z1 · T2 R8 ← T1 · Z2

3 idle idle R7 ← 2R7 R8 ← 2R8

4 R1 ← R8 + R7 R2 ← R6 − R5 R3 ← R6 + R5 R4 ← R8 −R7

1M 5 X3 ← R1 ·R2 Y3 ← R3 ·R4 T3 ← R1 ·R4 Z3 ← R2 ·R3

Similarly the third step can be eliminated if 2Z2 and 2T2 are precomputed. Then R7 ← Z1 ·T2

is computed as R7 ← Z1 · (2T2) and R8 ← T1 · Z2 as R8 ← T1 · (2Z2). The updated cost is

then an effective 2M + 2a.

The doubling (5.7) costs an effective 1M + 1S + 3a using four processors;

82 Chapter 5. Group law in projective coordinates

Cost Step Processor 1 Processor 2 Processor 3 Processor 4

1 idle idle idle R1 ← X1 + Y1

1S 2 R2 ← X2
1

R3 ← Y 2
1

R4 ← Z2
1

R5 ← R2
1

3 R6 ← R2 + R3 R7 ← R2 − R3 R4 ← 2R4 idle

4 idle R1 ← R4 + R7 idle R2 ← R6 −R5

1M 5 X3 ← R1 ·R2 Y3 ← R6 ·R7 T3 ← R2 ·R6 Z3 ← R1 ·R7

From these algorithms the 2 processor case can be deduced by sequentially carrying the

workload of processors 3 and 4 on processors 1 and 2.

5.1.4 Mixed homogeneous projective coordinates, Ex

The extended coordinates allow much faster additions. For addition intensive computations

using extended coordinates provides the fastest arithmetic. However, the doubling in extended

coordinates comes with an extra multiplication. For a full speed implementation this extra

computation should be eliminated. This section aims to solve this problem.

In [CMO98], Cohen et al. introduced the modified Jacobian coordinates and studied

other systems in the literature, namely affine, projective, Jacobian, and Chudnovsky Jacobian

coordinates. To gain better timings they proposed a technique of carefully mixing these

coordinates. A similar approach is followed in this subsection. Note, the notations E and

Ee follow the notation introduced in [CMO98]. On twisted Edwards curves, the speed of

scalar multiplications which involve point doublings can be increased by mixing Ee with E .
The following technique replaces (slower) doublings in Ee with (faster) doublings in E . In the

execution of a scalar multiplication:

(i) If a point doubling is followed by another point doubling, use E ← 2E , i.e. point doubling

in homogeneous projective coordinates.

(ii) If a point doubling is followed by a point addition, use

1. Ee ← 2E for the point doubling step, i.e. point doubling in homogeneous projective

coordinates by producing output coordinates in extended homogeneous projective

coordinates; followed by,

2. E ← Ee+Ee for the point addition step, i.e. point addition in extended homogeneous

projective coordinates by producing output coordinates in homogeneous projective

coordinates.

E ← 2E is performed using a 3M + 4S + 1D doubling algorithm in [BBJ+08], see §5.1.1.

Ee ← 2E is performed using (5.7). In §5.1.3 it was noted that passing from (X : Y : Z) to

(X : Y : T : Z) (i.e. passing from E to Ee) can be performed in 3M + 1S. From this, it might

seem at the first glance that computing Ee ← 2E will be more costly than expected. However,

the doubling algorithm for (5.7) does not use the input T1. So, it can be used for Ee ← 2E
without modification requiring only 4M+4S+1D. This operation is followed by E ← Ee + Ee

which can be performed with either (5.8) or (5.9). Observe that one field multiplication can be

saved by not computing T3. This can be regarded as a remedy to the extra field multiplication

5.1. Twisted Edwards form 83

which appears in Ee ← 2E to generate the intermediate coordinate T3. For instance, if (5.8) is

used with a = −1, the addition step effectively costs (4M+4S)+(8M)−(3M+4S)−(1M) = 8M

omitting the operation count for a. It is also convenient to consider Ee ← 2E followed by

E ← Ee + Ee as a single composite operation as E ← 2E + Ee where Ee is the base point.

See [ELM03] for a similar approach in affine Weierstrass coordinates.

5.1.5 Comparison and remarks

In §5.1.1 and §5.1.2 inversion-free arithmetic for twisted Edwards form is studied in coordinate

systems from the literature. These subsections have reviewed the previous results and have

added new and potentially more efficient results to the current body of knowledge. In

particular, the dedicated addition formulae are derived for the point representations in E
and E i using the affine addition law (4.37) and (4.38) from Chapter 4. A useful feature of

the dedicated addition formulae is that the curve constant d does not appear in computations

thus eliminating the necessity of selecting d from a very restricted set of elements in K. Most

notably, the dedicated addition in E with a = ±1 and Z2 = 1 takes only 9M + 8a improving

upon the corresponding 9M + 1S + 1D + 7a algorithm in [BL07b]. The new algorithm has

already been integrated into a very recent ECM (Elliptic Curve Method) implementation on

graphic cards introduced at EUROCRYPT’09 by Bernstein et. al., see [BRCMC+09].

In §5.1.3 a new point representation, Ee, for twisted Edwards form is introduced. In this

system each point is represented with four coordinates. With the additional coordinate the

degrees of addition formulae decrease and consequently the dedicated and the unified addition

can be performed faster than in E and E i. In particular, the dedicated addition takes only

9M + 1D + 7a and the unified addition takes only 9M + 2D + 7a. Surprisingly, §5.1.3 shows

that setting/rescaling a = −1 is more advantageous than setting a = 1 because this selection

removes an additional multiplication. In particular, the dedicated addition takes only 8M+10a

and the unified addition takes only 8M+1D+9a if a = −1. With some extreme optimizations

these costs can be further decreased to 8M + 6a without needing additional space, see §5.1.3.

The drawback of Ee is the slower doublings which take 4M + 4S + 1D + 7a for arbitrary a

and d. This is slower by 1M in comparison to 3M+4S+1D+7a doubling algorithm in E . This

problem is remedied in §5.1.4 which introduces the mixed coordinates, Ex. This system uses

faster doublings in E and faster additions in Ee without causing any computational overhead

while switching between E and Ee.

Various operation counts in E , E i, Ee, and Ex are summarized in Table 5.1 and Table 5.2.

Table 5.2 immediately shows the advantage of using Ex with a = −1. However, some

pitfalls should be highlighted here. There are several elliptic curve applications each having

its own memory requirement and pattern of access to elliptic curve operations. Therefore, a

particular point representation may not be dominantly the fastest for all applications. On the

other hand, the fastest system is often easy to determine once the environmental assumptions

are made clear.

For instance, some applications such as the batch signature verification perform several

scalar multiplications simultaneously, see [dR94]. These applications tend to utilize all fast-

access-memory available on the hardware. In such applications using E might be preferable

84 Chapter 5. Group law in projective coordinates

Table 5.1: Operation counts for twisted Edwards form in different coordinate systems.

System DBL ADD

E 3M+4S+1D+7a, [BKL09]
10M+1S+2D+7a, unified, [BKL09]

11M +1D+8a, dedicated

E i 3M+4S+2D+6a, [BKL09]
9M+1S+2D+7a, unified, [BKL09]

11M +1D+8a, dedicated

Ee 4M+4S+1D+7a
9M +2D+7a, unified

9M +1D+7a, dedicated

Ex 3M+4S+1D+7a
9M +2D+7a, unified

9M +1D+7a, dedicated

Table 5.2: Operation counts for twisted Edwards form with a = ±1 in different coordinate
systems.

System DBL ADD

E 3M+4S +7a, [BKL09]
10M+1S+1D+ 7a, unified, [BKL09]

(a = ±1) 11M D+ 8a, dedicated

E i 3M+4S+1D+6a, [BKL09]
9M+1S+1D+ 7a, unified, [BKL09]

(a = ±1) 11M + 8a, dedicated

Ee 4M+4S +7a
9M +1D+ 7a, unified

(a = 1) 9M + 7a, dedicated

Ee 4M+4S +7a
8M + 9a, unified

(a = −1) 8M +10a, dedicated

Ex 3M+4S +7a
9M +1D+ 7a, unified

(a = 1) 9M + 7a, dedicated

Ex 3M+4S +7a
8M + 9a, unified

(a = −1) 8M +10a, dedicated

since each point is represented with three coordinates rather than four, cf. [BCC+09]. For batch

applications, E i can also be interesting if doublings are not accessed, or rarely accessed, or

multiplication by d in the doubling can be carried out very efficiently. However, on this system

the implementor is always forced to handle some special cases separately, see §5.1.2. These

special routines require some some hidden costs such as zero checks causing more branches

within the execution.

Some other applications such as scalar multiplication with fixed base point can be

implemented using a lot of memory. In such applications several multiples of the base point

are precomputed and stored in affine coordinates in a large lookup table, cf. [HMV03, §3.3.2].

Note that the doublings are not frequently accessed and additions with Z2 = 1 dominate the

computation. For this case, the proposed Ee is the most preferable system. First of all note

that T2 = X2Y2/Z2 can be computed on the fly requiring only one extra multiplication since

5.1. Twisted Edwards form 85

Z2 = 1. This extra computation saves memory since only two coordinates (i.e. X2 and Y2) per

entry are then needed to be stored in the lookup table. Now, Ee consumes the same amount

of memory as E and E i. Moreover, the new dedicated addition with a = −1 and Z2 = 1 takes

8M + 10a in Ex including the on-the-fly computation of T2. This is always faster than all

other addition algorithms with Z2 = 1 in E or E i. Theoretically, the Ex system can save time

over Ee since doublings are performed 1M faster in comparison to Ee. However, it was already

mentioned that there is a very limited access to doublings. In Chapter 6 it will be shown by

computer experiments that using Ee is better than using Ex when the base point is fixed and

precomputation is performed.

Other applications which do not batch scalar multiplications use an optimum amount of

memory and cannot utilize the rest of the fast-access-memory single instance of Diffie-Hellman

key pair computation on modern processors such as Pentium 4 or x86-64. If the extra space

required by the T -coordinate is available and only unified addition is being accessed then using

the proposed Ee system with a = −1 is by far the best choice because this system provides the

fastest additions, see Table 5.2. If the extra space required by the T -coordinate is available

and the doubling is used for identical summands then the best choice this time is the proposed

Ex system which benefits from fast doublings in E and fast additions in Ee. For this case, it

is up to the implementor whether or not to use the new dedicated addition algorithm or the

new unified addition algorithm. Note, if the extreme optimizations proposed in §5.1.3 are not

employed then the new dedicated addition algorithm is faster than the new unified addition

algorithm.

Finally, it was noted in §5.1.3 that the proposed Ee system with a = −1 allows a high

level of parallelism. A dedicated addition takes 4M + 5a on two processors and 2M + 3a on

four processors. After extreme optimizations from the same subsection a dedicated re-addition

takes 4M+4a on two processors and 2M+3a on four processors. Similarly, a unified addition

takes 4M + 1D + 4a on two processors and 2M + 1D + 2a on four processors. After extreme

optimizations as described in the same subsection a unified re-addition takes 4M + 4a on two

processors and 2M + 2a on four processors. In addition, a doubling takes 2M + 2S + 4a on

two processors and 1M + 1S + 3a on four processors.

Literature notes Bernstein et al. introduced the shape d1(x + y) + d2(x
2 + y2) =

(x + x2)(y + y2) and presented results on the arithmetic of these curves when char(K) = 2

in [BLR08]. These curve are named binary Edwards curves. Inversion-free Tate pairing

computations using twisted Edwards form were studied by Das and Sarkar [DS08], Ionica and

Joux [IJ08], and Arène et al. [ALNR09] in chronological order. Gailbraith et al. proposed an

efficiently computable homomorphism on a large class of curves in [GLS09a]. They extended

their method to the case of twisted Edwards curves in [GLS09b]. Very recently, Bernstein

and Lange adapted differential addition formulae and doubling algorithms by Gaudry and

Lubics [GL08], [GL09] to Edwards curves, see [BL07a].

86 Chapter 5. Group law in projective coordinates

5.2 Extended Jacobi quartic form

The recent advances in efficient arithmetic for twisted Edwards form also shed light on the

arithmetic of extended Jacobi quartic form. The arithmetic of extended Jacobi quartic form is

studied in three different coordinate systems in this section. Similar to the practice in twisted

Edwards curves, homogeneous projective coordinates allows very fast doubling in just three

coordinates however the additions are quite costly, see §5.2.1. This disadvantage is eliminated

in extended homogeneous projective coordinates which allows very fast additions, see §5.2.2.

However, this time the doublings become slower. Finally, the mixed coordinates solve the

efficiency problem by using fast doublings in homogeneous projective coordinates and fast

additions in extended homogeneous projective coordinates, see §5.2.3. Weighted projective

coordinates are reviewed in §5.2.4. Conclusions are drawn in §5.2.5 together with pointers to

the literature.

5.2.1 Homogeneous projective coordinates, Q
Projective coordinates are used as basic tools in designing inversion-free algorithms. In the

case of (extended) Jacobi quartic curves, homogeneous projective coordinates (X : Y : Z) are

considered for efficiency purposes for the first time in this thesis.

In this system, each point (x, y) on y2 = dx4 + 2ax2 + 1 is represented with the triplet

(X : Y : Z) which corresponds to the affine point (X/Z, Y/Z) with Z 6= 0. These triplets

satisfy the homogeneous projective equation Y 2Z2 = dX4 + 2aX2Z2 + Z4. For all nonzero

λ ∈ K, (X : Y : Z) = (λX : λY : λZ). The identity element is represented by (0 : 1 : 1). The

negative of (X : Y : Z) is (−X : Y : Z). This coordinate system is denoted by Q throughout

the text.

Doubling in Q Let (X1 : Y1 : Z1) with Z1 6= 0 satisfy Y 2Z2 = dX4 + 2aX2Z2 + Z4. Then

[2](X1 : Y1 : Z1) = (X3 : Y3 : Z3) where

X3 = 2X1Y1(2Z
2
1 − Y 2

1 + 2aX2
1),

Y3 = 2Y 2
1 (Y 2

1 − 2aX2
1)− (2Z2

1 − Y 2
1 + 2aX2

1)2,

Z3 = (2Z2
1 − Y 2

1 + 2aX2
1)2 (5.12)

assuming Z3 6= 0. These formulae are obtained from (4.11) and (4.12). By Lemma 4.2.8, Z3

is always nonzero if d is not a square in K. In this case, it is also important to note that the

points at infinity on the desingularization of an extended Jacobi quartic curve are not defined

over K. Also by Lemma 4.4.7, Z3 is always nonzero if (X1 : Y1 : Z1) is of odd order regardless

of the assumption on d (of course, d(a2 − d) 6= 0).

These formulae do not depend on d. Therefore keeping d arbitrary has no effect on the cost

of (5.12). Evaluating (5.12) takes 2M + 5S + 1D + 8a;

A← 2Z2
1 , B ← X2

1 , C ← Y 2
1 , D ← B +C, E ← (X1 + Y1)

2 −D, F ← (2a)B,

G← C − F, H ← A−G, Z3 ← H2, X3 ← E ·H, Y3 ← 2C ·G− Z3.

If a = 1/2 then the doubling takes 2M + 5S + 8a by first removing F ← (2a)B then

replacing G← C − F with G← C −B.

5.2. Extended Jacobi quartic form 87

If a = −1/2 then the doubling takes 2M+ 5S+ 7a —saving an extra a— by first removing

F ← (2a)B and G← C−F then replacing H ← A−G and Y3 ← 2C ·G−Z3 with H ← A−D
and Y3 ← 2C ·D − Z3, respectively.

Alternatively, evaluating (5.12) takes takes 3M + 4S + 1D + 4a by sacrifising one M/S

trade-off to save 4a;

A← Z2
1 , B ← X2

1 , C ← Y 2
1 , D← (C − (2a)B)/2, E ← A−D, Z3 ← E2,

X3 ← X1 · Y1 ·E, Y3 ← C ·D − Z3.

If a = ±1/2 then 1D is saved in the usual sense.

Dedicated addition in Q Further let (X2 : Y2 : Z2) with Z2 6= 0 satisfy Y 2Z2 = dX4 +

2aX2Z2 + Z4. Then, (X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 : Y3 : Z3) where

X3 = (X1Y2 − Y1X2)(X
2
1Z

2
2 − Z2

1X
2
2),

Y3 = (Y1Y2 − 2aX1X2)(X
2
1Z

2
2 + Z2

1X
2
2)− 2X1X2(Z

2
1Z

2
2 + dX2

1X
2
2),

Z3 = Z1Z2(X1Y2 − Y1X2)
2 (5.13)

assuming Z3 6= 0. These formulae are obtained from (4.13) and (4.14). By Lemma 4.2.4,

Z3 6= 0 if (X1 : Y1 : Z1) 6= (X2 : Y2 : Z2) and both summands are of odd order.

Evaluating (5.13) takes 10M + 5S + 2D + 10a;

A← Z1 · Z2, B ← Y1 · Y2, C ← X1 ·X2, D ← (X1 − Y1) · (X2 + Y2) +B − C,
F ← (X1 · Z2)

2, G← (Z1 ·X2)
2, X3 ← D · (F −G),

Y3 ← (B − (2a)C) · (F +G)− 2C · (A2 + dC2), Z3 ← A ·D2.

Additionally, if Z2 = 1 then it takes 8M + 5S + 2D + 10a.

If a = 1/2 then the dedicated addition takes 10M+5S+1D+9a by first caching U ← B−C
then replacingD ← (X1−Y1)·(X2+Y2)+B−C and Y3 ← (B−(2a)C)·(F+G)−2C ·(A2+dC2)

with D ← (X1 − Y1) · (X2 + Y2) + U and Y3 ← U · (F + G) − 2C · (A2 + dC2), respectively.

Additionally, if Z2 = 1 then it takes 8M + 5S + 1D + 9a.

If a = −1/2 then the dedicated addition takes 10M+5S+1D+10a. Additionally, if Z2 = 1

then it takes 8M + 5S + 1D + 10a.

Unified addition in Q Alternatively, (X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 : Y3 : Z3) where

X3 = Z1Z2(X1Y2 + Y1X2)(Z
2
1Z

2
2 − dX2

1X
2
2),

Y3 = Z1Z2(Y1Y2 + 2aX1X2)(Z
2
1Z

2
2 + dX2

1X
2
2) + 2dX1X2Z1Z2(X

2
1Z

2
2 + Z2

1X
2
2),

Z3 = (Z2
1Z

2
2 − dX2

1X
2
2)2 (5.14)

assuming Z3 6= 0. These formulae are obtained from (4.15) and (4.16). By Lemma 4.2.8,

Z3 6= 0 if d is not a square in K. Also by Lemma 4.2.7, Z3 6= 0 if both (X1 : Y1 : Z1) and

(X2 : Y2 : Z2) are of odd order.

Evaluating (5.14) takes 10M + 7S + 3D + 17a;

A← Z1 · Z2, B ← Y1 · Y2, C ← X1 ·X2, D ← (X1 + Y1) · (X2 + Y2)−B − C,
F ← (X1 · Z2)

2, G← (Z1 ·X2)
2, H ← A2, J ← C2, K ← dJ, L← H −K,

M ← L2, N ← (A+ L)2 −H −M, P ← (A+C)2 −H − J, X3 ← D ·N,
Y3 ← 2A · (B + (2a) · C) · (H +K) + (2d)P · (F +G), Z3 ← 2M.

88 Chapter 5. Group law in projective coordinates

Additionally, if Z2 = 1 then it takes 8M + 7S + 3D + 17a.

If a = 1/2 then the dedicated addition takes 10M+7S+2D+16a by first caching U ← B+C

then replacing D ← (X1 + Y1) · (X2 + Y2)−B − C and Y3 ← 2A · (B + (2a) · C) · (H +K) +

(2d)P ·(F +G) with D ← (X1 +Y1) ·(X2 +Y2)−U and Y3 ← 2A ·U ·(H+K)+(2d)P ·(F +G),

respectively. Additionally, if Z2 = 1 then it takes 8M + 7S + 2D + 16a.

If a = −1/2 then the dedicated addition takes 10M+7S+2D+17a. Additionally, if Z2 = 1

then it takes 8M + 7S + 2D + 17a.

An alternative evaluation of (5.14) takes 12M + 5S + 3D + 9a;

A← X1 · Z2, B ← Y1 · Z2, C ← Z1 ·X2, D← Z1 · Y2, E ← A · C,
F ← B ·D, G← (A+B) · (C +D)− E − F, H ← Z1 · Z2, J ← X1 ·X2,

K ← H2, L← dJ2, M ← K − L, X3 ← G ·M, Z3 ←M2,

Y3 ← (K + L) · (F + (2a)E) + (2d)E · (A2 + C2).

Additionally, if Z2 = 1 then it takes 9M + 5S + 3D + 9a.

If a = ±1/2 then 1D is saved in the usual sense.

5.2.2 Extended homogeneous projective coordinates, Qe

Although homogeneous projective coordinates allow a very fast doubling, the additions

require a lot of effort for computing multiplications by Z1 and Z2. Keeping track of some

redundant data decreases this overload. There are several ways of extending the homogeneous

projective coordinates such as representing (X : Y : Z) in Q as (X : Y : Z : X2 : Z2) or

(X : Y : Z : X2 : Z2 : XZ), etc. However, this work is restricted to representing (X : Y : Z)

as (X : Y : T : Z) with only one additional coordinate. This system performs faster than other

choices and uses memory space wisely. Further comparison is omitted here.

In this system, each triplet (X : Y : Z) with Z 6= 0 is represented as the quadruplet

(X : Y : T : Z) where T = X2/Z. For all nonzero λ ∈ K, (X : Y : T : Z) = (λX : λY : λT : λZ).

Such a quadruplet satisfies Y 2Z2 = dX4 + 2aX2Z2 + Z4 and corresponds to the affine point

(X/Z, Y/Z). The identity element is represented by (0 : 1 : 0 : 1). The negative of (X : Y : T : Z)

is (−X : Y : T : Z). Given (X : Y : Z) in Q passing to Qe can be performed in 1M + 3S

by computing (XZ : Y Z : X2 : Z2) noting that XZ = ((X + Z)2 − X2 − Z2)/2. Given

(X : Y : T : Z) in Qe passing to Q is cost-free by simply ignoring T .

Doubling in Qe Let (X1 : Y1 : T1 : Z1) with Z1 6= 0 and T1 = X1Y1/Z1 satisfy Y 2Z2 =

dX4 + 2aX2Z2 + Z4. Then [2](X1 : Y1 : T1 : Z1) = (X3 : Y3 : T3 : Z3) where

X3 = 2X1Y1(2Z
2
1 − Y 2

1 + 2aX2
1),

Y3 = 2Y 2
1 (Y 2

1 − 2aX2
1)− (2Z2

1 − Y 2
1 + 2aX2

1)2,

T3 = (2X1Y1)
2,

Z3 = (2Z2
1 − Y 2

1 + 2aX2
1)2 (5.15)

assuming Z3 6= 0. These formulae are obtained from (4.11) and (4.12). By Lemma 4.2.8,

Z3 6= 0 if d is not a square in K. Also by Lemma 4.4.7, Z3 6= 0 if (X1 : Y1 : T1 : Z1) is of odd

order.

Evaluating (5.15) takes 8S + 2D + 14a;

5.2. Extended Jacobi quartic form 89

A← Z2
1 , B ← Y 2

1 , C ← X2
1 , D ← B + C, E ← (X1 + Y1)

2 −D,
F ← 2A−B + (2a)C, G← E2, H ← F 2, X3 ← (E + F)2 −G−H, T3 ← 2G,

Z3 ← 2H, Y3 ← (2B)2 − (2a)G− Z3.

If a = 1/2 then the doubling takes 8S + 14a by replacing F ← 2A − B + (2a)C and

Y3 ← (2B)2 − (2a)G− Z3 with F ← 2A−B + C and Y3 ← (2B)2 −G− Z3, respectively.

If a = −1/2 then the doubling takes 8S + 13a —saving an extra a— by replacing F ←
2A−B + (2a)C and Y3 ← (2B)2 − (2a)G− Z3 with F ← 2A−D and Y3 ← (2B)2 +G− Z3,

respectively.

An alternative evaluation of (5.15) saves 1D, several a and takes 3M + 5S + 1D + 4a at

the cost of three M/S trade-offs;

A← Z2
1 , B ← Y 2

1 , C ← X2
1 , D ← X1 · Y1, E ← (B − (2a)C)/2, F ← A− E,

T3 ← D2, Z3 ← F 2, X3 ← D · F, Y3 ← B ·E − Z3.

If a = ±1/2 then 1D is saved in the usual sense.

Dedicated addition in Qe Further let (X2 : Y2 : T2 : Z2) with Z2 6= 0 and T2 = X2Y2/Z2

satisfy Y 2Z2 = dX4 + 2aX2Z2 + Z4. Then, (X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2) =

(X3 : Y3 : T3 : Z3) where

X3 = (X1Y2 − Y1X2)(T1Z2 − Z1T2),

Y3 = (Y1Y2 − 2aX1X2)(T1Z2 + Z1T2)− 2X1X2(Z1Z2 + dT1T2),

T3 = (T1Z2 − Z1T2)
2,

Z3 = (X1Y2 − Y1X2)
2 (5.16)

assuming Z3 6= 0. These formulae are obtained from (4.13) and (4.14). By Lemma 4.2.4,

Z3 6= 0 if (X1 : Y1 : T1 : Z1) 6= (X2 : Y2 : T2 : Z2) and both summands are of odd order.

Without any assumptions on the curve constants, Y3 can alternatively be written as

Y3 = (T1Z2 + Z1T2 − 2X1X2)(Y1Y2 − 2aX1X2 + Z1Z2 + dT1T2)− Z3. (5.17)

This formula is obtained from (4.20).

Evaluating (5.16) by replacing Y3 with (5.17) takes 7M + 3S + 2D + 19a;

A← T1 · Z2, B ← Z1 · T2, C ← X1 ·X2, D← Y1 · Y2,

E ← (X1 − Y1) · (X2 + Y2)− C +D, F ← A−B, Z3 ← E2, T3 ← F 2,

X3 ← ((E + F)2 − T3 − Z3)/2,

Y3 ← (A+B − 2C) · (D − (2a)C + (Z1 + T1) · (Z2 + dT2)−A− dB)− Z3.

Additionally, if Z2 = 1 then it takes 6M + 3S + 2D + 19a.

If a = 1/2 then the dedicated addition takes 7M + 3S + 1D + 18a by first caching U ←
D − C then replacing E ← (X1 − Y1) · (X2 + Y2) − C + D and Y3 ← (A + B − 2C) · (D −
(2a)C + (Z1 + T1) · (Z2 + dT2) − A − dB) − Z3 with E ← (X1 − Y1) · (X2 + Y2) + U and

Y3 ← (A+B − 2C) · (U + (Z1 + T1) · (Z2 + dT2)−A− dB)−Z3, respectively. Additionally, if

Z2 = 1 then it takes 6M + 3S + 1D + 18a.

If a = −1/2 then the dedicated addition takes 7M+3S+1D+19a. Additionally, if Z2 = 1

then it takes 6M + 3S + 1D + 19a.

90 Chapter 5. Group law in projective coordinates

Unified addition in Qe Alternatively, (X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2) =

(X3 : Y3 : T3 : Z3) where

X3 = (X1Y2 + Y1X2)(Z1Z2 − dT1T2),

Y3 = (Y1Y2 + 2aX1X2)(Z1Z2 + dT1T2) + 2dX1X2(T1Z2 + Z1T2),

T3 = (X1Y2 + Y1X2)
2,

Z3 = (Z1Z2 − dT1T2)
2 (5.18)

assuming Z3 6= 0. These formulae are obtained from (4.15) and (4.16). By Lemma 4.2.8,

Z3 6= 0 if d is not a square in K. Also by Lemma 4.2.7, Z3 6= 0 if both (X1 : Y1 : T1 : Z1) and

(X1 : Y1 : T1 : Z1) are of odd order.

Evaluating (5.18) takes 8M + 3S + 3D + 17a;

A← Z1 · Z2, B ← T1 · T2, C ← X1 ·X2, D← Y1 · Y2, E ← dB,

F ← (X1 + Y1) · (X2 + Y2)−C −D, G← A− E, Z3 ← G2, T3 ← F 2,

X3 ← ((F +G)2 − T3 − Z3)/2,

Y3 ← (D + (2a)C) · (A+E) + (2d)C · ((T1 + Z1) · (T2 + Z2)− A−B).

Additionally, if Z2 = 1 then it takes 7M + 3S + 3D + 17a.

If a = 1/2 then the unified addition takes 8M+3S+2D+16a by first caching U ← C+D

then replacing F ← (X1 + Y1) · (X2 + Y2) − C − D and Y3 ← (D + (2a)C) · (A + E) +

(2d)C · ((T1 + Z1) · (T2 + Z2) − A − B) with F ← (X1 + Y1) · (X2 + Y2) − U and Y3 ←
U · (A+E) + (2d)C · ((T1 +Z1) · (T2 +Z2)−A−B), respectively. Additionally, if Z2 = 1 then

it takes 7M + 3S + 2D + 16a.

If a = −1/2 then the unified addition takes 8M + 3S + 2D + 17a. Additionally, if Z2 = 1

then it takes 7M + 3S + 2D + 17a.

If d is a square in K then Y3 can alternatively be written as

Y3 = (Z1Z2 + dT1T2 ± 2
√
dX1X2)(Y1Y2 + 2aX1X2 ±

√
dT1Z2 ±

√
dZ1T2)∓

√
dT3. (5.19)

This formula is obtained from (4.18).

Evaluating (5.18) by replacing Y3 with (5.19) takes 7M+3S+5D+17a with the following

sequence of operations;

A← Z1 · Z2, B ← T1 · T2, C ← X1 ·X2, D← Y1 · Y2, E ← dB,

F ← (X1 + Y1) · (X2 + Y2)−C −D, G← A− E, Z3 ← G2, T3 ← F 2,

X3 ← ((F +G)2 − T3 − Z3)/2,

Y3 ← (A+E + (2s)C) · (D + (2a)C + s((T1 + Z1) · (T2 + Z2)− A−B))− sT3.

where s2 = d. Additionally, if Z2 = 1 then it takes 6M + 3S + 5D + 17a.

5.2.3 Mixed homogeneous projective coordinates, Qx

The construction in this section is the same as §5.1.4 and is closely linked with [CMO98].

Therefore, only a brief outline of the technique is given in this section.

Most of the efficient scalar multiplication implementations are based on a suitable

combination of signed integer recoding, fast precomputation and left-to-right sliding fractional-

windowing techniques. The resulting algorithm is doubling intensive. Roughly for each bit of

5.2. Extended Jacobi quartic form 91

the scalar one doubling is performed. Additions are accessed less frequently. Excluding the

additions used in the precomputation phase, approximately l/(w + 1) additions are needed

where l is the number of bits in the scalar and w is the window length. Parameter w is used

to control space consumption and optimize the total running time.

An abstract view of the scalar multiplication is composed of several repeated-doublings

each followed by a single addition. In the present case, these operations are performed in the

following way:

(i) If a point doubling is followed by another point doubling, use Q ← 2Q.

(ii) If a point doubling is followed by a point addition, use

1. Qe ← 2Q for the point doubling step; followed by,

2. Q← Qe +Qe for the point addition step.

Suppose that a repeated-doubling phase is composed ofm doublings. In (i), m−1 successive

doublings in Q are performed with (5.12) given in §5.2.1. In (ii), the remaining doubling is

merged with the single addition phase to yield a combined double-and-add step; a similar

approach to [ELM03]. To perform the double-and-add operation the doubling step is performed

using (5.15) given in §5.2.1. This algorithm is suitable to compute Qe ← 2Q since the inputs

are only composed of the coordinates X , Y , Z and the output is still produced in Qe. The

doubling step is followed by the addition in Qe using one of (5.16) or (5.17) or (5.18) or (5.19).

Note that the computation of T3 can be omitted to save 1S since the result is in Q (not Qe).

For instance, if (5.16) with a = −1/2 is used by replacing Y3 with (5.17), the dedicated

addition step effectively costs (8S) + (8M + 2S + 2D) − (2M + 5S)− (1S) = 6M + 4S + 2D

omitting the operation count for a.

Selection of curve constants The constant a can be rescaled to −1/2 via the map (x, y) 7→
(x/
√
−2a, y) provided that

√
−2a ∈ K. This map transforms the curve y2 = dx4 + 2ax2 + 1

to y2 = (d/(4a2))x4 − x2 + 1. Alternatively, a curve having a = −1/2 can be selected without

rescaling. If doublings are frequently accessed then having a = −1/2 and keeping d arbitrary

gives the optimum performance. If the doublings are not needed frequently then having d = ±1

and keeping a arbitrary is more efficient as the operation counts and comments in §5.2.2

indicate.

5.2.4 Weighted projective coordinates, Qw

All literature results prior to this work are based on weighted projective coordinates, Qw,

e.g. [CC86] and [BJ03a]. In weighted projective coordinates each point (x, y) is represented by

the triplet (X : Y : Z) which satisfies the projective equation Y 2 = dX4 + 2aX2Z2 + Z4 and

corresponds to the affine point (X/Z, Y/Z2) with Z 6= 0. For all nonzero λ ∈ K, (X : Y : Z) =

(λX : λ2Y : λZ). The identity element is represented by (0 : 1 : 1). The negative of (X : Y : Z)

is (−X : Y : Z). Unlike the homogeneous projective case, this curve is non-singular provided

that d(a2 − d) 6= 0.

92 Chapter 5. Group law in projective coordinates

Chudnovsky and Chudnovsky [CC86] proposed two inversion-free point addition and two

inversion-free point doubling formulae using a slightly different quartic equation given by

EJ̃ ,a′,b′ : y2 = x4 + a′x2 + b′

and using weighted projective coordinates. The formulae in [CC86, (4.10i) on p.418] are

analogous to (4.13) and (4.14) with the minor difference that the identity element is moved to

the point at infinity (1 : 1 : 0) on Y 2 = X4 + a′X2Z2 + b′Z4. The arithmetic of this curve is

similar to that of EQ,d,a due to the symmetry in the right hand side of the weighted projective

equations Y 2 = X4 + a′X2Z2 + b′Z4 and Y 2 = dX4 + 2aX2Z2 + Z4.

Billet and Joye [BJ03a] proposed a faster inversion-free unified addition algorithm on the

curve Y 2 = dX4 + 2aX2Z2 + Z4 based on (4.15) and (4.16). Keeping in mind that the points

at infinity are defined over K if and only if d is a square in K, Lemma 4.2.8 implies that the

Billet/Joye unified point addition algorithm is complete if d is non-square. This algorithm

needs 10M + 3S + 3D for arbitrary a and d. Note that no faster way of inversion-free general

point addition is known to date in (X : Y : Z)[1,2,1] coordinates1. See EFD [BL07a] for a

2M + 6S + 1D doubling algorithm by Feng/Wu in (X : Y : Z)[1,2,1] for the case d = 1.

The algorithms are omitted here since they are slower then the proposed mixed coordinates,

Qx, in §5.2.3.

Redundant variants of Qw It remains an open question whether it is possible to speed

up the addition in Qw. However, the speed of the Billet/Joye algorithm (in weighted

coordinates) was improved by Duquesne in [Duq07] with the proposal of (X2 : XZ : Z2 : Y)

coordinates. Duquesne’s variant addition algorithm needs 9M+2S+3D saving 1M+1S over

the Billet/Joye algorithm by using slightly more space to represent the points. For the case

d = 1, Bernstein and Lange [BL07a] extended this representation to (X : Y : Z : X2 : 2XZ : Z2)

and (X : Y : Z : X2 : 2XZ : Z2 : X2 + Z2) saving an extra M − S (i.e. M-S trade-off) over

Duquesne’s algorithm. A more detailed overview of these algorithms and operation counts can

be found in the original papers or in [BL07a]. Duquesne coordinates (X2 : XZ : Z2 : Y)[2,2,2,2]

use less space than redundant coordinates but need special treatment in the scalar

multiplication to obtain the original coordinates (X : Y : Z)[1,2,1] of the final result. The original

representation as (X : Y : Z)[1,2,1] in [BJ03a] uses even less space however this representation

has to date been slower than the redundant coordinates.

The redundant representations such as

(X : Y : Z : X2 : 2XZ : Z2 : X2 + Z2)[1,2,1,2,2,2,2],

(X : Y : Z : X2 : 2XZ : Z2)[1,2,1,2,2,2],

(X : Y : Z : X2 : Z2 : X2 + Z2)[1,2,1,2,2,2],

(X : Y : Z : X2 : Z2)[1,2,1,2,2],

(X : Y : Z : X2 : Z2 : XZ)[1,2,1,2,2,2]

help in the development of faster algorithms for performing point operations and their overall

performance only slightly differs from each other. However, they all share one serious drawback.

1The subscript provides information about the weights of the coordinates

5.2. Extended Jacobi quartic form 93

They need more space for storing the points in comparison to earlier proposals. Despite the

speed advantage of these coordinate systems, the large space requirement makes the practical

use of Jacobi quartic form questionable since windowing techniques in scalar multiplication

algorithms precompute and store several points. Since the extended homogeneous projective

coordinates solve these problems without resulting in a speed penalty, all redundant versions

of weighted coordinates (including Duquesne’s approach) are not further considered. On the

other hand, the Billet/Joye addition algorithm is still interesting since the arithmetic is done

in three coordinates and is faster than its homogeneous projective analogue.

The algorithms are omitted here since they are slower than the proposed mixed coordinates,

Qx, in §5.2.3.

5.2.5 Comparison and remarks

In §5.2.1 and §5.2.2 inversion-free arithmetic for extended Jacobi quartic form is studied in

coordinate systems Q and Qe for the first time for efficient computation. The most notable

achievement of §5.2.1 is the 2M+ 5S + 7a and 3M+ 4S+ 4a doubling algorithms in Q on the

curve EQ,d,−1/2. Comparing these result with previous results in Qw (weighted projective

coordinates) and its variants, the new doubling algorithm is faster than all other three-

coordinate doubling algorithms in Qw. For instance, the new algorithm improves upon the

2M + 6S + 1D + 10a doubling algorithm by Feng/Wu in Qw on the curve EQ,1,a, see [BL07a,

dbl-2007-fw-2]. Feng/Wu point doubling algorithm fails for some special inputs. On the other

hand, the proposed doubling algorithms work for all inputs provided that d is non-square in

K. In addition, the proposed algorithms do not depend on d. Therefore, selecting d of a large

size does not affect the performance of the new algorithms. Note that in the case d is a square

in K, it is still possible to prevent failures by working in a subgroup of odd order; a result

deduced in §5.2.1 from §4.2 of Chapter 4. The new doubling algorithms are also at least as

fast as the previous doubling algorithms in redundant versions of Qw. (See Appendix C.2.)

On the other hand, addition is performed in just 4 coordinates rather than 5, 6 or 7.

Although Q is ideal for point doublings, it severely suffers from inefficient point additions.

The performance of point additions is improved in §5.2.2 by the proposal of the extended

homogeneous projective coordinates, Qe. This system saves several multiplications in K over

the best reported addition algorithms in Q and Qw. For instance, a dedicated addition in Qe

takes 7M + 3S + 1D + 19a where essentially the same formulae takes 10M + 5S + 2D + 10a

in Q. It is possible to draw a similar conclusion for the unified additions. The new addition

algorithms are at least as fast as the previous addition algorithms in redundant versions of Qw.

(See Appendix C.2.) However doubling is performed in 4 coordinates rather than 5, 6 or 7.

Although Qe provides the fastest point additions, this time point doubling is slightly slower.

This problem is remedied in §5.2.3 by the introduction of the mixed coordinates, Qx. This

system uses faster doublings in Q and faster additions in Qe without causing any computational

overhead while switching between Qe and Q. In fact, the swichting speeds up the additions

effectively after a combination of suitable algorithms. See §5.2.3 for details.

In §5.2.4, literature results are summarized for weighted projective coordinate system, Qw.

In addition, newer and faster results are proposed for this specific system and some of its

94 Chapter 5. Group law in projective coordinates

variants in Appendix C.2. These results are separated from the main body of the discussion

since the proposed Qx systen has already achieved better performance.

Various operation counts in Q, Qw, Qe, and Qx are summarized in Table 5.3. Table 5.4

provides operation counts for the case a = −1/2.

Table 5.3: Operation counts for extended Jacobi quartic form in different coordinate systems.

System DBL ADD

Qw
- 10M+3S+3D+14a, unified, [BJ03a]

Q 3M+4S+1D+ 4a 10M+7S+3D+17a, unified

2M+5S+1D+ 8a 10M+5S+2D+10a, dedicated

Qe 3M+5S+1D+ 4a 8M+3S+3D+17a, unified

8S+2D+14a 7M+3S+2D+19a, dedicated

Qx 3M+4S+1D+ 4a 7M+4S+4D+19a, unified

2M+5S+1D+ 8a 6M+4S+3D+21a, dedicated

Table 5.4: Operation counts for extended Jacobi quartic form with a = −1/2 in different
coordinate systems.

System DBL ADD

Qw
- 10M+2S+2D+14a, unified, [BJ03a]

Q 3M+4S+ 4a 10M+7S+2D+17a, unified

2M+5S+ 7a 10M+5S+1D+10a, dedicated

Qe 3M+5S+ 4a 8M+3S+2D+17a, unified

8S+13a 7M+3S+1D+19a, dedicated

Qx 3M+4S+ 4a 7M+4S+3D+19a, unified

2M+5S+ 7a 6M+4S+2D+21a, dedicated

If the slight memory overhead can be neglected then the mixed coordinates Qx is clearly

the fastest among all other coordinate systems if attention is restricted to the extended Jacobi

quartic form. This can be observed in Table 5.3: The doubling operation is at least as fast as

the other coordinate systems and the additions are always effectively faster, see §5.2.3.

In each of the coordinate systems, the dedicated addition again turned out to be faster

than the unified addition as is the case for twisted Edwards curve. However, the gap

between the performance of the dedicated addition and unified addition is wider in the case of

extended Jacobi quartic form. This makes dedicated addition more suitable in speed oriented

implementations.

Literature notes The results in the literature mainly focused on weighted projective

coordinates. The relevant pointers are already given in §5.2.4.

5.3. Twisted Jacobi intersection form 95

5.3 Twisted Jacobi intersection form

The arithmetic of this form is translated from Jacobi elliptic functions where there is a large

body of formulae available. Some of those formulae have already been given in affine coordinates

in §4.5 of Chapter 4. In this section, the arithmetic of twisted Jacobi intersection form is studied

in homogeneous projective coordinates and its redundant variants. The coordinates are not

extended as was the case in the previous quartic forms. This is due to the fact that each

inversion-free formula (i.e. a formula assigned to a single homogeneous projective coordinate)

presented in §5.3.1 is readily of minimal-degree. On the other hand, §5.3.2 shows that keeping

some redundant data helps in speeding up the additions. Conclusions are drawn in §5.3.3

together with pointers to the literature.

5.3.1 Homogeneous projective coordinates, I
In this system, each point (s, c, d) on bs2+c2 = 1, as2+d2 = 1 is represented with the quadruplet

(S : C : D : Z) which corresponds to the affine point (S/Z,D/Z,C/Z) with Z 6= 0. These

quadruplets satisfy the homogeneous projective equations bS2 +C2 = Z2, aS2 +D2 = Z2. For

all nonzero λ ∈ K, (S : C : D : Z) = (λS : λC : λD : λZ). The identity element is represented

by (0 : 1 : 1 : 1). The negative of (S : C : D : Z) is (−S : C : D : Z). This coordinate system is

denoted by I throughout the text.

Doubling in I Let (S1 : C1 : D1 : Z1) with Z1 6= 0 satisfy bS2 + C2 = Z2, aS2 +D2 = Z2.

Then [2](S1 : C1 : D1 : Z1) = (S3 : C3 : D3 : Z3) where

S3 = 2S1C1D1Z1,

C3 = C2
1Z

2
1 − bS2

1D
2
1 ,

D3 = −C2
1Z

2
1 − bS2

1D
2
1 + 2D2

1Z
2
1 ,

Z3 = C2
1Z

2
1 + bS2

1D
2
1 (5.20)

assuming that Z3 6= 0. These formulae are obtained from (4.55), (4.56), and (4.57). By

Lemma 4.5.8, Z3 is always nonzero if a is not a square in K. In this case, it is also important

to note that the points at infinity are not defined over K. Also by Lemma 4.5.7, Z3 is always

nonzero if (X1 : Y1 : Z1) is of odd order regardless of the assumption on a and b (of course,

ab(a− b) 6= 0).

Evaluating (5.20) takes 3M + 4S + 1D + 7a;

U1 ← S1 ·D1, V1 ← C1 · Z1, E ← D1 · Z1, F ← U2
1 , G← V 2

1 ,

S3 ← (U1 + V1)
2 −G− F, H ← bF, C3 ← G−H, Z3 ← G+H,

D3 ← 2E2 − Z3.

Evaluating (5.20) with b = 1 takes 3M + 4S + 6a in [BL07a, dbl-2007-bl];

U1 ← S1 ·D1, V1 ← C1 · Z1, E ← D1 · Z1, F ← U2
1 , G← V 2

1 , Z3 ← G+ F,

S3 ← (U1 + V1)
2 − Z3, C3 ← G− F, D3 ← 2E2 − Z3

with minor notation changes.

An alternative way of writing D3 is as follows.

D3 = −C2
1Z

2
1 − bS2

1D
2
1 + 2aS2

1D
2
1 + 2D4

1 (5.21)

96 Chapter 5. Group law in projective coordinates

Evaluating (5.20) when D3 is replaced with (5.21) takes 2M + 5S + 2D + 8a;

U1 ← S1 ·D1, V1 ← C1 · Z1, F ← U2
1 , G← V 2

1 , H ← bF, C3 ← G−H,
Z3 ← G+H, S3 ← (U1 + V1)

2 − F −G, D3 ← 2(aF +D4
1)− Z3.

Evaluating (5.20) with b = 1 when D3 is replaced with (5.21) takes 2M + 5S + 1D + 7a;

U1 ← S1 ·D1, V1 ← C1 · Z1, F ← U2
1 , G← V 2

1 , C3 ← G− F, Z3 ← G+ F,

S3 ← (U1 + V1)
2 − Z3, D3 ← 2(aF +D4

1)− Z3.

Dedicated addition in I Further let (S2 : C2 : D2 : Z2) with Z2 6= 0 satisfy bS2 + C2 =

Z2, aS2 +D2 = Z2. Then, (S1 : C1 : D1 : Z1) + (S2 : C2 : D2 : Z2) = (S3 : C3 : D3 : Z3) where

S3 = S2
1Z

2
2 − Z2

1S
2
2 ,

C3 = S1C1D2Z2 −D1Z1S2C2,

D3 = S1D1C2Z2 −C1Z1S2D2,

Z3 = S1Z1C2D2 −C1D1S2Z2 (5.22)

assuming that Z3 6= 0. These formulae are obtained from (4.46), (4.47), and (4.48). By

Lemma 4.5.7, Z3 is always nonzero if (S1 : C1 : D1 : Z1) 6= (S2 : C2 : D2 : Z2) and both

summands are of odd order.

Evaluating (5.22) takes 12M + 11a;

E ← S1 · Z2, F ← Z1 · S2, G← C1 ·D2, H ← D1 · C2, J ← E − F,
K ← E + F, L← G−H, M ← G+H, N ← K · L, P ← J ·M, S3 ← J ·K,

C3 ← (N + P)/2, D3 ← (P −N)/2,

Z3 ← (D1 · Z2 + Z1 ·D2) · (S1 · C2 − C1 · S2)−D3.

Additionally, if Z2 = 1 then it takes 10M + 11a. Also note that it is possible to compute D3

as U1 · V2 − V1 · U2 where Ui = Si ·Di and Vi = Ci · Zi. Assuming that U2 and V2 are cached,

a re-addition takes 11M + 9a.

Unified addition in I Alternatively, (S1 : C1 : D1 : Z1) + (S2 : C2 : D2 : Z2) =

(S3 : C3 : D3 : Z3) where

S3 = S1Z1C2D2 + C1D1S2Z2,

C3 = C1Z1C2Z2 − bS1D1S2D2,

D3 = D1Z1D2Z2 − aS1C1S2C2,

Z3 = C2
1Z

2
2 + bS2

1D
2
2 (5.23)

assuming that Z3 6= 0. These formulae are obtained from (4.49), (4.50), and (4.51). By

Lemma 4.5.8, Z3 6= 0 if a is not a square in K. Also by Lemma 4.5.7, Z3 is always nonzero if

both (S1 : C1 : D1 : Z1) and (S2 : C2 : D2 : Z2) are of odd order.

Evaluating (5.23) takes 13M + 2S + 5D + 13a;

E ← C1 · Z2, F ← Z1 · C2, G← S1 ·D2, H ← D1 · S2, J ← F ·H,
K ← E ·G, S3 ← (E + F) · (G+H)− J −K, C3 ← (E − bH) · (G+ F) + bJ −K,

D3 ← (D1 · Z1 − aS1 · C1) · (S2 · C2 +D2 · Z2)− J + aK, Z3 ← E2 + bG2.

Additionally, if Z2 = 1 then it takes 11M + 1S + 2D + 15a.

Evaluating (5.20) with b = 1 takes 13M + 1S + 2D + 15a;

5.3. Twisted Jacobi intersection form 97

U1 ← S1 · C1, V1 ← D1 · Z1, U2 ← S2 · C2, V2 ← D2 · Z2, E ← S1 ·D2,

F ← C1 · Z2, G← D1 · S2, H ← Z1 · C2, J ← U1 · V2, K ← V1 · U2,

S3 ← (H + F) · (E +G)− J −K, C3 ← (H + E) · (F −G)− J +K,

D3 ← (V1 − aU1) · (U2 + V2) + aJ −K, Z3 ← (H +G)2 − 2K.

Additionally, if Z2 = 1 then it takes 11M + 1S + 2D + 15a.

5.3.2 Modified homogeneous projective coordinates, Im

Suitable auxiliary coordinates speed up point additions. Three possible ways of modifying I
are representing a sextuplet (S : C : D : Z : U : V) satisfying bS2 + C2 = Z2, aS2 + D2 = Z2

as (S : C : D : Z : SD : CZ) or (S : C : D : Z : SC : DZ) or (S : C : D : Z : CD : SZ). When

suitable formulae are selected the performance of these coordinate systems is superior to I
omitting the overhead of the extra space requirement. Because of similarity, only the system

Im1 : (S : C : D : Z : SD : CZ), is considered for the doubling and dedicated addition. In the

case of unified addition, Im2 : (S : C : D : Z : SC : DZ) is preferred for optimum performance.

Further comparison is omitted here. In both systems, the identity element is represented

by (0 : 1 : 1 : 1 : 0 : 1). Point negation is done by flipping the sign of the S-coordinate. The

exception prevention techniques are identical to that of I for the modified coordinates.

Doubling in Im1 Let (S1 : C1 : D1 : Z1 : U1 : V1) with Z1 6= 0 satisfy U = SD, V = CZ, bS2+

C2 = Z2, aS2 + D2 = Z2. Then [2](S1 : C1 : D1 : Z1 : U1 : V1) = (S3 : C3 : D3 : Z3 : U3 : V3)

where S3, C3, D3, and Z3 are the same as the doubling formulae in §5.3.1 and U3 = S3D3,

and V3 = C3Z3. The doubling in Im1 takes 3M + 4S + 1D + 7a;

E ← D1 · Z1, F ← U2
1 , G← V 2

1 , S3 ← (U1 + V1)
2 −G− F, H ← bF,

C3 ← G−H, Z3 ← G+H, D3 ← 2E2 − Z3. U3 ← S3 ·D3, V3 ← C3 · Z3.

The doubling with b = 1 in Im1 takes 3M + 4S + 6a;

E ← D1 · Z1, F ← U2
1 , G← V 2

1 , Z3 ← G+ F, S3 ← (U1 + V1)
2 − Z3,

C3 ← G− F, D3 ← 2E2 − Z3, U3 ← S3 ·D3, V3 ← C3 · Z3.

The doubling in Im1 alternatively takes 2M + 5S + 2D + 8a;

F ← U2
1 , G← V 2

1 , H ← bF, C3 ← G−H, Z3 ← G+H,

S3 ← (U1 + V1)
2 − F −G, D3 ← 2(aF +D4

1)− Z3, U3 ← S3 ·D3, V3 ← C3 · Z3.

The alternative doubling with b = 1 in Im1 takes 2M + 5S + 1D + 7a;

F ← U2
1 , G← V 2

1 , C3 ← G− F, Z3 ← G+ F, S3 ← (U1 + V1)
2 − Z3,

D3 ← 2(aF +D4
1)− Z3, U3 ← S3 ·D3, V3 ← C3 · Z3.

Dedicated addition in Im1 Further let (S2 : C2 : D2 : Z2 : U2 : V2) with Z2 6= 0 satisfy

U = SD, V = CZ, bS2 + C2 = Z2, aS2 + D2 = Z2. Then, (S1 : C1 : D1 : Z1 : U1 : V1) +

(S2 : C2 : D2 : Z2 : U2 : V2) = (S3 : C3 : D3 : Z3 : U3 : V3) where S3, C3, D3, and Z3 are the same

as the dedicated addition formulae in §5.3.1 and U3 = S3D3, and V3 = C3Z3. The dedicated

addition in Im1 takes 11M+1D+9a saving 1M−1D+2a in comparison to the corresponding

dedicated addition in I;
E ← C1 · Z2, F ← Z1 · C2, G← S1 ·D2, H ← D1 · S2, J ← F − E,
K ← F +E, L← G−H, M ← G+H, N ← K · L, P ← J ·M,

S3 ← (1/b)J ·K, C3 ← (N − P)/2, Z3 ← (N + P)/2, D3 ← U1 · V2 − V1 · U2,

U3 ← S3 ·D3, V3 ← C3 · Z3.

98 Chapter 5. Group law in projective coordinates

Additionally, if Z2 = 1 then it takes 10M + 1D + 9a. Note that the equality (1/b)(Z2
1C

2
2 −

C2
1Z

2
2) = S2

1Z
2
2 − Z2

1S
2
2 is exploited in this algorithm.

E ← C1 · Z2, F ← Z1 · C2, G← S1 ·D2, H ← D1 · S2, J ← F − E,
K ← F +E, L← G−H, M ← G+H, N ← K · L, P ← J ·M, S3 ← J ·K,

C3 ← (N − P)/2, Z3 ← (N + P)/2, D3 ← U1 · V2 − V1 · U2, U3 ← S3 ·D3,

V3 ← C3 · Z3.

Additionally, if Z2 = 1 then it takes 10M + 9a.

Unified addition in Im2 It is possible to use Im1 to perform unified addition however

Im2 is superior in speed. In addition, as long as only the unified addition is used, there

is no need to switch to the other representations. Let (S : C : D : Z : U : V) with Zi 6= 0

satisfy U = SC, V = DZ,S2 + C2 = Z2, aS2 +D2 = Z2. Then, (S1 : C1 : D1 : Z1 : U1 : V1) +

(S2 : C2 : D2 : Z2 : U2 : V2) = (S3 : C3 : D3 : Z3 : U3 : V3) where S3, C3, D3, and Z3 are the same

as the unified addition formulae in §5.3.1 and U3 = S3C3, and V3 = D3Z3. The unified addition

in Im2 takes 11M + 2S + 5D + 13a saving 2M in comparison to the unified addition in I;
E ← C1 · Z2, F ← Z1 · C2, G← S1 ·D2, H ← D1 · S2, J ← F ·H,

K ← E ·G, S3 ← (E + F) · (G+H)− J −K, C3 ← (E − bH) · (G+ F) + bJ −K,
D3 ← (V1 − aU1) · (U2 + V2)− J + aK, Z3 ← E2 + bG2, U3 ← S3 · C3,

V3 ← D3 · Z3.

The unified addition with b = 1 in Im2 takes 11M + 1S + 2D + 15a;

E ← S1 ·D2, F ← C1 · Z2, G← D1 · S2, H ← Z1 · C2, J ← U1 · V2,

K ← V1 · U2, S3 ← (H + F) · (E +G)− J −K, C3 ← (H + E) · (F −G)− J +K,

D3 ← (V1 − aU1) · (U2 + V2) + aJ −K, Z3 ← (H +G)2 − 2K, U3 ← S3 · C3,

V3 ← D3 · Z3.

5.3.3 Comparison and remarks

In §5.3.1 inversion-free arithmetic for Jacobi intersection form was studied in homogeneous

projective coordinate system, I. This subsection improved the previous results. Most notably,

dedicated addition formulae were proposed for the first time using the affine addition laws

(4.46), (4.47), and (4.48) from §4.5 of Chapter 4. As in §5.1 and §5.2, dedicated addition

surpasses unified addition in performance despite the proposed improvements for unified

additions. In particular, a dedicated addition in I takes 12M + 11a where a unified addition

takes 13M + 1S + 2D + 15a. Both types of additions are further sped up in §5.3.2. Since

essentially the same affine point doubling formulae in §4.5 of Chapter 4 can be written in

many different ways, it would be possible to substantially increase the number of doubling

formulae in §5.3.1 and §5.3.2. This section has only presented the fastest ones (up to further

improvements). This argument also applies to the case of additions.

Various operation counts in I, Im1, and Im2 are summarized in Table 5.5.

If just unified addition is being accessed and the extra memory is available then Im2 is the

fastest system. For speed oriented implementations Im1 gives the best timings. If memory is

a concern then I is preferable since all operations are done in four coordinates and without

any speed penalty for doublings.

5.4. Twisted Hessian form 99

Table 5.5: Operation counts for (twisted) Jacobi intersection form with b = 1 in different
coordinate systems.

System DBL ADD

I 3M+4S +6a, [BL07a] 13M+2S+1D+ 7a, unified, [LS01]

2M+5S+1D+7a 13M+1S+2D+15a, unified

12M +11a, dedicated

Im1 3M+4S +6a, * 11M + 9a, dedicated

2M+5S+1D+7a -

Im2
- 11M+1S+2D+15a, unified

*: Adapted from [BL07a, dbl-2007-bl].

Literature notes The first inversion-free doubling algorithm appears in [CC86] where

Chudnovsky and Chudnovsky use (4.52), (4.53), and (4.54) in homogeneous projective

coordinates and provide a 5M + 3S + 6a doubling algorithm. Later in [LS01], Liardet and

Smart improve the doubling to 4M + 3S + 7a based on (4.43), (4.44), and (4.45). In [BL07a],

Bernstein and Lange report an even faster 3M+4S+6a algorithm based on the same formulae

used by Liardet and Smart. The unified addition is reported to take 14M + 2S + 1D + 4a

in [CC86]; 13M+2S+1D+7a in [LS01]. In the case #K ≡ 3 mod 4, Bernstein et al. [BBJ+08].

show how to exploit isogenies between the curves v2 = u3 + 2(a + d)u2 + (a − d)2u and

v2 = u3 − (a + d)u2 + adu in order to provide the speed of twisted Edwards curves to all

elliptic curves with 3 points of order two and which are not birationally equivalent over K

to any twisted Edwards curve. Upon the completion of the write-up of this section, Feng et

al. [FNW09] have independently studied twisted Jacobi intersection curves. The inversion-free

formulae presented in [FNW09] are essentially identical to the formulae in this thesis. On the

other hand, the algorithms given in this section are superior in operation counts.

5.4 Twisted Hessian form

This section contains new optimizations for performing arithmetic in homogeneous projective

coordinates. In addition, the extended homogeneous projective coordinate system is considered

for twisted Hessian form for the first time. This section studies the arithmetic of twisted

Hessian curves using homogeneous projective coordinates in §5.4.1 and extended homogeneous

projective coordinates in §5.4.2. In §5.1 and §5.2, the mixed coordinates have been very useful

for finding the best balance between point doublings and point additions. The same idea is

not useful for twisted Hessian curves. On the other hand, each coordinate system on its own

can be advantageous for different applications. Additional remarks, comparisons, pointers to

literature and conclusions are given in §5.4.3.

100 Chapter 5. Group law in projective coordinates

5.4.1 Homogeneous projective coordinates, H
In this system, each point (x, y) on ax3+y3+1 = dxy is represented with the triplet (X : Y : Z)

which corresponds to the affine point (X/Z, Y/Z) with Z 6= 0. These triplets satisfy the

homogeneous projective equation aX3+Y 3+Z3 = dXY Z. For all nonzero λ ∈ K, (X : Y : Z) =

(λX : λY : λZ). The identity element is represented by (0 : −1: 1). The negative of (X : Y : Z)

is (X : Z : Y). This coordinate system is denoted by H throughout the text.

Doubling in H Let (X1 : Y1 : Z1) with Z1 6= 0 satisfy aX3 + Y 3 + Z3 = dXY Z. Then

[2](X1 : Y1 : Z1) = (X3 : Y3 : Z3) where

X3 = X1(Z
3
1 − Y 3

1),

Y3 = Z1(Y
3
1 − aX3

1),

Z3 = Y1(aX
3
1 − Z3

1) (5.24)

assuming Z3 6= 0. These formulae are obtained from (4.25) and (4.26). It was pointed out

in [Ber06a] that Z3 is always nonzero if a is a non-cube in K. Also by Lemma 4.3.7, Z3 is

always nonzero if (X1 : Y1 : Z1) is of order r such that 3 ∤ r, regardless of the assumption on a

and d (of course, a(27a− d3) 6= 0).

These formulae do not depend on d. Therefore keeping d arbitrary has no effect on the cost

of (5.24). Evaluating (5.24) takes 6M + 3S + 1D + 3a in [BL07a];

A← X2
1 , B ← Y 2

1 , C ← Z2
1 , D← X1 ·A, E ← Y1 ·B, F ← Z1 · C,

G← aD, X3 ← X1 · (E − F), Y3 ← Z1 · (G− E), Z3 ← Y1 · (F −G).

If a = 1 then the algorithm takes 6M + 3S + 3a. For this case, it is also possible to

exploit further optimizations. First of all, it is easy to see that X3 can be written as (X1Z1 −
X1Y1)(Y

2
1 + Y1Z1 + Z2

1). If a = 1 then the same strategy also applies to Y3 and Z3. Based on

this observation it is possible to trade 3 multiplications with 3 squarings and several additions

if desired. The following 3M + 6S + 18a doubling algorithm exploits this idea;

A← X2
1 , B ← Y 2

1 , C ← Z2
1 , D ← A+B, E ← A+ C, F ← B +C,

G← ((X1 + Y1)
2 −D)/2, H ← ((X1 + Z1)

2 − E)/2, J ← ((Y1 + Z1)
2 − F)/2,

X3 ← (H −G) · (F + J), Y3 ← (J −H) · (D +G), Z3 ← (G− J) · (E +H).

Similar ideas apply to the case a = −1.

The previous doubling algorithms spend too much effort in squaring each of the input

coordinates. As an alternative optimization idea the following algorithm squares only Y1 and

takes 7M + 1S + 8a assuming that a = 1;

A← Y 2
1 , B ← (Z1 − Y1) · (A+ (Y1 + Z1) · Z1),

C ← (Y1 −X1) · (X1 · (X1 + Y1) +A), X3 ← X1 · B, Y3 ← Z1 · C,
Z3 ← Y1 · (−B − C).

Similar ideas apply to the case a = −1.

For simplicity assume a = 1. So, D = 0. Note that the formulae do not depend on

d. The ratios S/M and a/M then determine the fastest of these three doubling algorithms.

The 3M + 6S + 15a algorithm is the fastest if a is very negligible and if S is cheaper than

M. Specifically, this algorithm takes over the 6M + 3S + 3a algorithm if M − S > 4a. The

5.4. Twisted Hessian form 101

7M + 1S + 8a algorithm takes over the 6M + 3S + 3a algorithm if 2S −M > 5a and takes

over the 3M+6S+15a algorithm if 4M− 5S < 7a. For instance, in an implementation where

S = 0.8M and a = 0.1M, these algorithms cost 8.7M, 9.3M, and 8.6M (in the respective

order the algorithms are introduced).

Dedicated addition in H Further let (X2 : Y2 : Z2) with Z2 6= 0 satisfy aX3 + Y 3 + Z3 =

dXY Z. Then, (X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 : Y3 : Z3) where

X3 = X2
1Y2Z2 − Y1Z1X

2
2 ,

Y3 = Z2
1X2Y2 −X1Y1Z

2
2 ,

Z3 = Y 2
1 X2Z2 −X1Z1Y

2
2 (5.25)

assuming Z3 6= 0. By Lemma 4.4.4, Z3 6= 0 if (X1 : Y1 : Z1) 6= (X2 : Y2 : Z2) and both summands

are of order r such that 3 ∤ r.

The addition law (5.25) is in fact the same law which was attributed to Cauchy and Sylvester

in [CC86]. The only difference is that the identity element is moved from a point at infinity to

(0 : − 1: 1) and remarkably (5.25) works for all twisted Hessian curves.

Evaluating (5.25) which is obtained from (4.29) and (4.30), takes 12M + 3a;

A← X1 · Z2, B ← Y1 · Z2, C ← Z1 ·X2, D ← Z1 · Y2, E ← X1 · Y2,

F ← Y1 ·X2, X3 ← A ·E − C · F, Y3 ← C ·D − A · B, Z3 ← B · F −D ·E.

Additionally, if Z2 = 1 then it takes 10M + 3a.

Alternatively, evaluating (5.25) takes 11M + 17a;

A← X1 · Z2, B ← Y1 · Z2, C ← Z1 ·X2, D ← Z1 · Y2, E ← X1 · Y2,

F ← Y1 ·X2, G← (C +E) · (A− F), H ← (C − E) · (A+ F),

J ← (C +B) · (A−D), K ← (C −B) · (A+D), X3 ← G−H, Y3 ← K − J,
Z3 ← J +K −G−H − 2(E −B) · (F +D).

Here note that all coordinates are multiplied by 2. This algorithm is better than the

conventional 12M + 3a approach when 14a < 1M.

Unified addition in H Alternatively, (X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 : Y3 : Z3) where

X3 = X1Z1Z
2
2 − Y 2

1 X2Y2,

Y3 = Y1Z1Y
2
2 − aX2

1X2Z2,

Z3 = aX1Y1X
2
2 − Z2

1Z2Y2 (5.26)

assuming Z3 6= 0. It was pointed out in [Ber06a] that Z3 6= 0 if a is a non-cube in K. Also by

Lemma 4.3.7, Z3 6= 0 if (X1 : Y1 : Z1) and (X2 : Y2 : Z2) are of order r such that 3 ∤ r.

Evaluating (5.26) which is obtained from (4.31) and (4.32), takes 12M+1D+3a in [BKL09];

A← X1 · Z2, B ← Z1 · Z2, C ← Y1 ·X2, D← Y1 · Y2, E ← Z1 · Y2,

F ← aX1 ·X2, X3 ← A · B − C ·D, Y3 ← D · E − F ·A, Z3 ← F · C −B ·E.

Additionally, if Z2 = 1 then it takes 10M + 1D + 3a.

Using the same optimization that removes a multiplication from the dedicated addition

algorithm, evaluating (5.26) takes 11M + 1D + 17a;

102 Chapter 5. Group law in projective coordinates

A← X1 · Z2, B ← Z1 · Z2, C ← Y1 ·X2, D ← Y1 · Y2, E ← Z1 · Y2,

F ← aX1 ·X2, G← (D +B) · (A− C), H ← (D −B) · (A+ C),

J ← (D + F) · (A− E), K ← (D − F) · (A+ E), X3 ← G−H, Y3 ← K − J,
Z3 ← J +K −G−H − 2(B − F) · (C +E).

5.4.2 Extended homogeneous projective coordinates, He

In this system, each point (x, y) on ax3 + y3 + 1 = dxy is represented with the sextuplet

(X : Y : R : S : T : Z) which corresponds to the affine point (X/Z, Y/Z) with Z 6= 0. These

sextuplets satisfy the homogeneous projective equation aX3+Y 3+Z3 = dXY Z. The auxiliary

coordinates are defined by R = XY/Z, S = X2/Z, and T = Y 2/Z. For all nonzero λ ∈ K,

(X : Y : R : S : T : Z) = (λX : λY : λR : λS : λT : λZ). The identity element is represented by

(0 : − 1: 0 : 0 : 1 : 1). The negative of (X : Y : R : S : T : Z) is (R : Y : X : S : Z : T). This

coordinate system is denoted by He throughout the text. Given (X : Y : Z) in H passing to He

can be performed in 6S by computing (XZ, Y Z,XY,X2, Y 2, Z2). Given (X : Y : R : S : T : Z)

in He passing to H is cost-free by simply ignoring R,S, T .

Doubling in He Let (X1 : Y1 : R1 : S1 : T1 : Z1) with Z1 6= 0, R1 = X1Y1/Z1, S1 = X2
1/Z1,

T1 = Y 2
1 /Z1 satisfy aX3 + Y 3 + Z3 = dXY Z. Then, [2](X1 : Y1 : R1 : S1 : T1 : Z1) =

(X3 : Y3 : R3 : S3 : T3 : Z3) where

X3 = (X1Z1 −R1T1)(aR1S1 − Y1Z1),

Y3 = (Y1T1 − aX1S1)(aR1S1 − Y1Z1),

R3 = (X1Z1 −R1T1)(Y1T1 − aX1S1),

S3 = (X1Z1 −R1T1)
2,

T3 = (Y1T1 − aX1S1)
2,

Z3 = (aR1S1 − Y1Z1)
2 (5.27)

assuming Z3 6= 0. By Lemma 4.3.7, Z3 6= 0 if (X1 : Y1 : R1 : S1 : T1 : Z1) is of order r such that

3 ∤ r.

Evaluating (5.27) which is obtained from (4.25) and (4.26), takes 9M + 3S + 1D + 3a;

A← aS1, B ← X1 · Z1 − T1 ·R1, C ← Y1 · T1 − A ·X1, D ← R1 · A− Z1 · Y1,

X3 ← B ·D, Y3 ← C ·D, R3 ← B · C, S3 ← B2, T3 ← C2, Z3 ← D2.

If a is not very costly then doubling can be improved to 5M + 6S + 1D + 29a;

A← aS1, B ← (T1 + Z1) · (X1 −R1), C ← (T1 − Z1) · (X1 +R1),

D← (T1 + A) · (X1 − Y1), E ← (T1 −A) · (X1 + Y1), F ← B − C, G← E −D,
H ← D + E −B − C − 2(Z1 − A) · (R1 + Y1), S3 ← F 2, T3 ← G2, Z3 ← H2,

X3 ← ((F +H)2 − S3 − Z3)/2, Y3 ← ((G+H)2 − T3 − Z3)/2,

R3 ← ((F +G)2 − S3 − T3)/2.

Note here that if the S = X2/Z-coordinate of He is changed to S = aX2/Z then doubling

can also be performed in 9M + 3S + 1D + 3a or 5M + 6S + 1D + 29a.

Dedicated addition in He Further let (X2 : Y2 : R2 : S2 : T2 : Z2) with Z2 6= 0, R2 =

X2Y2/Z2, S2 = X2
2/Z2, T2 = Y 2

2 /Z2 satisfy aX3 + Y 3 + Z3 = dXY Z. Then,

5.4. Twisted Hessian form 103

(X1 : Y1 : R1 : S1 : T1 : Z1) + (X2 : Y2 : R2 : S2 : T2 : Z2) = (X3 : Y3 : R3 : S3 : T3 : Z3) where

X3 = (S1Y2 − Y1S2)(T1X2 −X1T2),

Y3 = (Z1R2 −R1Z2)(T1X2 −X1T2),

R3 = (S1Y2 − Y1S2)(Z1R2 −R1Z2),

S3 = (S1Y2 − Y1S2)
2,

T3 = (Z1R2 −R1Z2)
2,

Z3 = (T1X2 −X1T2)
2 (5.28)

assuming Z3 6= 0. By Lemma 4.3.3, Z3 6= 0 if (X1 : Y1 : R1 : S1 : T1 : Z1) 6=
(X2 : Y2 : R2 : S2 : T2 : Z2) and both summands are of order r such that 3 ∤ r.

Evaluating (5.28) which is obtained from (4.29) and (4.30), takes 9M + 3S + 3a;

A← S1 · Y2 − Y1 · S2, B ← Z1 ·R2 −R1 · Z2, C ← T1 ·X2 −X1 · T2, X3 ← A · C,
Y3 ← B · C, R3 ← A ·B, S3 ← A2, T3 ← B2, Z3 ← C2.

Additionally, if Z2 = 1 then it takes 8M + 3S + 3a.

In addition, three multiplications can be traded with three squarings and several additions

if desired. The alternative evaluation takes 6M + 6S + 15a;

A← S1 · Y2 − Y1 · S2, B ← Z1 · R2 −R1 · Z2, C ← T1 ·X2 −X1 · T2, S3 ← A2,

T3 ← B2, Z3 ← C2, X3 ← ((A+ C)2 − S3 − Z3)/2,

Y3 ← ((B + C)2 − T3 − Z3)/2, R3 ← ((A+B)2 − S3 − T3)/2.

Additionally, if Z2 = 1 then it takes 5M + 6S + 15a.

Unified addition in He Alternatively, (X1 : Y1 : R1 : S1 : T1 : Z1) +

(X2 : Y2 : R2 : S2 : T2 : Z2) = (X3 : Y3 : R3 : S3 : T3 : Z3) where

X3 = (X1Z2 − T1R2)(aR1S2 − Z1Y2),

Y3 = (Y1T2 − aS1X2)(aR1S2 − Z1Y2),

R3 = (X1Z2 − T1R2)(Y1T2 − aS1X2),

S3 = (X1Z2 − T1R2)
2,

T3 = (Y1T2 − aS1X2)
2,

Z3 = (aR1S2 − Z1Y2)
2 (5.29)

assuming Z3 6= 0. It can be deduced from [BBJ+08] that Z3 6= 0 if a is a square in K

and d is not a square in K. Also by Lemma 4.3.7, Z3 6= 0 if (X1 : Y1 : R1 : S1 : T1 : Z1) and

(X2 : Y2 : R2 : S2 : T2 : Z2) are of order r such that 3 ∤ r.

Evaluating (5.29) which is obtained from (4.31) and (4.32), takes 9M + 3S + 2D + 3a;

A← X1 · Z2 − T1 ·R2, B ← Y1 · T2 − aS1 ·X2, C ← aR1 · S2 − Z1 · Y2,

X3 ← A · C, Y3 ← B · C, R3 ← A ·B, S3 ← A2, T3 ← B2, Z3 ← C2.

Additionally, if Z2 = 1 then it takes 8M + 3S + 2D + 3a.

In addition, three multiplications can be traded with 3 squarings and several additions if

desired. The alternative evaluation takes 6M + 6S + 2D + 15a;

104 Chapter 5. Group law in projective coordinates

A← X1 · Z2 − T1 ·R2, B ← Y1 · T2 − aS1 ·X2, C ← aR1 · S2 − Z1 · Y2, S3 ← A2,

T3 ← B2, Z3 ← C2, X3 ← ((A+ C)2 − S3 − Z3)/2,

Y3 ← ((B + C)2 − T3 − Z3)/2, R3 ← ((A+B)2 − S3 − T3)/2.

Additionally, if Z2 = 1 then it takes 5M + 6S + 2D + 15a.

Note here that if the S = X2/Z-coordinate of He is changed to S = aX2/Z then the

unified addition naturally takes 9M + 3S + 1D + 3a or 6M + 6S + 1D + 15a eliminating one

multiplication by a.

5.4.3 Comparison and remarks

In 5.4.1, inversion-free arithmetic for twisted Hessian form is studied in homogeneous projective

coordinates, H. This subsection reviewed the previous results and has added new and

potentially more efficient results to the current body of knowledge. In particular, the proposed

unified addition algorithm takes 11M+ 1D+ 17a where an earlier algorithm in [BKL09] takes

12M + 1D + 3a. The new algorithm is faster when 1M > 14a. As well, dedicated addition

formulae are derived which eliminate multiplication by a. The proposed dedicated addition

algorithms take 12M + 3a and 11M + 17a. Moreover, in the case a = 1, it is shown that the

6M + 3S + 1D + 3a doubling algorithm in [BKL09] can be performed in 3M + 6S + 15a or

even 7M + 1S + 8a.

In §5.4.2, three additional coordinates are integrated into H. The new system is denoted

by He. In this system, it is shown that the additions can benefit from three M/S trade-offs

without any additional cost. In particular, the new unified addition takes 9M + 3S + 2D+ 3a

which can be further improved to 9M + 3S + 1D + 3a, see §5.4.2. This is an improvement

over the 12M + 1D + 3a algorithm in H. In the case a is practically negligible, a 6M + 6S +

1D + 15a unified addition algorithm is proposed. This algorithm is faster than the proposed

11M + 1D + 17a unified addition algorithm in H. Similar arguments apply to the proposed

dedicated addition.

Various operation counts in H and He are summarized in Table 5.6. Table 5.7 provides

operation counts for the case a = 1.

The determination of the optimum system and algorithms for Hessian form is very sensitive

to the changes in S/M, a/M and target applications.

Clearly, the doublings in He are quite inefficient in comparison to H and switching between

H and He is costly. Therefore, He is not suitable for speed oriented applications. On the

other hand, the unified addition in He for arbitrary non-cube a is still interesting if just unified

additions are being accessed, the cost of a and D are negligible, and S is much cheaper than M.

Other than these situations, H is better in performance. In addition, H needs three coordinates

rather than six. If 7M+1S+8a or 3M+6S+15a doubling algorithms in Table 5.7 are desired

for efficient implementation then parameter a should be rescaled to or selected as 1. In this

case, the completeness will always be lost. On the other hand, possible incorrect outputs can

be prevented by selecting the inputs from a suitable subgroup, see §5.4.1.

Literature notes The inversion-free arithmetic on Hessian curves x3+y3+1 = dxy was first

studied by Chudnovsky and Chudnosky [CC86] with the addition laws attributed to Cauchy

5.5. Short Weierstrass form 105

Table 5.6: Operation counts for twisted Hessian form in different coordinate systems.

System DBL ADD

H 6M+3S+1D+ 3a, [BKL09]

12M +1D+ 3a, unified, [BKL09]

11M +1D+17a, unified

12M + 3a, dedicated

11M +17a, dedicated

He

9M+3S+1D+ 3a
9M+3S+2D+ 3a, unified

9M+3S + 3a, dedicated

5M+6S+1D+29a
6M+6S+2D+15a, unified

6M+6S +15a, dedicated

Table 5.7: Operation counts for (twisted) Hessian form with a = 1 in different coordinate
systems.

System DBL ADD

H

6M+3S+ 3a, [BKL09] 12M + 3a, unified, [BKL09]

7M+1S+ 8a 11M +17a, unified

3M+6S+18a 12M + 3a, dedicated

11M +17a, dedicated

He

9M+3S+ 3a
9M+3S+ 3a, unified

9M+3S+ 3a, dedicated

5M+6S+29a
6M+6S+15a, unified

6M+6S+15a, dedicated

and Sylvester. Smart [Sma01] presented a 3-way parallel implementation of the dedicated

addition on the curve X3 + Y 3 + Z3 = dXY Z. Joye and Quisquater [JQ01] showed how to

use the dedicated addition formulae for point doubling by a permutation of coordinates and

suggested using these curves for side channel resistant applications. At that time addition

on Hessian curves was the fastest among all studied curve models. In all of these papers the

identity element is a point other than (0 : − 1: 1). In this section, [BKL09] was followed

in order to benefit from a simplified concept of complete additions on the twisted Hessian

curve aX3 + Y 3 + Z3 = dXY Z. Therefore, in all algorithms the identity element is moved to

(0 : − 1: 1).

5.5 Short Weierstrass form

In this section, short Weierstrass curves are reviewed with three coordinate systems. Most of

the results are directly taken from the literature for the completeness of the discussion. The

proposed improvements appear in unified addition.

106 Chapter 5. Group law in projective coordinates

5.5.1 Homogeneous projective coordinates, P
In this system, each point (x, y) on y2 = x3 + ax+ b is represented with the triplet (X : Y : Z)

which corresponds to the affine point (X/Z, Y/Z) with Z 6= 0. These triplets satisfy the

homogeneous projective equation Y 2Z = X3+aXZ2+bZ3. The identity element is represented

by (0 : 1 : 0). The negative of (X : Y : Z) is (X : −Y : Z). For all nonzero λ ∈ K, (X : Y : Z) =

(λX : λY : λZ). This coordinate system is denoted by P throughout the text.

Doubling in P Let (X1 : Y1 : Z1) with Z1 6= 0 satisfy Y 2Z = X3 + aXZ2 + bZ3. Then

[2](X1 : Y1 : Z1) = (X3 : Y3 : Z3) where

X3 = 2Y1Z1((3X
2
1 + aZ2

1)2 − 8Y 2
1 X1Z1),

Y3 = (3X2
1 + aZ2

1)(12Y 2
1 X1Z1 − (3X2

1 + aZ2
1)2)− 8Y 4

1 Z
2
1 ,

Z3 = 8Y 3
1 Z

3
1 (5.30)

assuming Z3 6= 0.

Evaluating (5.30) which is obtained from (4.1) and (4.2), takes 5M + 6S + 1D + 11a

in [BL07a, dbl-2007-bl];

A← 2Y1 · Z1, B ← Z2
1 , C ← X2

1 , D ← 4C + aB, E ← Y1 · A, F ← E2,

G← (X1 + E)2 − C − F, H ← D2 − 2G, X3 ← H ·A, Y3 ← D · (G−H)− 2F,

Z3 ← A ·A2.

If a = −3 then it takes 7M + 3S + 10a in [BL07a, dbl-2007-bl-2];

A← 3(X1 − Z1) · (X1 + Z1), B ← 2Y1 · Z1, C ← B2, D ← Y1 · B, E ← D2,

F ← 2X1 ·D, G← A2 − 2F, X3 ← B ·G, Y3 ← A · (F −G)− 2E, Z3 ← B · C.

Dedicated addition in P Further let (X2 : Y2 : Z2) with Z2 6= 0 satisfy Y 2Z = X3+aXZ2+

bZ3. Then, (X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 : Y3 : Z3) where

X3 = (X1Z2 − Z1X2)(Z1Z2(Y1Z2 − Z1Y2)
2 − (X1Z2 + Z1X2)(X1Z2 − Z1X2)

2),

Y3 = (Y1Z2 − Z1Y2)((2X1Z2 + Z1X2)(X1Z2 − Z1X2)
2 − Z1Z2(Y1Z2 − Z1Y2)

2)−
Y1Z2(X1Z2 − Z1X2)

3,

Z3 = Z1Z2(X1Z2 − Z1X2)
3 (5.31)

assuming Z3 6= 0.

Evaluating (5.31) which is obtained from (4.3) and (4.4), takes 12M+2S+7a in [CMO98];

A← Z1 · Z2, B ← X1 · Z2, C ← Y1 · Z2, D← B − Z1 ·X2, E ← C − Z1 · Y2,

F ← D2, G← D · F, H ← F ·B, J ← E2 · A+G− 2H, X3 ← D · J,
Y3 ← E · (H − J)−G · C, Z3 ← A ·G.

Additionally, if Z2 = 1 then it takes 9M + 2S + 7a, see [CMO98].

5.5. Short Weierstrass form 107

Unified addition in P Alternatively, (X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 : Y3 : Z3) where

X3 = Z1Z2(Y1Z2 + Z1Y2)(2((X1Z2 + Z1X2)
2 − Z1Z2(X1X2 − aZ1Z2))

2 −
2Z1Z2(X1Z2 + Z1X2)(Y1Z2 + Z1Y2)

2),

Y3 = ((X1Z2 + Z1X2)
2 − Z1Z2(X1X2 − aZ1Z2))(3Z1Z2(X1Z2 + Z1X2)(Y1Z2 + Z1Y2)

2 −
2((X1Z2 + Z1X2)

2 − Z1Z2(X1X2 − aZ1Z2))
2)− Z2

1Z
2
2 (Y1Z2 + Z1Y2)

4,

Z3 = 2Z3
1Z

3
2 (Y1Z2 + Z1Y2)

3 (5.32)

assuming Z3 6= 0.

Evaluating (5.32) which is obtained from (4.5) and (4.6), takes 11M + 5S + 1D + 16a;

A← X1 ·X2, B ← Z1 · Z2, C ← (X1 + Z1) · (X2 + Z2)− A−B,
D ← Y1 · Z2 + Z1 · Y2, E ← B ·D, F ← E ·D, G← C2, H ← F 2,

J ← G−B · (A− aB), K ← ((C + F)2 −G−H)/2, L← 2(J2 −K),

X3 ← E · L, Y3 ← J · (K − L)−H, Z3 ← 2E ·E2.

Additionally, if Z2 = 1 then it takes 9M + 5S + 1D + 16a.

5.5.2 Jacobian coordinates, J
In this system, each point (x, y) on y2 = x3 + ax+ b is represented with the triplet (X : Y : Z)

which corresponds to the affine point (X/Z2, Y/Z3) with Z 6= 0. These triplets satisfy the

weighted projective equation Y 2 = X3 + aXZ4 + bZ6. The identity element is represented by

(1 : 1 : 0). The negative of (X : Y : Z) is (X : − Y : Z). For all nonzero λ ∈ K, (X : Y : Z) =

(λ2X : λ3Y : λZ). This coordinate system is denoted by J throughout the text.

Doubling in J Let (X1 : Y1 : Z1) with Z1 6= 0 satisfy Y 2 = X3 + aXZ4 + bZ6. Then

[2](X1 : Y1 : Z1) = (X3 : Y3 : Z3) where

X3 = (3X2
1 + aZ4

1)2 − 8X1Y
2
1 ,

Y3 = (3X2
1 + aZ4

1)(4X1Y
2
1 −X3)− 8Y 4

1 ,

Z3 = 2Y1Z1 (5.33)

assuming Z3 6= 0.

Evaluating (5.33) which is obtained from (4.1) and (4.2), takes 1M + 8S + 1D + 14a

in [BL07a, dbl-2007-bl];

A← Z2
1 , B ← Y 2

1 , C ← X2
1 , D ← B2, E ← 2((X1 +B)2 − C −D),

F ← 3C + aA2, X3 ← F 2 − 2E, Y3 ← F · (E −X3)− 8D,

Z3 ← (Y1 + Z1)
2 −B − A.

If a = −3 then it takes 3M + 5S + 12a in [BL07a, dbl-2001-b];

A← Z2
1 , B ← Y 2

1 , C ← X1 · B, D ← 3(X1 − A) · (X1 + A), X3 ← D2 − 8C,

Y3 ← D · (4C −X3)− 8B2, Z3 ← (Y1 + Z1)
2 −B −A.

108 Chapter 5. Group law in projective coordinates

Dedicated addition in J Further let (X2 : Y2 : Z2) with Z2 6= 0 satisfy Y 2 = X3 +aXZ4 +

bZ6. Then, (X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 : Y3 : Z3) where

X3 = (Y1Z
3
2 − Z3

1Y2)
2 − (X1Z

2
2 + Z2

1X2)(X1Z
2
2 − Z2

1X2)
2,

Y3 = (Y1Z
3
2 − Z3

1Y2)(Z
2
1X2(X1Z

2
2 − Z2

1X2)
2 −X3)− Z3

1Y2(X1Z
2
2 − Z2

1X2)
3,

Z3 = Z1Z2(X1Z
2
2 − Z2

1X2) (5.34)

assuming Z3 6= 0.

Evaluating (5.34) which is obtained from (4.3) and (4.4), takes 11M+ 5S+ 11a in [BL07a,

add-2007-bl];

U2 ← Z2
2 , V2 ← U2 · Z2, U1 ← Z2

1 , V1 ← U1 · Z1, A← U1 ·X2, B ← V1 · Y2,

C ← X1 · U2 − A, D ← Y1 · V2 −B, E ← C2, F ← C ·E, G← A ·E,
X3 ← D2 − F − 2G, Y3 ← D · (G−X3)−B · F,

Z3 ← C · ((Z1 + Z2)
2 − U1 − U2)/2.

A 7M + 4S + 11a algorithm is provided in [BL07a, madd-2007-bl] for the case Z2 = 1.

Unified addition in J Alternatively, (X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 : Y3 : Z3) where

X3 = ((X1Z
2
2 + Z2

1X2)
2 − Z2

1Z
2
2 (X1X2 − aZ2

1Z
2
2))2 − (X1Z

2
2 + Z2

1X2)(Y1Z
3
2 + Z3

1Y2)
2,

Y3 =
1

2
(((X1Z

2
2 + Z2

1X2)
2 − Z2

1Z
2
2 (X1X2 − aZ2

1Z
2
2)) ·

((X1Z
2
2 + Z2

1X2)(Y1Z
3
2 + Z3

1Y2)
2 − 2X3)− (Y1Z

3
2 + Z3

1Y2)
4),

Z3 = Z1Z2(Y1Z
3
2 + Z3

1Y2) (5.35)

assuming Z3 6= 0.

Evaluating (5.35) which is obtained from (4.5) and (4.6), takes 8M + 10S + 1D + 24a;

U2 ← Z2
2 , V2 ← U2 · Z2, U1 ← Z2

1 , V1 ← U1 · Z1, A← X1 ·X2,

B ← ((Z1 + Z2)
2 − U1 − U2)/2, C ← B2, D ← (X1 + U1) · (X2 + U2)− A−C,

E ← Y1 · V2 + V1 · Y2, F ← E2, G← D2, H ← F 2, J ← G− C · (A− aC),

K ← ((F +D)2 −G−H)/2, X3 ← J2 −K, Y3 ← (J · (K − 2X3)−H)/2,

Z3 ← ((B + E)2 − C − F)/2.

Additionally, if Z2 = 1 then it takes 6M + 8S + 1D + 24a by deleteing B ← ((Z1 + Z2)
2 −

U1 − U2)/2 and by replacing C ← B2 with C ← Z2
1 .

Chudnovsky Jacobian coordinates, J c This system was introduced by Chudnovsky and

Chudnovsky in [CC86]. In this system, each triplet in J is represented as (X : Y : Z : Z2 : Z3).

which saves time in additions however doublings are much slower. See [BL07b, §5] for further

explanations and simplification of the concept by using re-additions. Further details are omitted

here.

It is interesting to note that the proposed unified addition algorithm for Jacobian

coordinates takes only 7M + 9S + 1D + 24a in Chudnovsky Jacobian coordinates.

Modified Jacobian coordinates, Jm This system was introduced by Cohen et al. in

[CMO98]. In this system, each triplet in J is represented as (X : Y : Z : aZ4). This

5.5. Short Weierstrass form 109

representation saves time for arbitrary a in repeated doublings. On the other hand, the

performance is identical to J when a = −3. Therefore, further details are omitted here.

Mixed coordinates, J x Cohen et al. also suggest mixing different variants of Jacobian

coordinates to obtain the optimum performance. See [CMO98] for details.

5.5.3 Comparison and remarks

Short Weierstrass curves are the most studied curve model in cryptology. There are several

reasons for this:

• The short Weierstrass form, y2 = x3 + ax + b, covers all elliptic curves of large

characteristic.

• The proposal of ECC was made using the short Weierstrass form, see [Mil86] and [Kob87].

• Several standards recommend (some even enforce) the use of short Weierstrass form in

ECC applications.

• In affine coordinates, this form has the fastest point addition and point doubling formulae

to date.

• Mixed Jacobian coordinates had been the fastest system in carrying out inversion-

free point addition and point doubling for decades (ignoring the Montgomery ladder

algorithm). The situation, however, changed after a sequence of results between 2007

and 2009. See §5.1, §5.2, §5.3, §5.4 in this chapter for details.

In this section, the most efficient formulae are brought together. EFD [BL07a] also displays

all of these formulae. The contributions from this work appear in the case of unified addition.

Previously, unified additions were only considered in homogeneous project coordinates, P . In

particular, Brier/Joye unified addition algorithm proposed in [BJ02] takes 12M+5S+1D+10a.

Bernstein and Lange announced 11M + 6S + 1D + 15a variant of the same algorithm in

[BL07a]. The proposed unified addition algorithm in §5.5.1 takes 11M + 5S + 1D + 16a.

The new algorithm overtakes Brier/Joye algorithm when M > 6a and is always faster than

Bernstein/Lange algorithm.

Unified addition was never previously studied in Jacobian coordinates. In §5.5.1, a new

unified addition algorithm is proposed in J which takes 8M+10S+1D+24a. This algorithm

takes 7M+ 9S+ 1D+ 24a in Chudnovsky Jacobian coordinates. If the extra space for storing

Z2 and Z3 coordinates of Chudnovsky Jacobian coordinates is not an issue then the new unified

addition algorithm is faster than unified addition in homogeneous projective coordinates by

several M/S trade-offs.

Various operation counts including the present contributions are summarized in Table 5.8

and Table 5.9.

It is already concluded in many works that the optimum system is J x for arbitrary a in

speed implementations. In the case a = −3, it is better to stay in J and use re-additions which

correspond to addition timings in J c.

110 Chapter 5. Group law in projective coordinates

Table 5.8: Operation counts for short Weierstrass form in different coordinate systems.

System DBL ADD

P , [CC86] 5M+6S+1D+11a, [BL07a]

12M+ 5S+1D+10a, unified, [BJ02]

11M+ 6S+1D+15a, unified, [BL07a]

11M+ 5S+1D+16a, unified

12M+ 2S + 7a, dedicated, [CMO98]

J , [CC86]
3M+6S+1D+ 9a, [HNM98]

8M+10S+1D+24a, unified

1M+8S+1D+14a, [BL07a]
12M+ 4S + 7a, dedicated, [CMO98]

11M+ 5S +11a, dedicated, [BL07a]

J c, [CC86] 4M+6S+1D+ 4a, [CMO98]

7M+ 9S+1D+24a, unified

11M+ 3S + 7a, dedicated, [CMO98]

10M+ 4S +13a, dedicated, [BL07a]

Jm, [CMO98]
4M+4S +10a, [CMO98] 12M+ 6S+1D+ 7a, dedicated, [CMO98]

3M+5S +13a, [BL07a] 11M+ 7S+1D+13a, dedicated, [BL07a]

J x, [CMO98]
4M+4S +10a, [CMO98] 10M+ 5S+1D+ 7a, dedicated, *

3M+5S +13a, [BL07a] 8M+ 7S+1D+14a, dedicated, *

* Effective

Table 5.9: Operation counts for short Weierstrass form with a = −3 in different coordinate
systems.

System DBL ADD

P , [CC86] 7M+3S+10a, [BL07a]

12M+ 5S+1D+10a, unified, [BJ02]

11M+ 6S+1D+15a, unified, [BL07a]

11M+ 5S+1D+16a, unified

12M+ 2S + 7a, dedicated, [CMO98]

J , [CC86]
4M+4S+ 9a, [HMV03]

8M+10S+1D+24a, unified

3M+5S+12a, [BL07a]
12M+ 4S + 7a, dedicated, [CMO98]

11M+ 5S +11a, dedicated, [BL07a]

J c, [CC86] 4M+6S+ 4a, [CMO98]

7M+ 9S+1D+24a, unified

11M+ 3S + 7a, dedicated, [CMO98]

10M+ 4S +13a, dedicated, [BL07a]

Jm, [CMO98]
4M+4S+10a, [CMO98] 12M+ 6S+1D+ 7a, dedicated, [CMO98]

3M+5S+13a, [BL07a] 11M+ 7S+1D+13a, dedicated, [BL07a]

J x, [CMO98]
4M+4S+10a, [CMO98] 10M+ 5S+1D+ 7a, dedicated, *

3M+5S+13a, [BL07a] 8M+ 7S+1D+14a, dedicated, *

* Effective

If just unified additions are being accessed then the proposed algorithms are faster than

previous results in the literature. Selecting between P and J c depends on the S/M value. If

S < M then J c will be the optimum choice.

5.6. Conclusion 111

5.6 Conclusion

This chapter studied the inversion-free arithmetic in five forms of elliptic curves using

various point representations, alternative addition laws, and algorithms to obtain faster group

operations. In the literature, only dedicated addition laws were known for some forms while

only unified addition laws were known for some other forms. In this chapter, the gaps

are closed by equipping each form with low-degree dedicated addition formulae, low-degree

unified addition formulae, and low-degree doubling formulae. This chapter also reviewed many

addition laws from the literature. Each set of formulae was further investigated for the best

operations counts with optimized algorithms in various point representations. Moreover, this

chapter discussed practical ways of preventing incorrect summands when a particular law is

used, also see §4.6 of Chapter 4.

Bernstein et al.’s introduction of Edwards curves [BL07b] at Asiacrypt 2007 has focused a

lot of attention for efficient elliptic curve based implementations on Edwards form. In §5.1, the

speed of this form and its extended version twisted Edwards form is further improved in many

different ways. For instance, the proposed dedicated addition algorithm is shown to take less

effort for adding two distinct points, one of them given in homogeneous projective coordinates

and the other in affine coordinates. With the proposal of extended coordinates, dedicated

addition and unified addition are significantly sped up. The proposed mixed coordinate system

for twisted Edwards form allows the use of new faster additions together with the fast doubling

formulae by Bernstein et al. from [BBJ+08]. For technical details see §5.1.

In §5.2, the arithmetic of extended Jacobi quartic form is substantially improved. In

particular, the homogeneous projective coordinate system was shown to allow a very efficient

point doubling. The proposed optimizations in §5.1 also perfectly matched with this quartic

model. Exploiting the analogies between two quartic models, the speed of extended Jacobi

quartic form is brought quite close to the speed of twisted Edwards curves. Noting that

extended Jacobi quartic form covers all twisted Edwards curve plus all other curves of even

order, the arithmetic of extended Jacobi quartic form is still very interesting for many curves

which are not 1 or 2 isogenous to twisted Edwards curves. For technical details, see §5.2.

In §5.3 the speed of Jacobi intersection form has been improved for many D/M, S/M,

and a/M values. After proposed optimizations the speed of Jacobi intersection form has been

brought close to extended Jacobi quartic form. However, every Jacobi intersection form elliptic

curve is either 1 or 2 isogenous to a twisted Edwards curve, see [BBJ+08, §5]. Therefore, twisted

Edwards curves become more suitable representations for all elliptic curve which can be written

in Jacobi intersection form once the proposed improvements from §5.1 are applied.

In §5.4 the arithmetic of twisted Hessian curves has been improved for some a/M, D/M,

and S/M values which can be exploited in a wide range of applications. For instance, one

multiplication has been removed from both dedicated and unified addition algorithms at the

expense of some more additions in K. Note that in some implementations additions in K

are practically negligible. With the proposed improvements for some elliptic curves, (twisted)

Hessian form becomes a faster representation than short Weierstrass form.

A preliminary speed ranking between studied coordinate systems of elliptic curves is

discussed next where plausible suggestions are provided for implementations.

112 Chapter 5. Group law in projective coordinates

Operation count based comparison The easiest way to get a speed ranking is to find a

suitable elliptic curve for each form and compare operation counts for doubling and additions.

Table 5.10 provides selected operation counts in M for selected coordinate systems under the

assumptions D ≈ 0.1M, a ≈ 0.05M, and S = 0.8M. The columns are sorted in descending

order with respect to the column DBL.

Table 5.10: Operation counts in selected coordinate systems for each form.

System DBL reADD ADD ADD,Z2 = 1

H with a = 1 8.20M 11.85M 11.85M 9.85M

J x with a = −3 7.60M 13.75M 15.55M 10.75M

Ex with a = −1 6.50M 8.30M 8.50M 7.50M

I with b = 1 6.45M 12.55M 11.00M 10.55M

Qx with a = −1/2 6.35M 10.35M 10.55M 9.55M

Table 5.11 provides cost estimations per bit of the scalar for a variable single scalar

multiplication with variable base point. The columns are sorted in descending order with

respect to the column NEW, i.e. scalar multiplication cost in terms of M. For simplicity, the

total cost is calculated as 0.98×DBL+ 0.18×reADD. Although this is a rough estimation, the

ranking between the systems does not change for a majority of plausible assumptions on the

cost of S, D, and a. For a more detailed cost analysis see [BL08].

Table 5.11: Cost estimate of SMUL per bit of scalar in M.

System OLD NEW

Twisted Hessian form, H with a = 1 10.58M 10.17M

Short Weierstrass form, J x with a = −3 9.92M -

Jacobi intersection form, I with a = 1 9.01M 8.43M

Extended Jacobi quartic form, Qx with a = −1/2 10.00M 8.07M

Twisted Edwards form, Ex with a = −1 8.31M 7.87M

This table highly benefits from the algorithms proposed in this chapter. For instance, if the

system Qw were considered for extended Jacobi quartic form with d = 1 using the doubling

and re-addition algorithms in [BL07a, dbl-2007-bl] then the cost estimation would have been

10.00M per bit after several cached values. This would put Qw even behind J with a = −3.

Similarly, if the system E were used for twisted Edwards form as in [BBJ+08] then the cost

estimation for twisted Edwards form with a = 1 would be 8.40M per bit. If the system E i were

used for twisted Edwards form as in [BBJ+08] then the cost estimation for twisted Edwards

form with a = 1 would be 8.31M per bit. Similarly, if the system H is used for twisted Hessian

form as described in [BKL09] then the cost estimation for twisted Hessian form with some

extremely small non-cube a would be 10.58M per bit. Similarly, if the system I is used for

Jacobi intersection form as described in [LS01] then the cost estimation for Jacobi intersection

form with some extremely small non-cube a would be 9.01M per bit.

5.6. Conclusion 113

An implementation based ranking will be provided later in Chapter 6 where the results of

this chapter are supported by experiments.

Curve based comparison This discussion gives a fairly satisfying idea of the speed ranking

between different forms when a suitable elliptic curve is selected for each form. On the other

hand, such a discussion leads to comparing speeds of elliptic curves which are possibly not

isomorphic (or not birational) or not isogenous. From an cryptographic point of view this is no

problem since over a large field, finding a suitable curve which resists attacks of concern (and

which has small curve constants if desired), is enough to satisfy the cryptographic interest.

From a mathematical point of view, however, it is better to determine the fastest form for a

fixed elliptic curve. The discussion is now focused on this aspect.

First of all, short Weierstrass form is always a fallback model for fairly efficient

implementation because any elliptic curve (of large characteristic) can be represented on the

curve EW,a4,a6
, see Chapter 2. For arbitrary a4, the optimum system is the mixed coordinates

J x introduced by Cohen et al. in [CMO98] which is further discussed and improved in [BL08].

If a = −3 then J is the optimum system with cached Z2 for dedicated additions.

Now, fix an elliptic curve E of order r such that 2 | r. Then, the elliptic curve is isomorphic

(over the same field) to a Weierstrass curve y2 = x(x2 + a′2x + a′4) which is birationally

equivalent (over the same field) to the extended Jacobi quartic form elliptic curve given by

EQ,−a′

2
/4,(a′2

2
−4a′

4
)/16, see §2.3 of Chapter 2. It is suitable here to note that every extended

Jacobi quartic curve EQ,d,a is birationally equivalent (over the same field) to a Weierstrass

curve given by y2 = x(x2 − 4ax + 4a2 − 4d). Performing the arithmetic on this curve in

extended Jacobi quartic form is always faster than performing the analogous operations on the

corresponding short Weierstrass form because even for arbitrary a and d both point doublings

and point additions in Qx are faster than in J with a4 = −3, (the fastest case in short

Weierstrass). In particular, doubling in Qx takes 2M + 5S + 1D + 7a where doubling in J
with a4 = −3 takes 3M + 5S + 12a. But, even if D = M point doubling in Qx is still faster.

Similarly, a dedicated point addition in Qx takes an effective 6M + 4S + 3D + 17a where the

fastest dedicated point addition in J c with a4 = −3 takes 10M+4S+13a. So, even if D = M

point addition in Qx is still faster. In conclusion, for elliptic curves of even order extended

Jacobi quartic form becomes the new fallback curve model.

Now, further assume that 4 | r. Then, the curve is either 1 or 2 isogenous to a twisted

Edwards curve. Performing the arithmetic on this curve in twisted Edwards form is always

faster than performing the analogous operations in the corresponding short Weierstrass form.

In particular, a dedicated point addition in Ex takes an effective 9M+1D+7a where the fastest

dedicated point re-addition in J c with a4 = −3 takes 10M + 4S + 13a. So, even if D = M

point addition in Ex is faster by more than 4S. Point doubling in Ex takes 3M+4S+1D+6a

where doubling in J with a = −3 takes 3M + 5S + 12a. It is ideal to rescale the constant a

of a twisted curve to −1 for maximum performance. This requires −a to be a square in the

underlying field. Even if this is not possible it is always possible to rescale a to a very small

constant. So, it makes sense to assume D < S. So, even if D = S point doubling in Ex is

faster than point doubling in J with a4 = −3. In conclusion, for elliptic curves whose order

is divisible by four, twisted Edwards form becomes a fallback curve model (using an isogenous

114 Chapter 5. Group law in projective coordinates

curve if necessary).

Since every twisted Edwards curve is isomorphic (over the same field) to an extended Jacobi

quartic curve, it is also reasonable to make a speed comparison between these two models. An

investigation of the worst case scenario for the twisted Edwards form is done first. The curve

parameter a of the twisted Edwards curve can always be rescaled to a very small value so that

D ≤ a and consequently a dedicated point addition in Ex takes at most an effective 9M + 8a.

In the best case a dedicated addition in Qx will take an effective 6M+ 4S + 17a which can be

faster than point addition in Ex for which the worst case rules apply. Plus, point doubling inQx

is always faster than point doubling in Ex for the worst case scenario for the twisted Edwards

curve. Therefore, for some twisted Edwards curves, the corresponding extended Jacobi quartic

curve can be faster. Now, the worst case scenario for the extended Jacobi quartic form is

investigated. Since 4 | r the extended Jacobi quartic curve is 1 or 2 isogenous to a twisted

Edwards curve. The curve parameter a of the extended Jacobi quartic can always be rescaled

to a very small value so that D ≤ a and consequently a dedicated point addition in Qx takes

at most an effective 6M+4S+2D+17a. In the best case a dedicated addition in Ex will take

an effective 8M + 10a which is always faster than point addition in Qx for which the worst

case rules apply. Point doubling in Qx takes 2M + 5S + 7a in the worst case which can only

be as fast as point doubling in Ex if M = S. Therefore, keeping in mind the assumption 4 | r,
for some extended Jacobi quartic curves, the corresponding 1 or 2 isogenous twisted Edwards

curve can be faster. In conclusion, extended Jacobi quartic curves and twisted Edwards curves

are not fallback curve models for each other in every situation.

Every Jacobi intersection curve is 1 or 2 isogenous to a twisted Edwards curve. After a

suitable rescaling of constants, it is easy to conclude after similar discussions that twisted

Edwards form is a faster alternative to Jacobi intersection form.

Now, assume that 3 | r but 6 ∤ r. Such curves can be written in Weierstrass form or twisted

Hessian form. It is easy to conclude after similar discussions that twisted Hessian form and

short Weierstrass form are not fallback curve models for each other in every situation. On the

other hand, if 6 | r then both extended Jacobi quartic form and twisted Edwards form become

faster for such elliptic curves.

Chapter 6

Experimental results

This chapter provides details on the implementation of elliptic curve scalar multiplication in the

light of new results from this work. The aim is to show that ECC applications can practically

benefit from the proposed algorithms. To achieve this aim, one has to face an enormous number

of design choices. These choices are investigated by categorizing different components of the

implementation as follows:

- hardware,

- finite field and its construction,

- elliptic curve, its representation, doubling and addition algorithms,

- scalar multiplication algorithm

where each item has intrinsic interactions with the others. These interactions are briefly

explained in the following sections. In particular, §6.1 is about the preferred programming

languages and the hardware where the scalar multiplications are computed. §6.2 contains

details about how the finite field arithmetic is developed. §6.3 makes an overview of best

operation counts for each of the five forms studied in this thesis. §6.4 presents experimental

results of the implemented scalar multiplication algorithms. The conclusions of this chapter

are drawn and final remarks are provided in §6.5.

6.1 Hardware and programming environment

Features and restrictions of hardware influence strongly the code to be designed. Some

hardware is so restricted that the programmer has to keep the compiled-code size to a minimum.

Smart Cards and wireless sensor network gadgets are examples of this kind. On such hardware,

the built-in word size tends to be small. Therefore inlining or loop-unrolling techniques are

most likely to generate a large compiled-code. In addition, only very small lookup tables

are practical. On the other hand, contemporary desktop processors come with large and fast

115

116 Chapter 6. Experimental results

internal cache memories, multi-level pipelining mechanisms, specialized SIMD instruction sets

and the like. This time the programmer’s challenge is to eliminate branches and minimize

the memory access by wisely using the internal registers and the available cache. Yet in some

other cases (such as military applications) it is important to hide the side channel information

leakage. As a consequence of these, the ratios I/M, S/M, D/M, and a/M are affected by the

way the underlying field arithmetic is implemented.

Due to ease of access, the experiments in this chapter are optimized for a desktop processor:

a single core of an 64-bit Intel Core 2 Duo (E6550) processor. The finite field layer of the

code is time-critical. Therefore, an assembly optimized finite field layer is an indispensable

component of the implementation. This layer was written in assembly language using the

x86-64 instruction set excluding the SIMD instructions. All higher level operations were

written in plain C language. For efficiency purposes, dynamic memory allocations were

prevented. Therefore, the stack was used to store all points, look-up tables, etc. The code was

compiled with the GCC compiler (the -O2 flag set). The executables were run on an Ubuntu 9

platform.

6.2 Finite field arithmetic

The implementation of finite field arithmetic is a crucial step in developing efficient ECC

applications. Although this thesis does not concentrate on improving finite field arithmetic, an

optimized finite field layer is needed in order to test the performance of the proposed algorithms.

Every finite field L contains (up to isomorphism) a unique subfield K ∼= Z/pZ. In the

case where p is large, it is reasonable to implement the arithmetic of K using multiprecision

integers since p typically does not fit into a single computer word. See [HMV03, §2.2] and

[CF05, §10,§11] for details. With modular integer arithmetic, the field operations in K such

as addition, multiplication, and inversion, can be built up. See [BZ09] for details on modular

and multiprecision arithmetic. If L = K then there is nothing more to do. If L ⊃ K then an

efficient field towering technique can be adapted to perform operations in L. For mathematical

details of field constructions see [LN96]. For efficiency related discussions see [BS09]. The

simplest and the most efficient finite field implementations have L = K and p of extremely low

or extremely high Hamming weight. Selecting p in this fashion, however, is not always possible.

For instance, the latest techniques for generating pairing friendly elliptic curves often yield an

arbitrary p. For arbitrary p, one of the best methods to follow is Montgomery’s n-residue

arithmetic, see [Mon85].

The code is designed to serve for other prime fields with characteristic p of the form p =

2256 − c where c is a suitable positive integer with at most 64-bits. On a 64-bit processor

each field element fits into only 4 computer words. Consequently, the assembly codes for basic

field operations such as addition and multiplication are not very long. However, accurately

measuring the cycle counts of each operation is practically hard due to high levels of the

pipelining in a Core 2 processor. Each of these operations is partially overlapped in the

execution by the preceding and the following operations. Plus compiler optimizations can

change the position and the number of instructions. As a rough but consistent way of estimating

6.2. Finite field arithmetic 117

the cycle counts, one can count the number of instructions required for each operation. The

details are depicted in Table 6.1. The first column explains the type of field operation being

Table 6.1: Estimated cost comparison of various field operations.

Operation Count Ratio

an× bn 165 1.00

an
2 119 0.72

an× $b 50 0.29

an+ bn 31 0.19

an− bn 31 0.19

an× $2 30 0.18

an / $2 23 0.14

performed. For instance, an× bn means that two multiprecision field elements each of 4 words,

an and bn, are being multiplied (including the modular reduction). The symbol $ stands for a

small constant that fits a single word. The second column reports the number of instructions

used to carry out the corresponding operation. The third column scales the instruction counts

to estimate the relative cost of each operation with respect to multiplication which appears in

the first row. Therefore, from Table 6.1, the values S/M, D/M, a/M can be estimated.

In all experiments, the finite field F2256−587 is used. The arithmetic of this field is faster

than arbitrary fields since the prime 2256 − 587 is of extremely low hamming weight and

thus more suitable for computer implementations. To give a taste of the finite field code, the

division-by-2 operation is given in Figure 6.1 as an example. In this operation, four consecutive

computer words building an are continuously shifted right by 1 bit and the result is placed in

registers (r11,r10,r9,r8). If the carry flag is set, then the content of an is odd. In this case,

⌊(2256 − 587)/2⌋+ 1 should be added to (r11,r10,r9,r8). This done by subtracting ⌊587/2⌋
plus some overhead to handle the most significant bit of (r11,r10,r9,r8). Otherwise 0 is

added to (r11,r10,r9,r8). The addition of 0 might seem awkward since it does not alter

the result. However, this is crucial in eliminating conditional statement instructions such as

jne. At this stage, the conditional data movement instruction cmovnc which is available in all

AMD64 architectures including Core 2 processors, is preferred. In both cases zn contains the

final result. The registers zn and an are allowed to point to the same memory location. The

other operations are designed in a similar fashion. Excluding the inversion, none of the field

operations contains any loop or conditional statement. Therefore our software highly benefits

from Core 2’s multilevel pipelining.

Since each function is composed of only a few dozen assembly instructions it also makes

sense to extend the assembly optimizations to the elliptic curve point doubling and point

addition level so that the programmer has more flexibility in utilizing the internal registers of

the processor and decreased memory access resulting in less data movement. On the other hand

such an approach would significantly increase the code development time. Many point addition

and point doubling formulae (even for different curve models) often share very similar higher

118 Chapter 6. Experimental results

static INLINE void dv2(unsigned long *zn, unsigned long *an){

__asm__ VOLATILE (

"movq %2,%%rax; movq 8*3(%%rax),%%r11; shrq $0x1,%%r11; movq 8*2(%%rax),%%r10;

rcrq $0x1,%%r10; movq 8*1(%%rax),%%r9; rcrq $0x1,%%r9; movq 8*0(%%rax),%%r8;

rcrq $0x1,%%r8; movq %1,%%rax; movq %0,%%r12; movq $0x0,%%rdx; cmovnc %%rdx,%%r12;

movq $0x8000000000000000,%%rbx; cmovnc %%rdx,%%rbx; subq %%r12,%%r8;

movq %%r8,8*0(%%rax); sbbq $0x0,%%r9; movq %%r9,8*1(%%rax); sbbq $0x0,%%r10;

movq %%r10,8*2(%%rax); sbbq %%rbx,%%r11; movq %%r11,8*3(%%rax);"

: : "n" (587>>1), "m" (zn), "m" (an)

: "%rax", "%rbx", "%rdx", "%r8", "%r9", "%r10", "%r11", "%r12", "memory"

);

}

Figure 6.1: Sample F2256−587 operation: Divide-by-2 with no conditional statement.

level operations e.g. (an± bn)2, (an± bn)2-an2-bn2, an× bn± cn and an× bn± cn× dn.

These operations when implemented properly can eliminate several instructions resulting in a

slight speed-up. Therefore, it would be of interest implementing these additional functions as

a future study.

6.3 Elliptic curve operations

The tools of Chapter 3 have led to a discovery of many new affine formulae which are presented

together with the existing results in Chapter 4. In Chapter 5, several coordinate systems are

reviewed/studied to find the best operation counts. In this section, the aim is to determine

the best choice of those coordinate systems and algorithms that facilitate the fastest scalar

multiplication on suitable elliptic curves.

Selecting the curve In the experiments, five curves are used. Each curve is selected in a

way to contain a large prime order subgroup. The curve constants are small enough to fit

a computer word so that multiplication with curve constants can be performed faster than

a general multiplication. Table 6.2 shows the selected curves. The first column specifies the

elliptic curve. The second shows the co-factor of the curve.

Table 6.2: Sample elliptic curves over F2256−587.

Curve Equation h

Short Weierstrass, ES y2 = x3 − 3x+ 2582 1

Extended Jacobi quartic, EQ y2 = 25629x4 − x2 + 1 2

(Twisted) Hessian, EH x3 + y3 + 1 = 53010xy 3

Twisted Edwards, EE −x2 + y2 = 1 + 3763x2y2 4

(Twisted) Jacobi intersection, EI s2 + c2 = 1, 3764s2 + d2 = 1 4

The curves in the last two entries are birationally equivalent. For the convenience of the

reader, the number of points on each of the sample curves are given in the respective order as

they appear in Table 6.2 as follows expressed as a product of prime powers:

6.3. Elliptic curve operations 119

115792089237316195423570985008687907852860720292049485254475170270783237989437,

2x57896044618658097711785492504343953926355150900196614082809808174325972796687,

3x38597363079105398474523661669562635951141196656339482509250363382136009746847,

4x28948022309329048855892746252171976963455976009569136404907647803823651929949,

4x28948022309329048855892746252171976963455976009569136404907647803823651929949.

All of these curves can resist all known attacks which are summarized in Appendix B.

These curves are of negative trace and the number of points on each curve has fewer bits than

256. Therefore, any scalar (modulo the group order) also fits into a 256-bit string.

Selecting the coordinate system Finding the most efficient coordinate system depends

on several factors. The values I/M, S/M, D/M, a/M affect how the most efficient point

doubling and addition algorithms are determined. The frequency of point doubling and

addition operations affect how the most efficient coordinate system is determined. To simplify

this process, Table 6.3 provides a summary of operation counts for the most frequently accessed

operations in scalar multiplication. This table contains only the selected coordinate systems

and selected operation counts. For more alternatives and comparisons see Chapter 5.

Table 6.3: Selected operation counts for the most frequently accessed operations.

Curve Cond. Coordinate System DBL reADD

Short
Weierstrass

a = −1 P , (X : Y : Z) 7M + 3S 12M + 2S

a = −3 J , (X : Y : Z) 3M + 5S 10M + 4S

(Twisted)
Hessian

a = 1 H, (X : Y : Z)
7M + 1S or

11M
3M + 6S

(Twisted)
Jacobi
intersection

b = 1 Im1, (S : C : D : Z : U : V)
3M + 4S or

11M
2M + 5S + 1D

Extended
Jacobi
quartic

d = 1 Qw, (X : Y : Z) 2M + 6S + 1D 10M + 3S + 1D

a = −1/2 Q, (X : Y : Z) 2M + 5S 10M + 5S + 2D

a = −1/2 Qe, (X : Y : T : Z) 8S 7M + 3S + 2D

a = −1/2 Qx 2M + 5S 6M + 4S + 2D*

Twisted
Edwards

a = −1 E , (X : Y : Z) 3M + 4S 10M + 1S + 1D

a = −1 E i, (X : Y : Z) 3M + 4S + 1D 9M + 1S + 1D

a = −1 Ee, (X : Y : T : Z) 4M + 4S 8M

a = −1 Ex 3M + 4S 8M*

*Effective, see §5.2.3 and §5.1.4 in Chapter 5.

In Table 6.3, two systems are more efficient than the other entries in terms of operation

counts regardless of S/M, D/M, a/M values or the frequencies of doublings and additions.

These systems are Qx and Ex; both are outcomes of this thesis. In the experiments, Qx is

used for the extended Jacobi quartic curve y2 = 25629x4 − x2 + 1 and Ex is used for the

twisted Edwards curve −x2 + y2 = 1 + 3763x2y2. For the twisted Hessian curve x3 + y3 +

1 = 53010xy, the coordinate system H is used. Similarly, for the Jacobi intersection curve

s2 + c2 = 1, 3764s2 + d2 = 1, the coordinate system Im1 is used. For the Weierstrass curve

120 Chapter 6. Experimental results

y2 = x3−3x+2582 Jacobian coordinate system J is known to be more efficient than projective

coordinate system P . Therefore, Jacobian coordinates are used for the Weierstrass curve.

6.4 Scalar multiplication

The highest level task is to put the pieces of a scalar multiplication together. As in lower

level operations, there are so many design issues such as the selection of a scalar recoding

algorithm, powering algorithm, determining the optimal size of lookup tables, the elimination of

unnecessary conditional statements, etc. Studying all possible scenarios would only complicate

the experiments without changing most conclusions that can be derived from the results. To

keep design alternatives to a minimum, two experiments are conducted. These experiments

involve single-variable-point-single-variable-scalar multiplication and single-fixed-point-single-

variable-scalar multiplication which are presented in §6.4.1 and §6.4.2, respectively.

6.4.1 Experiment1: Scalar multiplication with variable base-point

This section provides implementation timings for elliptic curve single-variable-point-single-

variable-scalar multiplication. Algorithm 3.38 in [HMV03] is implemented for this pupose. As

for the integer recoding part of the scalar multiplication, w-LtoR algorithm in [Ava05] is used.

This part of the implementation runs on-the-fly as the main loop of the scalar multiplication

is performed. The scalar multiplication algorithm starts with building a look-up table. To

accommodate this computation 3P, 5P, . . . , 15P are precomputed by the sequence of operations

2P, 2P + P, 2P + 3P, . . . , 2P + 13P . In this implementation I/M ≈ 121. Therefore, the

precomputed values are not normalized (i.e. conversion to affine form) following the analysis

in [BL08]. Also following the same reference, double-and-add algorithms with Z = 1 are

also used to obtain speed-ups of the scalar multiplication. Table 6.4 summarizes measured

average clock cycles for a single-variable-point-single-variable-scalar multiplication on different

representations of elliptic curves. The reverse-order of the entries in Table 6.4 was used to sort

the main sections of Chapter 5.

Table 6.4: Cycle-counts (rounded to the nearest one thousand) for 256-bit scalar multiplication
with variable base-point

Curve & coordinate system w Approximate operation counts Cycles

Short Weierstrass (a = −3), J x 5 I+1598M+1156S+ 0D+2896a 468,000

(Twisted) Hessian (a = 1), H 5 I+2093M+ 757S+ 0D+1177a 447,000

(Twisted) Jacobi intersection (b = 1), Im1 5 I+1295M+1011S+ 0D+2009a 383,000

Extended Jacobi quartic (a = −1/2), Qx 5 I+1162M+1110S+102D+1796a 376,000

Twisted Edwards (a = −1), Ex 6 I+1202M+ 969S+ 0D+2025a 362,000

The implementation is developed only for the most efficient formulae for each form. For

instance, weighted projective Jacobi quartic coordinates or homogeneous projective twisted

Edwards coordinates are not implemented in these experiments. Therefore, the comparisons

are made relative to the Jacobian coordinates.

6.4. Scalar multiplication 121

For J x, a 4M + 4S point doubling algorithm is used from [HMV03], also see [BL07a, dbl-

2004-hmv]. As for the additions, a 12M+4S algorithm from [CMO98] is used. For readditions

this algorithm needs 11M + 3S. The M/S trade-offs in Table 6.3 are not helpful for this

implementation. The situation may be different in other implementations. For H, only the

classic algorithms are implemented. The proposed algorithms in this thesis are slightly slower

in this implementation because a is not negligible. On the other hand, other implementations

may still benefit from the proposed algorithms. For Im1, the 3M + 4S doubling algorithm

is preferred, see [BL07a, dbl-2007-bl]. Point additions are implemented as proposed in this

thesis, see Table 6.3 and §5.3.2 of Chapter 5. For Qx and Ex, the operation counts from

Table 6.3 apply except for a few M/S trade-offs which are not used in order to limit the

number of a’s.

Using several coordinates to represent points might raise the belief that there will be a

significant overhead of handling extra coordinates. It was empirically observed that these

overheads are negligible. If they were non-negligible then there would be a speed problem with

twisted Jacobi intersection implementation. In fact, once the field operations are removed,

the remaining code including the integer recoding part of the scalar multiplication takes less

than 3% of the execution time. With the integer recoding excluded, it takes less than 1%

of the execution time. Furthermore, the extra coordinates also serve as local variables when

performing point doubling and point additions. Therefore, having more than 3 coordinates

does not constitute an efficiency issue in the case of modern desktop processors. If the scalar

multiplication needs fewer field multiplications with the extra coordinates then it is always

worth using the extended coordinate systems.

6.4.2 Experiment2: Scalar multiplication with fixed base-point

In the case where the base-point is fixed the timings can be dramatically improved by using

Algorithm 3.44 or Algorithm 3.45 in [HMV03]. These algorithms are reported to be special

cases of the exponentiation techniques in [LL94]. Both algorithms are point addition intensive,

i.e. the point doublings are less important in overall efficiency.

So far the most efficient point addition algorithm among existing point addition algorithms1

is an outcome of this thesis. This algorithm requires only 8M for each point addition on

a twisted Edwards curve. It is reasonable to implement Algorithm 3.45 in [HMV03] by

incorporating this new algorithm and compare it to the efficiency of J .

Table 6.5 provides measured cycles on Core 2. The first column specifies the coordinate

system. The second column is the window length w of the Algorithm 3.45 in [HMV03]. This

algorithm uses two look-up tables by default. Within this implementation, this was generalized

to an arbitrary number of tables. The third column s tells how many look-up tables are used.

For instance, w = 8 and s = 4 means that s × 2w = 4 × 28 = 1024 precomputed points are

stored in look-up tables. Each coordinate fits into 32 bytes. So, an affine point (x, y) needs 64

bytes. Therefore, the look-up tables take 64 KB (kilobyte). The space consumption is reflected

in the fourth column. The fifth column contains the averaged cycle counts on a single core of

Core 2.

1Excluding differential point additions.

122 Chapter 6. Experimental results

Table 6.5: Cycle-counts (rounded to the nearest one thousand) for 256-bit scalar multiplication
with fixed base-point

Curve & coordinate system w s Look-up Cycles

Short Weierstrass (a = −3), J

4 4 2 KB× 2 138,000

8 1 8 KB× 2 121,000

8 2 16 KB× 2 102,000

8 4 32 KB× 2 92,000

8 8 64 KB× 2 86,000

Twisted Edwards (a = −1), Ex,
precomputed t

4 4 2 KB× 3 131,000

8 1 8 KB× 3 115,000

8 2 16 KB× 3 96,000

8 4 32 KB× 3 87,000

8 8 64 KB× 3 79,000

Twisted Edwards (a = −1), Ee,
precomputed t

4 4 2 KB× 3 122,000

8 1 8 KB× 3 107,000

8 2 16 KB× 3 90,000

8 4 32 KB× 3 81,000

8 8 64 KB× 3 79,000

Twisted Edwards (a = −1), Ee,
on-the-fly t

4 4 2 KB× 2 124,000

8 1 8 KB× 2 109,000

8 2 16 KB× 2 92,000

8 4 32 KB× 2 82,000

8 8 64 KB× 2 79,000

Since the operations are point addition intensive, there is a little performance difference

between Ee and Ex. This can be observed from Table 6.5. The extra coordinate t = xy can

be computed on-the-fly to reduce the size of the look-up table. The additional computation

for t only marginally increases the overall cycle counts. As expected, all implementations with

twisted Edwards form are faster than Weierstrass form. Note that as the size of the look-up

table increases, the overhead of memory access also increases. It is emprically observed that

in all entries of Table 6.5, the cost of memory access is far less than the cost of performing

arithmetic on the underlying field. For simplicity, w = 8 is selected to be a factor of 256.

Better theoretic speed-ups are possible for higher values of w < 16 however such values will

require a more complicated implementation and speed-ups may not be practically achieved.

This is left as a future investigation.

6.5 Conclusion

This chapter introduced software implementation of elliptic curve scalar multiplication using

different forms of elliptic curves. For each form the best algorithms proposed in Chapter 5 and

also the best existing algorithms in the literature are used. These experiments show that the

6.5. Conclusion 123

proposed algorithms are practically useful in efficient implementations in most cases.

To the best of the author’s knowledge, the implementation introduced in §6.4.1 is the

first software realization of a left-to-right on-the-fly scalar recoding based on Avanzi’s LtoR

algorithm, see [Ava05]. The implementation is also the first attempt to compare the speeds of

different forms in a software implementation.

The code is developed without an intention of a new speed record. On the other hand, the

speeds obtained in §6.4.2 are better than the corresponding record in [GLS09a].

Additional experiments such as multi-scalar multiplication and a repeat of all experiments

incorporating the GLV [GLV01] and GLS [GLS09a] homomorphisms are left as future work. A

multi-scalar multiplication is an important ingredient of efficient digital signature verifications,

see Appendix B. The algorithms from this thesis can be used to practically speed-up such

kinds of computations. The fractional windowing technique [Möl03] is not incorporated in this

implementation and left as a future work. In addition, a new precomputation strategy in [LG09]

is of interest for implementation. This approach is not implemented since an adaptation of

this technique requires more formulae derivation which has not been done to date. Note that

none of these choices affect the main outcomes of this section.

All of these experiments exclude comparison with Montgomery-ladder type scalar

multiplications based on differential addition chains, see [Mon87], [JY03], [Gau06], [Ber06b],

[GT07], and [GL09]. In some instances, Montgomery ladder can be advantageous especially

when the base point is of the form (X : 1) where X and the curve constant(s) are extremely

small. In the general case, the algorithms from this work are theoretically faster. Further

experimental investigation is left as future work. Note also that none of the standardized

NIST curves benefit from the proposed speed-ups. On the other many standards recommend

elliptic curves with cofactor smaller or equal to 4. In this case, the proposed techniques can

be applied to get the desired speed-ups.

124 Chapter 6. Experimental results

Chapter 7

A case study on pairing

computation

In this chapter, the j-invariant zero curve y2 = cx3+1 is studied for a faster pairing computation

in conjuction with the techniques from this thesis. An overview of pairing computation

and the relevant notation can be found in Appendix B.3. For a comprehensive survey on

cryptographic pairings, the reader can consult with [Gal05]. The most efficient method of

computing pairings is Miller’s algorithm [Mil04]. Each iteration of this process requires three

significant computations: (i) point operations, i.e. point doubling and/or point addition; (ii)

Miller line function computations and (iii) updating the Miller function value. This chapter

targets stage (ii) in order to decrease the number of computationally expensive field operations

encountered in (ii).

For pairing computations with even embedding degree k, it will be shown in this chapter

that the curve y2 = cx3 + 1 allows the Miller doubling stage to be computed in (k + 3)M +

5S + 1Me + 1Se, where M and S denote the costs of multiplication and squaring in the base

field while Me and Se denote the costs of multiplication and squaring in the extension field of

degree k. For the more general j-invariant zero curve y2 = x3 + b, the fastest Miller doubling

operation count recorded to date is (k + 3)M + 8S + 1Me + 1Se [ALNR09], meaning that the

special curve y2 = cx3 + 1 offers an advantage of 3S at the doubling stage.

In addition, practically useful examples of the curve y2 = cx3 + 1 are provided for different

embedding degrees using the curve generation technique “Construction 6.6” from [FST06].

Comparisons are drawn between the curve y2 = cx3+1 and other special curves and discussions

on where this curve model would be optimal in practice are presented.

The remainder of this chapter is organised as follows. §7.1 explains the search for a faster

Weierstrass model and efficient group operations. §7.2 presents the optimization of the new

formulae for the computation of the Tate pairing. §7.3 discusses curve generation and provides

some practical examples. §7.4 summarizes the contributions and compares them with the

literature. In the appendices, scripts that verify the main claims of §7.1 and §7.2 are presented.

125

126 Chapter 7. A case study on pairing computation

Appendix C.6 also provides more intrinsic details on the realization of the proposed formulae.

7.1 Choice of curve and the group law

In this section the choice of curve which facilitates an efficient iteration of the Miller loop is

specified.

Let E be a Weierstrass form elliptic curve y2 = x3 + ax + b. Let (x1, y1) be a point in

E(Fq)\{O}. Then, (x1, y1)+(x1,−y1) = O. Further let (x2, y2) be a point in E(Fq)\{O} such

that y2 6= 0 and (x2, y2) 6= (x1,−y1). Then, (x1, y1) + (x2, y2) = (x3, y3) where

x3 = λ2 − x1 − x2, (7.1)

y3 = λ(x1 − x3)− y1 (7.2)

with

λ =

8

>

<

>

:

(y1 − y2)/(x1 − x2) if (x1, y1) 6= (x2, y2)

(3x2
1 + a)/(2y1) if (x1, y1) = (x2, y2)

,

see also Algorithm 2.2.1 in Chapter 2.

In §4.1 of Chapter 4, it has been observed that it is possible to rewrite the doubling formulae

as [2](x1, y1) = (x3, y3) where

x3 = x1(µ− µ2) + aσ, (7.3)

y3 = (y1 − c)µ3 + aδ − c (7.4)

with µ = (y1 +3c)/(2y1), σ = (a−3x2
1)/(2y1)

2, δ = (3x1(y1−3c)(y1 +3c)−a(9x2
1 +a))/(2y1)

3

provided that b 6= 0 is a square in Fq such that c2 = b. Computer-aided proofs of the correctness

of formulae (7.3) and (7.4) are provided in Appendix C.6.

In the derivation of these formulae the Monagan/Pearce minimal total degree algorithm

was used, see [MP06] and Chapter 3. The total degrees1 of x3 and y3 are less than those

of the original point doubling formulae. Furthermore the total degrees of the new formulae

are minimal. In particular, the total degree of x3 and y3 drops from 6 to 5 and from 9 to 7,

respectively.

The evaluation of lower degree functions often requires fewer field operations. However,

it seems that the original point doubling formulae are faster in affine coordinates. On the

other hand, homogeneous projective or Jacobian coordinates will be used in most applications

to prevent costly inversions. Therefore it is worthwhile to check operation counts on these

coordinates. These results are delayed until §7.2.

On the elliptic curve y2 = x3 + c2, i.e. a = 0, the formulae (7.3) and (7.4) become much

simpler. In addition, in order to prevent the computational disadvantage of field operations

with c in doubling formulae it is better to work with another representation of the same curve

given by y2 = cx3 + 1. This curve is isomorphic over Fq to the Weierstrass curve v2 = u3 + c2.

The isomorphism from y2 = cx3 + 1 to v2 = u3 + c2 is given by σ : (x, y) 7→ (u, v) = (cx, cy)

with the inverse σ−1 : (u, v) 7→ (x, y) = (u/c, v/c).

1The total degree is defined as the sum of the degrees of the numerator and denominator of a rational
function.

7.2. Line computations for Tate pairing 127

Again, the identity on y2 = cx3 +1 is the point at infinity denoted by O and point negation

is performed by negating the y coordinate. Using the same notation as in the original formulae,

the doubling formulae become [2](x1, y1) = (x3, y3) where

x3 = x1(µ− µ2), (7.5)

y3 = (y1 − 1)µ3 − 1 (7.6)

with µ = (y1 + 3)/(2y1) and thus (x1, y1) + (x2, y2) = (x3, y3) where

x3 = c−1λ2 − x1 − x2, (7.7)

y3 = λ(x1 − x3)− y1 (7.8)

with λ = (y1 − y2)/(x1 − x2). The point (0, 1) is of order 3. Computer-aided proofs of the

correctness of formulae (7.5), (7.6), (7.7), and (7.8) are provided in Appendix C.6.

7.2 Line computations for Tate pairing

In this section, the arithmetic of y2 = cx3 + 1 is further investigated in order to assist efficient

computation of the Tate pairing. First, suitable line equations are derived to compute the

Miller value at both the doubling and addition stages. Then, unnecessary computations are

eliminated before converting all computations to projective representation to avoid inversions.

For the relevant notation and definitions of constants and variables, see Appendix B.3.

Barreto et al. [BLS04a] show that it is possible to eliminate costly operations in Miller’s

algorithm provided the point where the Miller function is evaluated is chosen suitably. In the

Tate pairing, the vertical line functions v (vdbl and vadd) in Algorithm B.3.1 are evaluated

at the point Q = (xQ, yQ). These vertical line functions take the form v = xR − xQ, where

R = (xR, yR) is the intermediate point in Algorithm B.3.1. The computations in Miller’s

algorithm can be simplified if v takes a value in a proper subfield Fqd ⊂ Fqk . When computing

the Tate pairing on curves with even embedding degrees k = 2d, Q is chosen to enable this

simplification by choosing a point Q′ on the quadratic twist E′ of E and mapping Q′ to Q

under the twisting isomorphism, meaning that xQ ∈ Fqd and yQ = ỹQ
√
ν, where ỹQ ∈ Fqd and

ν is some quadratic non-residue in Fqd .

7.2.1 The Miller values

The line equations arising from the addition of (x1, y1) and (x2, y2) are given by

gadd = c
λ(x2 − xQ)− y2 + yQ

c(x1 + x2 + xQ)− λ2
(7.9)

where λ = (y1−y2)/(x1−x2) and gadd = ladd(Q)/vadd(Q) (refer to Line 9 of Algorithm B.3.1).

This formula shares several common subexpressions with (7.7) and (7.8).

Next, a new formula for the line computation which uses several shared common

subexpressions with the new point doubling formulae (7.5) and (7.6) is proposed. The new

128 Chapter 7. A case study on pairing computation

formula is given by

gdbl =
2cy1(x1 − xQ)2

x2
1(3cxQ)− y2

1 + 3 + 2y1yQ

, (7.10)

where gdbl = ldbl(Q)/vdbl(Q) (refer to Line 5 of Algorithm B.3.1). Furthermore, if (x1, y1) =

−(x2, y2) we have

gvert = −c(x1 − xQ). (7.11)

Computer aided proofs of the correctness of the formulae are provided in Appendix C.6.

Irrelevant factors Some of the terms in equations (7.9) and (7.10) can be eliminated by

adopting the denominator elimination technique in [BLS04b]. Recall that yQ is the only element

that appears in (7.9) and (7.10)2 that is in the full extension field Fqk . The denominator of

gadd in equation (7.9) is completely contained in Fqd and can therefore be eliminated, to give

g′add = (y1 − y2)(x2 − xQ)− (x1 − x2)(y2 − yQ). (7.12)

With identical reasoning the numerator of gdbl in equation (7.10) can be omitted. These

eliminations are standard. Now, observe that since yQ is of the form yQ = ỹQ
√
ν, the

denominator can be written as 1/(t1 + t2
√
ν) where t1 = x2

1(3cxQ)− y2
1 + 3 and t2 = 2y1ỹQ. If

the Miller value is computed in this fashion there will be an inversion at the end of the Miller

loop. Even worse, both the numerator and the denominator of fvar would have to be updated

at each iteration of the Miller loop since the addition step produces a non-trivial numerator.

To prevent this the numerator and the denominator of 1/(t1 + t2
√
ν) are multiplied by the

conjugate expression t1 − t2
√
ν to give (t1 − t2

√
ν)/(t21 − t22ν). Since t21 − t22ν ∈ Fqd , the

denominator can be simply omitted to give

g′dbl = x2
1(3cxQ)− y2

1 + 3− 2y1yQ. (7.13)

It also follows that if (x1, y1) = −(x2, y2) then g′vert = 1. If r is odd, the Miller loop always

finishes in this fashion so the point addition in the final iteration is ignored.

All of the formulae presented in this section can be obtained with geometric approaches.

However, because of their relevance to the topic this thesis they were derived and verified by

computer algebra tools, see Chapter 3.

Next, point doubling and point addition formulae are presented together with their

associated line formulae in homogeneous projective coordinates. The experiments showed that

the best results are obtained in homogeneous coordinates rather than Jacobian coordinates for

doubling and additions. While additions generally favour projective coordinates it is interesting

to note that doublings on this curve are also faster in projective coordinates. In particular the

number of field operations for the doubling is 4M+3S while the best known doubling speeds so

far are 2M+5S but in Jacobian coordinates. So this representation achieves the best addition

speed and the best doubling speed (up to some M/S trade-offs) in the same coordinate system.

2The point (x2, y2) represents P ∈ E(Fq) and the point (x1, y1) represents R ∈ E(Fq) in Algorithm B.3.1,
a multiple of P , so that x1, x2, y1, y2 ∈ Fq.

7.2. Line computations for Tate pairing 129

7.2.2 Encapsulated computations in homogeneous projective coordi-

nates

In homogeneous projective coordinates each point (x, y) is represented by the triplet (X : Y : Z)

which satisfies the projective equation Y 2Z = cX3 + Z3 and corresponds to the affine point

(X/Z, Y/Z) with Z 6= 0. The identity element is represented by (0 : 1 : 0). The negative of

(X : Y : Z) is (X : − Y : Z).

Point doubling with line computation Given (X1 : Y1 : Z1) with Z1 6= 0 the point

doubling can be performed as [2](X1 : Y1 : Z1) = (X3 : Y3 : Z3) where

X3 = 2X1Y1(Y
2
1 − 9Z2

1),

Y3 = (Y1 − Z1)(Y1 + 3Z1)
3 − 8Y 3

1 Z1,

Z3 = 8Y 3
1 Z1. (7.14)

These formulae are derived from (7.5) and (7.6) in §7.1. Point doubling without line

computation needs 4M + 3S using the following sequence of operations.

A = Y 2
1 , B = Z2

1 , C = (Y1 + Z1)
2 − A−B, Z3 = 4A · C,

X3 = 2X1 · Y1 · (A− 9B), Y3 = (A− 3B + C) · (A+ 9B + 3C) − Z3.

The line formula derived from (7.13) is given by

g′′dbl = X2
1 (3cxQ)− Y 2

1 + 3Z2
1 − 2Y1Z1yQ (7.15)

= E · (3cxQ)− A+ 3B − 2C · yQ

where E = X2
1 .

Assume that 3cxQ is precomputed. If Q is chosen according to the discussion at the start of

this section, then multiplication with 3cxQ or with yQ counts as (k/2)M. The point doubling

with line computation needs (k+ 3)M + 5S if k is even. In this operation count an additional

M/S trade-off is exploited when calculating 2X1Y1 in the point doubling formulae, which can

now be computed as (X1 + Y1)
2 − E −A.

See Appendix C.6 for further justifications and details of the operation scheduling.

Point addition with line computation Given (X1 : Y1 : Z1) and (X2 : Y2 : Z2) with Z1 6= 0

and Z2 6= 0 and (X1 : Y1 : Z1) 6= (X2 : Y2 : Z2), an addition can be performed as (X1 : Y1 : Z1)

+ (X2 : Y2 : Z2) = (X3 : Y3 : Z3) where

X3 = (X1Z2 − Z1X2)(Z1Z2(Y1Z2 − Z1Y2)
2 − c(X1Z2 + Z1X2)(X1Z2 − Z1X2)

2),

Y3 = (Y1Z2 − Z1Y2)(c(2X1Z2 + Z1X2)(X1Z2 − Z1X2)
2 − Z1Z2(Y1Z2 − Z1Y2)

2)−
cY1Z2(X1Z2 − Z1X2)

3,

Z3 = cZ1Z2(X1Z2 − Z1X2)
3. (7.16)

These formulae are derived from (7.1) and (7.2) in §7.1. Point addition without line

computation needs 12M + 2S + 1D if Z2 is arbitrary and 9M + 2S + 1D if Z2 = 1. Note

that D stands for a multiplication with c.

130 Chapter 7. A case study on pairing computation

The line formula derived from (7.12) is given by

g′′add = (Y1Z2 − Z1Y2)(X2 − xQZ2)−
(X1Z2 − Z1X2)Y2 + (X1Z2 − Z1X2)Z2yQ. (7.17)

Assuming that Q is chosen according to the discussion at the start of this section,

multiplication with (X2−xQZ2) or with Z2yQ counts as (k/2)M each. Assuming that Z2 = 1,

point addition with line computation needs (k+10)M+2S+1D if k is even. Assume that Z2

is arbitrary. Assume that (X2 − xQZ2) and Z2yQ are precomputed. The point addition with

line computation needs (k + 13)M + 2S + 1D if k is even.

The algorithm that is used for the point addition part is a slightly modified version of the

Cohen/Miyaji/Ono algorithm [CMO98]. The details are omitted here. Refer to Appendix C.6

for justifications and details of the operation scheduling.

7.3 Curve generation

This section discusses generating pairing-friendly curves of the form y2 = cx3 + 1. A minor

adjustment to the pairing definition is also given when employing this curve in the supersingular

setting.

Implementing the Tate pairing on the curve y2 = cx3 + 1 requires the construction of the

j-invariant zero curve y2 = x3 + b where b = c2 for c ∈ Fq. All j-invariant zero curves have a

special endomorphism ring and such curves have CM discriminant3 D = 3. In Construction

6.6 of [FST06], Freeman et al. extend the results of Barreto et al. [BLS03] and Brezing and

Weng [BW05] to efficiently construct D = 3 curves for all values of k where 18 ∤ k. This

technique is suitable to generate curves of the form that are of interest to this chapter. The

details of Construction 6.6 are omitted here. Freeman et al. state that this construction

achieves the best ρ-value4 curve families for the majority of embedding degrees k ≤ 50.

For most embedding degrees, this method of construction efficiently produces a curve of

the desired form with the best ρ-value, however the extra condition on the curve constant is

restrictive. For instance, a k = 8 curve with b as a square using this construction was unable

to be obtained. For k = 12, constructing the curve y2 = cx3 + 1 gives ρ ≈ 3/2, which is

significantly larger than what can be obtained for Barreto-Naehrig (BN) curves [BW05] where

b is non-square, for which D is also 3 but which have the optimal ρ-value of ρ = 1.

Nevertheless, there is a wide range of useful embedding degrees that would welcome the

speedups offered on the curve y2 = cx3 + 1. Two pairing-friendly examples of the curve using

Construction 6.6 of [FST06] are given by,

3Complex multiplication discriminant
4The ratio of the base field size (in bits) and the size of the prime-order subgroup on the curve.

7.4. Comparison and conclusion 131

k = 12, ρ ≈ 3/2, c = 1,

q = 0x55555583E6AAB5415B22F364648CF7D4A1A9716C687F053\
39126A5FC2A09 (239 bits),

r = 0x10000005D24000CB530E5C544B4E84E5B34F41BD1 (161 bits),

t = 0x1000000174A = q + 1−#E(Fq) (41 bits).

k = 24, ρ ≈ 5/4, c = 3,

q = 0x577380D96AF284FCF9200C2CC966EC756D86B4CBF2A3AAD\
3C1 (199 bits),

r = 0x105121CA61CB6CAF9EF3A835A4442784FFF816AF1 (161 bits),

t = 0x100A0F = q + 1−#E(Fq) (21 bits).

Supersingular curves When the characteristic of the underlying field is p ≡ 2 mod 3, the

curve y2 = cx3+1 is supersingular with k = 2. One would usually define the symmetric pairing

as ê : G×G→ GT where ê(P,Q) = e(P, φ(Q)) and φ is the distortion map φ(x, y) = (ξx, y) for

some non-trivial cube root of unity ξ ∈ Fp2 . However, using the distortion map in this manner

would not allow the use of the formulae derived in §7.2, since these formulae were derived

under the assumption that it was the y-coordinate of the second argument in the pairing that

was in the extension field. To solve this problem, Scott’s technique [Sco04] is followed and

the supersingular pairing is defined as ẽ : G × G → GT where ẽ(P,Q) = e(P, θ(Q)) and θ

is defined as θ(Q) = φ(Q) − πp(φ(Q)), where πp is the p-power Frobenius endomorphism.

Then, πp(φ(Q)) = πp(ξxQ, yQ) = (ξ2xQ, yQ) for Q = (xQ, yQ) and θ(Q) becomes θ(xQ, yQ) =

(ξxQ, yQ)−(ξ2xQ, yQ). The map θ is an isomorphism from the base field subgroup to the trace

zero subgroup [Sco04], where the x-coordinates lie in the base field and the y-coordinates are

in the extension field. Therefore, the formulae from §7.2 can be applied. The inverse map from

the trace zero subgroup to the base field subgroup is defined as θ−1(Q) = Tr(φ(Q)), where Tr

is the trace map.

7.4 Comparison and conclusion

In this chapter pairing computations on a non-standard Weierstrass curve of the form y2 =

cx3 + 1 are studied. This is the most specific curve model studied so far since there are only 3

isomorphism classes of curves for this shape in the general case where p ≡ 1 mod 3. The main

contribution of this chapter is a faster computation of the Tate pairing on this special curve.

Practical examples of such curves can be achieved using Construction 6.6 of [FST06]. There

are many examples of embedding degrees for which this construction gives the best known ρ-

value [FST06], however it remains an open question to find suitable curves of this form having

ρ-values very close to 1 with practically interesting embedding degrees, e.g. k = 8.

The following table summarizes the advantage of employing this new curve in the Tate

pairing by comparing results from this work with the fastest results achieved on other j-

invariant zero curves documented prior to this work. The formulae given by Arène et al.

132 Chapter 7. A case study on pairing computation

[ALNR09] for j-invariant zero curves give an operation count that improves the operation count

originally presented in [HSV06], so comparisons are drawn against these improved formulae.

The trend of presenting the operation count for even k [KM05] is followed, since this is generally

preferred in practice [BKLS02], [BLS04b]. The multiplications and squarings that take place

in the extension field Fqk are excluded, since these are common to all operation counts (see

lines 5 and 9 of Algorithm B.3.1).

Tate pairing DBL mADD ADD

Arène et al. [ALNR09] (k + 3)M + 8S (k + 6)M + 6S (k + 12)M + 5S

This work (k + 3)M + 5S (k + 10)M + 2S + 1D (k + 13)M + 2S + 1D

As k increases in the Tate pairing, the overall speed up that is achieved through using the

curve y2 = cx3 + 1 becomes less, since the more difficult operations in Fqk consume more

computation relative to those operations in the base field.

Lastly, note that the EFD [BL07a] reports 2M + 5S point doubling formulae in Jacobian

coordinates for j-invariant zero curves. Therefore a protocol requiring scalar multiplications

should use Jacobian coordinates and should only switch to this proposal when the pairing is

being computed. This conversion comes at the cost of 2M + 1S + 1D by taking (X : Y : Z)

in Jacobian coordinates to (XZ : Y : cZ3) in homogeneous projective coordinates on the curve

y2 = cx3 + 1.

Incremental results with applications to Ate pairing can be found in a recent preprint by

Costello et al. [CLN09].

Chapter 8

Conclusion

Elliptic curve cryptography (ECC) is a main branch in public-key cryptography, based on

the algebraic structure of elliptic curves over finite fields. The discovery of ECC is due to

independent works of Miller [Mil86] and Koblitz [Kob87], see Appendix B.1. This thesis has

focused on the group law on elliptic curves with an emphasis on efficiency issues. ECC-

related high speed applications require high speed implementation of elliptic curve group laws.

In this context, a systematic and automated method of finding cryptographically interesting

point negation/doubling/addition formulae are described. Five forms of elliptic curves are

revisited and many missed low-degree formulae are detected. With these new formulae a

complete description of the group law is made in affine coordinates. The efficiency of these

formulae are then investigated in suitable coordinate systems and comparisons are made in

between. Theoretic results are supported with pratical applications on assembly-optimized

computer programs. These contributions are summarized in §8.1 and new research directions

are explained in §8.2.

8.1 Summary of research and outcomes

Chapter 2 reviewed the elliptic curve group law on Weierstrass curves together with definitions

of frequently used technical terms. B Birational equivalences between selected curves and

suitable Weierstrass curves were demonstrated using literature results and computer algebra.

Chapter 2 also compared the estimated coverage of each studied form of elliptic curves.

Chapter 3 brought together several computational tools using fundamental results in

algebraic geometry: the Riemann-Roch theorem and products of curves, and in arithmetic of

function fields: Gröbner basis computations and rational simplifications. The final product is a

toolbox for optimizing the group law arising from elliptic curves given in some particular form.

The first tool is capable of finding group laws on elliptic curves using computer algebra. This

is a high-level tool which produces massive and inefficient formulae. This tool uses birational

maps between curves and symbolically deduces the group law for some form of an elliptic

133

134 Chapter 8. Conclusion

curve. The second tool is responsible for rational simplification for finding lowest-degree point

addition/doubling formulae. The notion of finding the lowest-degree rational expression modulo

a prime ideal was developed in [MP06]. To the best of the author’s knowledge, combining these

two stages and systematically finding the lowest-degree group laws is an outcome of this thesis.

The third tool contains isolated subalgorithms from the literature which naturally arise in

low-degree group laws. These subalgorithms are named brain teasers in this work. A new

subalgorithm has also been contributed to the current body of knowledge. This subalgorithm

helps trading a multiplication with additions in the underlying field for twisted Hessian curves.

The same chapter recommended the following steps when optimizing the group law on an

elliptic curve.

1. Fix a curve of genus 1 with a rational point lying in a suitable affine or projective space.

2. Derive the group law using Riemann-Roch computations.

3. Simplify the negation, doubling, and addition formulae of the group law.

4. Make a collection of several equivalent low degree formulae and ensure the equivalence.

5. Find algorithms to carry out operations efficiently for each of the collected formulae.

Chapter 4 presented low-degree point addition formulae, some of which are outcomes of this

thesis. The most important new formulae include dedicated addition formulae for extended

Jacobi quartic, twisted Edwards, and twisted Jacobi intersection forms and a set of minimal-

degree doubling formulae for extended Jacobi quartic form. A complete statement of the

group law in affine coordinates was presented for each of the studied forms. These complete

descriptions in affine coordinates cannot be found in the literature except for the Weierstrass

and short Weierstrass forms which have been studied extensively in the past. The algorithms

contributed are Algorithm 4.2.1 in §4.2, Algorithm 4.3.1 in §4.3, Algorithm 4.4.1 in §4.4,

and Algorithm 4.5.1 in §4.5. In order to justify these algorithms each section contains a

series of lemmas to systematically investigate exceptional situations that might appear in

the computation. All of the proposed algorithms contain several conditional branches. In

an optimized implementation these branches are best eliminated. This is achieved with two

methods. The first method was initiated by Bernstein and Lange in [BL07b] for Edwards curves

and was extended to suitable classes of elliptic curves in twisted Edwards form in [BBJ+08] and

to twisted Hessian form in [BL07a]. This technique forces the point(s) at infinity to be defined

over a proper extension of K but not defined over K. Therefore, all points on the selected

curve are affine points. The rest of the method is composed of finding a single set of addition

formulae with a denominator which cannot vanish for any pair of summands. This chapter

has extended the same idea for suitable classes of elliptic curves in extended Jacobi quartic

and twisted Jacobi intersection forms, see §4.2 and §4.5 respectively. The second method

selects a suitable subgroup of points which does not contain any points at infinity. The rest of

the method is again composed of finding a single set of addition formulae with denominators

which cannot vanish for any pair of summands. Using this method, it was shown how to prevent

all exceptions of dedicated addition formulae for distinct inputs. This latter contribution is

8.2. Future research ideas 135

perfectly suited to the context of fast scalar multiplications, since dedicated additions are more

efficient than unified additions in almost all cases.

Chapter 5 proposed inversion-free point doubling and point addition algorithms using affine

formulae presented in Chapter 4. Many sets of addition/doubling formulae were investigated

for the best operation counts with optimized algorithms in various point representations. In

particular the formulae (5.2), (5.5), (5.7), (5.8), (5.9) in §5.1; (5.12), (5.13), (5.14), (5.15),

(5.16), (5.17), (5.18), (5.19) in §5.2; (5.21), (5.22) in §5.3; (5.27), (5.28), (5.29) in §5.4 are

contributions of this thesis. All algorithms following these formulae are also new contributions.

In the majority of cases the proposed algorithms are more efficient than the alternatives in the

literature. For other formulae which are revisited from the literature, some improved operation

counts are also achieved. For full details and comparison to previous results see §5.6. The same

chapter has also contributed to overturning a common belief that the group laws arising from

quartic forms are less efficient than that of cubic forms. Most notably, the latest results for the

quartic forms, extended Jacobi quartic and twisted Edwards forms, were further improved by

removal of several multiplications in suitable coordinate systems. Similar improvements were

also obtained for twisted Jacobi intersection form. For the cubic forms –twisted Hessian and

short Weierstrass forms–, conditional speed improvements were achieved. See Table 5.11 in

§5.6 for a theoretical comparison of the efficiency of each form.

Chapter 6 showed that the proposed algorithms can practically speed up the scalar

multiplications and thus the ECC applications. The details of these algorithms can be extracted

from Appendix C. The efficiency of using different elliptic curve forms are compared. In this

context, the best speeds are achieved with twisted Edwards form and extended Jacobi quartic

form for variable-single-point variable-single-scalar multiplication. Twisted Edwards is fastest

for addition intensive operations such as fixed-single-point variable-single-scalar multiplication.

Other generalizations of scalar multiplications are left as future work. However, similar

outcomes can be expected.

Chapter 7 considered, as a case study, the relevance of the techniques in this thesis to

efficient Tate pairing computations. In particular, a non-standard Weierstrass curve y2 = cx3+

1 is studied together with new minimal-degree doubling formulae which resulted in best-so-far

operation counts for frequently accessed encapsulated point-doubling and line-computations.

The techniques used in Chapter 5 are applied to derive these new formulae with an extension

to the derivation of line formula. Computer implemention of these formulae is left as future

work. On the other hand, it is natural to expect pratical speed-ups building on the the results

of Chapter 6.

8.2 Future research ideas

This thesis answered many efficiency-related questions about elliptic curve group laws and

made contributions to the current body of knowledge. In doing so, several research issues have

arisen. These are summarized as follows.

136 Chapter 8. Conclusion

Higher degree, higher genus, abelian varieties, embeddings to higher dimensional

spaces, small characteristic The scope of this thesis is limited to five forms of elliptic

curves over fields of large characteristic. It is possible to extend this work to elliptic curves

over fields of characteristic 2 and 3. Similarly, other forms of elliptic curves are also open to

the same treatment. Note that these other forms can be plane curves or embedding of a plane

curve into a higher dimensional space. Yet another direction of research is studying higher

genus curves or arbitrary abelian varieties.

More formulae/algorithms This thesis has focused on point doubling and point addition

formulae. The emphasis has been on finding lowest degree rational expressions and on

developing algorithms with the best operation counts. However, obtaining minimal degree

formulae is not a concrete proof for the most efficient way of computation. Higher degree

formulae in some specific cases may turn out to be more efficient. Therefore, further

investigation of more formulae will be valuable.

Hybrid group laws The group law is usually interpreted as a mapping from E×E to E for

an elliptic curve E. However, no efficiency-related work has been considered for the mappings of

the form E1×E2 → E3 where E1, E2, and E3 are birationally-equivalent/isogenous curves but

not necessarily equal. It is worth extending the current research towards this idea. Moreover,

like the point doublings, point tripling, point quintupling, etc. can also be of interest in some

higher level computations. This is a big gap in the literature to be filled.

More experiments The experiments of Chapter 6 are limited to single-scalar multiplications

with variable or fixed base-points. Further implementations for multi-scalar multiplication with

variable or fixed base-points is left as future work. Chapter 6 does not make any comparisons

with Montgomery ladder technique and recent advances in that area. A further implementation

with a fair efficiency comparison is missing in the literature.

Assembly support for other processors The implementation introduced in Chapter 6,

has a C-only mode where the project can be compiled for any processors using a suitable C

compiler. On the other hand, assembly support for the finite field layer can significantly improve

the throughput for some specific processors. This support is only provided for processors which

can execute generic x86-64 instructions and this part of the implementation was specifically

optimized for Core 2 processors. Optimized support for other types of processors will shed

more light on the usefulness of the algorithms proposed in this thesis, e.g. lightweight smart

card applications or wireless sensor network devices.

Appendix A

Mathematical definitions

This appendix provides definitions for background concepts which are mainly used in

Chapters 2, see §A.1, §A.2, and §A.3. In particular, the most important objects of study

in this thesis –elliptic curves– are formally defined. In addition, basic results of the Gröbner

basis theory are summarized in the context of the arithmetic of polynomial ideals, see §A.5.

A.1 Preliminaries

This section makes a formal definition of a curve. The relevant information is extracted from

standard books [Ful69], [Har77], [Sil94], [Sti93], [CF05], and [CLO07]. The notation is adapted

from [Sil94], [Sti93], and [CF05]. It is assumed that the reader is familiar with sets, groups,

(polynomial) rings, ideals, quotient algebras, vector spaces, affine (projective) spaces and their

topologies, fields, field extensions for which one can always consult the aforementioned books.

Throughout this chapter assume that K is a perfect field, K its algebraic closure, L an

extension of K contained in K. An affine (resp. projective) n-space over K will be denoted

by An (resp. by Pn). The “resp. ” part in the previous sentence will be omitted for brevity

hereafter. It is useful to keep in mind that a point of an n-space over K has coordinates in K.

The L-rational points of An (Pn) will be denoted by An(L)
(
Pn(L)

)
. The projective closure

of an algebraic set V will be denoted by V . The ideal of an affine (projective) algebraic set

V will be denoted by I(V) or by I for shorthand. Note that I(V) is an ideal of K[x1, . . . , xn](
K[X0, . . . , Xn]

)
for which the variables x1, . . . , xn (X0, . . . , Xn) will sometimes be abbreviated

as “.” when clear from the context. It is useful to keep in mind that V defined over K means

I(V) is an ideal of K[.]. An algebraic set V defined over K will be denoted by V/K. The set

of L-rational points of V/K will be denoted by V (L).

Definition A.1.1. An irreducible affine (projective) algebraic set V (with respect to the

Zariski topology), is called an affine (projective) variety.

For an explanation of open and closed sets defining the Zariski topology of affine and

projective n-spaces see [CF05, §4.1.1]. An affine (projective) algebraic set V is an affine

137

138 Appendix A. Mathematical definitions

(projective) variety if and only if I(V) is a (homogeneous) prime ideal of K[.], see [CF05,

Proposition 4.11].

Definition A.1.2. An affine (projective) variety V defined over K is called absolutely

irreducible.

Definition A.1.3. Let V/K be a variety and I its ideal. The quotient ring K[V]
def

= K[.]/I is

called the coordinate ring of V . An element of K[V] is called a polynomial function on

V .

Let V/L be a variety. The coordinate ring K[V] is an integral domain (i.e. a commutative

ring with unity containing no zero divisors) since I is a prime ideal in K[.]. Note that K[V] is

not an integral domain unless V is absolutely irreducible.

Definition A.1.4. The set of all fractions r/s such that r, s ∈ K[V] and s 6= 0 form the

function field of K[V], denoted by K(V). An element of K(V) is called a rational function

on V .

Definition A.1.5. The transcendence degree of K(V) over K is called the dimension of V .

The dimension of V is denoted by dimV .

For a definition of transcendence degree consult [Hun74, VI.1.10] or [BGM+93, §9.5].

Definition A.1.6. An affine (projective) variety V with dim V = 1 is called an affine

(projective) curve.

A.2 Birational equivalence and isomorphism

Definition A.2.1. Let m and n be positive integers. Let C1 ⊂ Am(K) and C2 ⊂ An(K) be

affine curves. A rational map φ from C1 to C2 is a fraction of two polynomial functions given

by

φ : C1 → C2, (x1, . . . , xm) 7→
(f1(x1, . . . , xm)

g1(x1, . . . , xm)
, . . . ,

fn(x1, . . . , xm)

gn(x1, . . . , xm)

)

where the fi/gi ∈ K(x1, . . . , xm) satisfy:

(i) each φ is defined at some point of C1.

(ii) For every (α1, . . . , αm) ∈ C1 where φ is defined, φ(α1, . . . , αm) ∈ C2.

The notion φ(x1, . . . , xm) will be abbreviated as φ when x1, . . . , xm is implicit in the

meaning. The notation for rational maps is borrowed from [Sil94].

Definition A.2.2. A rational map

φ : C1 → C2, (.) 7→ (f0(.), f1(.), . . . , fn(.))

is regular (or defined) at P ∈ C1 if there is a function g ∈ K(C1) such that

A.3. Riemann-Roch theorem 139

(i) each gfi is regular at P ;

(ii) there is some i for which (gfi)(P) 6= 0.

If such a g exists then φ is given by

φ(P) = [(gf0)(P), . . . , (gfn)(P)].

It may be necessary to take different g’s for different points.

Definition A.2.3. A rational map that is regular at every point is called a morphism.

The rational maps are used for defining birational equivalence between affine curves in

Chapter 4. Therefore, Definitions A.2.1 and A.2.2 are not extended for projective curves. For

relevant definitions see [Sti93], [CF05].

Definition A.2.4. Let m and n be positive integers. Let C1 ⊂ Am(K) and C2 ⊂ An(K) be

curves. Let φ : C1 → C2 and ψ : C2 → C1 be rational maps defined over K such that ψ ◦ φ
and φ ◦ ψ are equal to the identity maps on C1 and C2, respectively. The identity maps are

typically denoted by id. Then, C1 and C2 are said to be birationally equivalent over K or

simply birational.

Note that alternative notations g ∗ f or f(g) or fg are preferred in some other resources

for the very same composition f ◦ g.

Definition A.2.5. Let C1, C2, φ, ψ be defined as in Definition A.2.4. Then C1 and C2 are said

to be isomorphic over K provided that both φ and ψ are morphisms.

A.3 Riemann-Roch theorem

This section makes a formal definition of an elliptic curve with the help of Riemann-Roch

theorem (for curves) which has several applications in algebraic geometry. The role of Riemann-

Roch theorem in this chapter is limited to finding the Weierstrass form of elliptic curves. Details

of the topic can be found in standard references [Ful69], [Sil94], and [CF05]. General treatments

can be found in [Har77] and [Sti93]. Before stating the theorem some definitions are required.

Let P be a point on a curve C. A subring of K(C) defined by

K[C]P
def

= {f ∈ K(C) | f =
r

s
for some r, s ∈ K[C] with s(P) 6= 0}

is a (local) ring with a maximal ideal mP
def

= {f ∈ K[C]P | f(P) = 0}, see [Sti93, Definition I.1.8]

and [Sil94].

Definition A.3.1. A point P having K[C]P as a discrete valuation ring is called non-singular.

A curve C having no singular point is non-singular.

For a definition of discrete valuation consult [Sti93, Definition I.1.9]. Let C be a curve. A

point P on C is non-singular if and only if dim
K

mP /m
2
P = 1, see [Har77, §I.5.1].

140 Appendix A. Mathematical definitions

Definition A.3.2. Let C be a curve, P ∈ C a non-singular point, and f a rational function

on C. The integer defined by

ordP : K[C]P → {0, 1, 2, . . .} ∪ {∞}, f 7→ max{i ∈ Z | f ∈ m
i
P },

is the valuation of f at P .

Note that the elements of K[C]P are rational functions. Let f ′ = r/s ∈ K(C) such that

r, s ∈ K[C]. It is convenient to redefine ordP by defining

ordP : K(C)→ Z ∪ {∞}, f ′ 7→ ordP (r) − ordP (s).

Definition A.3.3. Let C be a curve. The free abelian group generated by the points of a

smooth curve C, is called the divisor group of C. The divisor group of C is denoted by

Div(C). An element of Div(C) defined by the formal sum

D
def

=
∑

P∈C

nPP

where np ∈ Z and nP = 0 for all but finitely many P , is called a divisor on C. The integer

defined by deg(D)
def

=
∑
nP is called the degree of D. A divisor D =

∑
P∈C nPP such that

nP ≥ 0 for every P ∈ C is called effective. An effective divisor is denoted by

D ≥ 0.

Let D1, D2 ∈ Div(C). The meaning of D1 −D2 being effective is implied by D1 ≥ D2. Let f

be a rational function in K(C)\{0}. The divisor defined by

div(f)
def

=
∑

P∈C

ordP (f)(P),

is called the divisor of f .

Definition A.3.4. Let D be divisor in Div(C). The set of functions on C defined by

L(D)
def

= {f ∈ K(C)\{0} | div(f) ≥ −D} ∪ {∞},

is called the Riemann-Roch space of D.

L(D) is a finite dimensional K-vector space, see [Ful69, §8.1].

Definition A.3.5. Let D be divisor in Div(C). The integer ℓ(D) defined by the dimension of

L(D) as

ℓ(D)
def

= dim
K
L(D),

is called the dimension of L(D).

For a definition of the dimension of a vector space consult [Fra76, §8.2].

A.4. Divisor class group 141

Theorem A.3.6 (Riemann-Roch). Let C/K be a curve with function field K(C). There exists

a non-negative integer g such that

ℓ(D) ≥ deg(D)− g + 1

for every divisor D ∈ Div(C). Furthermore, if D ∈ Div(C) and deg(D) ≥ 2g − 2 then

ℓ(D) = deg(D)− g + 1.

Several books contain the full version of Theorem A.3.6, cf. [Har77] or [Sti93]. This is

a shortened version from [CF05]. Practical applications of this theorem are used to state

birational maps between curves in §2.3 of Chapter 2 and to state group laws in Chapter 3. For

computational aspects of the theorem see [Hes02].

Definition A.3.7. The positive integer g in Theorem A.3.6 is called the genus of C.

The chief object of study can now be defined as follows.

Definition A.3.8. A curve C/K which

(i) is projective,

(iii) is absolutely irreducible,

(ii) is of genus 1,

(iv) is non-singular,

(v) contains at least one K-rational point,

is called an elliptic curve.

Example A.3.9. The plane curve C : y2 = dx4 + 2ax2y2 + y4 over Q is of genus 1 and is

absolutely irreducible. The point (0, 1) is a Q-rational point. The point (0, 0) is singular. The

desingularization C̃ of the projective closure C is an elliptic curve.

Note that C̃ in Example A.3.9 is not a plane curve (emphasizing that the projection is

homogeneous), cf. see [CF05, §4.4.1].

A.4 Divisor class group

Throughout this section C/K denotes a smooth curve, f a rational function in K(C)\{0}.

Definition A.4.1. Let C/K be a smooth curve, f a rational function in K(C)\{0}. A

principal divisor D ∈ Div(C) is a divisor of the form D = div(f). Two divisors D1, D2

are called linearly equivalent provided that D1 −D2 is a principal ideal.

Two linearly equivalent divisors are denoted by D1 ∼ D2. The divisors of degree 0 form a

subgroup of Div(C), denoted by Div0(C). The set of all principal divisors on C is denoted by

Prin(C). If two divisors are principal so is their sum. Prin(C) is a subgroup of Div(C), where

each principal divisor is of degree 0. Therefore Prin(C) is also a subgroup of Div0(C).

Definition A.4.2. The divisor class group (Picard group) of C is the quotient group

Pic(C)
def

= Div(C)/Prin(C). The degree zero part of Pic(C) is the subgroup Pic0(C)
def

=

Div0(C)/Prin(C).

142 Appendix A. Mathematical definitions

Theorem A.4.3. Let EW be an elliptic curve with a fixed K-rational point O. Pic0(EW) is

isomorphic over L to EW(L).

See [Sil94, Proposition 3.4(a,b,c,d)] for a proof.

Since E(L) is a group by Theorem A.4.3, it is natural to ask how to perform negation

—i.e. inversion in multiplicative groups— and addition —i.e. multiplication in multiplicative

groups— in E(L). A succinct way of describing this group law in terms of the coordinates of

points is presented in §2.2 of Chapter 2. See [Sil94, Proposition 3.4(e)] for backtracking the

connection between the group law and the Picard group.

A.5 Arithmetic of ideals

This section initially defines polynomial division then provides well-known results for the

arithmetic of polynomial ideals. The reader is assumed to be familiar with polynomial rings

and monomial orders. For a comprehensive background, standard references are [BW93]

and [CLO07]. Throughout this section K denotes a field and K[x1, . . . , xn] denotes a polynomial

ideal over K in n variables.

Definition A.5.1. Fix a monomial order >. Let f =
∑

i aix
i be a nonzero polynomial in

K[x1, . . . , xn].

(i) The multi-degree of f is MD(f)
def

= max{i ∈ {0, 1, 2, . . .} | ai 6= 0} where the maximum

is taken with respect to >.

(ii) The leading coefficient of f is LC(f)
def

= aMD(f).

(iii) The leading monomial of f is LM(f)
def

= xMD(f) with coefficient 1.

(iv) The leading term of f is LT(f)
def

= LC(f) · LM(f).

Theorem A.5.2 (Division in a polynomial ring). Fix a monomial order. Let (f1, . . . , fs) be an

ordered s-tuple of polynomials in K[x1, . . . , xn]. Then every f ∈ K[x1, . . . , xn] can be written

as

f = a1f1 + . . .+ asfs + r

where ai, r ∈ K[x1, . . . , xn] and either r = 0 or r is a linear combination of monomials (with

coefficients in K) none of which is divisible by any of 〈LT(f1), . . . ,LT(fs)〉. Furthermore, if

aifi 6= 0 then MD(f) ≥ MD(aifi).

See [CLO07, Theorem 3, §2.3] for the proof.

Definition A.5.3. The polynomial r is called a remainder of f on division by (f1, . . . , fs).

An exact division is the division which produces r = 0.

Theorem A.5.4 (Hilbert basis). Every ideal I ⊂ K[x1, . . . , xn] is finitely generated.

See [CLO07, Theorem 4, §2.5] for the proof.

Definition A.5.5. Fix a monomial order. A Gröbner basis is a finite subset G = {g1, . . . , gt}
of an ideal I with 〈LT(g1), . . . ,LT(gt)〉 = 〈LT(I)〉.

A.5. Arithmetic of ideals 143

Theorem A.5.6 (Existence of a Gröbner basis). Fix a monomial order. Every ideal I ⊂
K[x1, . . . , xn] other than {0} has at least one Gröbner basis. Any Gröbner basis for an ideal I

is a basis of I.

See [CLO07, Corollary 6, §2.5] for the proof.

Definition A.5.7. A reduced Gröbner basis for a polynomial I is a Gröbner basis G for

I such that for all g ∈ G, LC(g) = 1 and for all g ∈ G, no monomial of g lies in 〈LT(G\{g})〉.

Theorem A.5.8 (Uniqueness of the reduced Gröbner basis). Let I 6= {0} be a polynomial

ideal. Then, for a given monomial ordering, I has a unique reduced Gröbner basis.

See [CLO07, Proposition 6, §2.7] for the proof. A reduced Gröbner basis can be computed

by Buchberger’s algorithm [Buc65] or its variants.

Definition A.5.9. The normal form of a polynomial f is the remainder of f on division by

a Gröbner basis.

The following definitions will be used in Chapter 3. Not all operations are given here. For

details see [BW93] and [CLO07].

Definition A.5.10. If I and J are ideals in K[x1, . . . , xn] then I ∩ J is the set

f ∈ K[x1, . . . , xn] : f ∈ I and f ∈ J

and is called the intersection of I and J .

If I and J are ideals in K[x1, . . . , xn] then I ∩J is also an ideal, see [CLO07, Proposition 9,

§4.3].

Theorem A.5.11 (Computing intersections of ideals). Let I, J be ideals in K[x1, . . . , xn].

Then I ∩ J = (tI + (1 − t)J) ∩K[x1, . . . , xn].

See [CLO07, Theorem 11, §4.3] for the proof.

Definition A.5.12. If I and J are ideals in K[x1, . . . , xn] then I : J is the set

f ∈ K[x1, . . . , xn] : fg ∈ I for all g ∈ J

and is called the colon ideal of I by J .

Theorem A.5.13 (Computing colon ideals). Let I be an ideal and g an element of

K[x1, . . . , xn]. If {h1, . . . , hm} is a basis of the ideal I ∩ 〈g〉 then {h1/g, . . . , hm/g} is a basis

of I : 〈g〉. Each operation hi/g is an exact division.

See [CLO07, Theorem 11, §4.4] for the proof.

Definition A.5.14. Let K be a perfect field, V/K a variety, I the ideal of V . The dimension

of I is the dimension of V , see §A.1.

144 Appendix A. Mathematical definitions

Appendix B

Elliptic Curve Cryptography

The need for information security has been emerging as an indispensable component of

communication between parties through public channels. An ancient science, cryptography,

plays a central role in this context since its main concerns are hiding the meaning of messages,

signing messages, providing message authentication, non-repudiation and integrity. Thus, much

attention has been focused on cryptography as an important asset in providing information

security.

The boundaries of cryptography grew considerably after Diffie and Hellman [DH76]

introduced the concept of public-key (asymmetric-key) cryptography in 1976 as an alternative

to secret-key (symmetric-key) cryptography. Public-key cryptography drew attention quickly

since it provided a solution to the key distribution problem1 which is the most serious

disadvantage of secret-key cryptography. The idea behind public-key cryptography is to use

two different (but mathematically related) keys where one of the keys is used as an input

in a cryptographic function (e.g. encrypt, sign) and the other key contains the necessary

information to invert the steps carried out previously. These functions are also called one-way

trapdoor functions which are easy2 to compute but hard3 to invert. However, they can be

easily inverted with the trapdoor information.

The security of asymmetric cryptosystems is based on the intractability of one-way

functions. The discrete logarithm problem (DLP) is one of the most promising instances

of such functions that are used in cryptography. The use of DLP over elliptic curves was

proposed independently by Miller [Mil86] and Koblitz [Kob87] in 1986. Starting from the early

1990’s Elliptic Curve Cryptography (ECC) has received great interest from cryptologists and

has been enhanced in theoretical and practical ways.

1The secret key which is to be used by two parties, must be kept secret. However, one of the two parties
needs a new secret key to transfer the secret key to the other party as a cipher-text. This results in a chicken-egg
problem.

2Easy means the function can be evaluated in polynomial time (in the input size) by some algorithm.
3Hard means no probabilistic polynomial-time algorithm exists.

145

146 Appendix B. Elliptic Curve Cryptography

B.1 Elliptic curve cryptosystems

A one-way function f is called a trapdoor one-way function if there exists trapdoor information

under which f is easily inverted. Without the knowledge of the trapdoor information it should

be computationally hard to perform the inversion. Elliptic Curve Discrete Logarithm Problem

(ECDLP) satisfies these requirements. Thus, it is a good candidate to be embedded into the

well known public key schemes (which are based on cyclic groups). This section contains the

description of common schemes that make use of elliptic curves.

Diffie and Hellman [DH76] initiated so-called Public Key Cryptography by showing how two

independent parties can define a shared secret key over a public channel. Section B.1.2 discusses

the ECC analogue of the Diffie-Hellman Key Exchange. ElGamal [ElG85] used the discrete

logarithm problem in a cyclic subgroup, which is generated by a primitive element, to build

an alternative encryption-decryption-signature scheme to Rivest-Shamir-Adleman [RSA78]

(RSA) cryptosystem. The elliptic curve analogue of the ElGamal cryptosystem is given in

Section B.1.3. Section B.1.4 gives the basics of the Elliptic Curve Digital Signature Algorithm

(ECDSA) which is the elliptic curve analogue of the Digital Signature Algorithm (DSA)4. The

protocol attacks are omitted in this appendix since the main interest is efficient computation.

B.1.1 Key-pair generation

Public key systems require the selection of a public key and a private key as inputs to

the encryption and decryption schemes respectively. The public and the private keys are

algebraically related to each other by Q = [m]P where Q is the public key, m is the private

key and P is the primitive (base) point of 〈P 〉. The order of 〈P 〉 is denoted by |〈P 〉|.
Algorithm B.1.1 shows the steps.

Algorithm B.1.1: Elliptic Curve Key-pair Generation.

input : All necessary parameters for P ∈ E(Fq).

output : Public key Q and private key m.

Select a random m, 0 < m < |〈P 〉|.1

Compute Q = [m]P .2

return (Q,m).3

The random selection of m is of crucial importance to the security of the whole system.

However, generating selections scientifically at random is not possible with the contemporary

architecture. The notion of randomness goes much deeper. Nevertheless, a pseudo-random

selection is suitable for cryptographic use. Such a selection can be performed with the help of

a secret seed and a random bit-generation function (see Wagstaff [Wag02, Chapter 15]).

4DSA is a United States Federal Government standard for digital signatures (FIPS 186). It was proposed
by the National Institute of Standards and Technology (NIST) in August 1991.

B.1. Elliptic curve cryptosystems 147

B.1.2 Diffie-Hellman key exchange

Suppose that Alice and Bob (the security protocols’ common figures) want to share a key which

will be used later for some secret key scheme. This can be achieved over an authenticated public

communication environment by following the steps of Algorithm B.1.2.

Algorithm B.1.2: Elliptic Curve Diffie-Hellman Key Exchange Scheme.

input : All necessary parameters for P ∈ E(Fq).

Alice selects a random mA, 0 < mA < |〈P 〉|, the order of 〈P 〉.1

Alice sends QA = [mA]P to Bob.2

Bob selects a random mB , 0 < mB < |〈P 〉|.3

Bob sends QB = [mB]P to Alice.4

Alice computes [mA]QB.5

Bob computes [mB]QA.6

Now both have [mAmB]P as the shared secret key.7

An intruder (Eve) who copies the transmitted data only has E(Fq), P,QA, QB which is not

enough to feasibly compute [mAmB]P . To perform an algebraic attack, Eve needs to solve one

of the elliptic curve discrete logarithm problem instances QA = [mA]P or QB = [mB]P for

mA and mB, respectively. Note that this is the best known approach but it is not known to

be equivalent to ECDLP.

B.1.3 ElGamal cryptosystem

The original work of ElGamal [ElG85] is built on the use of the cyclic group F∗
p. One can

replace this group by other groups in which group operations are easy to apply and discrete

logarithms are hard to compute. Candidates other than the group of points on an elliptic curve

are

• the class group of an imaginary quadratic field [BW88],

• the group of units in Z/Zn for composite n [McC88],

• the group of nonsingular matrices over a finite field [OVS84], and

• the Jacobian of an hyperelliptic curve [Kob89].

The elliptic curve analogues of ElGamal encryption and decryption schemes are given in

Algorithm B.1.3 and Algorithm B.1.4 respectively.

148 Appendix B. Elliptic Curve Cryptography

Algorithm B.1.3: Elliptic Curve ElGamal Encryption.

input : All necessary parameters for P ∈ E(Fq), public key Q, and plaintext M .

output : Ciphertext C0, C1.

Embed M into a point T ∈ E(Fq).1

Select a random m, 0 < m < |〈P 〉|.2

Compute C0 = [m]P .3

Compute C1 = T + [m]Q.4

return (C0, C1).5

Algorithm B.1.4: Elliptic Curve ElGamal Decryption.

input : All necessary parameters for P ∈ E(Fq), private key k, and ciphertext C0, C1.

output : Plaintext M .

Compute T = C1 − [k]C0.1

Lookup M from T .2

return (M).3

Like the Diffie-Hellman key exchange scheme, the security of the elliptic curve ElGamal

cryptosystem is also based on the hardness of the ECDLP. See Section B.2.4 for further

discussion.

B.1.4 Elliptic curve digital signature algorithm

The definitions of a digital signature and other related concepts are given by Menezes [MOV96]

in detail. The elliptic curve analogues of ElGamal digital signature generation and verification

schemes are given in Algorithm B.1.5 and Algorithm B.1.6 respectively. Variations of these

algorithms are standardized in ANSI X9.62, FIPS 186-2, IEEE 1363-2000, and ISO/IEC 15946-

2.

Algorithm B.1.5: Elliptic Curve Digital Signature Generation.

input : All necessary parameters for P ∈ E(Fq), private key k, message M , a suitable hash

function H .

output : Signature (s0, s1).

Select a random m, 0 < m < |〈P 〉|.1

Compute [m]P and treat the x-coordinate as an integer im.2

Set s0 ≡ im (mod |〈P 〉|). If s0 = 0 go to step 1.3

Compute s1 = k−1(H(M) + ks0) (mod |〈P 〉|). If s1 = 0 go to step 1.4

return (s0, s1).5

B.2. Discrete Logarithms 149

Algorithm B.1.6: Elliptic Curve Digital Signature Verification.

input : All necessary parameters for P ∈ E(Fq), public key Q, signature (s0, s1), the

message M , the hash function H .

output : r ={True, False} for the acceptance or the rejection of (s0, s1), respectively.

Set r =False.1

if 0 < s0, s1 < |〈P 〉| is satisfied then2

Compute t0 = s−1
1 s0 (mod |〈P 〉|), t1 = s−1

1 H(M) (mod |〈P 〉|).3

Compute T = [t0]P + [t1]Q.4

if T 6= O then5

Treat the x-coordinate of T as an integer iT .6

if s0 ≡ iT (mod |〈P 〉|) then7

r =True.8

end9

end10

end11

return r.12

The selected hash function H is assumed to be cryptographically secure (preimage resistant

and collision resistant).

B.2 Discrete Logarithms

The complexity of computing logarithms in an arbitrary group, G, depends on the structural

properties of G. In particular, computing logarithms takes only linear time in some groups

(e.g. G = Z+
p). Nechaev [Nec94] and Shoup [Sho97] introduced the generic group model for

proving lower bounds on the discrete logarithm problem. They concluded that the discrete

logarithm problem requires O(
√
p) group operations.

The security of ECC is based on the intractability of Elliptic Curve Discrete Logarithm

Problem (ECDLP). It is believed that computing logarithms in the group generated by a

rational point on an elliptic curve over a finite field is highly intractable under some reasonable

assumptions. These situations are going to be made clear throughout the section.

Given P ∈ E(K) and Q ∈ 〈P 〉, the problem is to find the smallest positive value of m ∈ Z

such that [m]P = Q. This can be carried out näıvely by trying every possible value for

0 < m < #E(K). This method is called exhaustive search which obviously requires O(n) steps

with n = |〈P 〉|. For commonly used curves, n = 2160 ≈ 1048, thus exhaustive search is clearly

infeasible.

150 Appendix B. Elliptic Curve Cryptography

B.2.1 Growth of order

Let ǫ > 0 such that ǫ does not depend on n. An algorithm which halts in O(ǫn) steps is of

exponential complexity5. It is convenient to form categories for the classification of algorithms

as follows. Note c is a constant number dependent on the details of the algorithm.

Linear ⇐⇒ O(1)

Polynomial ⇐⇒ O(n)

Superpolynomial ⇐⇒ O((log n)c log log logn)

Subexponential ⇐⇒ O(nc
√

log logn/ logn)

Exponential ⇐⇒ O(ǫn)

These categories were developed largely by Knuth [Knu97] and are contained in his books

on computer science. Subexponential time algorithms are at the heart of cryptanalytic interest.

Therefore, its definition6 is extended as in (B.1).

Ln(γ, c)
def

= ec
√

(lnn)γ(ln lnn)1−γ
(B.1)

In the following sections, the algorithms are discussed in elliptic curve discrete logarithm

notation instead of their classical interpretations.

B.2.2 Shanks’ baby-step/giant-step attack

Let k =
⌈√
n
⌉
. The logarithm m can be written uniquely in the form m = kj + i where

0 ≤ m < n and 0 ≤ i, j < k. Then, Q− [i]P = [kj]P . The left side of this equation is called the

baby-steps and the right side is called the giant-steps. This scheme provides a space-time trade

off. This idea belongs to Shanks according to Odlyzko [Odl85]. Excluding the precomputation

overheads, the algorithm needs O(
√
n) time and O(

√
n) space. The space requirement of this

algorithm makes it impractical provided that n is sufficiently large, say 2160.

B.2.3 Random walks and Pollard’s rho attack

Algorithms based on random walks remedy the space requirement of Shank’s algorithm

preserving the worst-case running time. It should be noted that these algorithms are

probabilistic and have a (practically negligible) probability of failure. Pollard [Pol78] introduced

algorithms achieving these criteria. Pollard’s rho method depends on finding two integer pairs

(a, b) and (c, d) such that [a]P + [b]Q = [c]P + [d]Q so that the desired logarithm corresponds

to l = (a − c)(d − b)−1 (modn). To satisfy the asymptotic bound requirements, the variables

a, b, c, d must be selected at random. This is computationally modeled with iterating functions.

If P0 is the base point and f is the iterating function, then the sequence is defined by

5Big-Oh notation is convenient to be used for brevity. Other notations can be followed to make more precise
time and space estimations.

6Notice that nc
p

log log n/ log n = ec
p

log n log log n.

B.2. Discrete Logarithms 151

X0

X1

X2

Xt-1

X t

X t+1 X t+2

X t+3

X t+4

X t+s-2

X t+s-1

X t+s

Figure B.1: Pollard’s rho illustration: a rho-like shape where t ≈
√
πn/8 is the tail length and

s ≈
√
πn/8 is the cycle length.

Pi = f(Pi−1) with 0 < i. The points on the sequence collide after approximately
√
πn/2

iterations. This situation is depicted in Figure B.1.

Flajolet and Odlyzko [FO90] showed how the characteristics of random functions, their

expected tail length and the expected cycle length of sequences can be computed for random

functions.

Pollard’s iterating function defines a partition with three cosets. Depending on the

experimental data, Teske [Tes98], [Tes01] pointed out that Pollard’s iterating function does

not satisfy optimal random characteristics. Teske introduced a new iterating function using

multi-cosets which are close models of a random function.

Brent [Bre80] replaced Floyd’s cycle in Pollard’s rho algorithm with a new strategy which

provides a constant speed-up of 3/2. An asymptotically faster method was proposed by

Sedgewick and Szymanski [SS79] but this method requires impractical amounts of memory.

Van Oorschot and Wiener [vOW99] developed the parallelized version of Pollard’s rho

algorithm that achieves M times speed-up over M processors. The use of automorphisms

was discovered by Gallant et al. [GLV00] and Wiener and Zuccherato [WZ99]. The use of

automorphisms was generalized to hyperelliptic curves by Duursma et al. [DGM99]. The

notion of distinguished points was suggested by Silverman as a contribution to the ANSI X9F1

working group in 1997 (as reported in [HMV03]).

B.2.4 Pohlig-Hellman attack

Based on Pohlig and Hellman’s [PH78] approach, it can be to shown that the ECDLP is solved

more easily when the logarithms are computed in the subgroups of 〈P 〉. Let p1, p2, . . . , pi the

prime divisors of n, the order of P . The algorithm is based on solving the ECDLP in smaller

subgroups of order pj by a square root attack (i.e. Pollard’s rho method), then using this result

to solve the same logarithm in the target group 〈P 〉. In the final step, the solutions with respect

152 Appendix B. Elliptic Curve Cryptography

to different prime power order subgroups are merged by the Chinese remainder theorem. The

algorithm is very efficient when the group order is smooth. Therefore, the group order must

contain at least one large prime factor to avoid this attack. If t = max(p0, p1, . . . , pk), then the

algorithm takes O(
√
p) group operations to halt. Thus, one should not use a composite integer

which is a product of small primes for #E(Fq) to prevent the Pohlig-Hellman attack. #E(Fq)

can be obtained by a deterministic polynomial time algorithm of Schoof [Sch85], [Sch95]. (see

also [LL03] and [Dew98]).

B.2.5 Isomorphism attacks

Before Menezes et al. [MVO91] introduced the MOV attack, ECDLP was considered an

intractable problem in all cases. Thus, it was believed that any attack on any specific instance

of the problem was fully exponential. The MOV attack is based on the Weil pairing [Wei29].

If gcd(n, q) = 1 where n is the the prime order of P ∈ E(Fq) and k is the multiplicative order

of q modulo n, then E(F∗
qk) has a unique subgroup G of order n. The Weil pairing constructs

an isomorphism from 〈P 〉 to G. This pairing is defined when n ∤ (q − 1). Using this idea,

Menezes et al. [MVO91] were able to reduce the elliptic curve discrete logarithm problem on

a curve E over a finite field Fq to the discrete logarithm problem on a suitable extension field

Fqk of Fq. The integer k is called the embedding degree. Their attack applies to supersingular

curves which are now avoided in ECC standards. Frey and Rück [FR94] described a generalized

method of this approach based on the Weil descent.

The independent results of Satoh and Araki [SA98], Semaev [Sem98], and Smart [Sma99]

showed that anomalous curves are vulnerable to a kind of isomorphism attack where it is

possible to solve ECDLP in linear time. Rück [Rüc99] extended Semaev’s approach to the

Jacobians of arbitrary curves.

The Tate pairing attacks construct an isomorphism between 〈P 〉 and G without the

restriction of n ∤ (q − 1) in the Weil pairing. Balasubramanian and Koblitz [BK98] proved

that a large proportion of elliptic curves of prime order defined over prime fields have a large

embedding degree. Thus, they are immune to pairing attacks.

Galbraith [Gal01] and Rubin and Silverberg [RS02] showed the upper bounds for k for

supersingular abelian varieties of dimension g over finite fields. Frey [Fre01] explained why

Jacobian varieties of hyperelliptic curves of genus≤ 4 are candidates for cryptographically good

abelian varieties. Silverman [Sil88], [Sil90], [Sil97] showed efficient computation algorithms for

point heights.

Frey pointed to the use of the Weil descent for attacking elliptic curve cryptosystems in

his public talk in the ECC’98 conference. Galbraith and Smart [GS99] provided a concrete

explanation of the Weil descent methodology. Gaudry et al. [GHS02b] proposed the GHS

attack which utilizes the Weil descent attack and makes some specific family of curves, widely

in use, inappropriate for cryptographic use. A detailed analysis of the GHS attack is given

in [MQ01]. The GHS attack was further extended by Hess [Hes03], [Hes04]. Menezes and

Teske [MT06] analyzed characteristic two finite fields F2n for weakness under the generalized

GHS attack of Hess. It was claimed that the fields Fq7 are potentially partially weak and the

other fields F2N where 3, 5, 6, 7 or 8 ∤ N are not weak under Hess’ generalized GHS attack.

B.2. Discrete Logarithms 153

Maurer et al. [MMT01] analyzed the GHS attack with possible isomorphisms for elliptic curves

over F2k having composite k, 160 ≤ k ≤ 600 and determined the curves vulnerable to the GHS

attack. Menezes et al. [MTW04] showed that the fields F25k , 37 ≤ k ≤ 120 are vulnerable

to the GHS attack. Galbraith et al. [GHS02a] extended Weil descent over isogenous curves.

Arita [Ari00] and Arita et al. [AMNS06] provided evidence that there are cases when curves

over finite fields F3m may also be vulnerable to the Weil descent attack. Diem [Die01], [Die03]

has shown that the GHS attack can be extended to elliptic curves over Fpm for p = 3, 5, 7.

B.2.6 Index calculus method

Index calculus is a subexponential technique for solving discrete logarithms in some groups.

The method is attributed to Adleman in a detailed review by Schirokauer et al. [SWD96].

Miller [Mil86] showed that elliptic curve cryptosystems are immune to index calculus

attacks. In this sense, the same level of security is believed to be provided with smaller

key sizes. This property of Elliptic Curve Cryptography makes it one of the most promising

asymmetric solutions among numerous alternatives. Miller’s comments were supported by

Silverman and Suzuki [SS98] and by Huang et al. [HKT00]. Enge and Gaudry [EG02] and

Gaudry [Gau00] proposed subexponential-time index calculus variants for groups of known

order in which a smoothness concept is available.

Silverman [Sil00] introduced the xedni calculus attack. Jacobson et al. [JKS+00] proved

that xedni calculus is ineffective asymptotically and also provided convincing experimental

evidence that it is extremely inefficient for primes p of the sizes used in cryptography.

Gaudry [Gau04] proposed an index calculus algorithm which does not make use of any

embedding into the Jacobian of a well-suited curve. The algorithm applies to general abelian

varieties. Gaudry investigated the algorithm on the Weil restriction of elliptic curves and

hyperelliptic curves over small degree extension fields. Gaudry showed that the attack can

solve all ECDLPs defined over Fq3 in time O(q10/7), with a small constant and an ECDLP

over Fq4 or a genus 2 problem over Fp2 in O(q14/9) time with a larger constant.

B.2.7 Fixed versus random curves

The task of searching for secure curves consists of several inspections which are related to

known attacks. (see Blake [BSS99, VI.5]) Generating random curves for cryptographic use is

assumed to be superior to using fixed curves in the context of security. However, it takes a

computational effort bounded by O(log8 p), where p is the characteristic of the underlying finite

field, to generate a cryptographically secure random curve. Therefore, some standards (i.e.

ANSI X9.63, FIPS 186-2) enforce the use of fixed curves7 which are said to be immune to known

attacks. Fixed curves have many users with each user associated to a unique ECDLP. Given

that a fixed curve will be in the public domain for extensive periods of time and consequently

a target for attackers, and the fact that there will be multiple users, a natural question to ask

is: “How hard is it to solve subsequent ECDLPs after the first one is solved?”. This is known

as Multi-ECDLP. It is proved by Kuhn and Struik [KS01] that the best strategy for solving k

7These curves are defined over specific fields in which arithmetic is performed faster than arbitrary fields.
NIST also recommends fixed parameters in selecting random curves.

154 Appendix B. Elliptic Curve Cryptography

ECDLPs is to devote all efforts to solving a randomly selected instance. It is claimed by Li et

al. [LLX05] that the knowledge gained through computing many logarithms does not make it

easier to find any other logarithm. This lead to the conclusion that it is safe for many users

to share the same curve having different private keys. A security comparison of fixed versus

random elliptic curves over Fp is provided by Hitchcock et al. [HMCD04]. The security analysis

is performed under the assumption that Pollard’s rho method is the fastest method for solving

ECDLP in accordance with real life scenarios. The conclusion of [HMCD04] is that adding

four bits to the order of a fixed curve avoids general software attacks and an additional six bits

avoids attacks on curves with special properties, giving security similar to that of a randomly

generated curve.

B.3 Cryptographic pairings

Bilinear pairings have found many applications in cryptography, such as the identity-based

encryption scheme of Boneh and Franklin [BF03], the one-round tripartite key agreement

scheme of Joux [Jou04] and the short signature scheme of Boneh et al., see [BLS04c]. Galbraith

gives a comprehensive survey on cryptographic pairings, see [Gal05].

Let Fq be a finite field with q = pn elements where p ≥ 5 is prime and let E be an

elliptic curve defined over Fq. Let O denote the identity on E. Let r be a large prime that

is coprime to q such that r|#E(Fq) and let k be the embedding degree of E with respect to

r. For practical purposes only k > 1 is considered. The base field is denoted by Fq and the

extension field is denoted by Fqk . Let fi,P ∈ Fq(E) be a function with divisor div(fi,P) =

i(P)− ([i]P)− (i− 1)(O).

The Tate pairing Choose a point P ∈ E(Fq)[r]. This implies div(fr,P) = r(P)− r(O). Let

Q ∈ E(Fqk)/rE(Fqk) and let µr denote the group of r-th roots of unity in F∗
qk . The reduced

Tate pairing er [BKLS02] is defined as

er : (P,Q) 7→ fr,P (Q)(q
k
−1)/r ∈ µr.

Miller’s algorithm [Mil04] computes the paired value iteratively by taking advantage of the

fact that fi+j,P can be written as fi+j,P = fi · fj · l/v, where l and v are the lines used in the

computation of [i]P + [j]P = [i+ j]P . That is, l is the line that intersects E at [i]P , [j]P and

−[i + j]P , and v is the vertical line that intersects E at both [i + j]P and −[i + j]P . This

enables the computation of the function f2i,P from fi,P directly by evaluating the lines that

are used in point doubling of P . Similarly, function fi+1,P can be computed from fi,P so that

fr,P can be computed in log2 r steps, as summarised in Algorithm B.3.1.

There are many other optimizations which speed up the computation of the Miller loop

(i.e. the loop in Algorithm B.3.1) in certain settings, including the denominator elimination

technique [BKLS02], the use of efficiently computable endomorphisms [Sco05], [GS08], and loop

shortening techniques [BGHS04], [HSV06], [BGHS07], [MKHO07], [ZZH07], [LLP08], [Ver08].

B.3. Cryptographic pairings 155

Algorithm B.3.1: Miller’s algorithm

input : P ∈ E(Fqk)[r], Q ∈ E(Fqk), r = (rm−1 . . . r1r0)2 with rm−1 = 1.

output: fr,P (Q)← fvar.

R← P , fvar ← 1.1

for i = m− 2 to 0 do2

Compute lines ldbl and vdbl for doubling R.3

R← 2R.4

fvar ← f2
var · ldbl(Q)/vdbl(Q).5

if ri = 1 then6

Compute lines ladd and vadd for adding R and P .7

R← R+ P .8

fvar ← fvar · ladd(Q)/vadd(Q).9

end10

end11

return fvar.12

156 Appendix B. Elliptic Curve Cryptography

Appendix C

Computer algebra scripts

This appendix verifies all formulae used in this thesis. Each section contains Maple scripts

which check the correctness of birational maps and affine/projective formulae, algorithms, and

register allocations.

C.1 Short Weierstrass form

> C:=(x,y)->(y^2-(x^3+a*x+b)):

> a1:=0: a3:=0: a2:=0: a4:=a: a6:=b:

> W:=(u,v)->(v^2+a1*u*v+a3*v-(u^3+a2*u^2+a4*u+a6)):

> CtoW:=(x,y)->(x,y):

> WtoC:=(u,v)->(u,v):

> simplify([W(CtoW(x1,y1))],[C(x1,y1)]); #Check CtoW.

> simplify([C(WtoC(u1,v1))],[W(u1,v1)]); #Check WtoC.

> simplify([(x1,y1)-WtoC(CtoW(x1,y1))],[C(x1,y1)]); #Check CtoW(WtoC).

> simplify([(u1,v1)-CtoW(WtoC(u1,v1))],[W(u1,v1)]); #Check WtoC(CtoW).

> ut,vt:=CtoW(x1,y1): simplify([(x1,-y1)-WtoC(ut,-vt-a1*ut-a3)],[C(x1,y1)]); #Check the negation.

> # Doubling formulae.

> unassign(’x1’,’y1’): u1,v1:=CtoW(x1,y1):

> L:=(3*u1^2+2*a2*u1+a4-a1*v1)/(2*v1+a1*u1+a3): u3:=L^2+a1*L-a2-2*u1: v3:=L*(u1-u3)-v1-a1*u3-a3:

> simplify([W(u3,v3)],[C(x1,y1)]); x3std,y3std:=WtoC(u3,v3):

>

> x3:=x1*(mu-mu^2)+a*sigma: simplify([x3std-x3],[C(x1,y1),mu=(y1+3*c)/(2*y1),sigma=(a-3*x1^2)/(2*y1)^2,delta=

((3*x1*(y1-3*c)*(y1+3*c)-a*(9*x1^2+a))/(2*y1)^3),c^2-b]);

> x3:=x1/4-(9*b*x1)/(4*y1^2)-a*(3*x1^2-a)/(4*y1^2): simplify([x3std-x3],[C(x1,y1)]);

> x3:=(3*x1^2+a)^2/(2*y1)^2-2*x1: simplify([x3std-x3],[C(x1,y1)]);

> y3:=(y1-c)*mu^3+a*delta-c: simplify([y3std-y3],[C(x1,y1),mu=(y1+3*c)/(2*y1),sigma=(a-3*x1^2)/(2*y1)^2,delta

=((3*x1*(y1-3*c)*(y1+3*c)-a*(9*x1^2+a))/(2*y1)^3),c^2-b]);

> y3:=y1/2-(3*b+2*a*x1)/(2*y1)-x3*(3*x1^2+a)/(2*y1): simplify([y3std-y3],[C(x1,y1)]);

> y3:=(3*x1^2+a)/(2*y1)*(x1-x3)-y1: simplify([y3std-y3],[C(x1,y1)]);

> # Addition formulae.

> unassign(’x1’,’y1’,’x2’,’y2’): u1,v1:=CtoW(x1,y1): u2,v2:=CtoW(x2,y2):

> L:=(v2-v1)/(u2-u1): u3:=L^2+a1*L-a2-u1-u2: v3:=L*(u1-u3)-v1-a1*u3-a3:

> simplify([W(u3,v3)],[C(x1,y1),C(x2,y2)]); x3std,y3std:=WtoC(u3,v3):

>

> x3:=(x1^2+x1*x2+x2^2+a)^2/(y1+y2)^2-x1-x2: simplify([x3std-x3],[C(x1,y1),C(x2,y2)]);

> x3:=(y1-y2)^2/(x1-x2)^2-x1-x2: simplify([x3std-x3],[C(x1,y1),C(x2,y2)]);

> x3:=(x1^2+x1*x2+x2^2+a)^2/(y1+y2)^2-x1-x2: simplify([x3std-x3],[C(x1,y1),C(x2,y2)]);

157

158 Appendix C. Computer algebra scripts

> x3:=((x1+x2)*(x1*x2+a)-2*(y1*y2-b))/(x1-x2)^2: simplify([x3std-x3],[C(x1,y1),C(x2,y2)]);

> y3:=1/2*((x1^2+x1*x2+x2^2+a)/(y1+y2)*(x1+x2-2*x3)-y1-y2): simplify([y3std-y3],[C(x1,y1),C(x2,y2)]);

> y3:=(y1-y2)/(x1-x2)*(x1-x3)-y1: simplify([y3std-y3],[C(x1,y1),C(x2,y2)]);

> y3:=1/2*((x1^2+x1*x2+x2^2+a)/(y1+y2)*(x1+x2-2*x3)-y1-y2): simplify([y3std-y3],[C(x1,y1),C(x2,y2)]);

> y3:=(y1-y2)/(x1-x2)*(x1-x3)-y1: simplify([y3std-y3],[C(x1,y1),C(x2,y2)]);

DBL S a00.

> x1:=X1/Z1: y1:=Y1/Z1:

> x3:=x1/4-(9*b*x1)/(4*y1^2)-a*(3*x1^2-a)/(4*y1^2):

> y3:=y1/2-(3*b+2*a*x1)/(2*y1)-x3*(3*x1^2+a)/(2*y1):

>

> DBL_S_a00:=proc(X1,Y1,Z1) local X3,Y3,Z3:

> X3:=2*Y1*Z1*((3*X1^2+a*Z1^2)^2-8*Y1^2*X1*Z1):

> Y3:=(3*X1^2+a*Z1^2)*(12*Y1^2*X1*Z1-(3*X1^2+a*Z1^2)^2)-8*Y1^4*Z1^2:

> Z3:=8*Y1^3*Z1^3:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_S_a00(X1,Y1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1))]); #Check.

>

DBL S a01, 5M + 6S + 1D + 11a.

> DBL_S_a01_opr:=proc(X1,Y1,Z1) local X3,Y3,Z3,A,B,C,D,E,F,G,H:

> A:=2*Y1*Z1: B:=Z1^2: C:=X1^2: D:=3*C+a*B: E:=Y1*A: F:=E^2: G:=(X1+E)^2-C-F: H:=D^2-2*G: X3:=H*A: Y3:=D*

(G-H)-2*F: Z3:=A*A^2:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_S_a01_opr(X1,Y1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1))]); #Check.

>

DBL S a02, 7M + 3S + 10a, assumes a = −3.

> DBL_S_a02_opr:=proc(X1,Y1,Z1) local X3,Y3,Z3,A,B,C,D,E,F,G:

> A:=3*(X1-Z1)*(X1+Z1): B:=2*Y1*Z1: C:=B^2: D:=Y1*B: E:=D^2: F:=2*X1*D: G:=A^2-2*F: X3:=B*G: Y3:=A*(F-G)-

2*E: Z3:=B*C:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_S_a02_opr(X1,Y1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),a+3]); #Check.

>

ADD S a00.

> x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2:

> x3:=(x1^2+x1*x2+x2^2+a)^2/(y1+y2)^2-x1-x2:

> y3:=1/2*((x1^2+x1*x2+x2^2+a)/(y1+y2)*(x1+x2-2*x3)-y1-y2):

>

> ADD_S_a00:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3:

> X3:=(X1*Z2-Z1*X2)*(Z1*Z2*(Y1*Z2-Z1*Y2)^2-(X1*Z2+Z1*X2)*(X1*Z2-Z1*X2)^2):

> Y3:=(Y1*Z2-Z1*Y2)*((2*X1*Z2+Z1*X2)*(X1*Z2-Z1*X2)^2-Z1*Z2*(Y1*Z2-Z1*Y2)^2)-Y1*Z2*(X1*Z2-Z1*X2)^3:

> Z3:=Z1*Z2*(X1*Z2-Z1*X2)^3:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=ADD_S_a00(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

ADD S a01, 12M + 2S + 7a.

C.1. Short Weierstrass form 159

> ADD_S_a01_opr:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3,A,B,C,D,E,F,G,H,J:

> A:=Z1*Z2: B:=X1*Z2: C:=Y1*Z2: D:=B-Z1*X2: E:=C-Z1*Y2: F:=D^2: G:=D*F: H:=F*B: J:=E^2*A+G-2*H: X3:=D*J:

Y3:=E*(H-J)-G*C: Z3:=A*G:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=ADD_S_a01_opr(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

UADD S a00.

> x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2:

> x3:=(x1^2+x1*x2+x2^2+a)^2/(y1+y2)^2-x1-x2:

> y3:=1/2*((x1^2+x1*x2+x2^2+a)/(y1+y2)*(x1+x2-2*x3)-y1-y2):

>

> UADD_S_a00:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3:

> X3:=Z1*Z2*(Y1*Z2+Z1*Y2)*(2*((X1*Z2+Z1*X2)^2-Z1*Z2*(X1*X2-a*Z1*Z2))^2-2*Z1*Z2*(X1*Z2+Z1*X2)*(Y1*Z2+Z1*Y2

)^2):

> Y3:=((X1*Z2+Z1*X2)^2-Z1*Z2*(X1*X2-a*Z1*Z2))*(3*Z1*Z2*(X1*Z2+Z1*X2)*(Y1*Z2+Z1*Y2)^2-2*((X1*Z2+Z1*X2)^2-Z

1*Z2*(X1*X2-a*Z1*Z2))^2)-Z1^2*Z2^2*(Y1*Z2+Z1*Y2)^4:

> Z3:=2*Z1^3*Z2^3*(Y1*Z2+Z1*Y2)^3:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=UADD_S_a00(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

UADD S a01, 11M + 5S + 1D + 16a.

> UADD_S_a01_opr:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3,A,B,C,D,E,F,G,H,J,K,L:

> A:=X1*X2: B:=Z1*Z2: C:=(X1+Z1)*(X2+Z2)-A-B: D:=Y1*Z2+Z1*Y2: E:=B*D: F:=E*D: G:=C^2: H:=F^2: J:=G-B*(A-a

B): K:=((C+F)^2-G-H)/2: L:=2(J^2-K): X3:=E*L: Y3:=J*(K-L)-H: Z3:=2*E*E^2:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=UADD_S_a01_opr(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

DBL Sw a00.

> x1:=X1/Z1^2: y1:=Y1/Z1^3:

> x3:=x1/4-(9*b*x1)/(4*y1^2)-a*(3*x1^2-a)/(4*y1^2):

> y3:=y1/2-(3*b+2*a*x1)/(2*y1)-x3*(3*x1^2+a)/(2*y1):

>

> DBL_Sw_a00:=proc(X1,Y1,Z1) local X3,Y3,Z3:

> X3:=(3*X1^2+a*Z1^4)^2-8*X1*Y1^2:

> Y3:=(3*X1^2+a*Z1^4)*(4*X1*Y1^2-X3)-8*Y1^4:

> Z3:=2*Y1*Z1:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_Sw_a00(X1,Y1,Z1):

> simplify([x3-X3/Z3^2,y3-Y3/Z3^3],[(C(x1,y1))]); #Check.

>

DBL Sw a01, 1M + 8S + 1D + 14a.

> DBL_Sw_a01_opr:=proc(X1,Y1,Z1) local X3,Y3,Z3,A,B,C,D,E,F:

> A:=Z1^2: B:=Y1^2: C:=X1^2: D:=B^2: E:=2*((X1+B)^2-C-D): F:=3*C+a*A^2: X3:=F^2-2*E: Y3:=F*(E-X3)-8*D: Z3

:=(Y1+Z1)^2-B-A:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_Sw_a01_opr(X1,Y1,Z1):

> simplify([x3-X3/Z3^2,y3-Y3/Z3^3],[(C(x1,y1))]); #Check.

>

160 Appendix C. Computer algebra scripts

DBL Sw a02, 3M + 5S + 12a, assumes a = −3.

> DBL_Sw_a02_opr:=proc(X1,Y1,Z1) local X3,Y3,Z3,A,B,C,D:

> A:=Z1^2: B:=Y1^2: C:=X1*B: D:= 3*(X1-A)*(X1+A): X3:=D^2-8*C: Y3:=D*(4*C-X3)-8*B^2: Z3:=(Y1+Z1)^2-B-A:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_Sw_a02_opr(X1,Y1,Z1):

> simplify([x3-X3/Z3^2,y3-Y3/Z3^3],[(C(x1,y1)),a+3]); #Check.

>

ADD Sw a00.

> x1:=X1/Z1^2: y1:=Y1/Z1^3: x2:=X2/Z2^2: y2:=Y2/Z2^3:

> x3:=(x1^2+x1*x2+x2^2+a)^2/(y1+y2)^2-x1-x2:

> y3:=1/2*((x1^2+x1*x2+x2^2+a)/(y1+y2)*(x1+x2-2*x3)-y1-y2):

>

> ADD_Sw_a00:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3:

> X3:=(Y1*Z2^3-Z1^3*Y2)^2-(X1*Z2^2+Z1^2*X2)*(X1*Z2^2-Z1^2*X2)^2:

> Y3:=(Y1*Z2^3-Z1^3*Y2)*(Z1^2*X2*(X1*Z2^2-Z1^2*X2)^2-X3)-Z1^3*Y2*(X1*Z2^2-Z1^2*X2)^3:

> Z3:=Z1*Z2*(X1*Z2^2-Z1^2*X2):

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=ADD_Sw_a00(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3^2,y3-Y3/Z3^3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

ADD Sw a01, 11M + 5S + 11a.

> ADD_Sw_a01_opr:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3,U1,V1,U2,V2,A,B,C,D,E,F,G:

> U2:=Z2^2: V2:=U2*Z2: U1:=Z1^2: V1:=U1*Z1: A:=U1*X2: B:=V1*Y2: C:=X1*U2-A: D:=Y1*V2-B: E:=C^2: F:=C*E: G

:=A*E: X3:=D^2-F-2*G: Y3:=D*(G-X3)-B*F: Z3:=C*((Z1+Z2)^2-U1-U2)/2:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=ADD_Sw_a01_opr(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3^2,y3-Y3/Z3^3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

UADD Sw a00.

> x1:=X1/Z1^2: y1:=Y1/Z1^3: x2:=X2/Z2^2: y2:=Y2/Z2^3:

> x3:=(x1^2+x1*x2+x2^2+a)^2/(y1+y2)^2-x1-x2:

> y3:=1/2*((x1^2+x1*x2+x2^2+a)/(y1+y2)*(x1+x2-2*x3)-y1-y2):

>

> UADD_Sw_a00:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3:

> X3:=((X1*Z2^2+Z1^2*X2)^2-Z1^2*Z2^2*(X1*X2-a*Z1^2*Z2^2))^2-(X1*Z2^2+Z1^2*X2)*(Y1*Z2^3+Z1^3*Y2)^2:

> Y3:=(((X1*Z2^2+Z1^2*X2)^2-Z1^2*Z2^2*(X1*X2-a*Z1^2*Z2^2))*((X1*Z2^2+Z1^2*X2)*(Y1*Z2^3+Z1^3*Y2)^2-2*X3)-(

Y1*Z2^3+Z1^3*Y2)^4)/2:

> Z3:=Z1*Z2*(Y1*Z2^3+Z1^3*Y2):

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=UADD_Sw_a00(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3^2,y3-Y3/Z3^3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

UADD Sw a01, 8M + 10S + 1D + 24a.

> UADD_Sw_a01_opr:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3,U1,V1,U2,V2,A,B,C,D,E,F,G,H,J,K:

> U2:=Z2^2: V2:=U2*Z2: U1:=Z1^2: V1:=U1*Z1: A:=X1*X2: B:=((Z1+Z2)^2-U1-U2)/2: C:=B^2: D:=(X1+U1)*(X2+U2)-

A-C: E:=Y1*V2+V1*Y2: F:=E^2: G:=D^2: H:=F^2: J:=G-C*(A-a*C): K:=((F+D)^2-G-H)/2: X3:=J^2-K: Y3:=(J*(K-2*X3)-H)

/2: Z3:=((B+E)^2-C-F)/2:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=UADD_Sw_a01_opr(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3^2,y3-Y3/Z3^3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

C.2. Extended Jacobi quartic form 161

C.2 Extended Jacobi quartic form

> C:=(x,y)->(y^2-(d*x^4+2*a*x^2+1)):

> a1:=0: a3:=0: a6:=0: a2:=-4*a: a4:=4*(a^2-d):

> W:=(u,v)->(v^2+a1*u*v+a3*v-(u^3+a2*u^2+a4*u+a6)):

> CtoW:=(x,y)->((2*y+2)/x^2+2*a,(4*y+4)/x^3+4*a/x):

> WtoC:=(u,v)->(2*u/v,(2*u-4*a)*u^2/v^2-1):

> simplify([W(CtoW(x1,y1))],[C(x1,y1)]); #Check CtoW.

> simplify([C(WtoC(u1,v1))],[W(u1,v1)]); #Check WtoC.

> simplify([(x1,y1)-WtoC(CtoW(x1,y1))],[C(x1,y1)]); #Check CtoW(WtoC).

> simplify([(u1,v1)-CtoW(WtoC(u1,v1))],[W(u1,v1)]); #Check WtoC(CtoW).

> ut,vt:=CtoW(x1,y1): simplify([(-x1,y1)-WtoC(ut,-vt-a1*ut-a3)],[C(x1,y1)]); #Check the negation.

> # Doubling formulae.

> unassign(’x1’,’y1’): u1,v1:=CtoW(x1,y1):

> L:=(3*u1^2+2*a2*u1+a4-a1*v1)/(2*v1+a1*u1+a3): u3:=L^2+a1*L-a2-2*u1: v3:=L*(u1-u3)-v1-a1*u3-a3:

> simplify([W(u3,v3)],[C(x1,y1)]); x3std,y3std:=WtoC(u3,v3):

>

> x3:=(2*y1/(2-y1^2+2*a*x1^2))*x1: simplify([x3std-x3],[C(x1,y1)]);

> x3:=2*x1*y1/(1-d*x1^4): simplify([x3std-x3],[C(x1,y1)]);

> y3:=(2*y1/(2-y1^2+2*a*x1^2))*((2*y1/(2-y1^2+2*a*x1^2))-y1)-1: simplify([y3std-y3],[C(x1,y1)]);

> y3:=2*y1^4/(1-d*x1^4)^2-a*x3^2-1: simplify([y3std-y3],[C(x1,y1)]);

> y3:=2*y1^2*(d*x1^4+2*x1^2+1)/(1-d*x1^4)^2-x3^2-1: simplify([y3std-y3],[C(x1,y1)]);

> # Addition formulae.

> unassign(’x1’,’y1’,’x2’,’y2’): u1,v1:=CtoW(x1,y1): u2,v2:=CtoW(x2,y2):

> L:=(v2-v1)/(u2-u1): u3:=L^2+a1*L-a2-u1-u2: v3:=L*(u1-u3)-v1-a1*u3-a3:

> simplify([W(u3,v3)],[C(x1,y1),C(x2,y2)]); x3std,y3std:=WtoC(u3,v3):

>

> x3:=(x1^2-x2^2)/(x1*y2-y1*x2): simplify([x3std-x3],[C(x1,y1),C(x2,y2)]);

> x3:=(x1*y2+y1*x2)/(1-d*x1^2*x2^2): simplify([x3std-x3],[C(x1,y1),C(x2,y2)]);

> y3:=(y1*y2+2*a*x1*x2+s*x1^2+s*x2^2)/(1-s*x1*x2)^2-s*x3^2: simplify([y3std-y3],[C(x1,y1),C(x2,y2),d-s^2]);

> y3:=((y1*y2+2*a*x1*x2)*(1+d*x1^2*x2^2)+2*d*x1*x2*(x1^2+x2^2))/(1-d*x1^2*x2^2)^2: simplify([y3std-y3],[C(x1,

y1),C(x2,y2)]);

> y3:=((x1^2-x2^2)^2-(x1*y2-y1*x2)*(x1^3*y2-y1*x2^3))/(x1*x2*(x1*y2-y1*x2)^2): simplify([y3std-y3],[C(x1,y1),

C(x2,y2)]);

> y3:=(x1-x2)*(1+s*x1*x2)*(y1+y2+s*x1^2*y2+s*y1*x2^2)/((x1*y2-y1*x2)*(1-d*x1^2*x2^2))-s*x3^2-1: simplify([y3s

td-y3],[C(x1,y1),C(x2,y2),d-s^2]);

> y3:=(1+s*x1*x2)*(x1*y1-y2*x2+s*x1^3*y2-s*y1*x2^3)/((x1*y2-y1*x2)*(1-d*x1^2*x2^2))-s*x3^2: simplify([y3std-y

3],[C(x1,y1),C(x2,y2),d-s^2]);

> y3:=(x1-x2)*(y1+y2+d*x1*x2*(x1^2*y2+y1*x2^2))/((x1*y2-y1*x2)*(1-d*x1^2*x2^2))-1: simplify([y3std-y3],[C(x1,

y1),C(x2,y2)]);

> y3:=(2*(x1*y1-x2*y2)-(x1*y2-y1*x2)*(y1*y2+2*a*x1*x2))/((x1*y2-y1*x2)*(1-d*x1^2*x2^2)): simplify([y3std-y3],

[C(x1,y1),C(x2,y2)]);

> y3:=(x1-x2)^2/(x1*y2-y1*x2)^2*(y1*y2-2*a*x1*x2+1+d*x1^2*x2^2)-1: simplify([y3std-y3],[C(x1,y1),C(x2,y2)]);

> y3:=((x1^2+x2^2)*(y1*y2-2*a*x1*x2)-2*x1*x2*(1+d*x1^2*x2^2))/(x1*y2-y1*x2)^2: simplify([y3std-y3],[C(x1,y1),

C(x2,y2)]);

DBL Q a00.

> x1:=X1/Z1: y1:=Y1/Z1:

> x3:=(2*y1/(2-y1^2+2*a*x1^2))*x1:

> y3:=(2*y1/(2-y1^2+2*a*x1^2))*((2*y1/(2-y1^2+2*a*x1^2))-y1)-1:

>

> DBL_Q_a00:=proc(X1,Y1,Z1) local X3,Y3,Z3:

> X3:=2*X1*Y1*(2*Z1^2-Y1^2+2*a*X1^2):

> Y3:=2*Y1^2*(Y1^2-2*a*X1^2)-(2*Z1^2-Y1^2+2*a*X1^2)^2:

> Z3:=(2*Z1^2-Y1^2+2*a*X1^2)^2:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_Q_a00(X1,Y1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1))]); #Check.

>

162 Appendix C. Computer algebra scripts

DBL Q a01, 2M + 5S + 7a, assumes a = −1/2.

> DBL_Q_a01_opr:=proc(X1,Y1,Z1) local X3,Y3,Z3,A,B,C,D,E,F:

> A:=2*Z1^2: B:=X1^2: C:=Y1^2: D:=B+C: E:=(X1+Y1)^2-D: F:=A-D: Z3:=F^2: X3:=E*F: Y3:=2*C*D-Z3:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_Q_a01_opr(X1,Y1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),a+1/2]); #Check.

>

> DBL_Q_a01_reg:=proc(X1,Y1,Z1) local X3,Y3,Z3,t1:

> t1:=X1+Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: t1:=t1^2: X3:=X3+Y3: t1:=t1-X3: Z3:=2*Z3: Y3:=X3*Y3: Y3:=2*Y3:

Z3:=Z3-X3: X3:=t1*Z3: Z3:=Z3^2: Y3:=Y3-Z3:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_Q_a01_reg(X1,Y1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),a+1/2]); #Check.

>

DBL Q a02, 3M + 4S + 4a, assumes a = −1/2.

> DBL_Q_a02_opr:=proc(X1,Y1,Z1) local X3,Y3,Z3,A,B,C,D,E,F:

> A:=Z1^2: B:=X1^2: C:=Y1^2: D:=(C+B)/2: E:=A-D: Z3:=E^2: X3:=X1*Y1*E: Y3:=C*D-Z3:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_Q_a02_opr(X1,Y1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),a+1/2]); #Check.

>

> DBL_Q_a02_reg:=proc(X1,Y1,Z1) local X3,Y3,Z3,t1:

> t1:=X1*Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: X3:=X3+Y3: X3:=X3/2: Y3:=Y3*X3: X3:=Z3-X3: Z3:=X3^2: Y3:=Y3-Z3

: X3:=t1*X3:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_Q_a02_reg(X1,Y1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),a+1/2]); #Check.

>

DBL Q a03, 2M + 5S + 1D + 8a, assumes k = −2a.

> DBL_Q_a03_opr:=proc(X1,Y1,Z1) local X3,Y3,Z3,A,B,C,D,E,F,G,H:

> A:=2*Z1^2: B:=X1^2: C:=Y1^2: D:=B+C: E:=(X1+Y1)^2-D: F:=2*a*B: G:=C-F: H:=A-G: Z3:=H^2: X3:=E*H: Y3:=2*

C*G-Z3:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_Q_a03_opr(X1,Y1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),k+2*a]); #Check.

>

> DBL_Q_a03_reg:=proc(X1,Y1,Z1) local X3,Y3,Z3,t1:

> t1:=X1+Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: t1:=t1^2: t1:=t1-X3: t1:=t1-Y3: X3:=k*X3: X3:=Y3+X3: Z3:=2*Z3:

Y3:=X3*Y3: Y3:=2*Y3: Z3:=Z3-X3: X3:=t1*Z3: Z3:=Z3^2: Y3:=Y3-Z3:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_Q_a03_reg(X1,Y1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),k+2*a]); #Check.

>

DBL Q a04, 3M + 4S + 1D + 4a, assumes k = −2a.

> DBL_Q_a04_opr:=proc(X1,Y1,Z1) local X3,Y3,Z3,A,B,C,D,E,F,G,H:

> A:=Z1^2: B:=X1^2: C:=Y1^2: D:=(C-2*a*B)/2: E:=A-D: Z3:=E^2: X3:=X1*Y1*E: Y3:=C*D-Z3:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_Q_a04_opr(X1,Y1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),k+2*a]); #Check.

>

C.2. Extended Jacobi quartic form 163

> DBL_Q_a04_reg:=proc(X1,Y1,Z1) local X3,Y3,Z3,t1:

> t1:=X1*Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: X3:=k*X3: X3:=X3+Y3: X3:=X3/2: Y3:=Y3*X3: X3:=Z3-X3: Z3:=X3^2:

Y3:=Y3-Z3: X3:=t1*X3:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_Q_a04_reg(X1,Y1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),k+2*a]); #Check.

>

ADD Q a00.

> x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2:

> x3:=(x1*y2+y1*x2)/(1-d*x1^2*x2^2):

> y3:=((y1*y2+2*a*x1*x2)*(1+d*x1^2*x2^2)+2*d*x1*x2*(x1^2+x2^2))/(1-d*x1^2*x2^2)^2:

>

> ADD_Q_a00:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3:

> X3:=(X1*Y2-Y1*X2)*(X1^2*Z2^2-Z1^2*X2^2):

> Y3:=(Y1*Y2-2*a*X1*X2)*(X1^2*Z2^2+Z1^2*X2^2)-2*X1*X2*(Z1^2*Z2^2+d*X1^2*X2^2):

> Z3:=Z1*Z2*(X1*Y2-Y1*X2)^2:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=ADD_Q_a00(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

ADD Q a01, 10M + 5S + 2D + 10a.

> ADD_Q_a01_opr:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3,A,B,C,D,E,F,G,H,J,K,L:

> A:=Z1*Z2: B:=Y1*Y2: C:=X1*X2: D:=(X1-Y1)*(X2+Y2)+B-C: F:=(X1*Z2)^2: G:=(Z1*X2)^2: X3:=D*(F-G): Y3:=(B-(

2*a)*C)*(F+G)-2*C*(A^2+d*C^2): Z3:=A*D^2:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=ADD_Q_a01_opr(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

UADD Q a00.

> x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2:

> x3:=(x1*y2+y1*x2)/(1-d*x1^2*x2^2):

> y3:=((y1*y2+2*a*x1*x2)*(1+d*x1^2*x2^2)+2*d*x1*x2*(x1^2+x2^2))/(1-d*x1^2*x2^2)^2:

>

> UADD_Q_a00:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3:

> X3:=Z1*Z2*(X1*Y2+Y1*X2)*(Z1^2*Z2^2-d*X1^2*X2^2):

> Y3:=Z1*Z2*(Y1*Y2+2*a*X1*X2)*(Z1^2*Z2^2+d*X1^2*X2^2)+2*d*X1*X2*Z1*Z2*(X1^2*Z2^2+Z1^2*X2^2):

> Z3:=(Z1^2*Z2^2-d*X1^2*X2^2)^2:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=UADD_Q_a00(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

UADD Q a01, 10M + 7S + 3D + 17a.

> UADD_Q_a01_opr:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3,A,B,C,D,E,F,G,H,J,K,L,M,N,P:

> A:=Z1*Z2: B:=Y1*Y2: C:=X1*X2: D:=(X1+Y1)*(X2+Y2)-B-C: F:=(X1*Z2)^2: G:=(Z1*X2)^2: H:=A^2: J:=C^2: K:=d*

J: L:=H-K: M:=L^2: N:=(A+L)^2-H-M: P:=(A+C)^2-H-J: X3:=D*N: Y3:=2*A*(B+(2*a)*C)*(H+K)+(2*d)*P*(F+G): Z3:=2*M:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=UADD_Q_a01_opr(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

UADD Q a02, 12M + 5S + 3D + 9a.

164 Appendix C. Computer algebra scripts

> UADD_Q_a02_opr:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3,A,B,C,D,E,F,G,H,J,K,L,M:

> A:=X1*Z2: B:=Y1*Z2: C:=Z1*X2: D:=Z1*Y2: E:=A*C: F:=B*D: G:=(A+B)*(C+D)-E-F: H:=Z1*Z2: J:=X1*X2: K:=H^2:

L:=d*J^2: M:=K-L: X3:=G*M: Z3:=M^2: Y3:=(K+L)*(F+(2*a)*E)+(2*d)*E*(A^2+C^2):

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=UADD_Q_a02_opr(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

DBL Qe a00.

> x1:=X1/Z1: y1:=Y1/Z1: T1:=X1^2/Z1:

> x3:=(2*y1/(2-y1^2+2*a*x1^2))*x1:

> y3:=(2*y1/(2-y1^2+2*a*x1^2))*((2*y1/(2-y1^2+2*a*x1^2))-y1)-1:

>

> DBL_Qe_a00:=proc(X1,Y1,Z1,T1) local X3,Y3,Z3,T3:

> X3:=2*X1*Y1*(2*Z1^2-Y1^2+2*a*X1^2):

> Y3:=2*Y1^2*(Y1^2-2*a*X1^2)-(2*Z1^2-Y1^2+2*a*X1^2)^2:

> T3:=(2*X1*Y1)^2:

> Z3:=(2*Z1^2-Y1^2+2*a*X1^2)^2:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=DBL_Qe_a00(X1,Y1,Z1,T1):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1))]); #Check.

>

DBL Qe a01, 8S + 13a, assumes a = −1/2.

> DBL_Qe_a01_reg:=proc(X1,Y1,Z1,T1) local X3,Y3,Z3,T3,t1:

> T3:=X1+Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: T3:=T3^2: X3:=X3+Y3: T3:=T3-X3: Z3:=2*Z3: Z3:=Z3-X3: X3:=T3+Z3

: T3:=T3^2: Z3:=Z3^2: X3:=X3^2: X3:=X3-T3: X3:=X3-Z3: Z3:=2*Z3: Y3:=2*Y3: Y3:=Y3^2: Y3:=Y3+T3: Y3:=Y3-Z3: T3:=

2*T3:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=DBL_Qe_a01_reg(X1,Y1,Z1,T1):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),a+1/2]); #Check.

>

DBL Qe a02, 1M + 7S + 9a, assumes a = −1/2.

> DBL_Qe_a02_reg:=proc(X1,Y1,Z1,T1) local X3,Y3,Z3,T3,t1:

> T3:=X1+Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: T3:=T3^2: X3:=X3+Y3: T3:=T3-X3: Z3:=2*Z3: Z3:=Z3-X3: X3:=T3*Z3

: Z3:=Z3^2: T3:=T3^2: Y3:=2*Y3: Y3:=Y3^2: Y3:=Y3+T3: Y3:=Y3/2: Y3:=Y3-Z3:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=DBL_Qe_a02_reg(X1,Y1,Z1,T1):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),a+1/2]); #Check.

>

DBL Qe a03, 2M + 6S + 6a, assumes a = −1/2.

> DBL_Qe_a03_reg:=proc(X1,Y1,Z1,T1) local X3,Y3,Z3,T3,t1:

> T3:=X1*Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: X3:=X3+Y3: X3:=X3/2: Z3:=Z3-X3: X3:=T3*Z3: Z3:=Z3^2: T3:=T3^2:

Y3:=Y3^2: Y3:=Y3+T3: Y3:=Y3/2: Y3:=Y3-Z3:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=DBL_Qe_a03_reg(X1,Y1,Z1,T1):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),a+1/2]); #Check.

>

DBL Qe a04, 3M + 5S + 4a, assumes a = −1/2.

C.2. Extended Jacobi quartic form 165

> DBL_Qe_a04_reg:=proc(X1,Y1,Z1,T1) local X3,Y3,Z3,T3,t1:

> T3:=X1*Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: X3:=X3+Y3: X3:=X3/2: Y3:=Y3*X3: X3:=Z3-X3: Z3:=X3^2: Y3:=Y3-Z3

: X3:=X3*T3: T3:=T3^2:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=DBL_Qe_a04_reg(X1,Y1,Z1,T1):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),a+1/2]); #Check.

>

DBL Qe a05, 8S + 2D + 14a, assumes k = −2a.

> DBL_Qe_a05_opr:=proc(X1,Y1,Z1,T1) local X3,Y3,Z3,T3,A,B,C,D,E,F,G,H:

> A:=Z1^2: B:=Y1^2: C:=X1^2: D:=B+C: E:=(X1+Y1)^2-D: F:=2*A-B+(2*a)*C: G:=E^2: H:=F^2: X3:=(E+F)^2-G-H: T

3:=2*G: Z3:=2*H: Y3:=(2*B)^2-(2*a)*G-Z3:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=DBL_Qe_a05_opr(X1,Y1,Z1,T1):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),k+2*a]); #Check.

>

> DBL_Qe_a05_reg:=proc(X1,Y1,Z1,T1) local X3,Y3,Z3,T3,t1:

> T3:=X1+Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: T3:=T3^2: T3:=T3-X3: t1:=T3-Y3: X3:=k*X3: X3:=X3+Y3: Z3:=2*Z3:

Z3:=Z3-X3: T3:=t1^2: X3:=t1+Z3: X3:=X3^2: Z3:=Z3^2: X3:=X3-T3: X3:=X3-Z3: Z3:=2*Z3: t1:=k*T3: T3:=2*T3: Y3:=2

*Y3: Y3:=Y3^2: Y3:=Y3+t1: Y3:=Y3-Z3:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=DBL_Qe_a05_reg(X1,Y1,Z1,T1):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),k+2*a]); #Check.

>

DBL Qe a06, 1M + 7S + 1D + 12a, assumes k = −2a.

> DBL_Qe_a06_reg:=proc(X1,Y1,Z1,T1) local X3,Y3,Z3,T3,t1:

> t1:=X1+Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: t1:=t1^2: t1:=t1-X3: t1:=t1-Y3: X3:=k*X3: X3:=X3+Y3: Z3:=2*Z3:

Y3:=X3*Y3: Z3:=Z3-X3: T3:=t1^2: X3:=t1+Z3: Z3:=Z3^2: Y3:=2*Y3: Y3:=Y3-Z3: X3:=X3^2: X3:=X3-T3: X3:=X3-Z3: X3:

=X3/2:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=DBL_Qe_a06_reg(X1,Y1,Z1,T1):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),k+2*a]); #Check.

>

DBL Qe a07, 1M + 7S + 2D + 10a, assumes k = −2a.

> DBL_Qe_a07_reg:=proc(X1,Y1,Z1,T1) local X3,Y3,Z3,T3,t1:

> t1:=X1+Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: t1:=t1^2: t1:=t1-X3: t1:=t1-Y3: X3:=k*X3: X3:=X3+Y3: Z3:=2*Z3:

Z3:=Z3-X3: X3:=t1*Z3: T3:=t1^2: Z3:=Z3^2: Y3:=2*Y3: Y3:=Y3^2: t1:=k*T3: Y3:=Y3+t1: Y3:=Y3/2: Y3:=Y3-Z3:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=DBL_Qe_a07_reg(X1,Y1,Z1,T1):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),k+2*a]); #Check.

>

DBL Qe a08, 2M + 6S + 1D + 8a, assumes k = −2a.

> DBL_Qe_a08_reg:=proc(X1,Y1,Z1,T1) local X3,Y3,Z3,T3,t1:

> T3:=X1+Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: T3:=T3^2: T3:=T3-X3: T3:=T3-Y3: X3:=k*X3: X3:=Y3+X3: Z3:=2*Z3:

Y3:=X3*Y3: Y3:=2*Y3: Z3:=Z3-X3: X3:=T3*Z3: Z3:=Z3^2: Y3:=Y3-Z3: T3:=T3^2:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=DBL_Qe_a08_reg(X1,Y1,Z1,T1):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),k+2*a]); #Check.

>

DBL Qe a09, 2M + 6S + 2D + 6a, assumes k = −2a.

166 Appendix C. Computer algebra scripts

> DBL_Qe_a09_reg:=proc(X1,Y1,Z1,T1) local X3,Y3,Z3,T3,t1:

> t1:=X1*Y1: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: X3:=k*X3: X3:=X3+Y3: X3:=X3/2: Z3:=Z3-X3: X3:=t1*Z3: Z3:=Z3^2:

T3:=t1^2: Y3:=Y3^2: t1:=k*T3: Y3:=Y3+t1: Y3:=Y3/2: Y3:=Y3-Z3:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=DBL_Qe_a09_reg(X1,Y1,Z1,T1):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),k+2*a]); #Check.

>

DBL Qe a10, 3M + 5S + 1D + 4a, assumes k = −2a.

> DBL_Qe_a10_opr:=proc(X1,Y1,Z1,T1) local X3,Y3,Z3,T3,A,B,C,D,E,F:

> A:=Z1^2: B:=Y1^2: C:=X1^2: D:=X1*Y1: E:=(B-(2*a)*C)/2: F:=A-E: T3:=D^2: Z3:=F^2: X3:=D*F: Y3:=B*E-Z3:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=DBL_Qe_a10_opr(X1,Y1,Z1,T1):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),k+2*a]); #Check.

>

> DBL_Qe_a10_reg:=proc(X1,Y1,Z1,T1) local X3,Y3,Z3,T3,t1:

> T3:=X1*Y1: X3:=X1^2:Y3:=Y1^2: Z3:=Z1^2: X3:=k*X3: X3:=X3+Y3: X3:=X3/2: Y3:=Y3*X3: X3:=Z3-X3: Z3:=X3^2:

Y3:=Y3-Z3: X3:=T3*X3: T3:=T3^2:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=DBL_Qe_a10_reg(X1,Y1,Z1,T1):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),k+2*a]); #Check.

>

ADD Qe a00.

> x1:=X1/Z1: y1:=Y1/Z1: T1:=X1^2/Z1: x2:=X2/Z2: y2:=Y2/Z2: T2:=X2^2/Z2:

> x3:=(x1*y2+y1*x2)/(1-d*x1^2*x2^2):

> y3:=((y1*y2+2*a*x1*x2)*(1+d*x1^2*x2^2)+2*d*x1*x2*(x1^2+x2^2))/(1-d*x1^2*x2^2)^2:

>

> ADD_Qe_a00:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3:

> X3:=(X1*Y2-Y1*X2)*(T1*Z2-Z1*T2):

> Y3:=(Y1*Y2-2*a*X1*X2)*(T1*Z2+Z1*T2)-2*X1*X2*(Z1*Z2+d*T1*T2):

> T3:=(T1*Z2-Z1*T2)^2:

> Z3:=(X1*Y2-Y1*X2)^2:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=ADD_Qe_a00(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

ADD Qe b00.

> x1:=X1/Z1: y1:=Y1/Z1: T1:=X1^2/Z1: x2:=X2/Z2: y2:=Y2/Z2: T2:=X2^2/Z2:

> x3:=(x1*y2+y1*x2)/(1-d*x1^2*x2^2):

> y3:=((y1*y2+2*a*x1*x2)*(1+d*x1^2*x2^2)+2*d*x1*x2*(x1^2+x2^2))/(1-d*x1^2*x2^2)^2:

>

> ADD_Qe_b00:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3:

> X3:=(X1*Y2-Y1*X2)*(T1*Z2-Z1*T2):

> Y3:=(T1*Z2+Z1*T2-2*X1*X2)*(Y1*Y2-2*a*X1*X2+Z1*Z2+d*T1*T2)-(X1*Y2-Y1*X2)^2:

> T3:=(T1*Z2-Z1*T2)^2:

> Z3:=(X1*Y2-Y1*X2)^2:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=ADD_Qe_b00(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

ADD Qe b01, 7M + 3S + 2D + 19a, assumes a = −1/2.

C.2. Extended Jacobi quartic form 167

> ADD_Qe_b01_reg:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3,t1,t2,t3:

> t1:=T1+Z1: t2:=d*T2: t2:=t2+Z2: t1:=t1*t2: t2:=Z1*T2: T3:=T1*Z2: t1:=t1-T3: t3:=d*t2: t1:=t1-t3: t3:=T3

+t2: T3:=T3-t2: Z3:=X1-Y1: t2:=X2+Y2: Z3:=Z3*t2: t2:=X1*X2: Y3:=Y1*Y2: Z3:=Z3-t2: Z3:=Z3+Y3: Y3:=Y3+t1: t1:=2*

t2: t1:=t3-t1: Y3:=Y3+t2: Y3:=t1*Y3: X3:=Z3+T3: X3:=X3^2: Z3:=Z3^2: Y3:=Y3-Z3: X3:=X3-Z3: T3:=T3^2: X3:=X3-T3:

X3:=X3/2:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=ADD_Qe_b01_reg(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2)),a+1/2]); #Check.

>

ADD Qe b02, 8M + 2S + 2D + 15a, assumes a = −1/2.

> ADD_Qe_b02_reg:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3,t1,t2,t3:

> t1:=T1+Z1: t2:=d*T2: t2:=t2+Z2: t1:=t1*t2: t2:=Z1*T2: T3:=T1*Z2: t1:=t1-T3: t3:=d*t2: t1:=t1-t3: t3:=T3

+t2: T3:=T3-t2: Z3:=X1-Y1: t2:=X2+Y2: Z3:=Z3*t2: t2:=X1*X2: Y3:=Y1*Y2: Z3:=Z3-t2: Z3:=Z3+Y3: Y3:=Y3+t1: t1:=2*

t2: t1:=t3-t1: Y3:=Y3+t2: Y3:=t1*Y3: X3:=Z3*T3: Z3:=Z3^2: Y3:=Y3-Z3: T3:=T3^2:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=ADD_Qe_b02_reg(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2)),a+1/2]); #Check.

>

ADD Qe b03, 7M + 3S + 3D + 19a, assumes k = −2a.

> ADD_Qe_b03_opr:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3,A,B,C,D,E,F:

> A:=T1*Z2: B:=Z1*T2: C:=X1*X2: D:=Y1*Y2: E:=(X1-Y1)*(X2+Y2)-C+D: F:=A-B: Z3:=E^2: T3:=F^2: X3:=((E+F)^2-

T3-Z3)/2: Y3:=(A+B-2*C)*(D-(2*a)*C+(Z1+T1)*(Z2+d*T2)-A-d*B)-Z3:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=ADD_Qe_b03_opr(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2)),k+2*a]); #Check.

>

> ADD_Qe_b03_reg:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3,t1,t2,t3:

> t1:=T1+Z1: t2:=d*T2: t2:=t2+Z2: t1:=t1*t2: t2:=Z1*T2: T3:=T1*Z2: t1:=t1-T3: t3:=d*t2: t1:=t1-t3: t3:=T3

+t2: T3:=T3-t2: Z3:=X1-Y1: t2:=X2+Y2: Z3:=Z3*t2: t2:=X1*X2: Y3:=Y1*Y2: Z3:=Z3-t2: Z3:=Z3+Y3: Y3:=Y3+t1: t1:=2*

t2: t1:=t3-t1: t2:=k*t2: Y3:=Y3+t2: Y3:=t1*Y3: X3:=Z3+T3: X3:=X3^2: Z3:=Z3^2: Y3:=Y3-Z3: X3:=X3-Z3: T3:=T3^2:

X3:=X3-T3: X3:=X3/2:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=ADD_Qe_b03_reg(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2)),k+2*a]); #Check.

>

ADD Qe b04, 8M + 2S + 3D + 15a, assumes k = −2a.

> ADD_Qe_b04_opr:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3,A,B,C,D,E,F:

> A:=T1*Z2: B:=Z1*T2: C:=X1*X2: D:=Y1*Y2: E:=(X1-Y1)*(X2+Y2)-C+D: F:=A-B: Z3:=E^2: T3:=F^2: X3:=E*F: Y3:=

(A+B-2*C)*(D-(2*a)*C+(Z1+T1)*(Z2+d*T2)-A-d*B)-Z3:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=ADD_Qe_b04_opr(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2)),k+2*a]); #Check.

>

> ADD_Qe_b04_reg:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3,t1,t2,t3:

> t1:=T1+Z1: t2:=d*T2: t2:=t2+Z2: t1:=t1*t2: t2:=Z1*T2: T3:=T1*Z2: t1:=t1-T3: t3:=d*t2: t1:=t1-t3: t3:=T3

+t2: T3:=T3-t2: Z3:=X1-Y1: t2:=X2+Y2: Z3:=Z3*t2: t2:=X1*X2: Y3:=Y1*Y2: Z3:=Z3-t2: Z3:=Z3+Y3: Y3:=Y3+t1: t1:=2*

t2: t1:=t3-t1: t2:=k*t2: Y3:=Y3+t2: Y3:=t1*Y3: X3:=Z3*T3: Z3:=Z3^2: Y3:=Y3-Z3: T3:=T3^2:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=ADD_Qe_b04_reg(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2)),k+2*a]); #Check.

>

168 Appendix C. Computer algebra scripts

UADD Qe a00.

> x1:=X1/Z1: y1:=Y1/Z1: T1:=X1^2/Z1: x2:=X2/Z2: y2:=Y2/Z2: T2:=X2^2/Z2:

> x3:=(x1*y2+y1*x2)/(1-d*x1^2*x2^2):

> y3:=((y1*y2+2*a*x1*x2)*(1+d*x1^2*x2^2)+2*d*x1*x2*(x1^2+x2^2))/(1-d*x1^2*x2^2)^2:

>

> UADD_Qe_a00:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3:

> X3:=(X1*Y2+Y1*X2)*(Z1*Z2-d*T1*T2):

> Y3:=(Y1*Y2+2*a*X1*X2)*(Z1*Z2+d*T1*T2)+2*d*X1*X2*(T1*Z2+Z1*T2):

> T3:=(X1*Y2+Y1*X2)^2:

> Z3:=(Z1*Z2-d*T1*T2)^2:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=UADD_Qe_a00(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

UADD Qe a01, 8M + 3S + 2D + 17a, assumes a = −1/2, h = 2d.

> UADD_Qe_a01_reg:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3,t1,t2,t3:

> t1:=T1+Z1: t2:=T2+Z2: T3:=T1*T2: Z3:=Z1*Z2: t1:=t1*t2: t1:=t1-T3: t1:=t1-Z3: T3:=d*T3: t2:=Z3+T3: Z3:=Z

3-T3: T3:=X1+Y1: t3:=X2+Y2: X3:=X1*X2: Y3:=Y1*Y2: T3:=T3*t3: T3:=T3-X3: T3:=T3-Y3: t1:=h*t1: t1:=t1*X3: Y3:=Y3

-X3: Y3:=Y3*t2: Y3:=Y3+t1: X3:=Z3+T3: X3:=X3^2: T3:=T3^2: Z3:=Z3^2: X3:=X3-T3: X3:=X3-Z3: X3:=X3/2:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=UADD_Qe_a01_reg(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2)),a+1/2, h-2*d]); #Check.

>

UADD Qe a02, 9M + 2S + 2D + 13a, assumes a = −1/2, h = 2d.

> UADD_Qe_a02_reg:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3,t1,t2,t3:

> t1:=T1+Z1: t2:=T2+Z2: T3:=T1*T2: Z3:=Z1*Z2: t1:=t1*t2: t1:=t1-T3: t1:=t1-Z3: T3:=d*T3: t2:=Z3+T3: Z3:=Z

3-T3: T3:=X1+Y1: t3:=X2+Y2: X3:=X1*X2: Y3:=Y1*Y2: T3:=T3*t3: T3:=T3-X3: T3:=T3-Y3: t1:=h*t1: t1:=t1*X3: Y3:=Y3

-X3: Y3:=Y3*t2: Y3:=Y3+t1: X3:=Z3*T3: T3:=T3^2: Z3:=Z3^2:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=UADD_Qe_a02_reg(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2)),a+1/2, h-2*d]); #Check.

>

UADD Qe a03, 8M + 3S + 3D + 17a, assumes k = −2a, h = 2d.

> UADD_Qe_a03_opr:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3,A,B,C,D,E,F,G:

> A:=Z1*Z2: B:=T1*T2: C:=X1*X2: D:=Y1*Y2: E:=d*B: F:=(X1+Y1)*(X2+Y2)-C-D: G:=A-E: Z3:=G^2: T3:=F^2: X3:=(

(F+G)^2-T3-Z3)/2: Y3:=(D+(2*a)*C)*(A+E)+(2*d)*C*((T1+Z1)*(T2+Z2)-A-B):

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=UADD_Qe_a03_opr(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2)),k+2*a, h-2*d]); #Check.

>

> UADD_Qe_a03_reg:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3,t1,t2,t3:

> t1:=T1+Z1: t2:=T2+Z2: T3:=T1*T2: Z3:=Z1*Z2: t1:=t1*t2: t1:=t1-T3: t1:=t1-Z3: T3:=d*T3: t2:=Z3+T3: Z3:=

Z3-T3: T3:=X1+Y1: t3:=X2+Y2: X3:=X1*X2: Y3:=Y1*Y2: T3:=T3*t3: T3:=T3-X3: T3:=T3-Y3: t1:=h*t1: t1:=t1*X3: X3:=k

*X3: Y3:=Y3-X3: Y3:=Y3*t2: Y3:=Y3+t1: X3:=Z3+T3: X3:=X3^2: T3:=T3^2: Z3:=Z3^2: X3:=X3-T3: X3:=X3-Z3: X3:=X3/2:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=UADD_Qe_a03_reg(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2)),k+2*a, h-2*d]); #Check.

>

UADD Qe a04, 9M + 2S + 3D + 13a, assumes k = −2a, h = 2d.

C.2. Extended Jacobi quartic form 169

> UADD_Qe_a04_opr:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3,A,B,C,D,E,F,G:

> A:=Z1*Z2: B:=T1*T2: C:=X1*X2: D:=Y1*Y2: E:=d*B: F:=(X1+Y1)*(X2+Y2)-C-D: G:=A-E: Z3:=G^2: T3:=F^2: X3:=F

*G: Y3:=(D+(2*a)*C)*(A+E)+(2*d)*C*((T1+Z1)*(T2+Z2)-A-B):

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=UADD_Qe_a04_opr(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2)),k+2*a, h-2*d]); #Check.

>

> UADD_Qe_a04_reg:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3,t1,t2,t3:

> t1:=T1+Z1: t2:=T2+Z2: T3:=T1*T2: Z3:=Z1*Z2: t1:=t1*t2: t1:=t1-T3: t1:=t1-Z3: T3:=d*T3: t2:=Z3+T3: Z3:=Z

3-T3: T3:=X1+Y1: t3:=X2+Y2: X3:=X1*X2: Y3:=Y1*Y2: T3:=T3*t3: T3:=T3-X3: T3:=T3-Y3: t1:=d*t1: t1:=t1*X3: t1:=2*

t1: X3:=k*X3: Y3:=Y3-X3: Y3:=Y3*t2: Y3:=Y3+t1: X3:=Z3*T3: T3:=T3^2: Z3:=Z3^2:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=UADD_Qe_a04_reg(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2)),k+2*a, h-2*d]); #Check.

>

UADD Qe b00.

> x1:=X1/Z1: y1:=Y1/Z1: T1:=X1^2/Z1: x2:=X2/Z2: y2:=Y2/Z2: T2:=X2^2/Z2:

> x3:=(x1*y2+y1*x2)/(1-d*x1^2*x2^2):

> y3:=((y1*y2+2*a*x1*x2)*(1+d*x1^2*x2^2)+2*d*x1*x2*(x1^2+x2^2))/(1-d*x1^2*x2^2)^2:

>

> UADD_Qe_b00:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3:

> X3:=(X1*Y2+Y1*X2)*(Z1*Z2-d*T1*T2):

> Y3:=(Z1*Z2+d*T1*T2+2*s*X1*X2)*(Y1*Y2+2*a*X1*X2+s*T1*Z2+s*Z1*T2)-s*(X1*Y2+Y1*X2)^2:

> T3:=(X1*Y2+Y1*X2)^2:

> Z3:=(Z1*Z2-d*T1*T2)^2:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=UADD_Qe_b00(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2)),d-s^2]); #Check.

>

UADD Qe b01, 7M + 3S + 1D + 18a, assumes k = −2a, d = 1.

> UADD_Qe_b01_reg:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3,t1,t2,t3:

> t1:=T1+Z1: t2:=T2+Z2: T3:=T1*T2: Z3:=Z1*Z2: t1:=t1*t2: t2:=Z3+T3: Z3:=Z3-T3: t1:=t1-t2: T3:=X1+Y1: t3:=

X2+Y2: X3:=X1*X2: Y3:=Y1*Y2: T3:=T3*t3: t3:=T3-X3: t3:=t3-Y3: T3:=t3^2: Y3:=Y3+t1: t1:=2*X3: t1:=t1+t2: t2:=k*

X3: Y3:=Y3-t2: Y3:=Y3*t1: Y3:=Y3-T3: X3:=t3+Z3: X3:=X3^2: Z3:=Z3^2: X3:=X3-Z3: X3:=X3-T3: X3:=X3/2:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=UADD_Qe_b01_reg(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2)),k+2*a,s-1,d-1]); #Check.

>

UADD Qe b02, 8M + 2S + 1D + 14a, assumes k = −2a, d = 1.

> UADD_Qe_b02_reg:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3,t1,t2,t3:

> t1:=T1+Z1: t2:=T2+Z2: T3:=T1*T2: Z3:=Z1*Z2: t1:=t1*t2: t2:=Z3+T3: Z3:=Z3-T3: t1:=t1-t2: T3:=X1+Y1: t3:=

X2+Y2: X3:=X1*X2: Y3:=Y1*Y2: T3:=T3*t3: t3:=T3-X3: t3:=t3-Y3: T3:=t3^2: Y3:=Y3+t1: t1:=2*X3: t1:=t1+t2: t2:=k*

X3: Y3:=Y3-t2: Y3:=Y3*t1: Y3:=Y3-T3: X3:=t3*Z3: Z3:=Z3^2:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=UADD_Qe_b02_reg(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2)),k+2*a,s-1,d-1]); #Check.

>

UADD Qe b03, 7M + 3S + 5D + 18a, assumes k = −2a, d = s2.

> UADD_Qe_b03_opr:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3,A,B,C,D,E,F,G:

> A:=Z1*Z2: B:=T1*T2: C:=X1*X2: D:=Y1*Y2: E:=d*B: F:=(X1+Y1)*(X2+Y2)-C-D: G:=A-E: Z3:=G^2: T3:=F^2: X3:=(

170 Appendix C. Computer algebra scripts

(F+G)^2-T3-Z3)/2: Y3:=(A+E+(2*s)*C)*(D+(2*a)*C+s*((T1+Z1)*(T2+Z2)-A-B))-s*T3:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=UADD_Qe_b03_opr(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2)),k+2*a,d-s^2]); #Check.

>

> UADD_Qe_b03_reg:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3,t1,t2,t3:

> t1:=s*T1: t2:=s*T2: T3:=t1*t2: t1:=t1+Z1: t2:=t2+Z2: Z3:=Z1*Z2: t1:=t1*t2: t2:=Z3+T3: Z3:=Z3-T3: t1:=t1

-t2: T3:=X1+Y1: t3:=X2+Y2: X3:=X1*X2: Y3:=Y1*Y2: T3:=T3*t3: T3:=T3-X3: t3:=T3-Y3: Y3:=Y3+t1: T3:=t3^2: t1:=2*s

: t1:=t1*X3: t1:=t1+t2: t2:=k*X3: Y3:=Y3-t2: Y3:=Y3*t1: t1:=s*T3: Y3:=Y3-t1: X3:=t3+Z3: X3:=X3^2: Z3:=Z3^2: X3

:=X3-Z3: X3:=X3-T3: X3:=X3/2:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=UADD_Qe_b03_reg(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2)),k+2*a,d-s^2]); #Check.

>

UADD Qe b04, 8M + 2S + 5D + 14a, assumes k = −2a, d = s2.

> UADD_Qe_b04_opr:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3,A,B,C,D,E,F,G:

> A:=Z1*Z2: B:=T1*T2: C:=X1*X2: D:=Y1*Y2: E:=d*B: F:=(X1+Y1)*(X2+Y2)-C-D: G:=A-E: Z3:=G^2: T3:=F^2: X3:=F

*G: Y3:=(A+E+(2*s)*C)*(D+(2*a)*C+s*((T1+Z1)*(T2+Z2)-A-B))-s*T3:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=UADD_Qe_b04_opr(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2)),k+2*a,d-s^2]); #Check.

>

> UADD_Qe_b04_reg:=proc(X1,Y1,Z1,T1,X2,Y2,Z2,T2) local X3,Y3,Z3,T3,t1,t2,t3:

> t1:=s*T1: t2:=s*T2: T3:=t1*t2: t1:=t1+Z1: t2:=t2+Z2: Z3:=Z1*Z2: t1:=t1*t2: t2:=Z3+T3: Z3:=Z3-T3: t1:=t1

-t2: T3:=X1+Y1: t3:=X2+Y2: X3:=X1*X2: Y3:=Y1*Y2: T3:=T3*t3: T3:=T3-X3: t3:=T3-Y3: Y3:=Y3+t1: T3:=t3^2: t1:=2*s

: t1:=t1*X3: t1:=t1+t2: t2:=k*X3: Y3:=Y3-t2: Y3:=Y3*t1: t1:=s*T3: Y3:=Y3-t1: X3:=t3*Z3: Z3:=Z3^2:

> return X3,Y3,Z3,T3:

> end proc:

> X3,Y3,Z3,T3:=UADD_Qe_b04_reg(X1,Y1,Z1,T1,X2,Y2,Z2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3^2/Z3],[(C(x1,y1)),(C(x2,y2)),k+2*a,d-s^2]); #Check.

>

C.3 Twisted Hessian form

> C:=(x,y)->(a*x^3+y^3+1-d*x*y):

> a1:=-3^3*d/(27*a-d^3): a3:=-3^8/(27*a-d^3)^2: a2:=-3^6*d^2/(27*a-d^3)^2: a4:=-3^11*d/(27*a-d^3)^3: a6:=-3^1

5/(27*a-d^3)^4:

> W:=(u,v)->(v^2+a1*u*v+a3*v-(u^3+a2*u^2+a4*u+a6)):

> CtoW:=(x,y)->(-3^5*x/((27*a-d^3)*(d*x+3*y+3)),3^9*y/((27*a-d^3)^2*(d*x+3*y+3))):

> WtoC:=(u,v)->(81*(27*a-d^3)*u/(729*v*a^2-54*v*a*d^3+v*d^6-729*d*u*a+27*d^4*u-6561),-(27*a-d^3)^2*v/(729*v*a

^2-54*v*a*d^3+v*d^6-729*d*u*a+27*d^4*u-6561)):

> simplify([W(CtoW(x1,y1))],[C(x1,y1)]); #Check CtoW.

> simplify([C(WtoC(u1,v1))],[W(u1,v1)]); #Check WtoC.

> simplify([(x1,y1)-WtoC(CtoW(x1,y1))],[C(x1,y1)]); #Check CtoW(WtoC).

> simplify([(u1,v1)-CtoW(WtoC(u1,v1))],[W(u1,v1)]); #Check WtoC(CtoW).

> ut,vt:=CtoW(x1,y1): simplify([(x1/y1,1/y1)-WtoC(ut,-vt-a1*ut-a3)],[C(x1,y1)]); #Check the negation.

> # Doubling formulae.

> unassign(’x1’,’y1’): u1,v1:=CtoW(x1,y1):

> L:=(3*u1^2+2*a2*u1+a4-a1*v1)/(2*v1+a1*u1+a3): u3:=L^2+a1*L-a2-2*u1: v3:=L*(u1-u3)-v1-a1*u3-a3:

> simplify([W(u3,v3)],[C(x1,y1)]); x3std,y3std:=WtoC(u3,v3):

>

> x3:=(x1-y1^3*x1)/(a*y1*x1^3-y1): simplify([x3std-x3],[C(x1,y1)]);

> y3:=(y1^3-a*x1^3)/(a*y1*x1^3-y1): simplify([y3std-y3],[C(x1,y1)]);

> # Addition formulae.

> unassign(’x1’,’y1’,’x2’,’y2’): u1,v1:=CtoW(x1,y1): u2,v2:=CtoW(x2,y2):

C.3. Twisted Hessian form 171

> L:=(v2-v1)/(u2-u1): u3:=L^2+a1*L-a2-u1-u2: v3:=L*(u1-u3)-v1-a1*u3-a3:

> simplify([W(u3,v3)],[C(x1,y1),C(x2,y2)]); x3std,y3std:=WtoC(u3,v3):

>

> x3:=(y1*x2^2-x1^2*y2)/(x1*y2^2-y1^2*x2): simplify([x3std-x3],[C(x1,y1),C(x2,y2)]);

> x3:=(x1+x2-y1*y2*(x1*y2+y1*x2))/(a*x1*x2*(x1*y2+y1*x2)-y1-y2): simplify([x3std-x3],[C(x1,y1),C(x2,y2)]);

> x3:=(x1-y1^2*x2*y2)/(a*x1*y1*x2^2-y2): simplify([x3std-x3],[C(x1,y1),C(x2,y2)]);

> y3:=(x1*y1-x2*y2)/(x1*y2^2-y1^2*x2): simplify([y3std-y3],[C(x1,y1),C(x2,y2)]);

> y3:=(y1*y2*(y1+y2)-a*x1*x2*(x1+x2))/(a*x1*x2*(x1*y2+y1*x2)-y1-y2): simplify([y3std-y3],[C(x1,y1),C(x2,y2)])

;

> y3:=(y1*y2^2-a*x1^2*x2)/(a*x1*y1*x2^2-y2): simplify([y3std-y3],[C(x1,y1),C(x2,y2)]);

DBL H a00.

> x1:=X1/Z1: y1:=Y1/Z1:

> x3:=(x1-y1^3*x1)/(a*y1*x1^3-y1):

> y3:=(y1^3-a*x1^3)/(a*y1*x1^3-y1):

>

> DBL_H_a00:=proc(X1,Y1,Z1) local X3,Y3,Z3:

> X3:=X1*(Z1^3-Y1^3):

> Y3:=Z1*(Y1^3-a*X1^3):

> Z3:=Y1*(a*X1^3-Z1^3):

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_H_a00(X1,Y1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1))]); #Check.

>

DBL H a01, 6M + 3S + 1D + 3a.

> DBL_H_a01_opr:=proc(X1,Y1,Z1) local X3,Y3,Z3,A,B,C,D,E,F,G:

> A:=X1^2: B:=Y1^2: C:=Z1^2: D:=X1*A: E:=Y1*B: F:=Z1*C: G:=a*D: X3:=X1*(E-F): Y3:=Z1*(G-E): Z3:=Y1*(F-G):

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_H_a01_opr(X1,Y1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1))]); #Check.

>

> DBL_H_a01_reg:=proc(X1,Y1,Z1) local X3,Y3,Z3,t1,t2,t3,t4,t:

> t1:=Z1^2: t1:=Z1*t1: t2:=Y1^2: t2:=Y1*t2: t3:=X1^2: t3:=X1*t3: t3:=a*t3: t4:=t2-t1: X3:=X1*t4: t2:=t3-t

2: Z3:=Z1*t2: t1:=t1-t3: Y3:=Y1*t1: t:=Y3: Y3:=Z3: Z3:=t:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_H_a01_reg(X1,Y1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1))]); #Check.

>

DBL H a02, 3M + 6S + 18a, assumes a = 1.

> DBL_H_a02_opr:=proc(X1,Y1,Z1) local X3,Y3,Z3,A,B,C,D,E,F,G,H,J:

> A:=X1^2: B:=Y1^2: C:=Z1^2: D:=A+B: E:=A+C: F:=B+C: G:=((X1+Y1)^2-D)/2: H:=((X1+Z1)^2-E)/2: J:=((Y1+Z1)^

2-F)/2: X3:=(H-G)*(F+J): Y3:=(J-H)*(D+G): Z3:=(G-J)*(E+H):

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_H_a02_opr(X1,Y1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),a-1]); #Check.

>

> DBL_H_a02_reg:=proc(X1,Y1,Z1) local X3,Y3,Z3,t1,t2,t3,t4,t5,t6:

> t1:=X1^2: t2:=Y1^2: t3:=Z1^2: t4:=t1+t2: t5:=t1+t3: t6:=t2+t3: t1:=X1+Y1: t1:=t1^2: t1:=t1-t4: t1:=t1/2

: t2:=X1+Z1: t2:=t2^2: t2:=t2-t5: t2:=t2/2: t3:=Y1+Z1: t3:=t3^2: t3:=t3-t6: t3:=t3/2: X3:=t2-t1: Y3:=t3-t2: Z3

:=t1-t3: t3:=t6+t3: X3:=X3*t3: t1:=t4+t1: Y3:=Y3*t1: t2:=t5+t2: Z3:=Z3*t2:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_H_a02_reg(X1,Y1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),a-1]); #Check.

>

172 Appendix C. Computer algebra scripts

DBL H a03, 7M + 1S + 8a, assumes a = 1.

> DBL_H_a03_opr:=proc(X1,Y1,Z1) local X3,Y3,Z3,A,B,C:

> A:=Y1^2: B:=(Z1-Y1)*(A+(Y1+Z1)*Z1): C:=(Y1-X1)*(X1*(X1+Y1)+A): X3:=X1*B: Y3:=Z1*C: Z3:=Y1*(-B-C):

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_H_a03_opr(X1,Y1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),a-1]); #Check.

>

> DBL_H_a03_reg:=proc(X1,Y1,Z1) local X3,Y3,Z3,t1,t2,t3,t:

> t1:=Y1^2: t2:=Y1+Z1: t2:=t2*Z1: t2:=t1+t2: t3:=Z1-Y1: t2:=t3*t2: t3:=X1+Y1: t3:=X1*t3: t3:=t3+t1: t1:=Y

1-X1: t1:=t1*t3: X3:=X1*t2: Z3:=Z1*t1: t1:=-t1: t1:=t1-t2: Y3:=Y1*t1: t:=Y3: Y3:=Z3: Z3:=t:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_H_a03_reg(X1,Y1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),a-1]); #Check.

>

ADD H a00.

> x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2:

> x3:=(x1-y1^2*x2*y2)/(a*x1*y1*x2^2-y2):

> y3:=(y1*y2^2-a*x1^2*x2)/(a*x1*y1*x2^2-y2):

>

> ADD_H_a00:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3:

> X3:=X1^2*Y2*Z2-Y1*Z1*X2^2:

> Y3:=Z1^2*X2*Y2-X1*Y1*Z2^2:

> Z3:=Y1^2*X2*Z2-X1*Z1*Y2^2:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=ADD_H_a00(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

ADD H a01, 12M + 3a.

> ADD_H_a01_opr:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3,A,B,C,D,E,F:

> A:=X1*Z2: B:=Y1*Z2: C:=Z1*X2: D:=Z1*Y2: E:=X1*Y2: F:=Y1*X2: X3:=E*A-F*C: Y3:=C*D-A*B: Z3:=F*B-E*D:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=ADD_H_a01_opr(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

> ADD_H_a01_reg:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3,t1,t2,t3,t4,t5,t6:

> t1:=X1*Z2: t2:=Y1*Z2: t3:=Z1*X2: t4:=Z1*Y2: t5:=X1*Y2: t6:=Y1*X2: X3:=t5*t1: Y3:=t3*t4: Z3:=t6*t2: t3:=

t6*t3: X3:=X3-t3: t1:=t1*t2: Y3:=Y3-t1: t4:=t5*t4: Z3:=Z3-t4:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=ADD_H_a01_reg(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

ADD H a02, 11M + 17a.

> ADD_H_a02_opr:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3,A,B,C,D,E,F,G,H,J,K:

> A:=X1*Z2: B:=Y1*Z2: C:=Z1*X2: D:=Z1*Y2: E:=X1*Y2: F:=Y1*X2: G:=(C+E)*(A-F): H:=(C-E)*(A+F): J:=(C+B)*(A

-D): K:=(C-B)*(A+D): X3:=G-H: Y3:=K-J: Z3:=J+K-G-H-2*(E-B)*(F+D):

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=ADD_H_a02_opr(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

> ADD_H_a02_reg:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3,t1,t2,t3,t4,t5,t6:

> t1:=X1*Z2: t2:=Y1*Z2: t3:=Z1*X2: t4:=Z1*Y2: t5:=X1*Y2: t6:=Y1*X2: X3:=t3+t5: Y3:=t1-t6: X3:=X3*Y3: Y3:=

C.3. Twisted Hessian form 173

t5-t2: Z3:=t6+t4: Z3:=Y3*Z3: Z3:=2*Z3: Z3:=X3+Z3: t5:=t3-t5: t6:=t1+t6: t5:=t5*t6: X3:=X3-t5: t6:=t3+t2: Y3:=t

1-t4: Y3:=t6*Y3: t2:=t3-t2: t1:=t1+t4: t1:=t2*t1: t2:=t1-t5: t2:=Y3+t2: Z3:=t2-Z3: Y3:=t1-Y3:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=ADD_H_a02_reg(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

UADD H a00.

> x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2:

> x3:=(x1-y1^2*x2*y2)/(a*x1*y1*x2^2-y2):

> y3:=(y1*y2^2-a*x1^2*x2)/(a*x1*y1*x2^2-y2):

>

> UADD_H_a00:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3:

> X3:=X1*Z1*Z2^2-Y1^2*X2*Y2:

> Y3:=Y1*Z1*Y2^2-a*X1^2*X2*Z2:

> Z3:=a*X1*Y1*X2^2-Z1^2*Z2*Y2:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=UADD_H_a00(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

UADD H a01, 12M + 3a.

> UADD_H_a01_opr:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3,A,B,C,D,E,F:

> A:=X1*Z2: B:=Z1*Z2: C:=Y1*X2: D:=Y1*Y2: E:=Z1*Y2: F:=a*X1*X2: X3:=A*B-C*D: Y3:=D*E-F*A: Z3:=F*C-B*E:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=UADD_H_a01_opr(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

> UADD_H_a01_reg:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3,t1,t2,t3,t4,t5,t6:

> t1:=X1*Z2: t2:=Z1*Z2: t3:=Y1*X2: t4:=Y1*Y2: t5:=Z1*Y2: t6:=X1*X2: t6:=a*t6: X3:=t1*t2: Y3:=t4*t5: Z3:=t

6*t3: t3:=t3*t4: t1:=t6*t1: t2:=t2*t5: X3:=X3-t3: Y3:=Y3-t1: Z3:=Z3-t2:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=UADD_H_a01_reg(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

UADD H a02, 11M + 17a.

> UADD_H_a02_opr:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3,A,B,C,D,E,F,G,H,J,K:

> A:=X1*Z2: B:=Z1*Z2: C:=Y1*X2: D:=Y1*Y2: E:=Z1*Y2: F:=a*X1*X2: G:=(D+B)*(A-C): H:=(D-B)*(A+C): J:=(D+F)*

(A-E): K:=(D-F)*(A+E): X3:=G-H: Y3:=K-J: Z3:=J+K-G-H-2*(B-F)*(C+E):

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=UADD_H_a02_opr(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

> UADD_H_a02_reg:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3,t1,t2,t3,t4,t5,t6:

> t1:=X1*Z2: t2:=Z1*Z2: t3:=Y1*X2: t4:=Y1*Y2: Z3:=Z1*Y2: X3:=X1*X2: X3:=a*X3: Y3:=t2-X3: Y3:=2*Y3: t5:=t3

+Z3: Y3:=Y3*t5: t5:=t4+t2: t2:=t4-t2: t6:=t1-t3: t3:=t1+t3: t2:=t2*t3: t3:=t5*t6: t5:=t4+X3: t4:=t4-X3: X3:=t3

-t2: Y3:=Y3+t2: t2:=t1-Z3: t2:=t5*t2: Y3:=Y3-t2: t1:=t1+Z3: t1:=t4*t1: Y3:=t1-Y3: Z3:=Y3-t3: Y3:=t1-t2:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=UADD_H_a02_reg(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

DBL He a00.

174 Appendix C. Computer algebra scripts

> x1:=X1/Z1: y1:=Y1/Z1: R1:=X1*Y1/Z1: S1:=X1^2/Z1: T1:=Y1^2/Z1:

> x3:=(x1-y1^3*x1)/(a*y1*x1^3-y1):

> y3:=(y1^3-a*x1^3)/(a*y1*x1^3-y1):

>

> DBL_He_a00:=proc(X1,Y1,Z1,R1,S1,T1) local X3,Y3,Z3,R3,S3,T3:

> X3:=(X1*Z1-R1*T1)*(a*R1*S1-Y1*Z1):

> Y3:=(Y1*T1-a*X1*S1)*(a*R1*S1-Y1*Z1):

> R3:=(X1*Z1-R1*T1)*(Y1*T1-a*X1*S1):

> S3:=(X1*Z1-R1*T1)^2:

> T3:=(Y1*T1-a*X1*S1)^2:

> Z3:=(a*R1*S1-Y1*Z1)^2:

> return X3,Y3,Z3,R3,S3,T3:

> end proc:

> X3,Y3,Z3,R3,S3,T3:=DBL_He_a00(X1,Y1,Z1,R1,S1,T1):

> simplify([x3-X3/Z3,y3-Y3/Z3,R3-X3*Y3/Z3,S3-X3^2/Z3,T3-Y3^2/Z3],[(C(x1,y1))]); #Check.

>

DBL He a01, 9M + 3S + 1D + 3a.

> DBL_He_a01_opr:=proc(X1,Y1,Z1,R1,S1,T1) local X3,Y3,Z3,R3,S3,T3,A,B,C,D:

> A:=a*S1: B:=X1*Z1-T1*R1: C:=Y1*T1-A*X1: D:=R1*A-Z1*Y1: X3:=B*D: Y3:=C*D: R3:=B*C: S3:=B^2: T3:=C^2: Z3:

=D^2:

> return X3,Y3,Z3,R3,S3,T3:

> end proc:

> X3,Y3,Z3,R3,S3,T3:=DBL_He_a01_opr(X1,Y1,Z1,R1,S1,T1):

> simplify([x3-X3/Z3,y3-Y3/Z3,R3-X3*Y3/Z3,S3-X3^2/Z3,T3-Y3^2/Z3],[(C(x1,y1))]); #Check.

>

> DBL_He_a01_reg:=proc(X1,Y1,Z1,R1,S1,T1) local X3,Y3,Z3,R3,S3,T3,t1:

> t1:=X1*Z1: S3:=a*S1: X3:=S3*X1: S3:=R1*S3: R3:=T1*R1: T3:=Y1*T1: Y3:=Z1*Y1: R3:=t1-R3: t1:=T3-X3: Y3:=S

3-Y3: S3:=R3^2: T3:=t1^2: Z3:=Y3^2: X3:=R3*Y3: Y3:=t1*Y3: R3:=R3*t1:

> return X3,Y3,Z3,R3,S3,T3:

> end proc:

> X3,Y3,Z3,R3,S3,T3:=DBL_He_a01_reg(X1,Y1,Z1,R1,S1,T1):

> simplify([x3-X3/Z3,y3-Y3/Z3,R3-X3*Y3/Z3,S3-X3^2/Z3,T3-Y3^2/Z3],[(C(x1,y1))]); #Check.

>

DBL He a02, 5M + 6S + 1D + 29a.

> DBL_He_a02_opr:=proc(X1,Y1,Z1,R1,S1,T1) local X3,Y3,Z3,R3,S3,T3,A,B,C,D,E,F,G,H:

> A:=a*S1: B:=(T1+Z1)*(X1-R1): C:=(T1-Z1)*(X1+R1): D:=(T1+A)*(X1-Y1): E:=(T1-A)*(X1+Y1): F:=B-C: G:=E-D:

H:=D+E-B-C-2*(Z1-A)*(R1+Y1): S3:=F^2: T3:=G^2: Z3:=H^2: X3:=((F+H)^2-S3-Z3)/2: Y3:=((G+H)^2-T3-Z3)/2: R3:=((F+

G)^2-S3-T3)/2:

> return X3,Y3,Z3,R3,S3,T3:

> end proc:

> X3,Y3,Z3,R3,S3,T3:=DBL_He_a02_opr(X1,Y1,Z1,R1,S1,T1):

> simplify([x3-X3/Z3,y3-Y3/Z3,R3-X3*Y3/Z3,S3-X3^2/Z3,T3-Y3^2/Z3],[(C(x1,y1))]); #Check.

>

> DBL_He_a02_reg:=proc(X1,Y1,Z1,R1,S1,T1) local X3,Y3,Z3,R3,S3,T3,t1,t2,t3:

> S3:=a*S1: t1:=Z1-S3: t1:=2*t1: t2:=R1+Y1: t1:=t1*t2: t2:=X1-Y1: Y3:=X1+Y1: t3:=T1+S3: t2:=t3*t2: t1:=t2

-t1: t3:=T1-S3: t3:=t3*Y3: t1:=t1+t3: t2:=t3-t2: t3:=T1+Z1: Y3:=X1-R1: t3:=t3*Y3: t1:=t1-t3: Z3:=T1-Z1: X3:=X1

+R1: X3:=Z3*X3: t3:=t3-X3: t1:=t1-X3: S3:=t3^2: T3:=t2^2: Z3:=t1^2: X3:=t3+t1: X3:=X3^2: X3:=X3-S3: X3:=X3-Z3:

X3:=X3/2: Y3:=t2+t1: Y3:=Y3^2: Y3:=Y3-T3: Y3:=Y3-Z3: Y3:=Y3/2: R3:=t3+t2: R3:=R3^2: R3:=R3-S3: R3:=R3-T3: R3:

=R3/2:

> return X3,Y3,Z3,R3,S3,T3:

> end proc:

> X3,Y3,Z3,R3,S3,T3:=DBL_He_a02_reg(X1,Y1,Z1,R1,S1,T1):

> simplify([x3-X3/Z3,y3-Y3/Z3,R3-X3*Y3/Z3,S3-X3^2/Z3,T3-Y3^2/Z3],[(C(x1,y1))]); #Check.

>

ADD He a00.

> x1:=X1/Z1: y1:=Y1/Z1: R1:=X1*Y1/Z1: S1:=X1^2/Z1: T1:=Y1^2/Z1: x2:=X2/Z2: y2:=Y2/Z2: R2:=X2*Y2/Z2: S2:=X2^2/

Z2: T2:=Y2^2/Z2:

C.3. Twisted Hessian form 175

> x3:=(x1-y1^2*x2*y2)/(a*x1*y1*x2^2-y2):

> y3:=(y1*y2^2-a*x1^2*x2)/(a*x1*y1*x2^2-y2):

>

> ADD_He_a00:=proc(X1,Y1,Z1,R1,S1,T1,X2,Y2,Z2,R2,S2,T2) local X3,Y3,Z3,R3,S3,T3:

> X3:=(S1*Y2-Y1*S2)*(T1*X2-X1*T2):

> Y3:=(Z1*R2-R1*Z2)*(T1*X2-X1*T2):

> R3:=(S1*Y2-Y1*S2)*(Z1*R2-R1*Z2):

> S3:=(S1*Y2-Y1*S2)^2:

> T3:=(Z1*R2-R1*Z2)^2:

> Z3:=(T1*X2-X1*T2)^2:

> return X3,Y3,Z3,R3,S3,T3:

> end proc:

> X3,Y3,Z3,R3,S3,T3:=ADD_He_a00(X1,Y1,Z1,R1,S1,T1,X2,Y2,Z2,R2,S2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,R3-X3*Y3/Z3,S3-X3^2/Z3,T3-Y3^2/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

ADD He a01, 9M + 3S + 3a.

> ADD_He_a01_opr:=proc(X1,Y1,Z1,R1,S1,T1,X2,Y2,Z2,R2,S2,T2) local X3,Y3,Z3,R3,S3,T3,A,B,C:

> A:=S1*Y2-Y1*S2: B:=Z1*R2-R1*Z2: C:=T1*X2-X1*T2: X3:=A*C: Y3:=B*C: R3:=A*B: S3:=A^2: T3:=B^2: Z3:=C^2:

> return X3,Y3,Z3,R3,S3,T3:

> end proc:

> X3,Y3,Z3,R3,S3,T3:=ADD_He_a01_opr(X1,Y1,Z1,R1,S1,T1,X2,Y2,Z2,R2,S2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,R3-X3*Y3/Z3,S3-X3^2/Z3,T3-Y3^2/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

> ADD_He_a01_reg:=proc(X1,Y1,Z1,R1,S1,T1,X2,Y2,Z2,R2,S2,T2) local X3,Y3,Z3,R3,S3,T3,t1:

> t1:=R1*Z2: Z3:=Z1*R2: Z3:=Z3-t1: t1:=Y1*S2: S3:=S1*Y2: S3:=S3-t1: t1:=T1*X2: X3:=X1*T2: t1:=t1-X3: X3:=

S3*t1: Y3:=Z3*t1: R3:=S3*Z3: S3:=S3^2: T3:=Z3^2: Z3:=t1^2:

> return X3,Y3,Z3,R3,S3,T3:

> end proc:

> X3,Y3,Z3,R3,S3,T3:=ADD_He_a01_reg(X1,Y1,Z1,R1,S1,T1,X2,Y2,Z2,R2,S2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,R3-X3*Y3/Z3,S3-X3^2/Z3,T3-Y3^2/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

ADD He a02, 6M + 6S + 15a.

> ADD_He_a02_opr:=proc(X1,Y1,Z1,R1,S1,T1,X2,Y2,Z2,R2,S2,T2) local X3,Y3,Z3,R3,S3,T3,A,B,C:

> A:=S1*Y2-Y1*S2: B:=Z1*R2-R1*Z2: C:=T1*X2-X1*T2: S3:=A^2: T3:=B^2: Z3:=C^2: X3:=((A+C)^2-S3-Z3)/2: Y3:=(

(B+C)^2-T3-Z3)/2: R3:=((A+B)^2-S3-T3)/2:

> return X3,Y3,Z3,R3,S3,T3:

> end proc:

> X3,Y3,Z3,R3,S3,T3:=ADD_He_a02_opr(X1,Y1,Z1,R1,S1,T1,X2,Y2,Z2,R2,S2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,R3-X3*Y3/Z3,S3-X3^2/Z3,T3-Y3^2/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

> ADD_He_a02_reg:=proc(X1,Y1,Z1,R1,S1,T1,X2,Y2,Z2,R2,S2,T2) local X3,Y3,Z3,R3,S3,T3,t1:

> t1:=R1*Z2: R3:=Z1*R2: R3:=R3-t1: t1:=X1*T2: X3:=T1*X2: X3:=X3-t1: t1:=Y1*S2: Y3:=S1*Y2: t1:=Y3-t1: S3:=

t1^2: T3:=R3^2: Z3:=X3^2: Y3:=R3+X3: Y3:=Y3^2: Y3:=Y3-T3: Y3:=Y3-Z3: Y3:=Y3/2: X3:=t1+X3: X3:=X3^2: X3:=X3-S3:

X3:=X3-Z3: X3:=X3/2: R3:=t1+R3: R3:=R3^2: R3:=R3-S3: R3:=R3-T3: R3:=R3/2:

> return X3,Y3,Z3,R3,S3,T3:

> end proc:

> X3,Y3,Z3,R3,S3,T3:=ADD_He_a02_reg(X1,Y1,Z1,R1,S1,T1,X2,Y2,Z2,R2,S2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,R3-X3*Y3/Z3,S3-X3^2/Z3,T3-Y3^2/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

UADD He a00.

> x1:=X1/Z1: y1:=Y1/Z1: R1:=X1*Y1/Z1: S1:=X1^2/Z1: T1:=Y1^2/Z1: x2:=X2/Z2: y2:=Y2/Z2: R2:=X2*Y2/Z2: S2:=X2^2/

Z2: T2:=Y2^2/Z2:

> x3:=(x1-y1^2*x2*y2)/(a*x1*y1*x2^2-y2):

> y3:=(y1*y2^2-a*x1^2*x2)/(a*x1*y1*x2^2-y2):

>

> UADD_He_a00:=proc(X1,Y1,Z1,R1,S1,T1,X2,Y2,Z2,R2,S2,T2) local X3,Y3,Z3,R3,S3,T3:

> X3:=(X1*Z2-T1*R2)*(a*R1*S2-Z1*Y2):

176 Appendix C. Computer algebra scripts

> Y3:=(Y1*T2-a*S1*X2)*(a*R1*S2-Z1*Y2):

> R3:=(X1*Z2-T1*R2)*(Y1*T2-a*S1*X2):

> S3:=(X1*Z2-T1*R2)^2:

> T3:=(Y1*T2-a*S1*X2)^2:

> Z3:=(a*R1*S2-Z1*Y2)^2:

> return X3,Y3,Z3,R3,S3,T3:

> end proc:

> X3,Y3,Z3,R3,S3,T3:=UADD_He_a00(X1,Y1,Z1,R1,S1,T1,X2,Y2,Z2,R2,S2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,R3-X3*Y3/Z3,S3-X3^2/Z3,T3-Y3^2/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

UADD He a01, 9M + 3S + 2D + 3a.

> UADD_He_a01_opr:=proc(X1,Y1,Z1,R1,S1,T1,X2,Y2,Z2,R2,S2,T2) local X3,Y3,Z3,R3,S3,T3,A,B,C:

> A:=X1*Z2-T1*R2: B:=Y1*T2-a*S1*X2: C:=a*R1*S2-Z1*Y2: X3:=A*C: Y3:=B*C: R3:=A*B: S3:=A^2: T3:=B^2: Z3:=C^

2:

> return X3,Y3,Z3,R3,S3,T3:

> end proc:

> X3,Y3,Z3,R3,S3,T3:=UADD_He_a01_opr(X1,Y1,Z1,R1,S1,T1,X2,Y2,Z2,R2,S2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,R3-X3*Y3/Z3,S3-X3^2/Z3,T3-Y3^2/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

> UADD_He_a01_reg:=proc(X1,Y1,Z1,R1,S1,T1,X2,Y2,Z2,R2,S2,T2) local X3,Y3,Z3,R3,S3,T3,t1:

> t1:=X1*Z2: Z3:=Z1*Y2: Y3:=Y1*T2: T3:=T1*R2: R3:=R1*S2: S3:=S1*X2: S3:=a*S3: R3:=a*R3: t1:=t1-T3: Y3:=Y3

-S3: Z3:=R3-Z3: X3:=t1*Z3: R3:=t1*Y3: S3:=t1^2: T3:=Y3^2: Y3:=Y3*Z3: Z3:=Z3^2:

> return X3,Y3,Z3,R3,S3,T3:

> end proc:

> X3,Y3,Z3,R3,S3,T3:=UADD_He_a01_reg(X1,Y1,Z1,R1,S1,T1,X2,Y2,Z2,R2,S2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,R3-X3*Y3/Z3,S3-X3^2/Z3,T3-Y3^2/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

UADD He a02, 6M + 6S + 2D + 15a.

> UADD_He_a02_opr:=proc(X1,Y1,Z1,R1,S1,T1,X2,Y2,Z2,R2,S2,T2) local X3,Y3,Z3,R3,S3,T3,A,B,C:

> A:=X1*Z2-T1*R2: B:=Y1*T2-a*S1*X2: C:=a*R1*S2-Z1*Y2: S3:=A^2: T3:=B^2: Z3:=C^2: X3:=((A+C)^2-S3-Z3)/2: Y

3:=((B+C)^2-T3-Z3)/2: R3:=((A+B)^2-S3-T3)/2:

> return X3,Y3,Z3,R3,S3,T3:

> end proc:

> X3,Y3,Z3,R3,S3,T3:=UADD_He_a02_opr(X1,Y1,Z1,R1,S1,T1,X2,Y2,Z2,R2,S2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,R3-X3*Y3/Z3,S3-X3^2/Z3,T3-Y3^2/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

> UADD_He_a02_reg:=proc(X1,Y1,Z1,R1,S1,T1,X2,Y2,Z2,R2,S2,T2) local X3,Y3,Z3,R3,S3,T3,t1:

> t1:=X1*Z2: Z3:=Z1*Y2: Y3:=Y1*T2: T3:=T1*R2: R3:=R1*S2: S3:=S1*X2: S3:=a*S3: R3:=a*R3: t1:=t1-T3: Y3:=Y3

-S3: X3:=R3-Z3: S3:=t1^2: T3:=Y3^2: Z3:=X3^2: R3:=t1+Y3: R3:=R3^2: R3:=R3-S3: R3:=R3-T3: R3:=R3/2: Y3:=Y3+X3:

Y3:=Y3^2: Y3:=Y3-T3: Y3:=Y3-Z3: Y3:=Y3/2: X3:=t1+X3: X3:=X3^2: X3:=X3-S3: X3:=X3-Z3: X3:=X3/2:

> return X3,Y3,Z3,R3,S3,T3:

> end proc:

> X3,Y3,Z3,R3,S3,T3:=UADD_He_a02_reg(X1,Y1,Z1,R1,S1,T1,X2,Y2,Z2,R2,S2,T2):

> simplify([x3-X3/Z3,y3-Y3/Z3,R3-X3*Y3/Z3,S3-X3^2/Z3,T3-Y3^2/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

C.4 Twisted Edwards form

> C:=(x,y)->(a*x^2+y^2-(1+d*x^2*y^2)):

> a1:=0: a3:=0: a6:=0: a2:=2*(a+d): a4:=(a-d)^2:

> W:=(u,v)->(v^2+a1*u*v+a3*v-(u^3+a2*u^2+a4*u+a6)):

> CtoW:=(x,y)->((1+y)^2*(1-d*x^2)/x^2,2*(2-(a+d)*x^2+2*(1-d*x^2)*y)/x^3):

> WtoC:=(u,v)->(2*u/v,(u-a+d)/(u+a-d)):

> simplify([W(CtoW(x1,y1))],[C(x1,y1)]); #Check CtoW.

> simplify([C(WtoC(u1,v1))],[W(u1,v1)]); #Check WtoC.

> simplify([(x1,y1)-WtoC(CtoW(x1,y1))],[C(x1,y1)]); #Check CtoW(WtoC).

> simplify([(u1,v1)-CtoW(WtoC(u1,v1))],[W(u1,v1)]); #Check WtoC(CtoW).

> ut,vt:=CtoW(x1,y1): simplify([(-x1,y1)-WtoC(ut,-vt-a1*ut-a3)],[C(x1,y1)]); #Check the negation.

C.4. Twisted Edwards form 177

> # Doubling formulae.

> unassign(’x1’,’y1’): u1,v1:=CtoW(x1,y1):

> L:=(3*u1^2+2*a2*u1+a4-a1*v1)/(2*v1+a1*u1+a3): u3:=L^2+a1*L-a2-2*u1: v3:=L*(u1-u3)-v1-a1*u3-a3:

> simplify([W(u3,v3)],[C(x1,y1)]); x3std,y3std:=WtoC(u3,v3):

>

> x3:=2*x1*y1/(y1^2+a*x1^2): simplify([x3std-x3],[C(x1,y1)]);

> x3:=2*x1*y1/(1+d*x1^2*y1^2): simplify([x3std-x3],[C(x1,y1)]);

> y3:=(y1^2-a*x1^2)/(2-y1^2-a*x1^2): simplify([y3std-y3],[C(x1,y1)]);

> y3:=(y1^2-a*x1^2)/(1-d*x1^2*y1^2): simplify([y3std-y3],[C(x1,y1)]);

> # Addition formulae.

> unassign(’x1’,’y1’,’x2’,’y2’): u1,v1:=CtoW(x1,y1): u2,v2:=CtoW(x2,y2):

> L:=(v2-v1)/(u2-u1): u3:=L^2+a1*L-a2-u1-u2: v3:=L*(u1-u3)-v1-a1*u3-a3:

> simplify([W(u3,v3)],[C(x1,y1),C(x2,y2)]); x3std,y3std:=WtoC(u3,v3):

>

> x3:=(x1*y1+x2*y2)/(y1*y2+a*x1*x2): simplify([x3std-x3],[C(x1,y1),C(x2,y2)]);

> x3:=(e*(y1*x1+y2*x2)+f*(x1*y2+y1*x2))/(e*(y1*y2+a*x1*x2)+f*(1+d*x1*x2*y1*y2)): simplify([x3std-x3],[C(x1,y1

),C(x2,y2)]);

> x3:=(x1*y2+y1*x2)/(1+d*x1*x2*y1*y2): simplify([x3std-x3],[C(x1,y1),C(x2,y2)]);

> y3:=(x1*y1-x2*y2)/(x1*y2-y1*x2): simplify([y3std-y3],[C(x1,y1),C(x2,y2)]);

> y3:=(g*(y1*x1-y2*x2)+h*(y1*y2-a*x1*x2))/(g*(x1*y2-y1*x2)+h*(1-d*x1*x2*y1*y2)): simplify([y3std-y3],[C(x1,y1

),C(x2,y2)]);

> y3:=(y1*y2-a*x1*x2)/(1-d*x1*x2*y1*y2): simplify([y3std-y3],[C(x1,y1),C(x2,y2)]);

DBL E a00.

> x1:=X1/Z1: y1:=Y1/Z1:

> x3:=2*x1*y1/(y1^2+a*x1^2):

> y3:=(y1^2-a*x1^2)/(2-y1^2-a*x1^2):

>

> DBL_E_a00:=proc(X1,Y1,Z1) local X3,Y3,Z3:

> X3:=2*X1*Y1*(2*Z1^2-Y1^2-a*X1^2):

> Y3:=(Y1^2-a*X1^2)*(Y1^2+a*X1^2):

> Z3:=(Y1^2+a*X1^2)*(2*Z1^2-Y1^2-a*X1^2):

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_E_a00(X1,Y1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1))]); #Check.

>

DBL E a01, 3M + 4S + 1D + 7a.

> DBL_E_a01_opr:=proc(X1,Y1,Z1) local X3,Y3,Z3,B,C,D,E,F,G,H,J:

> B:=(X1+Y1)^2: C:=X1^2: D:=Y1^2: E:=a*C: F:=E+D: H:=Z1^2: J:=F-2*H: X3:=(B-C-D)*J: Y3:=F*(E-D): Z3:=F*J:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_E_a01_opr(X1,Y1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1))]); #Check.

>

ADD E a00.

> x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2:

> x3:=(x1*y2+y1*x2)/(1+d*x1*x2*y1*y2):

> y3:=(y1*y2-a*x1*x2)/(1-d*x1*x2*y1*y2):

>

> ADD_E_a00:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3:

> X3:=(X1*Y2-Y1*X2)*(X1*Y1*Z2^2+X2*Y2*Z1^2):

> Y3:=(Y1*Y2+a*X1*X2)*(X1*Y1*Z2^2-X2*Y2*Z1^2):

> Z3:=Z1*Z2*(X1*Y2-Y1*X2)*(Y1*Y2+a*X1*X2):

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=ADD_E_a00(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

178 Appendix C. Computer algebra scripts

ADD E a01, 11M + 2D + 9a.

> ADD_E_a01_opr:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3,A,B,C,D,E,F,G,H,J,K:

> A:=X1*Z2: B:=Y1*Z2: C:=Z1*X2: D:=Z1*Y2: E:=A*B: F:=C*D: G:=E+F: H:=E-F: J:=(A-C)*(B+D)-H: K:=(A+D)*(B+a

*C)-E-a*F: X3:=G*J: Y3:=H*K: Z3:=J*K:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=ADD_E_a01_opr(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

UADD E a00.

> x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2:

> x3:=(x1*y2+y1*x2)/(1+d*x1*x2*y1*y2):

> y3:=(y1*y2-a*x1*x2)/(1-d*x1*x2*y1*y2):

>

> UADD_E_a00:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3:

> X3:=Z1*Z2*(X1*Y2+Y1*X2)*(Z1^2*Z2^2-d*X1*X2*Y1*Y2):

> Y3:=Z1*Z2*(Y1*Y2-a*X1*X2)*(Z1^2*Z2^2+d*X1*X2*Y1*Y2):

> Z3:=(Z1^2*Z2^2-d*X1*X2*Y1*Y2)*(Z1^2*Z2^2+d*X1*X2*Y1*Y2):

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=UADD_E_a00(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

UADD E a01, 10M + 1S + 2D + 7a.

> UADD_E_a01_opr:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3,A,B,C,D,E,F,G:

> A:=Z1*Z2: B:=A^2: C:=X1*X2: D:=Y1*Y2: E:=d*C*D: F:=B-E: G:=B+E: X3:=A*F*((X1+Y1)*(X2+Y2)-C-D): Y3:=A*G*

(D-a*C): Z3:=F*G:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=UADD_E_a01_opr(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

DBL E a01, 3M + 4S + 2D + 6a.

> DBL_E_a01_opr:=proc(X1,Y1,Z1) local X3,Y3,Z3,A,B,C,D,E,U:

> A:=X1^2: B:=Y1^2: U:=a*B: C:=A+U: D:=A-U: E:=(X1+Y1)^2-A-B: X3:=C*D: Y3:=E*(C-2*d*Z1^2): Z3:=D*E:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_E_a01_opr(X1,Y1,Z1):

> simplify([x3-Z3/X3,y3-Z3/Y3],[(C(x1,y1))]); #Check.

>

DBL Ei a00.

> x1:=Z1/X1: y1:=Z1/Y1:

> x3:=2*x1*y1/(y1^2+a*x1^2):

> y3:=(y1^2-a*x1^2)/(2-y1^2-a*x1^2):

>

> DBL_Ei_a00:=proc(X1,Y1,Z1) local X3,Y3,Z3:

> X3:=(X1^2-a*Y1^2)*(X1^2+a*Y1^2):

> Y3:=2*X1*Y1*(X1^2+a*Y1^2-2*d*Z1^2):

> Z3:=2*X1*Y1*(X1^2-a*Y1^2):

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=DBL_Ei_a00(X1,Y1,Z1):

> simplify([x3-Z3/X3,y3-Z3/Y3],[(C(x1,y1))]); #Check.

>

C.4. Twisted Edwards form 179

ADD Ei a00.

> x1:=Z1/X1: y1:=Z1/Y1: x2:=Z2/X2: y2:=Z2/Y2:

> x3:=(x1*y2+y1*x2)/(1+d*x1*x2*y1*y2):

> y3:=(y1*y2-a*x1*x2)/(1-d*x1*x2*y1*y2):

>

> ADD_Ei_a00:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3:

> X3:=Z1*Z2*(X1*X2+a*Y1*Y2)*(X1*Y1*Z2^2-Z1^2*X2*Y2):

> Y3:=Z1*Z2*(X1*Y2-Y1*X2)*(X1*Y1*Z2^2+Z1^2*X2*Y2):

> Z3:=(X1*Y1*Z2^2-Z1^2*X2*Y2)*(X1*Y1*Z2^2+Z1^2*X2*Y2):

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=ADD_Ei_a00(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-Z3/X3,y3-Z3/Y3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

ADD Ei a01, 11M + 2D + 9a.

> ADD_Ei_a01_opr:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3,A,B,C,D,E,F,G,H,J,K:

> A:=X1*Z2: B:=Y1*Z2: C:=Z1*X2: D:=Z1*Y2: E:=A*B: F:=C*D: G:=E+F: H:=E-F: X3 := ((A+a*D)*(B+C)-E-a*F)*H:

Y3 := ((A-C)*(B+D)-H)*G: Z3 := G*H:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=ADD_Ei_a01_opr(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-Z3/X3,y3-Z3/Y3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

UADD Ei a00.

> x1:=Z1/X1: y1:=Z1/Y1: x2:=Z2/X2: y2:=Z2/Y2:

> x3:=(x1*y2+y1*x2)/(1+d*x1*x2*y1*y2):

> y3:=(y1*y2-a*x1*x2)/(1-d*x1*x2*y1*y2):

>

> UADD_Ei_a00:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3:

> X3:=(X1*X2-a*Y1*Y2)*(X1*Y1*X2*Y2+d*Z1^2*Z2^2):

> Y3:=(X1*Y2+Y1*X2)*(X1*Y1*X2*Y2-d*Z1^2*Z2^2):

> Z3:=Z1*Z2*(X1*Y2+Y1*X2)*(X1*X2-a*Y1*Y2):

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=UADD_Ei_a00(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-Z3/X3,y3-Z3/Y3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

UADD Ei a01, 9M + 1S + 2D + 7a.

> UADD_Ei_a01_opr:=proc(X1,Y1,Z1,X2,Y2,Z2) local X3,Y3,Z3,A,B,C,D,E,F,H:

> A:=Z1*Z2: B:=d*A^2: C:=X1*X2: D:=Y1*Y2: E:=C*D: F:=(X1+Y1)*(X2+Y2)-C-D: H:=C-a*D: X3:=(E+B)*H: Y3:=(E-B

)*F: Z3:=A*H*F:

> return X3,Y3,Z3:

> end proc:

> X3,Y3,Z3:=UADD_Ei_a01_opr(X1,Y1,Z1,X2,Y2,Z2):

> simplify([x3-Z3/X3,y3-Z3/Y3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

DBL Ee a00.

> x1:=X1/Z1: y1:=Y1/Z1: T1:=X1*Y1/Z1:

> x3:=2*x1*y1/(y1^2+a*x1^2):

> y3:=(y1^2-a*x1^2)/(2-y1^2-a*x1^2):

>

> DBL_Ee_a00:=proc(X1,Y1,T1,Z1) local X3,Y3,T3,Z3:

> X3:=2*X1*Y1*(2*Z1^2-Y1^2-a*X1^2):

> Y3:=(Y1^2-a*X1^2)*(Y1^2+a*X1^2):

> T3:=2*X1*Y1*(Y1^2-a*X1^2):

180 Appendix C. Computer algebra scripts

> Z3:=(Y1^2+a*X1^2)*(2*Z1^2-Y1^2-a*X1^2):

> return X3,Y3,T3,Z3:

> end proc:

> X3,Y3,T3,Z3:=DBL_Ee_a00(X1,Y1,T1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3*Y3/Z3],[(C(x1,y1))]); #Check.

>

DBL Ee a01, 4M + 4S + 1D + 7a.

> DBL_Ee_a01_opr:=proc(X1,Y1,T1,Z1) local X3,Y3,T3,Z3,A,B,C,D,E,F,G,H,J:

> A:=X1^2: B:=Y1^2: C:=2*Z1^2: D:=A+B: E:=(X1+Y1)^2-D: F:=a*A: G:=B+F: H:=B-F: J:=C-G: X3:=E*J: Y3:=H*G:

T3:=E*H: Z3:=G*J:

> return X3,Y3,T3,Z3:

> end proc:

> X3,Y3,T3,Z3:=DBL_Ee_a01_opr(X1,Y1,T1,Z1):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3*Y3/Z3],[(C(x1,y1))]); #Check.

>

ADD Ee a00.

> x1:=X1/Z1: y1:=Y1/Z1: T1:=X1*Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2: T2:=X2*Y2/Z2:

> x3:=(x1*y2+y1*x2)/(1+d*x1*x2*y1*y2):

> y3:=(y1*y2-a*x1*x2)/(1-d*x1*x2*y1*y2):

>

> ADD_Ee_a00:=proc(X1,Y1,T1,Z1,X2,Y2,T2,Z2) local X3,Y3,T3,Z3:

> X3:=(X1*Y2-Y1*X2)*(T1*Z2+Z1*T2):

> Y3:=(Y1*Y2+a*X1*X2)*(T1*Z2-Z1*T2):

> T3:=(T1*Z2-Z1*T2)*(T1*Z2+Z1*T2):

> Z3:=(X1*Y2-Y1*X2)*(Y1*Y2+a*X1*X2):

> return X3,Y3,T3,Z3:

> end proc:

> X3,Y3,T3,Z3:=ADD_Ee_a00(X1,Y1,T1,Z1,X2,Y2,T2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3*Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

ADD Ee a01, 9M + 1D + 7a.

> ADD_Ee_a01_opr:=proc(X1,Y1,T1,Z1,X2,Y2,T2,Z2) local X3,Y3,T3,Z3,A,B,C,D,E,F,G,H:

> A:=X1*X2: B:=Y1*Y2: C:=Z1*T2: D:=T1*Z2: E:=D+C: F:=(X1-Y1)*(X2+Y2)+B-A: G:=B+a*A: H:=D-C: X3:=E*F: Y3:=

G*H: Z3:=F*G: T3:=E*H:

> return X3,Y3,T3,Z3:

> end proc:

> X3,Y3,T3,Z3:=ADD_Ee_a01_opr(X1,Y1,T1,Z1,X2,Y2,T2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3*Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

ADD Ee a02, 8M + 10a, assumes a = −1.

> ADD_Ee_a02_opr:=proc(X1,Y1,T1,Z1,X2,Y2,T2,Z2) local X3,Y3,T3,Z3,A,B,C,D,E,F,G,H:

> A:=(Y1-X1)*(Y2+X2): B:=(Y1+X1)*(Y2-X2): C:=2*Z1*T2: D:=2*T1*Z2: E:=D+C: F:=B-A: G:=B+A: H:=D-C: X3:=E*F

: Y3:=G*H: T3:=E*H: Z3:=F*G:

> return X3,Y3,T3,Z3:

> end proc:

> X3,Y3,T3,Z3:=ADD_Ee_a02_opr(X1,Y1,T1,Z1,X2,Y2,T2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3*Y3/Z3],[(C(x1,y1)),(C(x2,y2)),a+1]); #Check.

>

UADD Ee a00.

> x1:=X1/Z1: y1:=Y1/Z1: T1:=X1*Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2: T2:=X2*Y2/Z2:

> x3:=(x1*y2+y1*x2)/(1+d*x1*x2*y1*y2):

> y3:=(y1*y2-a*x1*x2)/(1-d*x1*x2*y1*y2):

>

C.5. Twisted Jacobi intersection form 181

> UADD_Ee_a00:=proc(X1,Y1,T1,Z1,X2,Y2,T2,Z2) local X3,Y3,T3,Z3:

> X3:=(X1*Y2+Y1*X2)*(Z1*Z2-d*T1*T2):

> Y3:=(Y1*Y2-a*X1*X2)*(Z1*Z2+d*T1*T2):

> T3:=(X1*Y2+Y1*X2)*(Y1*Y2-a*X1*X2):

> Z3:=(Z1*Z2-d*T1*T2)*(Z1*Z2+d*T1*T2):

> return X3,Y3,T3,Z3:

> end proc:

> X3,Y3,T3,Z3:=UADD_Ee_a00(X1,Y1,T1,Z1,X2,Y2,T2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3*Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

UADD Ee a01, 9M + 2D + 7a.

> UADD_Ee_a01_opr:=proc(X1,Y1,T1,Z1,X2,Y2,T2,Z2) local X3,Y3,T3,Z3,A,B,C,D,E,F,G,H:

> A:=X1*X2: B:=Y1*Y2: C:=d*T1*T2: D:=Z1*Z2: E:=(X1+Y1)*(X2+Y2)-A-B: F:=D-C: G:=D+C: H:=B-a*A: X3:=E*F: Y3

:=G*H: Z3:=F*G: T3:=E*H:

> return X3,Y3,T3,Z3:

> end proc:

> X3,Y3,T3,Z3:=UADD_Ee_a01_opr(X1,Y1,T1,Z1,X2,Y2,T2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3*Y3/Z3],[(C(x1,y1)),(C(x2,y2))]); #Check.

>

UADD Ee a02, 8M + 1D + 9a, assumes a = −1.

> UADD_Ee_a02_opr:=proc(X1,Y1,T1,Z1,X2,Y2,T2,Z2) local X3,Y3,T3,Z3,A,B,C,D,E,F,G,H:

> A:=(Y1-X1)*(Y2-X2): B:=(Y1+X1)*(Y2+X2): C:=(2*d)*T1*T2: D:=2*Z1*Z2: E:=B-A: F:=D-C: G:=D+C: H:=B+A: X3:

=E*F: Y3:=G*H: Z3:=F*G: T3:=E*H:

> return X3,Y3,T3,Z3:

> end proc:

> X3,Y3,T3,Z3:=UADD_Ee_a02_opr(X1,Y1,T1,Z1,X2,Y2,T2,Z2):

> simplify([x3-X3/Z3,y3-Y3/Z3,T3-X3*Y3/Z3],[(C(x1,y1)),(C(x2,y2)),a+1]); #Check.

>

C.5 Twisted Jacobi intersection form

> C:=(s,c,d)->(b*s^2+c^2-1,a*s^2+d^2-1):

> a1:=0: a3:=0: a2:=-a-b: a4:=a*b: a6:=0:

> W:=(u,v)->(v^2+a1*u*v+a3*v-(u^3+a2*u^2+a4*u+a6)):

> CtoW:=(s,c,d)->((1+c)*(1+d)/s^2,-(1+c)*(1+d)*(c+d)/s^3):

> WtoC:=(u,v)->(2*v/(a*b-u^2),2*u*(b-u)/(a*b-u^2)-1,2*u*(a-u)/(a*b-u^2)-1):

> simplify([W(CtoW(s1,c1,d1))],[C(s1,c1,d1)]); #Check CtoW.

> simplify([C(WtoC(u1,v1))],[W(u1,v1)]); #Check WtoC.

> simplify([(s1,c1,d1)-WtoC(CtoW(s1,c1,d1))],[C(s1,c1,d1)]); #Check CtoW(WtoC).

> simplify([(u1,v1)-CtoW(WtoC(u1,v1))],[W(u1,v1)]); #Check WtoC(CtoW).

> ut,vt:=CtoW(s1,c1,d1): simplify([(-s1,c1,d1)-WtoC(ut,-vt-a1*ut-a3)],[C(s1,c1,d1)]); #Check the negation.

> # Doubling formulae.

> unassign(’s1’,’c1’,’d1’): u1,v1:=CtoW(s1,c1,d1):

> L:=(3*u1^2+2*a2*u1+a4-a1*v1)/(2*v1+a1*u1+a3): u3:=L^2+a1*L-a2-2*u1: v3:=L*(u1-u3)-v1-a1*u3-a3:

> simplify([W(u3,v3)],[C(s1,c1,d1)]); s3std,c3std,d3std:=WtoC(u3,v3):

>

> s3:=2*s1*c1*d1/(d1^2+a*s1^2*c1^2): simplify([s3std-s3],[C(s1,c1,d1)]);

> s3:=2*s1*c1*d1/(c1^2+b*s1^2*d1^2): simplify([s3std-s3],[C(s1,c1,d1)]);

> s3:=2*s1*c1*d1/(c1^2+d1^2-c1^2*d1^2): simplify([s3std-s3],[C(s1,c1,d1)]);

> s3:=2*s1*c1*d1/(1-a*b*s1^4): simplify([s3std-s3],[C(s1,c1,d1)]);

> c3:=(2*(c1^4+b*s1^2*c1^2)-d1^2-a*s1^2*c1^2)/(d1^2+a*s1^2*c1^2): simplify([c3std-c3],[C(s1,c1,d1)]);

> c3:=(2*c1^2-d1^2-a*s1^2*c1^2)/(d1^2+a*s1^2*c1^2): simplify([c3std-c3],[C(s1,c1,d1)]);

> c3:=(c1^2-b*s1^2*d1^2)/(c1^2+b*s1^2*d1^2): simplify([c3std-c3],[C(s1,c1,d1)]);

> c3:=(c1^2-d1^2+c1^2*d1^2)/(c1^2+d1^2-c1^2*d1^2): simplify([c3std-c3],[C(s1,c1,d1)]);

> c3:=(c1^2-b*s1^2*d1^2)/(1-a*b*s1^4): simplify([c3std-c3],[C(s1,c1,d1)]);

> d3:=(d1^2-a*s1^2*c1^2)/(d1^2+a*s1^2*c1^2): simplify([d3std-d3],[C(s1,c1,d1)]);

> d3:=(2*d1^2-c1^2-b*s1^2*d1^2)/(c1^2+b*s1^2*d1^2): simplify([d3std-d3],[C(s1,c1,d1)]);

182 Appendix C. Computer algebra scripts

> d3:=(d1^2-c1^2+c1^2*d1^2)/(c1^2+d1^2-c1^2*d1^2): simplify([d3std-d3],[C(s1,c1,d1)]);

> d3:=(d1^2-a*s1^2*c1^2)/(1-a*b*s1^4): simplify([d3std-d3],[C(s1,c1,d1)]);

> d3:=(2*(d1^4+a*s1^2*d1^2)-c1^2-b*s1^2*d1^2)/(c1^2+b*s1^2*d1^2): simplify([d3std-d3],[C(s1,c1,d1)]);

> # Addition formulae.

> unassign(’s1’,’c1’,’d1’,’s2’,’c2’,’d2’): u1,v1:=CtoW(s1,c1,d1): u2,v2:=CtoW(s2,c2,d2):

> L:=(v2-v1)/(u2-u1): u3:=L^2+a1*L-a2-u1-u2: v3:=L*(u1-u3)-v1-a1*u3-a3:

> simplify([W(u3,v3)],[C(s1,c1,d1),C(s2,c2,d2)]); s3std,c3std,d3std:=WtoC(u3,v3):

>

> s3:=(s1^2-s2^2)/(s1*c2*d2-c1*d1*s2): simplify([s3std-s3],[C(s1,c1,d1),C(s2,c2,d2)]);

> s3:=(s1*c2*d2+c1*d1*s2)/(c1^2+b*s1^2*d2^2): simplify([s3std-s3],[C(s1,c1,d1),C(s2,c2,d2)]);

> s3:=(s1*c2*d2+c1*d1*s2)/(1-a*b*s1^2*s2^2): simplify([s3std-s3],[C(s1,c1,d1),C(s2,c2,d2)]);

> c3:=(s1*c1*d2-d1*s2*c2)/(s1*c2*d2-c1*d1*s2): simplify([c3std-c3],[C(s1,c1,d1),C(s2,c2,d2)]);

> c3:=(c1*c2-b*s1*d1*s2*d2)/(c1^2+b*s1^2*d2^2): simplify([c3std-c3],[C(s1,c1,d1),C(s2,c2,d2)]);

> c3:=(c1*c2-b*s1*d1*s2*d2)/(1-a*b*s1^2*s2^2): simplify([c3std-c3],[C(s1,c1,d1),C(s2,c2,d2)]);

> d3:=(s1*d1*c2-c1*s2*d2)/(s1*c2*d2-c1*d1*s2): simplify([d3std-d3],[C(s1,c1,d1),C(s2,c2,d2)]);

> d3:=(d1*d2-a*s1*c1*s2*c2)/(c1^2+b*s1^2*d2^2): simplify([d3std-d3],[C(s1,c1,d1),C(s2,c2,d2)]);

> d3:=(d1*d2-a*s1*c1*s2*c2)/(1-a*b*s1^2*s2^2): simplify([d3std-d3],[C(s1,c1,d1),C(s2,c2,d2)]);

DBL I a00.

> s1:=S1/Z1: c1:=C1/Z1: d1:=D1/Z1:

> s3:=2*s1*c1*d1/(1-a*b*s1^4):

> c3:=(c1^2-b*s1^2*d1^2)/(1-a*b*s1^4):

> d3:=(d1^2-a*s1^2*c1^2)/(1-a*b*s1^4):

>

> DBL_I_a00:=proc(S1,C1,D1,Z1) local S3,C3,D3,Z3:

> S3:=2*S1*C1*D1*Z1:

> C3:=C1^2*Z1^2-b*S1^2*D1^2:

> D3:=-C1^2*Z1^2-b*S1^2*D1^2+2*D1^2*Z1^2:

> Z3:=C1^2*Z1^2+b*S1^2*D1^2:

> return S3,C3,D3,Z3:

> end proc:

> S3,C3,D3,Z3:=DBL_I_a00(S1,C1,D1,Z1):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3],[(C(s1,c1,d1))]); #Check.

>

DBL I a01, 3M + 4S + 1D + 7a.

> DBL_I_a01_opr:=proc(S1,C1,D1,Z1) local S3,C3,D3,Z3,U1,V1,E,F,G,H:

> U1:=S1*D1: V1:=C1*Z1: E:=D1*Z1: F:=U1^2: G:=V1^2: S3:=(U1+V1)^2-G-F: H:=b*F: C3:=G-H: Z3:=G+H: D3:=2*E^

2-Z3:

> return S3,C3,D3,Z3:

> end proc:

> S3,C3,D3,Z3:=DBL_I_a01_opr(S1,C1,D1,Z1):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3],[(C(s1,c1,d1))]); #Check.

>

> DBL_I_a01_reg:=proc(S1,C1,D1,Z1) local S3,C3,D3,Z3,t1:

> S3:=S1*D1: C3:=C1*Z1: D3:=D1*Z1: Z3:=S3+C3: S3:=S3^2: C3:=C3^2: D3:=D3^2: Z3:=Z3^2: D3:=2*D3: t1:=b*S3:

S3:=S3+C3: S3:=Z3-S3: Z3:=t1+C3: C3:=C3-t1: D3:=D3-Z3:

> return S3,C3,D3,Z3:

> end proc:

> S3,C3,D3,Z3:=DBL_I_a01_reg(S1,C1,D1,Z1):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3],[(C(s1,c1,d1))]); #Check.

>

DBL I a02, 3M + 4S + 6a, assumes b = 1.

> DBL_I_a02_opr:=proc(S1,C1,D1,Z1) local S3,C3,D3,Z3,U1,V1,E,F,G,H:

> U1:=S1*D1: V1:=C1*Z1: E:=D1*Z1: F:=U1^2: G:=V1^2: Z3:=G+F: S3:=(U1+V1)^2-Z3: C3:=G-F: D3:=2*E^2-Z3:

> return S3,C3,D3,Z3:

> end proc:

> S3,C3,D3,Z3:=DBL_I_a02_opr(S1,C1,D1,Z1):

C.5. Twisted Jacobi intersection form 183

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3],[(C(s1,c1,d1)),b-1]); #Check.

>

> DBL_I_a02_reg:=proc(S1,C1,D1,Z1) local S3,C3,D3,Z3,t1:

> S3:=S1*D1: C3:=C1*Z1: D3:=D1*Z1: t1:=S3+C3: t1:=t1^2: S3:=S3^2: C3:=C3^2: D3:=D3^2: Z3:=C3+S3: C3:=C3-S

3: D3:=2*D3: D3:=D3-Z3: S3:=t1-Z3:

> return S3,C3,D3,Z3:

> end proc:

> S3,C3,D3,Z3:=DBL_I_a02_reg(S1,C1,D1,Z1):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3],[(C(s1,c1,d1)),b-1]); #Check.

>

DBL I b00.

> s1:=S1/Z1: c1:=C1/Z1: d1:=D1/Z1:

> s3:=2*s1*c1*d1/(1-a*b*s1^4):

> c3:=(c1^2-b*s1^2*d1^2)/(1-a*b*s1^4):

> d3:=(d1^2-a*s1^2*c1^2)/(1-a*b*s1^4):

>

> DBL_I_b00:=proc(S1,C1,D1,Z1) local S3,C3,D3,Z3:

> S3:=2*S1*C1*D1*Z1:

> C3:=C1^2*Z1^2-b*S1^2*D1^2:

> D3:=-C1^2*Z1^2-b*S1^2*D1^2+2*a*S1^2*D1^2+2*D1^4:

> Z3:=C1^2*Z1^2+b*S1^2*D1^2:

> return S3,C3,D3,Z3:

> end proc:

> S3,C3,D3,Z3:=DBL_I_b00(S1,C1,D1,Z1):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3],[(C(s1,c1,d1))]); #Check.

>

DBL I b01, 2M + 5S + 2D + 8a.

> DBL_I_b01_opr:=proc(S1,C1,D1,Z1) local S3,C3,D3,Z3,U1,V1,F,G,H:

> U1:=S1*D1: V1:=C1*Z1: F:=U1^2: G:=V1^2: H:=b*F: C3:=G-H: Z3:=G+H: S3:=(U1+V1)^2-F-G: D3:=2*(a*F+D1^4)-Z

3:

> return S3,C3,D3,Z3:

> end proc:

> S3,C3,D3,Z3:=DBL_I_b01_opr(S1,C1,D1,Z1):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3],[(C(s1,c1,d1))]); #Check.

>

> DBL_I_b01_reg:=proc(S1,C1,D1,Z1) local S3,C3,D3,Z3,t1:

> S3:=S1*D1: C3:=C1*Z1: D3:=D1^2: Z3:=S3+C3: S3:=S3^2: C3:=C3^2: D3:=D3^2: Z3:=Z3^2: t1:=a*S3: D3:=t1+D3:

D3:=2*D3: t1:=b*S3: S3:=S3+C3: S3:=Z3-S3: Z3:=C3+t1: C3:=C3-t1: D3:=D3-Z3:

> return S3,C3,D3,Z3:

> end proc:

> S3,C3,D3,Z3:=DBL_I_b01_reg(S1,C1,D1,Z1):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3],[(C(s1,c1,d1))]); #Check.

>

DBL I b02, 2M + 5S + 1D + 7a, assumes b = 1.

> DBL_I_b02_opr:=proc(S1,C1,D1,Z1) local S3,C3,D3,Z3,U1,V1,F,G:

> U1:=S1*D1: V1:=C1*Z1: F:=U1^2: G:=V1^2: C3:=G-F: Z3:=G+F: S3:=(U1+V1)^2-Z3: D3:=2*(a*F+D1^4)-Z3:

> return S3,C3,D3,Z3:

> end proc:

> S3,C3,D3,Z3:=DBL_I_b02_opr(S1,C1,D1,Z1):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3],[(C(s1,c1,d1)),b-1]); #Check.

>

> DBL_I_b02_reg:=proc(S1,C1,D1,Z1) local S3,C3,D3,Z3,t1:

> S3:=S1*D1: C3:=C1*Z1: D3:=D1^2: D3:=D3^2: t1:=S3^2: S3:=S3+C3: S3:=S3^2: C3:=C3^2: Z3:=C3+t1: S3:=S3-Z3

: C3:=C3-t1: t1:=a*t1: D3:=D3+t1: D3:=2*D3: D3:=D3-Z3:

> return S3,C3,D3,Z3:

> end proc:

> S3,C3,D3,Z3:=DBL_I_b02_reg(S1,C1,D1,Z1):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3],[(C(s1,c1,d1)),b-1]); #Check.

>

184 Appendix C. Computer algebra scripts

ADD I a00.

> s1:=S1/Z1: c1:=C1/Z1: d1:=D1/Z1: s2:=S2/Z2: c2:=C2/Z2: d2:=D2/Z2:

> s3:=(s1*c2*d2+c1*d1*s2)/(1-a*b*s1^2*s2^2):

> c3:=(c1*c2-b*s1*d1*s2*d2)/(1-a*b*s1^2*s2^2):

> d3:=(d1*d2-a*s1*c1*s2*c2)/(1-a*b*s1^2*s2^2):

>

> ADD_I_a00:=proc(S1,C1,D1,Z1,S2,C2,D2,Z2) local S3,C3,D3,Z3:

> S3:=S1^2*Z2^2-Z1^2*S2^2:

> C3:=S1*C1*D2*Z2-D1*Z1*S2*C2:

> D3:=S1*D1*C2*Z2-C1*Z1*S2*D2:

> Z3:=S1*Z1*C2*D2-C1*D1*S2*Z2:

> return S3,C3,D3,Z3:

> end proc:

> S3,C3,D3,Z3:=ADD_I_a00(S1,C1,D1,Z1,S2,C2,D2,Z2):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3],[(C(s1,c1,d1)),(C(s2,c2,d2))]); #Check.

>

ADD I a01, 12M + 11a.

> ADD_I_a01_opr:=proc(S1,C1,D1,Z1,S2,C2,D2,Z2) local S3,C3,D3,Z3,E,F,G,H,J,K,L,M,N,P:

> E:=S1*Z2: F:=Z1*S2: G:=C1*D2: H:=D1*C2: J:=E-F: K:=E+F: L:=G-H: M:=G+H: N:=K*L: P:=J*M: S3:=J*K: C3:=(N

+P)/2: D3:=(P-N)/2: Z3:=(D1*Z2+Z1*D2)*(S1*C2-C1*S2)-D3:

> return S3,C3,D3,Z3:

> end proc:

> S3,C3,D3,Z3:=ADD_I_a01_opr(S1,C1,D1,Z1,S2,C2,D2,Z2):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3],[(C(s1,c1,d1)),(C(s2,c2,d2))]); #Check.

>

ADD I b00.

> s1:=S1/Z1: c1:=C1/Z1: d1:=D1/Z1: s2:=S2/Z2: c2:=C2/Z2: d2:=D2/Z2:

> s3:=(s1*c2*d2+c1*d1*s2)/(1-a*b*s1^2*s2^2):

> c3:=(c1*c2-b*s1*d1*s2*d2)/(1-a*b*s1^2*s2^2):

> d3:=(d1*d2-a*s1*c1*s2*c2)/(1-a*b*s1^2*s2^2):

>

> ADD_I_b00:=proc(S1,C1,D1,Z1,S2,C2,D2,Z2) local S3,C3,D3,Z3:

> S3:=(1/b)*(Z1^2*C2^2-C1^2*Z2^2):

> C3:=S1*C1*D2*Z2-D1*Z1*S2*C2:

> D3:=S1*D1*C2*Z2-C1*Z1*S2*D2:

> Z3:=S1*Z1*C2*D2-C1*D1*S2*Z2:

> return S3,C3,D3,Z3:

> end proc:

> S3,C3,D3,Z3:=ADD_I_b00(S1,C1,D1,Z1,S2,C2,D2,Z2):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3],[(C(s1,c1,d1)),(C(s2,c2,d2))]); #Check.

>

ADD I b01, 12M + 1D + 11a.

> ADD_I_b01_opr:=proc(S1,C1,D1,Z1,S2,C2,D2,Z2) local S3,C3,D3,Z3,E,F,G,H,J,K,L,M,N,P:

> E:=C1*Z2: F:=Z1*C2: G:=S1*D2: H:=D1*S2: J:=F-E: K:=F+E: L:=G-H: M:=G+H: N:=K*L: P:=J*M: S3:=(1/b)*J*K:

C3:=(N-P)/2: Z3:=(N+P)/2: D3:=(S1*Z2-Z1*S2)*(C1*D2+D1*C2)-C3:

> return S3,C3,D3,Z3:

> end proc:

> S3,C3,D3,Z3:=ADD_I_b01_opr(S1,C1,D1,Z1,S2,C2,D2,Z2):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3],[(C(s1,c1,d1)),(C(s2,c2,d2))]); #Check.

>

ADD I b02, 12M + 11a, assumes b = 1.

> ADD_I_b02_opr:=proc(S1,C1,D1,Z1,S2,C2,D2,Z2) local S3,C3,D3,Z3,E,F,G,H,J,K,L,M,N,P:

> E:=C1*Z2: F:=Z1*C2: G:=S1*D2: H:=D1*S2: J:=F-E: K:=F+E: L:=G-H: M:=G+H: N:=K*L: P:=J*M: S3:=J*K: C3:=(N

-P)/2: Z3:=(N+P)/2: D3:=(S1*Z2-Z1*S2)*(C1*D2+D1*C2)-C3:

> return S3,C3,D3,Z3:

C.5. Twisted Jacobi intersection form 185

> end proc:

> S3,C3,D3,Z3:=ADD_I_b02_opr(S1,C1,D1,Z1,S2,C2,D2,Z2):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3],[(C(s1,c1,d1)),(C(s2,c2,d2)),b-1]); #Check.

>

UADD I a00.

> s1:=S1/Z1: c1:=C1/Z1: d1:=D1/Z1: s2:=S2/Z2: c2:=C2/Z2: d2:=D2/Z2:

> s3:=(s1*c2*d2+c1*d1*s2)/(1-a*b*s1^2*s2^2):

> c3:=(c1*c2-b*s1*d1*s2*d2)/(1-a*b*s1^2*s2^2):

> d3:=(d1*d2-a*s1*c1*s2*c2)/(1-a*b*s1^2*s2^2):

>

> UADD_I_a00:=proc(S1,C1,D1,Z1,S2,C2,D2,Z2) local S3,C3,D3,Z3:

> S3:=S1*Z1*C2*D2+C1*D1*S2*Z2:

> C3:=C1*Z1*C2*Z2-b*S1*D1*S2*D2:

> D3:=D1*Z1*D2*Z2-a*S1*C1*S2*C2:

> Z3:=C1^2*Z2^2+b*S1^2*D2^2:

> return S3,C3,D3,Z3:

> end proc:

> S3,C3,D3,Z3:=UADD_I_a00(S1,C1,D1,Z1,S2,C2,D2,Z2):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3],[(C(s1,c1,d1)),(C(s2,c2,d2))]); #Check.

>

UADD I a01, 13M + 2S + 5D + 13a.

> UADD_I_a01_opr:=proc(S1,C1,D1,Z1,S2,C2,D2,Z2) local S3,C3,D3,Z3,U1,U2,V1,V2,E,F,G,H,J,K:

> E:=C1*Z2: F:=Z1*C2: G:=S1*D2: H:=D1*S2: J:=F*H: K:=E*G: S3:=(E+F)*(G+H)-J-K: C3:=(E-b*H)*(G+F)+b*J-K: D

3:=(D1*Z1-a*S1*C1)*(S2*C2+D2*Z2)-J+a*K: Z3:=E^2+b*G^2:

> return S3,C3,D3,Z3:

> end proc:

> S3,C3,D3,Z3:=UADD_I_a01_opr(S1,C1,D1,Z1,S2,C2,D2,Z2):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3],[(C(s1,c1,d1)),(C(s2,c2,d2))]); #Check.

>

UADD I a02, 13M + 1S + 2D + 15a, assumes b = 1.

> UADD_I_a02_opr:=proc(S1,C1,D1,Z1,S2,C2,D2,Z2) local S3,C3,D3,Z3,U1,U2,V1,V2,E,F,G,H,J,K,L,M,N,P:

> U1:=S1*C1: V1:=D1*Z1: U2:=S2*C2: V2:=D2*Z2: E:=S1*D2: F:=C1*Z2: G:=D1*S2: H:=Z1*C2: J:=U1*V2: K:=V1*U2:

S3:=(H+F)*(E+G)-J-K: C3:=(H+E)*(F-G)-J+K: D3:=(V1-a*U1)*(U2+V2)+a*J-K: Z3:=(H+G)^2-2*K:

> return S3,C3,D3,Z3:

> end proc:

> S3,C3,D3,Z3:=UADD_I_a02_opr(S1,C1,D1,Z1,S2,C2,D2,Z2):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3],[(C(s1,c1,d1)),(C(s2,c2,d2)),b-1]); #Check.

>

DBL Imd a00.

> s1:=S1/Z1: c1:=C1/Z1: d1:=D1/Z1: U1:=S1*D1: V1:=C1*Z1:

> s3:=2*s1*c1*d1/(1-a*b*s1^4):

> c3:=(c1^2-b*s1^2*d1^2)/(1-a*b*s1^4):

> d3:=(d1^2-a*s1^2*c1^2)/(1-a*b*s1^4):

>

> DBL_Imd_a00:=proc(S1,C1,D1,Z1,U1,V1) local S3,C3,D3,Z3,U3,V3:

> S3:=2*S1*C1*D1*Z1:

> C3:=C1^2*Z1^2-b*S1^2*D1^2:

> D3:=-C1^2*Z1^2-b*S1^2*D1^2+2*D1^2*Z1^2:

> Z3:=C1^2*Z1^2+b*S1^2*D1^2:

> U3:=S3*D3:

> V3:=C3*Z3:

> return S3,C3,D3,Z3,U3,V3:

> end proc:

> S3,C3,D3,Z3,U3,V3:=DBL_Imd_a00(S1,C1,D1,Z1,U1,V1):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3,U3-S3*D3,V3-C3*Z3],[(C(s1,c1,d1))]); #Check.

>

186 Appendix C. Computer algebra scripts

DBL Imd a01, 3M + 4S + 1D + 7a.

> DBL_Imd_a01_opr:=proc(S1,C1,D1,Z1,U1,V1) local S3,C3,D3,Z3,U3,V3,E,F,G,H:

> E:=D1*Z1: F:=U1^2: G:=V1^2: S3:=(U1+V1)^2-G-F: H:=b*F: C3:=G-H: Z3:=G+H: D3:=2*E^2-Z3: U3:=S3*D3: V3:=C

3*Z3:

> return S3,C3,D3,Z3,U3,V3:

> end proc:

> S3,C3,D3,Z3,U3,V3:=DBL_Imd_a01_opr(S1,C1,D1,Z1,U1,V1):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3,U3-S3*D3,V3-C3*Z3],[(C(s1,c1,d1))]); #Check.

>

> DBL_Imd_a01_reg:=proc(S1,C1,D1,Z1,U1,V1) local S3,C3,D3,Z3,U3,V3,t1:

> D3:=D1*Z1: Z3:=U1+V1: S3:=U1^2: C3:=V1^2: D3:=D3^2: Z3:=Z3^2: D3:=2*D3: t1:=b*S3: S3:=S3+C3: S3:=Z3-S3:

Z3:=t1+C3: C3:=C3-t1: D3:=D3-Z3: U3:=S3*D3: V3:=C3*Z3:

> return S3,C3,D3,Z3,U3,V3:

> end proc:

> S3,C3,D3,Z3,U3,V3:=DBL_Imd_a01_reg(S1,C1,D1,Z1,U1,V1):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3,U3-S3*D3,V3-C3*Z3],[(C(s1,c1,d1))]); #Check.

>

DBL Imd a02, 3M + 4S + 6a, assumes b = 1.

> DBL_Imd_a02_opr:=proc(S1,C1,D1,Z1,U1,V1) local S3,C3,D3,Z3,U3,V3,E,F,G,H:

> E:=D1*Z1: F:=U1^2: G:=V1^2: Z3:=G+F: S3:=(U1+V1)^2-Z3: C3:=G-F: D3:=2*E^2-Z3: U3:=S3*D3: V3:=C3*Z3:

> return S3,C3,D3,Z3,U3,V3:

> end proc:

> S3,C3,D3,Z3,U3,V3:=DBL_Imd_a02_opr(S1,C1,D1,Z1,U1,V1):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3,U3-S3*D3,V3-C3*Z3],[(C(s1,c1,d1)),b-1]); #Check.

>

> DBL_Imd_a02_reg:=proc(S1,C1,D1,Z1,U1,V1) local S3,C3,D3,Z3,U3,V3,t1:

> D3:=D1*Z1: t1:=U1+V1: t1:=t1^2: S3:=U1^2: C3:=V1^2: D3:=D3^2: Z3:=C3+S3: C3:=C3-S3: D3:=2*D3: D3:=D3-Z3

: S3:=t1-Z3: U3:=S3*D3: V3:=C3*Z3:

> return S3,C3,D3,Z3,U3,V3:

> end proc:

> S3,C3,D3,Z3,U3,V3:=DBL_Imd_a02_reg(S1,C1,D1,Z1,U1,V1):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3,U3-S3*D3,V3-C3*Z3],[(C(s1,c1,d1)),b-1]); #Check.

>

ADD Imd a00.

> s1:=S1/Z1: c1:=C1/Z1: d1:=D1/Z1: U1:=S1*D1: V1:=C1*Z1: s2:=S2/Z2: c2:=C2/Z2: d2:=D2/Z2: U2:=S2*D2: V2:=C2*Z

2:

> s3:=(s1*c2*d2+c1*d1*s2)/(1-a*b*s1^2*s2^2):

> c3:=(c1*c2-b*s1*d1*s2*d2)/(1-a*b*s1^2*s2^2):

> d3:=(d1*d2-a*s1*c1*s2*c2)/(1-a*b*s1^2*s2^2):

>

> ADD_Imd_a00:=proc(S1,C1,D1,Z1,U1,V1,S2,C2,D2,Z2,U2,V2) local S3,C3,D3,Z3,U3,V3:

> S3:=(1/b)*(Z1^2*C2^2-C1^2*Z2^2):

> C3:=S1*C1*D2*Z2-D1*Z1*S2*C2:

> D3:=S1*D1*C2*Z2-C1*Z1*S2*D2:

> Z3:=S1*Z1*C2*D2-C1*D1*S2*Z2:

> U3:=S3*D3:

> V3:=C3*Z3:

> return S3,C3,D3,Z3,U3,V3:

> end proc:

> S3,C3,D3,Z3,U3,V3:=ADD_Imd_a00(S1,C1,D1,Z1,U1,V1,S2,C2,D2,Z2,U2,V2):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3,U3-S3*D3,V3-C3*Z3],[(C(s1,c1,d1)),(C(s2,c2,d2))]); #Check.

>

ADD Imd a01, 11M + 1D + 9a.

> ADD_Imd_a01_opr:=proc(S1,C1,D1,Z1,U1,V1,S2,C2,D2,Z2,U2,V2) local S3,C3,D3,Z3,U3,V3,E,F,G,H,J,K,L,M,N,P:

> E:=C1*Z2: F:=Z1*C2: G:=S1*D2: H:=D1*S2: J:=F-E: K:=F+E: L:=G-H: M:=G+H: N:=K*L: P:=J*M: S3:=(1/b)*J*K:

C3:=(N-P)/2: Z3:=(N+P)/2: D3:=U1*V2-V1*U2: U3:=S3*D3: V3:=C3*Z3:

> return S3,C3,D3,Z3,U3,V3:

C.5. Twisted Jacobi intersection form 187

> end proc:

> S3,C3,D3,Z3,U3,V3:=ADD_Imd_a01_opr(S1,C1,D1,Z1,U1,V1,S2,C2,D2,Z2,U2,V2):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3,U3-S3*D3,V3-C3*Z3],[(C(s1,c1,d1)),(C(s2,c2,d2))]); #Check.

>

ADD Imd a02, 11M + 9a, assumes b = 1.

> ADD_Imd_a02_opr:=proc(S1,C1,D1,Z1,U1,V1,S2,C2,D2,Z2,U2,V2) local S3,C3,D3,Z3,U3,V3,E,F,G,H,J,K,L,M,N,P:

> E:=C1*Z2: F:=Z1*C2: G:=S1*D2: H:=D1*S2: J:=F-E: K:=F+E: L:=G-H: M:=G+H: N:=K*L: P:=J*M: S3:=J*K: C3:=(N

-P)/2: Z3:=(N+P)/2: D3:=U1*V2-V1*U2: U3:=S3*D3: V3:=C3*Z3:

> return S3,C3,D3,Z3,U3,V3:

> end proc:

> S3,C3,D3,Z3,U3,V3:=ADD_Imd_a02_opr(S1,C1,D1,Z1,U1,V1,S2,C2,D2,Z2,U2,V2):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3,U3-S3*D3,V3-C3*Z3],[(C(s1,c1,d1)),(C(s2,c2,d2)),b-1]); #Check.

>

> ADD_Imd_a02_reg:=proc(S1,C1,D1,Z1,U1,V1,S2,C2,D2,Z2,U2,V2) local S3,C3,D3,Z3,U3,V3,t1,t2:

> t1:=C1*Z2: Z3:=Z1*C2: t2:=Z3-t1: C3:=Z3+t1: t1:=S1*D2: D3:=D1*S2: S3:=t1-D3: D3:=t1+D3: t1:=C3*S3: D3:=

t2*D3: S3:=t2*C3: C3:=t1-D3: C3:=C3/2: Z3:=t1+D3: Z3:=Z3/2: t1:=U1*V2: t2:=V1*U2: D3:=t1-t2: U3:=S3*D3: V3:=C3

*Z3:

> return S3,C3,D3,Z3,U3,V3:

> end proc:

> S3,C3,D3,Z3,U3,V3:=ADD_Imd_a02_reg(S1,C1,D1,Z1,U1,V1,S2,C2,D2,Z2,U2,V2):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3,U3-S3*D3,V3-C3*Z3],[(C(s1,c1,d1)),(C(s2,c2,d2)),b-1]); #Check.

>

ADD Imd a03, 10M + 9a, assumes b = 1, Z2 = 1.

> ADD_Imd_a03_opr:=proc(S1,C1,D1,Z1,U1,V1,S2,C2,D2,Z2,U2,V2) local S3,C3,D3,Z3,U3,V3,F,G,H,J,K,L,M,N,P:

> F:=Z1*C2: G:=S1*D2: H:=D1*S2: J:=F-C1: K:=F+C1: L:=G-H: M:=G+H: N:=K*L: P:=J*M: S3:=J*K: C3:=(N-P)/2: Z

3:=(N+P)/2: D3:=U1*V2-V1*U2: U3:=S3*D3: V3:=C3*Z3:

> return S3,C3,D3,Z3,U3,V3:

> end proc:

> S3,C3,D3,Z3,U3,V3:=ADD_Imd_a03_opr(S1,C1,D1,Z1,U1,V1,S2,C2,D2,Z2,U2,V2):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3,U3-S3*D3,V3-C3*Z3],[(C(s1,c1,d1)),(C(s2,c2,d2)),b-1,Z2-1]); #Check.

>

> ADD_Imd_a03_reg:=proc(S1,C1,D1,Z1,U1,V1,S2,C2,D2,Z2,U2,V2) local S3,C3,D3,Z3,U3,V3,t1,t2:

> Z3:=Z1*C2: t2:=Z3-C1: C3:=Z3+C1: t1:=S1*D2: D3:=D1*S2: S3:=t1-D3: D3:=t1+D3: t1:=C3*S3: D3:=t2*D3: S3:=

t2*C3: C3:=t1-D3: C3:=C3/2: Z3:=t1+D3: Z3:=Z3/2: t1:=U1*V2: t2:=V1*U2: D3:=t1-t2: U3:=S3*D3: V3:=C3*Z3:

> return S3,C3,D3,Z3,U3,V3:

> end proc:

> S3,C3,D3,Z3,U3,V3:=ADD_Imd_a03_reg(S1,C1,D1,Z1,U1,V1,S2,C2,D2,Z2,U2,V2):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3,U3-S3*D3,V3-C3*Z3],[(C(s1,c1,d1)),(C(s2,c2,d2)),b-1,Z2-1]); #Check.

>

UADD Imu a00.

> s1:=S1/Z1: c1:=C1/Z1: d1:=D1/Z1: U1:=S1*C1: V1:=D1*Z1: s2:=S2/Z2: c2:=C2/Z2: d2:=D2/Z2: U2:=S2*C2: V2:=D2*Z

2:

> s3:=(s1*c2*d2+c1*d1*s2)/(1-a*b*s1^2*s2^2):

> c3:=(c1*c2-b*s1*d1*s2*d2)/(1-a*b*s1^2*s2^2):

> d3:=(d1*d2-a*s1*c1*s2*c2)/(1-a*b*s1^2*s2^2):

>

> UADD_Imu_a00:=proc(S1,C1,D1,Z1,U1,V1,S2,C2,D2,Z2,U2,V2) local S3,C3,D3,Z3,U3,V3:

> S3:=S1*Z1*C2*D2+C1*D1*S2*Z2:

> C3:=C1*Z1*C2*Z2-b*S1*D1*S2*D2:

> D3:=D1*Z1*D2*Z2-a*S1*C1*S2*C2:

> Z3:=C1^2*Z2^2+b*S1^2*D2^2:

> U3:=S3*C3:

> V3:=D3*Z3:

> return S3,C3,D3,Z3,U3,V3:

> end proc:

> S3,C3,D3,Z3,U3,V3:=UADD_Imu_a00(S1,C1,D1,Z1,U1,V1,S2,C2,D2,Z2,U2,V2):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3,U3-S3*C3,V3-D3*Z3],[(C(s1,c1,d1)),(C(s2,c2,d2))]); #Check.

>

188 Appendix C. Computer algebra scripts

UADD Imu a01, 11M + 2S + 5D + 13a.

> UADD_Imu_a01_opr:=proc(S1,C1,D1,Z1,U1,V1,S2,C2,D2,Z2,U2,V2) local S3,C3,D3,Z3,U3,V3,E,F,G,H,J,K:

> E:=C1*Z2: F:=Z1*C2: G:=S1*D2: H:=D1*S2: J:=F*H: K:=E*G: S3:=(E+F)*(G+H)-J-K: C3:=(E-b*H)*(G+F)+b*J-K: D

3:=(V1-a*U1)*(U2+V2)-J+a*K: Z3:=E^2+b*G^2: U3:=S3*C3: V3:=D3*Z3:

> return S3,C3,D3,Z3,U3,V3:

> end proc:

> S3,C3,D3,Z3,U3,V3:=UADD_Imu_a01_opr(S1,C1,D1,Z1,U1,V1,S2,C2,D2,Z2,U2,V2):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3,U3-S3*C3,V3-D3*Z3],[(C(s1,c1,d1)),(C(s2,c2,d2))]); #Check.

>

UADD Imu a02, 11M + 1S + 2D + 15a, assumes b = 1.

> UADD_Imu_a02_opr:=proc(S1,C1,D1,Z1,U1,V1,S2,C2,D2,Z2,U2,V2) local S3,C3,D3,Z3,U3,V3,E,F,G,H,J,K,L,M,N,P:

> E:=S1*D2: F:=C1*Z2: G:=D1*S2: H:=Z1*C2: J:=U1*V2: K:=V1*U2: S3:=(H+F)*(E+G)-J-K: C3:=(H+E)*(F-G)-J+K: D

3:=(V1-a*U1)*(U2+V2)+a*J-K: Z3:=(H+G)^2-2*K: U3:=S3*C3: V3:=D3*Z3:

> return S3,C3,D3,Z3,U3,V3:

> end proc:

> S3,C3,D3,Z3,U3,V3:=UADD_Imu_a02_opr(S1,C1,D1,Z1,U1,V1,S2,C2,D2,Z2,U2,V2):

> simplify([s3-S3/Z3,c3-C3/Z3,d3-D3/Z3,U3-S3*C3,V3-D3*Z3],[(C(s1,c1,d1)),(C(s2,c2,d2)),b-1]); #Check.

>

C.6 Scripts for Chapter 7

This Maple script verifies that (7.3) and (7.4) commute with the original point doubling
formulas.

> b:=c^2: W:=(x,y)->y^2-(x^3+a*x+b): #The short Weierstrass curve, W.

> L:=(3*x1^2+a)/(2*y1): x3:=L^2-2*x1: y3:=L*(x1-x3)-y1: #Double on W.

> mu:=(y1+3*c)/(2*y1): sigma:=(a-3*x1^2)/(2*y1)^2: #Double on W with new formulas.

> delta:=(3*x1*(y1-3*c)*(y1+3*c)-a*(9*x1^2+a))/(2*y1)^3: #Double on W with new formulas.

> x3new:=x1*(mu-mu^2)+ a*sigma: y3new:=(y1-c)*mu^3+a*delta-c: #Double on W with new formulas.

> simplify(x3-x3new,[W(x1,y1)]); simplify(y3-y3new,[W(x1,y1)]); #Check.

This Maple script verifies that (7.5), (7.6), (7.7), and (7.8) commute with the original doubling
and addition formulas.

> Q:=(x,y)->y^2-(c*x^3+1): #The curve considered in this work, Q.

> W:=(u,v)->v^2-(u^3+c^2): #The short Weierstrass curve, W.

> QtoW:=(x,y)->c*x,(x,y)->c*y: #The map from Q to W.

> WtoQ:=(u,v)->u/c,(u,v)->v/c: #The map from W to Q.

> ##Verify the correctness of point additon formulas.

> u1,v1:=QtoW(x1,y1): u2,v2:=QtoW(x2,y2): #Map the points (x1,y1) and (x2,y2) on Q to W.

> L:=(v1-v2)/(u1-u2): u3:=L^2-u1-u2: v3:=L*(u1-u3)-v1: #Add on W with the original formulas.

> x3,y3:=WtoQ(u3,v3): #Map the sum (u3,v3) on W to Q.

> simplify(W(u3,v3),[Q(x1,y1),Q(x2,y2)]); #Check.

> Lnew:=(y1-y2)/(x1-x2): x3new:=c^(-1)*Lnew^2-x1-x2: y3new:=Lnew*(x1-x3)-y1: ##Add on Q.

> simplify(x3-x3new,[Q(x1,y1),Q(x2,y2)]); simplify(y3-y3new,[Q(x1,y1),Q(x2,y2)]); #Check.

> unassign(’Lnew’,’L’,’u2’,’v2’,’u3’,’v3’,’x3’,’y3’,’x3new’,’y3new’);

> ##Verify the correctness of point doubling formulas.

> L:=3*u1^2/(2*v1): u3:=L^2-2*u1: v3:=L*(u1-u3)-v1: #Double on W with the original formulas.

> x3,y3:=WtoQ(u3,v3): #Map the sum (u3,v3) on W to Q.

> simplify(W(u3,v3),[Q(x1,y1)]); #Check.

> mu:=(y1+3)/(2*y1): x3new:=x1*(mu-mu^2): y3new:=(y1-1)*mu^3-1: #Double on Q.

> simplify(x3-x3new,[Q(x1,y1)]); simplify(y3-y3new,[Q(x1,y1)]); #Check.

This Maple script verifies the correctness of (7.9), (7.10), and (7.11).

> Q:=(x,y)->y^2-(c*x^3+1): #The curve considered in this work, Q.

> W:=(u,v)->v^2-(u^3+c^2): #The short Weierstrass curve, W.

> QtoW:=(x,y)->c*x,(x,y)->c*y: #The maps from Q to W.

> WtoQ:=(u,v)->u/c,(u,v)->v/c: #The maps from W to Q.

> ##Verify the correctness of the line formulas for addition.

C.6. Scripts for Chapter 7 189

> u1,v1:=QtoW(x1,y1): u2,v2:=QtoW(x2,y2): uQ,vQ:=QtoW(xQ,yQ): ##(xi,yi) on Q to (ui,vi) on W.

> L:=(v1-v2)/(u1-u2): l:=L*(u1-uQ)+vQ-v1: v:=uQ-(L^2-u1-u2): #Compute the addition-line on W.

> Lnew:=(y1-y2)/(x1-x2): gadd:=c*(Lnew*(x2-xQ)-y2+yQ)/(c*(x1+x2+xQ)-Lnew^2): #New line on Q.

> simplify(l/v-gadd,[Q(x1,y1),Q(x2,y2),Q(xQ,yQ)]); #Check.

> ##Verify the correctness of the line formulas for doubling.

> L:=3*u1^2/(2*v1): l:=L*(u1-uQ)+vQ-v1: v:=uQ-(L^2-2*u1): #Compute the doubling-line on W.

> gdbl:=2*c*y1*(x1-xQ)^2/(x1^2*(3*c*xQ)-y1^2+3+2*y1*yQ): #New line on Q.

> simplify(l/v-gdbl,[Q(x1,y1),Q(xQ,yQ)]); #Check.

> ##Verify the correctness of the line formulas for the sum of negatives.

> l:=uQ-u1: v:=1: #The vertical line on W.

> gvert:=-c*(x1-xQ): #The new line on Q.

> simplify(l/v-gvert,[Q(x1,y1),Q(x2,y2),Q(xQ,yQ)]); #Check.

This Maple script verifies the correctness of (7.14) and (7.15).

> Q:=(X,Y,Z)->Y^2*Z-(c*X^3+Z^3): x1:=X1/Z1: y1:=Y1/Z1:

> x3:=x1*(y1^2-9)/(2*y1)^2: y3:=(y1-1)*(y1+3)^3/(2*y1)^3-1:

> Line:=x1^2*(3*c*xQ)-y1^2+3-2*y1*yQ:

> ##Point doubling formulas in homogenous projective coordinates.

> X3:=2*X1*Y1*(Y1^2-9*Z1^2):

> Y3:=(Y1-Z1)*(Y1+3*Z1)^3-8*Z1*Y1^3:

> Z3:=(2*Y1*Z1)*(2*Y1)^2:

> gDBL:=X1^2*(3*c*xQ)-Y1^2+3*Z1^2-2*Y1*Z1*yQ: #Line formulas.

> simplify(x3-X3/Z3,[Q(X1,Y1,Z1)]); simplify(y3-Y3/Z3,[Q(X1,Y1,Z1)]); #Check.

> factor(Line-gDBL/Z1^2); #Check.

This Maple script shows how to schedule operations for (7.14). The point doubling without
line computation needs 4M + 3S + 0D.

> Q:=(X,Y,Z)->Y^2*Z-(c*X^3+Z^3):

> ##Point doubling formulas with register allocations.

> X3:=2*X1: X3:=X3*Y1: Z3:=3*Z1: t1:=Y1+Z3: t1:=t1^2: Y3:=Y1^2: Z3:=Z3^2: t2:=Y3-Z3:

> t2:=3*t2: X3:=X3*t2: t2:=t2+Z3: t2:=t2+Z3: Z3:=Y3+Z3: Z3:=t1-Z3: t2:=t2+Z3: Z3:=Y3*Z3:

> Z3:=4*Z3: Y3:=t1*t2: Y3:=Y3-Z3:

> simplify(Q(X3,Y3,Z3),[Q(X1,Y1,Z1)]); #Check.

This Maple script shows how to schedule operations for (7.14) and (7.15). Multiplication with
c1 or with yQ counts as (k/2)M. Assume that c1 is precomputed. The point doubling with
line computation needs 5M + 5S if k = 2 or more generally (k + 3)M + 5S if k is even.

> Q:=(X,Y,Z)->Y^2*Z-(c*X^3+Z^3):

> Line:=X1^2*(3*c*xQ)-Y1^2+3*Z1^2-2*Y1*Z1*yQ:

> c1:=3*c*xQ: #Precomputed value.

> ##Point doubling formulas and line computation with register allocations.

> t1:=X1+Y1: t2:=Y1+Z1: t1:=t1^2: t2:=t2^2: X3:=X1^2: Y3:=Y1^2: Z3:=Z1^2: t1:=t1-X3:

> t1:=t1-Y3: t2:=t2-Y3: t2:=t2-Z3: Z3:=3*Z3: t3:=Y3-Z3: gDBL:=X3*c1-t3-t2*yQ:

> t3:=t3+t2: t4:=3*Z3: X3:=Y3-t4: X3:=t1*X3: t1:=3*t2: t2:=t1+t2: Z3:=t2*Y3:

> Y3:=Y3+t4: t1:=t1+Y3: Y3:=t3*t1: Y3:=Y3-Z3:

simplify(Q(X3,Y3,Z3),[Q(X1,Y1,Z1)]); simplify(Line-gDBL); #Check.

This Maple script verifies the correctness of (7.16) and (7.17).

> Q1:=(X,Y,Z)->Y^2*Z-(c*X^3+Z^3): x1:=X1/Z1: y1:=Y1/Z1: x2:=X2/Z2: y2:=Y2/Z2:

> L:=(y1-y2)/(x1-x2): x3:=c^(-1)*L^2-x1-x2: y3:=L*(x1-x3)-y1:

> Line:=(y1-y2)*(x2-xQ)-(x1-x2)*(y2-yQ):

> ##Point addition formulas in homogenous projective coordinates.

> X3:=(X1*Z2-Z1*X2)*(Z1*Z2*(Y1*Z2-Z1*Y2)^2-c*(X1*Z2+Z1*X2)*(X1*Z2-Z1*X2)^2):

> Y3:=(Y1*Z2-Z1*Y2)*(c*(2*X1*Z2+Z1*X2)*(X1*Z2-Z1*X2)^2-Z1*Z2*(Y1*Z2-Z1*Y2)^2) -

c*Y1*Z2*(X1*Z2-Z1*X2)^3:

> Z3:=c*Z1*Z2*(X1*Z2-Z1*X2)^3:

> gADD:=(Y1*Z2-Z1*Y2)*(X2-xQ*Z2)-(X1*Z2-Z1*X2)*Y2+(X1*Z2-Z1*X2)*Z2*yQ: #Line formulas.

> simplify(x3-X3/Z3,[Q1(X1,Y1,Z1),Q1(X2,Y2,Z2)]); #Check.

> simplify(y3-Y3/Z3,[Q1(X1,Y1,Z1),Q1(X2,Y2,Z2)]); factor(Line-gADD/Z1/Z2^2); #Check.

190 Appendix C. Computer algebra scripts

This Maple script shows how to schedule operations for (7.16) and (7.17) with Z2 = 1.

> Z2:=1: Q:=(X,Y,Z)->Y^2*Z-(c*X^3+Z^3):

> Line:=(Y1*Z2-Z1*Y2)*(X2-xQ*Z2)-(X1*Z2-Z1*X2)*(Y2-yQ*Z2):

> c1:=X2-xQ: c2:=Y2-yQ: #Precomputed values.

> ##Point addition formulas and line computation with register allocations.

> t1:=Z1*X2: t1:=X1-t1: t2:=Z1*Y2: t2:=Y1-t2: gADD:=c1*t2-t1*Y2+t1*yQ:

> t3:=t1^2: t3:=c*t3: X3:=t3*X1: t3:=t1*t3: t4:=t2^2: t4:=t4*Z1: t4:=t3+t4:

> t4:=t4-X3: t4:=t4-X3: X3:=X3-t4: t2:=t2*X3: Y3:=t3*Y1: Y3:=t2-Y3: X3:=t1*t4: Z3:=Z1*t3:

> simplify(Q(X3,Y3,Z3),[Q(X1,Y1,Z1),Q(X2,Y2,Z2)]); simplify(Line-gADD); #Check.

This Maple script shows how to schedule operations for (7.16) and (7.17).

> Q:=(X,Y,Z)->Y^2*Z-(c*X^3+Z^3):

> Line:=(Y1*Z2-Z1*Y2)*(X2-xQ*Z2)-(X1*Z2-Z1*X2)*(Y2-yQ*Z2):

> c1:=X2-xQ*Z2: c2:=Y2-yQ*Z2: #Precomputed values.

> ##Point addition formulas and line computation with register allocations.

> t1:=Z1*X2: X3:=X1*Z2: t1:=X3-t1: t2:=Z1*Y2: Y3:=Y1*Z2: t2:=Y3-t2:

> gADD:=c1*t2-t1*Y2+t1*Z2*yQ:

> Z3:=Z1*Z2: t3:=t1^2: t3:=c*t3: X3:=t3*X3: t3:=t1*t3: t4:=t2^2: t4:=t4*Z3: t4:=t3+t4:

> t4:=t4-X3: t4:=t4-X3: X3:=X3-t4: t2:=t2*X3: Y3:=t3*Y3: Y3:=t2-Y3: X3:=t1*t4: Z3:=Z3*t3:

> simplify(Q(X3,Y3,Z3),[Q(X1,Y1,Z1),Q(X2,Y2,Z2)]); simplify(Line-gADD); #Check.

Bibliography

[AL96] W. Adams and P. Loustaunau, An introduction to Gröbner bases, American

Mathematical Society, 1996.

[ALNR09] Christophe Arène, Tanja Lange, Michael Naehrig, and Christophe Ritzenthaler,

Faster pairing computation, Cryptology ePrint Archive, 2009, http://eprint.

iacr.org/2009/155.

[Ame01] American National Standards Institute (ANSI), Public Key Cryptography for the

Financial Services Industry, Key Agreement and Key Transport Using Elliptic

Curve Cryptography, 2001.

[Ame05] , Public Key Cryptography for the Financial Services Industry, The

Elliptic Curve Digital Signature Algorithm (ECDSA), 2005.

[AMNS06] Seigo Arita, Kazuto Matsuo, Koh-ichi Nagao, and Mahoro Shimura, A Weil

descent attack against elliptic curve cryptosystems over quartic extension fields,

IEICE Trans Fundamentals E89-A (2006), no. 5, 1246–1254.

[Ari00] Seigo Arita, Weil descent of elliptic curves over finite fields of characteristic

three, ASIACRYPT 2000, LNCS, vol. 1976, Springer, Berlin / Heidelberg, 2000,

pp. 248–258.

[Ava05] Roberto M. Avanzi, A note on the signed sliding window integer recoding and its

left-to-right analogue, SAC 2004, LNCS, vol. 3357, Springer, 2005, pp. 130–143.

[BBJ+08] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane

Peters, Twisted Edwards curves, AFRICACRYPT 2008, LNCS, vol. 5023,

Springer, 2008, pp. 389–405.

[BBLP07] Daniel J. Bernstein, Peter Birkner, Tanja Lange, and Christiane Peters,

Optimizing double-base elliptic-curve single-scalar multiplication, INDOCRYPT

2007, LNCS, vol. 4859, Springer, 2007, pp. 167–182.

[BBLP08] , ECM using Edwards curves, Cryptology ePrint Archive, Report

2008/016, 2008, http://eprint.iacr.org/.

[BCC+09] Daniel J. Bernstein, Hsueh-Chung Chen, Ming-Shing Chen, Chen-Mou Cheng,

Chun-Hung Hsiao, Tanja Lange, Zong-Cing Lin, and Bo-Yin Yang, The billion-

mulmod-per-second PC, Workshop record of SHARCS’09, 2009.

191

192 BIBLIOGRAPHY

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, The MAGMA algebra

system. I. The user language., Journal of Symbolic Computation 24 (1997),

no. 3-4, 235–265.

[Ber06a] Daniel J. Bernstein, Addition laws on elliptic curves, 2006, http://cr.yp.to/

talks/2009.09.22/slides.pdf.

[Ber06b] , Curve25519: New Diffie-Hellman speed records, PKC, LNCS, vol. 3958,

Springer, 2006, pp. 207–228.

[BF03] Dan Boneh and Matthew K. Franklin, Identity-based encryption from the Weil

pairing, SIAM J. Comput. 32 (2003), no. 3, 586–615.

[BGHS04] Paulo S. L. M. Barreto, Steven D. Galbraith, Colm Ó’ Héigeartaigh, and

Michael Scott, Efficient pairing computation on supersingular abelian varieties,

Cryptology ePrint Archive, Report 2004/375, 2004, http://eprint.iacr.org/

2004/375.

[BGHS07] , Efficient pairing computation on supersingular abelian varieties, Des.

Codes Cryptography 42 (2007), no. 3, 239–271.

[BGM+93] Ian F. Balke, XuHong Gao, Ronald C. Mullin, Scott A. Vanstone, and

Tomik Yaghoobian, Applications of finite fields, Kluwer Academic Publishers,

Boston/Dordrecht/London, 1993.

[BJ02] Eric Brier and Marc Joye, Weierstraß elliptic curves and side-channel attacks,

PKC 2002, LNCS, vol. 2274, Springer, 2002, pp. 335–345.

[BJ03a] Olivier Billet and Marc Joye, The Jacobi model of an elliptic curve and side-

channel analysis, AAECC-15, LNCS, vol. 2643, Springer, 2003, pp. 34–42.

[BJ03b] Eric Brier and Marc Joye, Fast point multiplication on elliptic curves through

isogenies, AAECC-15, LNCS, vol. 2643, Springer, 2003, pp. 43–50.

[BK98] R. Balasubramanian and Neal Koblitz, The improbability that an elliptic curve

has subexponential discrete log problem under the Menezes - Okamoto - Vanstone

algorithm, Journal of Cryptology 11 (1998), no. 2, 141–145.

[BKL09] Daniel J. Bernstein, David Kohel, and Tanja Lange, Twisted Hessian

curves, Explicit-Formulas Database, 2009, http://www.hyperelliptic.org/

EFD/g1p/auto-twistedhessian.html.

[BKLS02] Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott, Efficient

algorithms for pairing-based cryptosystems, CRYPTO 2002, LNCS, vol. 2442,

Springer, 2002, pp. 354–369.

[BL95] Wieb Bosma and H. W. Lenstra Jr., Complete systems of two addition laws for

elliptic curves, Journal of Number Theory 53 (1995), 229–240.

BIBLIOGRAPHY 193

[BL07a] Daniel J. Bernstein and Tanja Lange, Explicit-formulas database, 2007, http:

//www.hyperelliptic.org/EFD.

[BL07b] , Faster addition and doubling on elliptic curves, ASIACRYPT 2007,

LNCS, vol. 4833, Springer, 2007, pp. 29–50.

[BL07c] , Inverted Edwards coordinates, AAECC-17, LNCS, vol. 4851, Springer,

2007, pp. 20–27.

[BL08] , Analysis and optimization of elliptic-curve single-scalar multiplication,

Finite Fields and Applications Fq8, Contemporary Mathematics, vol. 461,

American Mathematical Society, 2008, pp. 1–18.

[BLR08] Daniel J. Bernstein, Tanja Lange, and Reza Rezaeian Farashahi, Binary

Edwards curves, CHES 2008, LNCS, vol. 5154, Springer, 2008, pp. 244–265.

[BLS03] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott, Constructing elliptic

curves with prescribed embedding degrees, Security in Communication Networks,

LNCS, vol. 2576, Springer, 2003, pp. 257–267.

[BLS04a] , Efficient implementation of pairing-based cryptosystems, Journal of

Cryptology 17 (2004), no. 4, 321–334.

[BLS04b] , On the selection of pairing-friendly groups, SAC 2003, LNCS, vol. 3006,

Springer, 2004, pp. 17–25.

[BLS04c] Dan Boneh, Ben Lynn, and Hovav Shacham, Short signatures from the Weil

pairing, Journal of Cryptology 17 (2004), no. 4, 297–319.

[BRCMC+09] Daniel J. Bernstein, Tien Ren Chen, Chen Mou Cheng, Tanja Lange, and Bo Yin

Yang, ECM on graphics cards, EUROCRYPT 2009, LNCS, vol. 5479, Springer,

2009, pp. 483–501.

[Bre80] Richard P. Brent, An improved Monte Carlo factorization algorithm, BIT

Numerical Mathematics 20 (1980), no. 2, 176–184.

[BS09] Naomi Benger and Michael Scott, Constructing tower extensions for the

implementation of pairing-based cryptography, Cryptology ePrint Archive,

Report 2009/556, 2009, http://eprint.iacr.org/.

[BSS99] I. F. Blake, G. Seroussi, and N. P. Smart, Elliptic curves in cryptography,

Cambridge University Press, July 1999.

[Buc65] Bruno Buchberger, An algorithm for finding the basis elements of the residue

class ring of a zero dimensional polynomial ideal, Ph.D. thesis, University of

Innsbruck, 1965.

[BW88] Johannes Buchmann and Hugh C. Williams, A key-exchange system based on

imaginary quadratic fields, Journal of Cryptology 1 (1988), no. 2, 107–118.

194 BIBLIOGRAPHY

[BW93] Thomas Becker and Volker Weispfenning, Gröbner bases, A Computational

Approach to Commutative Algebra Series: Graduate Texts in Mathematics,

vol. 141, Springer, 1993.

[BW05] Friederike Brezing and Annegret Weng, Elliptic curves suitable for pairing based

cryptography, Des. Codes Cryptography 37 (2005), no. 1, 133–141.

[BZ09] Richard Brent and Paul Zimmermann, Modern computer arithmetic, In

preparation, November 2009, version 0.4, http://www.loria.fr/~zimmerma/

mca/mca-0.4.pdf.

[CC86] David V. Chudnovsky and Gregory V. Chudnovsky, Sequences of numbers

generated by addition in formal groups and new primality and factorization tests,

Advances in Applied Mathematics 7 (1986), no. 4, 385–434.

[CF05] Henri Cohen and Gerhard Frey (eds.), Handbook of elliptic and hyperelliptic

curve cryptography, CRC Press, 2005.

[CLN09] Craig Costello, Tanja Lange, and Michael Naehrig, Faster pairing computations

on curves with high-degree twists, Cryptology ePrint Archive, 2009, http://

eprint.iacr.org/2009/615.

[CLO07] David A. Cox, John B. Little, and Don O’Shea, Ideals, varieties, and algorithms:

An introduction to computational algebraic geometry and commutative algebra,

Undergraduate Texts in Mathematics, Springer, 3rd ed. 2007.

[CMO98] Henri Cohen, Atsuko Miyaji, and Takatoshi Ono, Efficient elliptic curve

exponentiation using mixed coordinates, ASIACRYPT’98, LNCS, vol. 1514,

Springer, 1998, pp. 51–65.

[Coh93] Henri Cohen, A course in computational algebraic number theory, Springer-

Verlag New York, Inc., New York, NY, USA, 1993.

[CV09] Wouter Castryck and Frederik Vercauteren, Toric forms of elliptic curves and

their arithmetic, preprint, 2009.

[Dew98] L. Dewaghe, Remarks on the Schoof-Elkies-Atkin algorithm, Mathematics of

Computation 67 (1998), no. 223, 1247–1252.

[DGM99] I. Duursma, Pierrick Gaudry, and François Morain, Speeding up the discrete log

computation on curves with automorphisms, ASIACRYPT’99 (London, UK),

Springer-Verlag, 1999, pp. 103–121.

[DH76] Whitfield Diffie and Martin Hellman, New directions in cryptography, IEEE

Transactions on Information Theory 22 (1976), 644–654.

[DI06] Christophe Doche and Laurent Imbert, Extended double-base number system

with applications to elliptic curve cryptography., INDOCRYPT’06, LNCS, vol.

4329, Springer, 2006, pp. 335–348.

BIBLIOGRAPHY 195

[Die01] Claus Diem, A study on theoretical and practical aspects of Weil-restriction of

varieties, Ph.D. thesis, University of Essen, Germany, 2001.

[Die03] , The GHS-attack in odd characteristic, Journal of the Ramanujan

Mathematical Society 18 (2003), 1–32.

[DIK06] Christophe Doche, Thomas Icart, and David R. Kohel, Efficient scalar

multiplication by isogeny decompositions, PKC 2006, LNCS, vol. 3958, Springer,

2006, pp. 191–206.

[DL06] Wolfram Decker and Christoph Lossen, Computing in algebraic geometry, a

quick start using singular, Algorithms and Computation in Mathematics, vol. 16,

Springer, Berlin Heidelberg, 2006.

[dR94] Peter de Rooij, Efficient exponentiation using precomputation and vector

addition chains, EUROCRYPT’94, 1994, pp. 389–399.

[DS08] M. Prem Das and Palash Sarkar, Pairing computation on twisted Edwards form

elliptic curves, Pairing’08, Lecture Notes in Mathematics, vol. 5209, Springer,

2008, pp. 192–210.

[Duq07] Sylvain Duquesne, Improving the arithmetic of elliptic curves in the Jacobi

model, Information Processing Letters 104 (2007), no. 3, 101–105.

[Edw07] Harold M. Edwards, A normal form for elliptic curves, Bulletin of the AMS 44

(2007), no. 3, 393–422.

[EG02] Andreas Enge and Pierrick Gaudry, A general framework for subexponential

discrete logarithm algorithms, Acta Arithmetica (2002), no. 1, 83–103.

[ElG85] Taher ElGamal, A public key cryptosystem and a signature scheme based on

discrete logarithms, IEEE Transactions on Information Theory 31 (1985), 469–

472.

[ELM03] Kirsten Eisenträger, Kristin Lauter, and Peter L. Montgomery, Fast elliptic

curve arithmetic and improved Weil pairing evaluation, CT-RSA 2003, LNCS,

vol. 2612, Springer, 2003, pp. 343–354.

[FNW09] Rongquan Feng, Menglong Nie, and Hongfeng Wu, Twisted jacobi intersections

curves, Cryptology ePrint Archive, Report 2009/597, 2009, http://eprint.

iacr.org/.

[FO90] Philippe Flajolet and Andrew M. Odlyzko, Random mapping statistics,

EUROCRYPT ’89 (New York, USA), Springer-Verlag, 1990, pp. 329–354.

[FR94] Gerhard Frey and Hans-Georg Rück, A remark concerning m-divisibility and

the discrete logarithm in the divisor class group of curves, Mathematics of

Computation 62 (1994), no. 206, 865–874.

196 BIBLIOGRAPHY

[Fra76] John B. Fraleigh, A first course in abstract algebra (addison-wesley series in

mathematics), Addison-Wesley Pub. Co, July 1976.

[Fre01] Gerhard Frey, Applications of arithmetical geometry to cryptographic con-

structions, Proceedings of the Fifth International Conference on Finite Fields

and Applications (University of Augsburg, Germany), Springer Verlag, 2001,

pp. 128–161.

[FST06] David Freeman, Michael Scott, and Edlyn Teske, A taxonomy of pairing-friendly

elliptic curves, Cryptology ePrint Archive, Report 2006/372, 2006, http://

eprint.iacr.org/2006/372.

[Ful69] William Fulton, An introduction to algebraic geometry, A. W. Benjamin

Publishing Company, New York, 1969.

[Gal01] Steven D. Galbraith, Supersingular curves in cryptography, ASIACRYPT’01

(London, UK), Springer-Verlag, 2001, pp. 495–513.

[Gal05] , Pairings, London Mathematics Society Lecture Note Series, vol. 317,

pp. 183–213, Cambridge University Press, 2005.

[Gau00] Pierrick Gaudry, An algorithm for solving the discrete log problem on

hyperelliptic curves, EUROCRYPT’00 1807 (2000), 19–34.

[Gau04] , Index calculus for abelian varieties and the elliptic curve discrete

logarithm problem, Cryptology ePrint Archive, Report 2004/073, March 2004.

[Gau06] , Variants of the Montgomery form based on theta functions, 2006,

Computational Challenges Arising in Algorithmic Number Theory and

Cryptography Workshop.

[GHS02a] Steven D. Galbraith, Florian Hess, and Nigel P. Smart, Extending the GHS

Weil descent attack, EUROCRYPT’02, LNCS, vol. 2332, Springer, Berlin /

Heidelberg, 2002, pp. 29–44.

[GHS02b] Pierrick Gaudry, Florian Hess, and Nigel P. Smart, Constructive and destructive

facets of Weil descent on elliptic curves, Journal of Cryptology: The journal of

the International Association for Cryptologic Research 15 (2002), no. 1, 19–46.

[GL08] Pierrick Gaudry and David Lubicz, The arithmetic of characteristic 2 Kummer

surfaces, Cryptology ePrint Archive, Report 2008/133, 2008, http://eprint.

iacr.org/.

[GL09] , The arithmetic of characteristic 2 Kummer surfaces and of elliptic

Kummer lines, Finite Fields and Their Applications 15 (2009), no. 2, 246–260.

[GLS09a] Steven D. Galbraith, Xibin Lin, and Michael Scott, Endomorphisms for faster

elliptic curve cryptography on a large class of curves, EUROCRYPT 2009,

LNCS, vol. 5479, Springer, 2009, pp. 518–535.

BIBLIOGRAPHY 197

[GLS09b] , Endomorphisms for faster elliptic curve cryptography on a large class

of curves, Cryptology ePrint Archive, Report 2008/194, extended version, 17-

Sep-2009, 2009, http://eprint.iacr.org.

[GLV00] Robert Gallant, Robert Lambert, and Scott A. Vanstone, Improving the

parallelized Pollard lambda search on anomalous binary curves, Mathematics

of Computation 69 (2000), no. 232, 1699–1705.

[GLV01] Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone, Faster point

multiplication on elliptic curves with efficient endomorphisms, CRYPTO’01,

vol. 2139, Springer-Verlag, 2001, pp. 190–200.

[GM00] Steven D. Galbraith and James McKee, The probability that the number of points

on an elliptic curve over a finite field is prime, J. London Math. Soc. 2 (2000),

no. 62, 671–684.

[GPS09] G.-M. Greuel, G. Pfister, and H. Schönemann, Singular 3-1-0 — A computer

algebra system for polynomial computations, 2009, http://www.singular.

uni-kl.de.

[GS99] Steven D. Galbraith and Nigel P. Smart, A cryptographic application of Weil

descent, Proceedings of the 7th IMA International Conference on Cryptography

and Coding (London, UK), Springer-Verlag, 1999, pp. 191–200.

[GS08] Steven D. Galbraith and Michael Scott, Exponentiation in pairing-friendly

groups using homomorphisms, Pairing 2008, LNCS, vol. 5209, Springer, 2008,

pp. 211–224.

[GT07] Pierrick Gaudry and Emmanuel Thomé, The mpFq library and implementing

curve-based key exchanges, SPEED 2007, pp.49–64, 2007, http://www.loria.

fr/~gaudry/publis/mpfq.pdf.

[Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, Inc., New York, 1977.

[Hes02] Florian Hess, Computing Riemann-Roch spaces in algebraic function fields and

related topics, J. Symb. Comput. 33 (2002), no. 4, 425–445.

[Hes03] , The GHS attack revisited, International Conference on the Theory

and Applications of Cryptographic Techniques-EUROCRPYT 2003, LNCS, vol.

2656, Springer, Berlin / Heidelberg, 2003, pp. 374–387.

[Hes04] , Generalising the GHS attack on the elliptic curve discrete logarithm

problem, LMS Journal of Computation and Mathematics 7 (2004), 167–192.

[HKT00] Ming-Deh A. Huang, Ka Lam Kueh, and Ki-Seng Tan, Lifting elliptic curves

and solving the elliptic curve discrete logarithm problem, Algorithmic Number

Theory Symposium-ANTS’00, 2000, pp. 377–384.

198 BIBLIOGRAPHY

[HMCD04] Yvonne R. Hitchcock, Paul Montague, Gary Carter, and Ed Dawson, The

efficiency of solving multiple discrete logarithm problems and the implications

for the security of fixed elliptic curves, International Journal of Information

Security 3 (2004), no. 2, 86–98.

[HMV03] Darrel Hankerson, Alfred J. Menezes, and Scott A. Vanstone, Guide to elliptic

curve cryptography, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

[HNM98] Toshio Hasegawa, Junko Nakajima, and Mitsuru Matsui, A practical

implementation of elliptic curve cryptosystems over GF(p) on a 16-bit

microcomputer, PKC 2002, LNCS, vol. 1431, Springer, 1998, pp. 182–194.

[HSV06] Florian Hess, Nigel P. Smart, and Frederik Vercauteren, The Eta pairing

revisited, IEEE Transactions on Information Theory 52 (2006), no. 10, 4595–

4602.

[Hun74] Thomas W. Hungerford, Algebra, Springer, New York, 1974.

[IJ08] Sorina Ionica and Antoine Joux, Another approach to pairing computation in

Edwards coordinates, Cryptology ePrint Archive, 2008, http://eprint.iacr.

org/2008/292.

[Ins00] Institute of Electrical and Electronics Engineers (IEEE), Standard Specifications

For Public-Key Cryptography. IEEE P1363, 2000.

[Int06] International Organization for Standards (ISO), Information technology -

Security techniques - Digital signatures with appendix - Part 3: Discrete

logarithm based mechanisms, 2006.

[Jac29] Carl Gustav Jakob Jacobi, Fundamenta nova theoriae functionum ellipticarum,

Sumtibus Fratrum Borntræger, 1829.

[JKS+00] Michael J. Jacobson, Neal Koblitz, Joseph H. Silverman, Andreas Stein,

and Edlyn Teske, Analysis of the xedni calculus attack, Designs, Codes and

Cryptography 20 (2000), no. 1, 41–64.

[Jou04] Antoine Joux, A one round protocol for tripartite Diffie-Hellman, Journal of

Cryptology 17 (2004), no. 4, 263–276.

[JQ01] Marc Joye and Jean Jacques Quisquater, Hessian elliptic curves and side-

channel attacks, CHES 2001, vol. 2162, LNCS, no. Generators, Springer, 2001,

pp. 402–410.

[JY03] Marc Joye and Sung-Ming Yen, The Montgomery powering ladder, CHES 2002,

LNCS, vol. 2523, Springer, 2003, pp. 291–302.

[KM05] Neal Koblitz and Alfred Menezes, Pairing-based cryptography at high security

levels, Cryptography and Coding, LNCS, vol. 3796, Springer, 2005, pp. 13–36.

BIBLIOGRAPHY 199

[Knu97] Donald E. Knuth, The art of computer programming, volume 2 (3rd ed.):

Seminumerical algorithms, Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1997.

[Kob87] Neal Koblitz, Elliptic curve cryptosystems, Mathematics of Computation 48

(1987), no. 177, 203–209.

[Kob89] , Hyperelliptic cryptosystems, Journal of Cryptology 1 (1989), no. 3,

139–150.

[KS01] Fabian Kuhn and René Struik, Random walks revisited: Extensions of Pollard’s

rho algorithm for computing multiple discrete logarithms, Revised Papers from

the 8th Annual International Workshop on Selected Areas in Cryptography-

SAC’01 (London, UK), Springer-Verlag, 2001, pp. 212–229.

[Len87] Hendrik W. Lenstra, Factoring integers with elliptic curves, The Annals of

Mathematics 126 (1987), no. 3, 649–673.

[LG09] Patrick Longa and Catherine Gebotys, Novel precomputation schemes for

elliptic curve cryptosystems, ACNS ’09, to appear, LNCS, Springer, 2009.

[LL94] Chae Hoon Lim and Pil Joong Lee, More flexible exponentiation with

precomputation, CRYPTO ’94 (London, UK), Springer-Verlag, 1994, pp. 95–

107.

[LL03] Reynald Lercier and David Lubicz, Counting points on elliptic curves over finite

fields of small characteristic in quasi quadratic time, Advances in Cryptology-

EUROCRPYT’03, International Conference on the Theory and Applications of

Cryptographic Techniques 2656 (2003), 360–373.

[LLP08] Eunjeong Lee, Hyang-Sook Lee, and Cheol-Min Park, Efficient and generalized

pairing computation on abelian varieties, Cryptology ePrint Archive, Report

2008/040, 2008, http://eprint.iacr.org/2008/040.

[LLX05] Jun Quan Li, Mu Lan Liu, and Liang Liang Xiao, Solving the multi-discrete

logarithm problems over a group of elliptic curves with prime order, Acta

Mathematica Sinica 21 (2005), no. 6, 1443–1450.

[LN96] Rudolf Lidl and Harald Niederreiter, Finite fields (Encyclopedia of mathematics

and its applications), Cambridge University Press, October 1996.

[LS01] Pierre Yvan Liardet and Nigel P. Smart, Preventing SPA/DPA in ECC systems

using the Jacobi form., CHES 2001, LNCS, vol. 2162, Springer, 2001, pp. 391–

401.

[MAP08] Maple 12, Waterloo Maple Inc., 2008, http://www.maplesoft.com/.

[McC88] K. S. McCurley, A key distribution system equivalent to factoring, Journal of

Cryptology 1 (1988), no. 2, 95–105.

200 BIBLIOGRAPHY

[Mil86] Victor S. Miller, Use of elliptic curves in cryptography, CRYPTO’85, LNCS,

vol. 218, Springer, 1986, pp. 417–426.

[Mil04] , The Weil pairing, and its efficient calculation, Journal of Cryptology

17 (2004), no. 4, 235–261.

[MKHO07] Seiichi Matsuda, Naoki Kanayama, Florian Hess, and Eiji Okamoto, Optimised

versions of the Ate and twisted Ate pairings, Cryptography and Coding, LNCS,

vol. 4887, Springer, 2007, pp. 302–312.

[MM99] Henry McKean and Victor Moll, Elliptic curves: Function theory, geometry,

arithmetic, Cambridge University Press, 1999.

[MMT01] Markus Maurer, Alfred J. Menezes, and Edlyn Teske, Analysis of the GHS Weil

descent attack on the ECDLP over characteristic two finite fields of composite

degree, INDOCRYPT’01 (London, UK), Springer-Verlag, 2001, pp. 195–213.

[Möl03] Bodo Möller, Improved techniques for fast exponentiation, ICISC 2002, LNCS,

vol. 2587, Springer, 2003, pp. 298–312.

[Mon85] Peter L. Montgomery, Modular multiplication without trial division, Mathemat-

ics of Computation 44 (1985), no. 170, 519–521.

[Mon87] , Speeding the Pollard and elliptic curve methods of factorization,

Mathematics of Computation 48 (1987), no. 177, 243–264.

[MOV96] Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone, Handbook of

applied cryptography, CRC Press, Inc., Boca Raton, FL, USA, 1996.

[MP06] Michael Monagan and Roman Pearce, Rational simplification modulo a

polynomial ideal, ISSAC’06, ACM, 2006, pp. 239–245.

[MQ01] Alfred J. Menezes and M. Qu, Analysis of the weil descent attack of Gaudry,

Hess and Smart, Topics in Cryptology, CT-RSA 2001, LNCS, vol. 2020, Springer

Verlag, 2001, pp. 308–318.

[MT06] Alfred J. Menezes and Edlyn Teske, Cryptographic implications of Hess’

generalized GHS attack, Applicable Algebra in Engineering, Communication

and Computing 16 (2006), no. 6, 439–460.

[MTW04] Alfred J. Menezes, Edlyn Teske, and Annegret Weng, Weak fields for

ECC, Topics in Cryptology-CT-RSA’04, LNCS, vol. 2964, Springer Berlin /

Heidelberg, 2004, pp. 366–386.

[Mus01] C. Musili, Algebraic geometry for beginners, Texts and Readings in

Mathematics, no. 20, Hindustan Book Agency, 2001.

[MVO91] Alfred J. Menezes, Scott A. Vanstone, and Tatsuaki Okamoto, Reducing elliptic

curve logarithms to logarithms in a finite field, Proceedings of the twenty-third

annual ACM symposium on Theory of computing-STOC’91 (New York, NY,

USA), ACM Press, 1991, pp. 80–89.

BIBLIOGRAPHY 201

[Nat00] National Institute of Standards and Technology (NIST), Digital signature

standard (DSS). FIPS PUB 186-2, 2000.

[Nec94] V. I. Nechaev, Complexity of a determinate algorithm for the discrete logarithm,

Mathematical Notes 55 (1994), no. 2, 165–172.

[Odl85] Andrew M. Odlyzko, Discrete logarithms in finite fields and their cryptographic

significance, EUROCRYPT’84 (New York, USA), Springer-Verlag New York,

Inc., 1985, pp. 224–314.

[Ope99] Open Mobile Alliance (OMA), Wireless Application Protocol - Wireless

Transport Layer Security, 1999.

[OVS84] R. W. K. Odoni, V. Varadharajan, and P. W. Sanders, Public key distribution

in matrix rings, Electronics Letters 20 (1984), no. 9, 386–387.

[Pea05] Roman Pearce, Rational expression simplification with side relations, Master’s

thesis, Simon Fraser University, 2005.

[PH78] S. Pohlig and M. Hellman, An improved algorithm for computing logarithms

over gf(p) and its cryptographic significance (corresp.), IEEE Transactions on

Information Theory 24 (1978), 106–110.

[Pol78] John M. Pollard, Monte Carlo methods for index computation (mod p),

Mathematics of Computation 32 (1978), no. 143, 918–924.

[RS02] Karl Rubin and Alice Silverberg, Supersingular abelian varieties in cryptology,

CRYPTO’02, LNCS, vol. 2442, Springer, Berlin / Heidelberg, 2002, pp. 336–

353.

[RS09] Reza Rezaeian Farashahi and Igor Shparlinski, On the number of distinct elliptic

curves in some families, Designs, Codes and Cryptography (Online) (2009).

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman, A method for

obtaining digital signatures and public-key cryptosystems, Communications of

the ACM 21 (1978), 120–126.

[Rüc99] Hans-Georg Rück, On the discrete logarithm in the divisor class group of curves,

Mathematics of Computation 68 (1999), no. 226, 805–806.

[SA98] T. Satoh and K. Araki, Fermat quotients and the polynomial time discrete log

algorithm for anomalous elliptic curves, Commentarii Mathematici Universitatis

Sancti Pauli 47 (1998), 81–92.

[Sch85] René J. Schoof, Elliptic curves over finite fields and the computation of square

roots mod p, Mathematics of Computation 44 (1985), no. 170, 483–494.

[Sch95] , Counting points on elliptic curves over finite fields, Journal de Théorie

des Nombres de Bordeaux 7 (1995), 219–254.

202 BIBLIOGRAPHY

[Sco04] Michael Scott, Faster identity based encryption, Electronics Letters 40 (2004),

no. 14, 861–862.

[Sco05] , Faster pairings using an elliptic curve with an efficient endomorphism,

INDOCRYPT’05, LNCS, vol. 3797, Springer, 2005, pp. 258–269.

[Sem98] I. A. Semaev, Evaluation of discrete logarithms in a group of p-torsion points

of an elliptic curve in characteristic p, Mathematics of Computation 67 (1998),

no. 221, 353–356.

[Sho97] Victor Shoup, Lower bounds for discrete logarithms and related problems,

EUROCRYPT’97, vol. 1233, Springer Verlag, Berlin, 1997, pp. 256–266.

[Sil88] Joseph H. Silverman, Computing heights on elliptic curves, Mathematics of

Computation 51 (1988), no. 183, 339–358.

[Sil90] , The difference between the Weil height and the canonical height on

elliptic curves, Mathematics of Computation 55 (1990), no. 192, 723–743.

[Sil94] , The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol.

106, Springer-Verlag, 1st ed. 1986. Corr. 3rd printing, 1994.

[Sil97] , Computing canonical heights with little (or no) factorization,

Mathematics of Computation 66 (1997), no. 218, 787–805.

[Sil00] , The xedni calculus and the elliptic curve discrete logarithm problem,

Designs, Codes and Cryptography 20 (2000), no. 1, 5–40.

[Sma99] Nigel P. Smart, The discrete logarithm problem on elliptic curves of trace one,

Journal of Cryptology 12 (1999), no. 3, 193–196.

[Sma01] , The Hessian form of an elliptic curve, CHES 2001, LNCS, vol. 2162,

Springer, 2001, pp. 118–125.

[SS79] Robert Sedgewick and Thomas G. Szymanski, The complexity of finding periods,

STOC ’79: Proceedings of the eleventh annual ACM symposium on Theory of

computing (New York, NY, USA), ACM Press, 1979, pp. 74–80.

[SS98] Joseph H. Silverman and Joe Suzuki, Elliptic curve discrete logarithms and the

index calculus, ASIACRYPT’98, LNCS, Springer-Verlag, 1998.

[Sti93] Henning Stichtenoth, Algebraic function fields and codes, Springer, 1993.

[SW03] Nigel P. Smart and E. J. Westwood, Point multiplication on ordinary elliptic

curves over fields of characteristic three., Applicable Algebra in Engineering,

Communication and Computing 13 (2003), no. 6, 485–497.

[SWD96] Oliver Schirokauer, Damian Weber, and Thomas F. Denny, Discrete logarithms:

The effectiveness of the index calculus method, Algorithmic Number Theory

Symposium-ANTS, 1996, pp. 337–361.

BIBLIOGRAPHY 203

[Tes98] Edlyn Teske, Speeding up Pollard’s rho method for computing discrete

logarithms, Algorithmic Number Theory, vol. 1423, 1998, pp. 541–554.

[Tes01] , On random walks for Pollard’s rho method, Mathematics of

Computation 70 (2001), 809–825.

[Ver08] Frederik Vercauteren, Optimal pairings, Cryptology ePrint Archive, Report

2008/096, 2008, http://eprint.iacr.org/2008/096.

[vH03] Mark van Hoeij, An algorithm for computing the Weierstrass normal form,

ISSAC ’95: International symposium on symbolic and algebraic computation,

ACM, 2003, pp. 90–95.

[vOW99] Paul C. van Oorschot and Michael J. Wiener, Parallel collision search with

cryptanalytic applications, Journal of Cryptology 12 (1999), no. 1, 1–28.

[Wag02] Samuel S. Wagstaff, Cryptanalysis of number theoretic ciphers, CRC Press Inc.,

October 2002.

[Was03] Lawrence C. Washington, Elliptic curves: Number theory and cryptography,

CRC Press, 2003.

[Wei29] André Weil, L’arithmétique sur les courbes algébriques, Acta Mathematica 52

(1929), 281–315.

[WW27] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge

University Press, 1927.

[WZ99] Michael J. Wiener and Robert J. Zuccherato, Faster attacks on elliptic curve

cryptosystems, Proceedings of the Selected Areas in Cryptography-SAC’98

(London, UK), Springer-Verlag, 1999, pp. 190–200.

[Yui88] Noriko Yui, Jacobi quartics, Legendre polynomials and formal groups, Elliptic

Curves and Modular Forms in Algebraic Topology, Lecture Notes in

Mathematics, vol. 1326, Springer, 1988, pp. 182–215.

[ZZH07] Chang-An Zhao, Fangguo Zhang, and Jiwu Huang, A note on the Ate pairing,

Cryptology ePrint Archive, Report 2007/247, 2007, http://eprint.iacr.org/

2007/247.

