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Abstract— Approaches with Vertical Guidance (APV) can provide greater safety and cost savings to general 

aviation through accurate GPS horizontal and vertical navigation. However, GPS needs augmentation to achieve 

APV fault detection requirements. Aircraft Based Augmentation Systems (ABAS) fuse GPS with additional 

sensors at the aircraft. Typical ABAS designs assume high-quality inertial sensors with Kalman filters but these 

are too expensive for general aviation.  

Instead of using high-quality (and expensive) sensors, the purpose of this paper is to investigate augmenting 

GPS with a low-quality MEMS IMU and Aircraft Dynamic Model (ADM). The IMU and ADM are fused 

together using a multiple model fusion strategy in a bank of Extended Kalman Filters (EKF) with the 

Normalized Solution Separation (NSS) fault detection scheme.  A tightly-coupled configuration with GPS is used 

and frequent GPS updates are applied to the IMU and ADM to compensate for their errors.  

Based upon a simulated APV approach, the performance of this architecture in detecting a GPS ramp fault is 

investigated showing a performance improvement over a GPS-only implementation “snapshot” implementation 

of the NSS method.  The effect of fusing the IMU with the ADM is evaluated by comparing a GPS-IMU-ADM 

EKF with a GPS-IMU EKF where a small improvement in protection levels is shown.  
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Index Terms—aircraft dynamics, aircraft navigation, Global Positioning System, inertial navigation, fault 

detection. 

 

I. INTRODUCTION 

In general aviation, Approaches with Vertical Guidance (APV) allow greater safety and cost savings 

through accurate GPS-provided horizontal and vertical navigation. However, GPS needs augmentation to 

achieve stringent APV fault detection requirements [1]. Aircraft Based Augmentation Systems (ABAS) fuse 

GPS with additional sensors at the aircraft. Typical designs such as in the AIME [2], Multiple Solution 

Separation [3] and Normalized Solution Separation (NSS) methods [4], assume an accurate inertially-

derived reference trajectory with Kalman filters. However, high-quality inertial sensors are too expensive 

for general aviation.  

 

Instead of using high-quality (but expensive) sensors, the purpose of this paper is to investigate 

augmenting GPS with a low-cost and low-quality MEMS IMU and Aircraft Dynamic Model (ADM). In this 

approach, rather than using Kalman filters in an open-loop configuration, the IMU and ADM are fused 

together in a bank of Extended Kalman Filters (EKF) in closed-loop configuration. Frequent GPS updates 

are applied to the IMU and ADM to compensate for their errors, and a tightly-coupled configuration is 

adopted. To exploit the inclusion of the aircraft dynamics, the IMU and ADM are fused together using a 

multiple model fusion strategy. For fault detection the NSS method is adopted. This new architecture 

concept is termed the GPS-IMU-ADM EKF.  

 

The concept of using aircraft dynamics in navigation is not new. In the available literature it was studied 

for improving inertial coasting and enhancing the robustness of the navigation solution in [5], [6] and single 

GPS antenna attitude determination in [7]. In contrast to these applications, the use of aircraft dynamics in 

GPS fault detection is investigated here. The incorporation of additional information into the system such as 

aircraft dynamics, may allow greater confidence in the state estimates leading to improved GPS fault 

detection performance. 
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This paper is structured as follows. After describing the GPS-IMU-ADM EKF architecture concept in 

section II, the ADM is presented in section III as well as descriptions of the EKF with Multiple Model 

Fusion (MMF) and the NSS method. Section IV presents simulations which evaluate the fault detection 

performance of the GPS-IMU-ADM EKF and compare against a GPS-IMU EKF and GPS-only "snapshot" 

implementation, for a general aviation aircraft on APV approach. Firstly, the simulation environment test 

setup is described where typical GPS, IMU, ADM and environmental errors are considered. Then, the 

ability to detect a 0.5 m/s ramp fault on a GPS pseudorange measurement is investigated, by comparing 

protection levels and time to fault detection of the GPS-IMU-ADM EKF,  GPS-IMU EKF and GPS-only 

implementation. Finally, a comparison in protection levels over different satellite geometries in a day is 

made for the GPS-IMU-ADM EKF , GPS-IMU EKF and GPS-only implementations.  

 

One potential use for lower-cost ABAS with low-cost IMU and aircraft dynamics,  may be to enhance 

existing GPS-only fault detection solutions or help overcome deficiencies in existing augmentation systems 

for general aviation.  Whilst countries such as the USA have the Wide Area Augmentation System 

(WAAS), countries such as Australia for example cannot justify such costs and currently do not have an 

augmentation solution of their own for the general aviation community. Less expensive concepts such as the 

Ground-based Regional Augmentation System (GRAS) have been proposed [8] which use ground-based 

VHF line-of-sight transmissions to aircraft instead of geostationary satellites as in WAAS. GRAS has 

limitations however – for example the GRAS transmissions may be blocked due to surrounding terrain, 

depending upon aircraft altitude and proximity to the GRAS data broadcast station. This could be because 

GRAS broadcast stations are unable to be placed at optimal locations to achieve complete coverage for cost 

reasons or site restrictions such as difficult terrain [8]. In a sparsely populated and vast country such as 

Australia, there may also be regional areas which do not have GRAS service availability. In these cases, 

lower-cost ABAS consisting of low-cost IMU and other information such as aircraft dynamics, may provide 

the necessary GPS augmentation.  
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II.  GPS-IMU-ADM EKF ARCHITECTURE DESCRIPTION  

Fig. 1 shows the GPS-IMU-ADM EKF  architecture concept. It consists of a GPS, IMU, ADM, a bank of 

EKFs and the Normalized Solution Separation (NSS) Fault Detection (FD) scheme. The main difference 

between this approach and others [2], [3], [4] is the use of EKFs, low quality IMU, aircraft dynamics and a 

closed-loop configuration. Because low-quality MEMS inertial sensors are not meant for coasting [9] 

frequent GPS updates are required. This is also required for the ADM which has an accuracy no better than 

the IMU.  Therefore in this approach “coasting” is neglected.   

 

The Normalized Solution Separation (NSS) method [4] relies upon one filter using all N satellites in view 

termed the “full-filter” and N “sub-filters” which use N-1 satellites. Each sub-filter has a different satellite 

omitted from its solution than the others allowing for detection of one satellite fault at a time. The solutions 

from the full-filter and sub-filters are then used by the NSS algorithm to determine whether there is a 

position fault or not. If no fault is detected the IMU accelerometer and gyroscope biases and GPS receiver 

clock biases calculated by each filter are fed-back as indicated by the “corrections” block in Fig. 1. Each 

filter is corrected with the estimates from its own filter therefore there are N+1 filter corrections to the GPS 

and IMU components of the N+1 filters in the system. If a fault is detected, fault exclusion is the next step 

however a fault exclusion algorithm’s performance with this architecture is not investigated in this paper 

and is left for further work.       
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Fig. 1. The GPS-IMU-ADM EKF architecture concept. 

III.  AIRCRAFT DYNAMIC MODEL  

The ADM consists of a set of coupled, nonlinear ordinary differential equations by which the 

aerodynamic forces and moments acting on the aircraft can be estimated [10]. These equations are a 

function of nondimensional aerodynamic coefficients, measured control surface deflections (aileron, 

elevator, rudder) and aircraft states. From this aerodynamic knowledge the accelerations and angular rates 

of the vehicle are derived. Fig. 2 shows the body axes of the aircraft, xb, yb, zb with origin at the centre of 

gravity. p, q, r are the angular velocities, u, v, w are the body velocities, X, Y, Z are the aerodynamic forces 

and L, M, N are the aerodynamic moments as per standard nomenclature [11].  

 

Fig. 2. Aircraft body axes, showing the location and direction of the aircraft’s body accelerations, angular rates, aerodynamic forces 

and moments. 

 

The angular accelerations in rad/s2 are  

NcLcq)pcrc(p 4321 +++=&  (1) 

Mc)rp(cprcq 7
22

65 +−−=&  (2) 

NcLcq)rcpc(r 9428 ++−=&  (3)  

where c1 to c8 are inertial coefficients [10]. 

The body-axis accelerations in m/s2 are  

m/X)sin(gqwrvu +−−= θ&  (4) 

m/Y)cos()sin(grupwv ++−= θφ&  (5) 

m/Z)cos()cos(gpvquw ++−= θφ&  (6) 
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where φ, θ are roll, pitch attitude, g is gravity and m is the mass of the aircraft. From these the position, 

velocity and attitude of the aircraft are derived. The following section explains how the IMU and ADM 

information are fused together in the EKFs with Multiple Model Fusion (MMF).  

A. EKF with Multiple Model Fusion  

The process model of an EKF provides a prediction of the states of the vehicle based on past 

measurements. The model predicts the state of the vehicle and the GPS measurements are used to update the 

prediction. This may provide greater performance than standalone GPS. In the system described in Fig. 1 

there are two process models – one for the IMU and one for the ADM. The IMU process model is the 

mechanization equations used to derive the aircraft attitude, velocity and position from accelerometer and 

gyroscope measurements [12]. The ADM process model is similar except it estimates the acceleration and 

angular rates of the vehicle from known aerodynamics given measured control inputs [10]. 

 

In this study the accuracy of the ADM angular rate and acceleration estimates was worse than the angular 

rate and acceleration measurements of the MEMS IMU as determined by comparing them when unaided by 

GPS, in simulation. However despite this the ADM may still provide useful and independent information 

about the system which may be exploited through an existing multiple model fusion strategy called Multiple 

Model Fusion (MMF) [13], [14].  

 

In the EKF design there is one state vector for the IMU-derived estimates and another for the ADM-

derived estimates. In the following equations the IMU is denoted by superscript I, the ADM by D and the 

GPS by G. The state vectors at discrete time k are  

T
DEN3210

I
k ]h,,l,v,v,v,q,q,q,q[ Λχ =  (7) 

T
DEN3210

D
k ]h,,l,v,v,v,q,q,q,q[ Λχ =  (8) 

consisting of four attitude states q0, q1, q2, q3 (in quaternion representation), three velocity states vN, vE, vD, 

(in North, East, Down coordinate frame), latitude, longitude and height, l, Λ, h.  
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The state is augmented with extra terms to account for GPS and IMU errors. The state vector containing 

the augmented states for the IMU is 

T
zyx

I
k ]r,q,p,a,a,a,t,t[

A
∇∇∇∇∇∇= &∆∆χ  (9) 

and for the ADM is 
 

TD
k tt

A
],[ &∆∆=χ  (10) 

where t∆  is GPS receiver clock bias, t&∆  is GPS receiver clock drift, ∇ax, ∇ay, ∇az  are acceleration 

biases and∇p, ∇q, ∇r are angular rate biases.  

 

These are the corrections applied to the GPS and IMU in the feedback loop as indicated by the 

“corrections” block in Fig. 1. There is however a risk of unobservability by including six IMU biases [15] 

and the observability could be improved by including heading measurements from a compass for example 

as studied in [16]. The ADM could also be augmented with aerodynamic coefficients and wind states as in 

[5], however there are also observability issues associated with this approach. 

 

To achieve MMF all the information is combined in a “combined filter” as indicated by superscript C in 

the following equations. The GPS-IMU-ADM EKF can be thought of as a GPS-IMU EKF stacked on top of 

a GPS-ADM EKF. The EKF operates on the state errors where the state error vector structure is  

TD
k

I
k

C
k xxx ],[= .  (11)  

  
I
kx  is the IMU state error vector,  

TI
kDENDEN

I
k A

hlvvvx ],,,,,,,,,[ δχδδδδδδδδδ ΛΦΦΦ=  (12)  

where EN ΦΦ δδ ,  are tilt errors with respect to the vertical and DΦδ is azimuth (heading) error. 

Nvδ , Evδ , Dvδ  are velocity errors and hl δδδ ,, Λ are latitude, longitude and height errors and  I kA
δχ is a 

vector of augmented state errors. Similarly  the ADM state error vector D
kx  is 

TD
kDENDEN

D
k A

hlvvvx ],,,,,,,,,[ δχδδδδδδδδδ ΛΦΦΦ=  (13) 
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Two state estimates are calculated by propagating the previous state using the IMU and ADM process 

models,  

)w,u,(f I
1k

I
1k

I
1k

I
k −−−=

−

χχ  (14) 

)w,u,(f D
1k

D
1k

D
1k

D
k −−−=

−

χχ  (15) 

where uI
 is the IMU measurements (accelerations, angular rates), uD is the ADM control inputs and wI and 

wD
 are white noises. The combined state estimate vector is formed as 

T
D

k
D
k

I
k

I
k

C
k AA 



=

−−−−−

−− 11 ,,, χχχχχ . (16) 

The combined state error covariance is  

C
1k

C
1k

C
1k

C
1k

C
k QPP

T

−−−− +=
−

ΦΦ  (17) 

where CΦ  is the state transition matrix 









=

−

−
− D

1k

I
1kC

1k
0

0

Φ
ΦΦ . (18) 

The process noise covariance matrix for the combined filter is 









=

−
−

−

−
−−

− D
1k

ID
1k

DI
1k

I
1kC

1k
QQ

QQ
Q  (19) 

where  

II
1k

I
1k

I
1k

I
1k

I
1k

I
1k tGWGQ

TT

∆ΦΦ −−−−−− =  (20) 

DD
1k

D
1k

D
1k

D
1k

D
1k

D
1k tGWGQ

TT

∆ΦΦ −−−−−− = . (21) 

 

  GI  and GD are design matrices for the IMU and ADM. WI contains the expected noise statistics for the 

IMU and is a power spectral density matrix whose diagonal elements are the acceleration and angular rate 

noise variances of the IMU. WD is a power spectral density matrix describing the magnitude of the process 

noise applied to the ADM attitude and velocity estimates to accommodate ADM uncertainties. WI and WD 

are tuned until the filters are consistent. ∆tI and ∆tD are the sample periods for the IMU and ADM.   
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QI-D  and QD-I in (19) are the cross correlations between the IMU and ADM process noises. The IMU and 

ADM process noises will not be independent of each other due to the common assumptions and errors they 

share. As it is difficult to determine what the true correlation is it is treated as a tuning parameter for the 

filters where it is adjusted based on experience or empirical data.  

 

With the GPS measurements a tightly coupled (pseudorange and pseudorange-rate) approach was taken. 

The measurements supplied to the filter are the difference between the GPS pseudorange and pseudorange-

rates Gρ , Gρ& and IMU and ADM state estimate-derived pseudorange and pseudorange-rates Iρ , Iρ&  and 

Dρ , Dρ& .  

 

The measurement vectors of pseudoranges and pseudorange-rates are 

I
k

G
k

I
kz ρρ −=    (22) 

D
k

G
k

D
kz ρρ −= . (23) 

where  

[ ]T
G
k

G
k

G
k ,ρρρ &=  (24) 

and similarly for I
kρ  and D

kρ . 

 

Because the IMU and ADM process models can be thought of as virtual sensors whose output is a virtual 

measurement of the state of the vehicle based on all past time history [13], [14], the difference between the 

IMU and ADM process model’s position estimates are presented to the combined filter as measurements,  

)h,,l(
D
k)h,,l(

I
k

DI
kz ΛΛ χχ

−−

−=− . (25) 

The measurements vector for the full-filter is 

[ ]T
D
k

DI
k

I
k

C
k z,z,zz −= . (26) 

The measurement noise covariance matrix is       
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= −

G
k

G
k

DI
k

G
k

G
k

C
k

R0R

0R0

R0R

R  (27) 

where RC is a diagonal sub-matrix whose diagonal elements are the variances of the expected GPS 

pseudorange and pseudorange-rate noises. Because both IMU and ADM process models (14), (15) estimate 

the same state (position), the expected value of the difference of these (25) is zero with no uncertainty, so 

RI-D = 0. This effectively applies hard constraints on the system [13]. In (27), note that RC is singular. This is 

due to RI-D being zero and the off-diagonal sub-matrices RG which exist because the same GPS 

measurements are used to update the IMU and ADM state estimates. The singularity of RC was overcome by 

applying the Moore-Penrose generalized inverse (pseudo-inverse) denoted as + in (29).  

 

The state errors xk
C are estimated as 

C
k

C
k

C
k zKx =  (28) 

where the Kalman gain is  

++=
−−

)RHPH(HPK C
k

C
k

C
k

C
k

C
k

C
k

C
k

TT

 (29) 

and Hk
C is the measurements matrix.  

The state update is  

C
k

C
k

C
k x+=

−

χχ  (30) 

where  

[ ]T
D

k
D
k

I
k

I
k

C
k AA

,,, χχχχχ = .          (31) 

Finally, the corresponding state error covariance update is  

TC
k

C
k

C
k

TC
k

C
k

C
k

C
k

C
k

C
k

KRK

)HKI(P)HKI(P

+

−−=
−

. (32) 

 

The form of the EKF (7)-(32) is the same for all sub-filters however each of the N sub-filters use N-1 
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GPS pseudorange and N-1 GPS pseudorange-rate measurements in (22)-(24). The full-filter and N sub-

filters all propagate their own estimates using their own IMU and ADM process models (14), (15) and so 

are independent of each other. Therefore in the presence of a faulty measurement there will be one sub-filter 

that is free from the corrupting measurement fault. 

 

After the update (30), (32) the state estimates I
kχ and D

kχ  and their respective covariances in CkP  are 

the same [13] and so either state estimates can be used for the fault detection. The position error 

covariances of Pk
I and Pk

D are expected to be smaller than they would be if an individual GPS-IMU EKF or 

GPS-ADM EKF were used due to the fusing of the ADM and IMU process models together by the EKF 

update equation (32). This is because (32) includes the cross-correlations between the IMU and ADM 

process models which serves to exploit information which is different about each process model. Only 

information which is independent between the process models is used to update the predictions [13], [14]. 

Both the IMU and the ADM process models are approximations to the true dynamics of the system and the 

source of the acceleration and angular rate information presented to each process is different and is 

corrupted by different error sources. For example, the IMU measurements of acceleration and angular rate 

contain errors (random noises and biases) due to the internal workings of the MEMS sensors. In contrast, 

the ADM has errors due to the assumptions made about the aircraft dynamics and the surrounding 

environment, imperfect knowledge of aerodynamic coefficients and noisy control surface measurements, for 

example. Fusing this different information together by MMF could result in better state estimates as 

compared to a GPS-IMU EKF which could result in improved GPS fault detection performance.  

Although improved fault detection performance might be possible by including the ADM, one limitation 

is that this design is more complex than a GPS-IMU EKF. Another limitation is that the IMU and ADM are 

not independent which means that a fault or inconsistent filter with either of them will result in a fault being 

detected, yet, not being able to be distinguished from a GPS fault. Therefore to ensure robust performance 

the IMU and ADM reliability will need to be assured and the filters be consistent through filter tuning to 

limit the chance of filter divergence. Also the complexity of filter tuning may be a disadvantage of this 

system in a practical implementation. The following section will present the GPS fault detection procedure.  



 12 

 

B. GPS Fault Detection Component 

The fault detection algorithm must meet the ICAO requirements shown in Table I [17]. 

 
TABLE I 

INTEGRITY MONITORING REQUIREMENTS 

Performance Requirement APV-I 
Horizontal Accuracy (95%) 16 m 
Vertical Accuracy (95%) 20 m 
Integrity  1-2 × 10-7/h/approach 
Horizontal Alert Limit (HAL) 40 m 
Vertical Alert Limit (VAL) 50 m 
Time To Alert 10 s 
Availability 99 – 99.999% 

 

At the algorithm level, two probabilities contribute to meeting the Integrity requirement in Table I; Pmd, 

which is the probability of missed detection and Pfd, which is the probability of false detection. Fig. 3 shows 

the derivation of Pmd. The probability of a GPS major service failure during the approach PFailure is 4.167 × 

10-6  assuming there are three events per year with an average of eight visible satellites and the average time 

for an approach is 150 seconds [18]. 

 

Fig. 3. Fault tree showing derivation of probabilities. 

The requirement for the false detection probability is 1.6 × 10-5 per sample [19]. If the worst case 

scenario is assumed that there is only one independent sample per approach and an average approach time 

of 150 seconds,  Pfd = 1.06 × 10-7.   
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1) Calculation of Test Statistic, Threshold and Protection Levels with the Normalized Solution Separation 

Method  

The Normalized Solution Separation (NSS) method [4] was used for the fault detection method. Fault 

detection is by comparing calculated test statistics against a threshold, which are in the solution (position) 

domain.  The test statistic is in the position domain. It is the separation in the horizontal position domain 

between full-set and sub-set solutions. For each sub-filter, the test statistic is 

kkkk nn
T
nn B ββλ )(

+=  (33) 

where + indicates the Moore-Penrose generalized inverse. The solution separation vector between the 

full-filter solution and nth sub-filter solution is: 

kkk nn χχβ −= 0  (34) 

where  
k0χ is the horizontal position vector from the full-filter and 

knχ is the horizontal position vector 

of the sub-filter. The separation between the sub-filter and full-filter covariance estimates is: 

kkk
PPB nn 0−=  (35) 

where 
knP is the horizontal component of Pk

c of the nth sub-filter and 
k

P0 is the horizontal component of Pk
c 

of the full-filter.  

The detection threshold is determined using chi-square statistics to meet the required probability of false 

alert,   

)/,( 2 NPfTD FAn χ=  (36) 

where N is the number of available GPS measurements.  

A fault is detected if 

nn TD>λ  (37)   

for any sub-filter solution. 

 Yet before this takes place there must be confidence that the fault detection can satisfy Pmd. If not, the 

integrity function is deemed to be unavailable and the system cannot be used for navigation, in accordance 
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with the requirements [19]. 

Pmd is ensured by calculating a Horizontal Protection Level (HPL) which is the radius of a circle which 

bounds the true error with a probability of 1-Pmd [18].  

HPLH0 is for the fault free hypothesis H0 and calculated as  

0,10Hk0H KHPL σ=  (38) 

where σ1,0 is the maximum eigenvalue (σ1,0 > σ2,0) of the full-filter covariance
k

P0 and KH0 is a function of 

the 1-PH0_H probability and (σ2,0 /σ1,0)
1/2 obtained from the Circular Error Probable (CEP) distribution [21].  

HPLH1 is for the fault-in-progress hypothesis H1 and is calculated as: 

MAX
n
kk1H }HPE{HPL =  (39) 

where the total estimated horizontal position error for the nth sub-filter is  

n
k

n
k

n
k

n
k

NB_HPE

NP_HPEB_HPEHPE

−

+=
. (40) 

HPE_Bk
n is the horizontal position error due to bias and uncorrelated noise 

Bn,1
n
k PbiasB_HPE σ=  (41) 

where σ1,Bn is the maximum eigenvalue of the separation covariance
knB . Pbias is the magnitude of the 

critical bias vector. 

λ=Pbias  (42) 

where λ is the noncentrality parameter of the noncentral χ2
 

distribution which is determined to meet Pmd_H  and Pfd.  

HPE_NPk
n and HPE_NBk

n are the Horizontal Position Errors due to noise only. 

n,1
n
k

n
k KNP_HPE σ=  (43) 

where σ1,n is the maximum eigenvalue of the sub-filter covariance 
knP and Kk

n is function of 1-Pmd_H  

probability and (σ2,n /σ1,n)
1/2  from the CEP distribution.  

Bn,1
n

kB
n
k KNB_HPE σ=  (44) 
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where KBk
n is a function of 1-Pmd_H  probability and  

(σ2,Bn /σ1,Bn)
1/2  from the CEP distribution.  

Finally, 

MAXk1Hk0Hk }HPL,HPL{HPL =  (45) 

and a similar process is followed for calculating VPL.  

For fault detection the following conditions must be satisfied 

HALHPLHNSE kk <<  (46) 

VALVPLVNSE kk <<  (47) 

 

Where HNSE is Horizontal Navigation System Error and VNSE is Vertical Navigation System Error. If 

the HPL exceeds the HAL then the fault detection function is deemed to be unavailable (in other words, it 

cannot be guaranteed that a fault can be detected within the Pmd) and the navigation system cannot be used 

for navigation at that time. It is easy to see from (35) that HPL and VPL are dependant upon the state 

covariance of the full and sub-filters. This is where the MMF with an ADM may provide a lower state 

covariance leading to lower protection levels.  

However, it should be noted that due to approximation of the true ranging errors with Gaussian statistics, 

the “tails” of the distribution may not have good representation (due to limited data) or found to be worse 

than Gaussian [27]. This will require conservative measures to be taken such as overbounding to offset 

optimistic results, leading to a corresponding increase in protection levels over the protection level results 

that will be presented in this paper. See [27] for further explanation of the problem and a potential solution 

to Gaussian over-bounding. Further work could be made in this area, which is beyond the scope of this 

paper.  

IV. SIMULATION RESULTS  

In order to evaluate the performance of the GPS-IMU-ADM EKF in fault detection a simulation 

environment written in MATLAB and incorporating the Aerosim Blockset for Simulink by Unmanned 

Dynamics [22] was used. A 6 degree-of-freedom nonlinear rigid body aircraft model with aerodynamic 
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coefficients of a Navion aircraft from [11] was “flown” in simulation to generate the ”truth” data. The truth 

was then corrupted with noise to simulate the various system errors. Each of the values of noise used in the 

simulation is given in Table II. A white noise process is denoted as WN(σ) and a first-order Gauss-Markov 

process will be referred to as GM(σ, τ) where σ is the standard deviation and τ is the correlation time. 

 

GPS pseudorange and pseudorange rate noises were modelled as a sum of Gauss-Markov processes for 

correlated noise plus white noise for measurement noise as in [23]. Assuming the availability of L1 and L5 

measurements, it was assumed that the majority of ionospheric error was reduced by cancelling the error 

with the use of the second frequency. It was assumed that tropospheric error was reduced by a tropospheric 

delay model. The sample rate of the GPS pseudorange and pseudorange rates was 1 Hz. For the GPS 

satellite constellation, a changing 24-satellite optimized GPS constellation from [19] was used.  

 

The IMU accelerometer and gyroscope errors were modelled as a random bias (Gauss-Markov process) 

[24] plus white noise. The values given in Table II for the noise and bias were measured values from a 

laboratory test of a Crossbow MicroNAV at Queensland University of Technology, Brisbane. The sample 

rate for the IMU measurements was 100 Hz. Admittedly, this generic error model is only an approximation 

of the sum total of a wide variety of error sources within the IMU.    

 

 The ADM was a 6-Degree-of-Freedom nonlinear rigid body model [10]. The ADM errors considered 

were control input, aerodynamic coefficient, mass and inertia, centre of gravity, gravity and wind as given. 

The sample rate for the control input measurements was 100 Hz with values for control input noise of  WN 

(0.02°) in Table II obtained from [25]. The ADM accuracy is limited particularly by the aerodynamic 

coefficient uncertainty and the unknown and nondeterministic wind environment. Reference [5] states that 

the aerodynamic coefficients can typically be known up to 10% of their true values. The aerodynamic 

coefficient errors were modelled as independent first-order Gauss-Markov processes where the time 

constants were chosen to give some random variation. The errors for throttle, mass, inertia and centre of 

gravity were chosen based on judgement. The wind conditions and gravity error were chosen arbitrarily. 
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The other major source of error in the ADM is that the overall position, velocity and attitude errors grow 

with time, (as in an INS), since the information is derived from integration. These errors limit the benefits to 

be gained from the ADM. 

TABLE II 
SIMULATION PARAMETER VALUES  

Parameter Value 
GPS  
Ephemeris GM (2.4 m, 1800 s) 
Ionosphere (L1-L5) GM (0.4 m, 1800 s) 
Troposphere  GM (0.4 m, 3600 s) 
Multipath (Code) GM (0.25 m, 600 s) 
Receiver Noise (Code) WN (0.1 m) 
Multipath (Carrier) GM (0.048 m, 600 s) 
Receiver Noise (Carrier) WN (0.0019 m) 
Total L1-L5 1σ 

Pseudorange Noise 
2.47 m 

GPS Receiver Clock Typical Crystal Oscillator [26]  
GPS Antenna Elevation 
Mask 

5 ° 

IMU  
p gyro Noise WN (0.53 °/s)  
q gyro Noise WN (0.45 °/s)  
r gyro Noise WN (0.44 °/s)  
x accel Noise WN (0.013 m/s2 )   
y accel Noise WN (0.018 m/s2)  
z accel Noise WN (0.010 m/s2)  
p gyro Bias GM(0.0552 °/s, 300 s)   
q gyro Bias GM(0.0552 °/s, 300 s)   
r gyro Bias GM(0.0552 °/s, 300 s)   
x accel Bias GM(0.0124 m/s2 , 300 s) 
y accel Bias GM(0.0124 m/s2 , 300 s) 
z accel Bias GM(0.0124 m/s2 , 300 s) 
ADM  
Coefficients  GM (10 %, 120 s)  
Control Inputs WN (0.02 °) aileron, rudder, 

elevator. WN (2%) throttle 
setting.  

Centre of Gravity Error 
[x, y, z] 

 [0.03, 0.03, 0.03] m   

Mass Error  2% of true 
Moment of Inertia Error, 
[Jx, Jy, Jz, Jxz] 

2% of true 

Environmental  
Wind [North, East, 
Down] 

 [10 kn, 10 kn, 2 kn] mean, with 
Von Karman turbulence model 

Gravity Error 1σ 36 µg  
 

As shown in Fig. 4 an APV approach was simulated starting from an assumed Final Approach Fix (FAF) 
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waypoint at 1500 feet altitude and descending at a rate of between 350-500 ft per min in the vicinity of 

Brisbane airport, Australia with an assumed Decision Height (DH) of 375 ft.  

 

 

 

Fig. 4. Simulated APV approach. 

 

The results for the GPS-IMU-ADM EKF in detecting a 0.5 m/s ramp fault will be presented next.  

A. Detection of 0.5 m/s Ramp Fault   

 
A 0.5 m/s ramp fault was placed on the pseudorange of the “most difficult satellite to detect” starting at 25 

seconds into the simulation. 0.5 m/s was chosen because it was the smallest value of ramp fault which 

caused the positioning error to exceed the alert limits before the DH was reached.  

 

As shown in Fig. 5 there was an average of 7 satellites available however the number of satellites varied 

due to aircraft motion, occasionally dropping down to 6. This occurred as the “pilot” maneuvered the 

aircraft to keep it on course, causing some satellites at low elevation to drop below the elevation mask at 

times. Fig. 5 can be used to compare with the protection level results to observe the effect which the number 

of visible satellites available had on protection levels.  
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Fig. 5. Number of visible satellites above the elevation mask. 

 
To compare the protection levels, Fig. 6 compares the HPL of the GPS-IMU-ADM EKF  (labeled “GPS-

IMU-ADM EKF” in the legend of Fig. 6) with a “snapshot” implementation of the NSS method using GPS 

alone (labeled “HPL GPS”) against the NSS method with a GPS-IMU EKF (labeled “GPS-IMU EKF”). 

Firstly, it can be seen that the HPL for the GPS was higher (approximately 10 to 25 m) and more dependent 

upon the satellite geometry than the HPL for the GPS-IMU EKF or GPS-IMU-ADM EKF. Fig. 7 shows 

similar results, except the VPL GPS exceeds the VAL temporarily from Time 40 s onwards. By comparing 

with Fig. 5 this was the times when the number of visible satellites drop to six. This shows the benefits of 

using a filtered implementation over snapshot implementations, particularly in times of low satellite 

visibility since the GPS-only fault detection performance is more dependant upon good satellite geometry 

than the filtered cases. There was calculated to be an average reduction over the whole approach of 49.9% 

in HPL and 57.9% in VPL with GPS-IMU EKF, over GPS alone. This shows that compared to the GPS-

only implementation, a reduction in protection level is possible due to greater confidence in the position 

estimates by fusing the GPS with the IMU and ADM in EKFs. 

 

Now to evaluate whether fusing the IMU with the ADM has any benefit it can be seen in Fig. 6 and Fig. 7 

that the HPL and VPL of the GPS-IMU-ADM EKF were only a little lower than GPS-IMU EKF. This was 

calculated to be an average reduction of 1.4% in HPL and 5.3% in VPL over GPS-IMU EKF. This shows 

that fusing the IMU with ADM achieves only a small reduction in protection levels.  
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Fig. 6. Comparison between the HPL of the GPS,  GPS-IMU EKF and GPS-IMU-ADM EKF. 

 

 

Fig. 7. Comparison between the VPL of the GPS,  GPS-IMU EKF and GPS-IMU-ADM EKF. 

 

To consider whether or not the fault was detected and how long it took, Fig. 8 plots the test statistic and 

threshold with Horizontal Position Error (HPE) and HPL for the GPS-IMU-ADM EKF. As indicated by the 

arrows the fault was detected before the HPE exceeded the HPL. This shows that the system is capable of 

detecting the fault before the position error exceeds the protection level and well before the error would 

exceed the alert limit of 40 m (Table I). However this one test case does not prove that the probability of 

missed detection requirement is met. Extensive Monte Carlo simulation is required to verify that the HPL 

meets the Pmd requirement and this is left for further work.  
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Fig. 8. Horizontal test statistic versus threshold of the GPS-IMU-ADM EKF. 

 

 To summarize the fault detection results for all systems, Table III compares Time to Detection which 

was the time taken to detect the fault from the onset of the fault, against Time to NSE > PL which was the 

time it took for the Navigation System Error (NSE) to exceed the protection level (PL). In Table III, H and 

V indicate the horizontal and vertical directions, respectively. By comparing the Time to Detection with the 

corresponding Time to NSE > PL , it can be seen that the 0.5 m/s ramp fault was detected by all systems 

before the position error exceeds the protection level. However it was detected earlier in the filtered systems 

than the GPS-only case. By comparing the smallest Time to Detection for the GPS (56 seconds for the 

vertical case  “GPS V”), with the smallest time for the GPS-IMU EKF and GPS-IMU-ADM EKF (35 

seconds each, for the horizontal cases), the fault is detected by the filtered systems approximately 21 

seconds (or 37%) sooner than the GPS-only case.  

 

Now comparing the horizontal cases of the GPS-IMU-ADM EKF with the GPS-IMU EKF, the Time to 

Detection are the same (35 s) for both, and the fault was detected only one second sooner in the vertical 

case for the GPS-IMU-ADM EKF than for the GPS-IMU EKF (35 s and 36 s, respectively). This shows 

that there was no significant reduction in Time to Detection by fusing the IMU with the ADM. 
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TABLE III 
0.5 M/S RAMP FAULT DETECTION TIMES 

 Time to 
Detection (s) 

Time to 
NSE > PL (s) 

GPS H 59 86 
GPS V 56 95 

GPS-IMU EKF H 35 52 
GPS-IMU EKF V 36 46 

GPS-IMU-ADM EKF H 35 50 
GPS-IMU-ADM EKF V 35 41 

 

B. Comparison of Average Protection Levels over a Day 

 
To assess the protection level performance over a 24-hour period of changing satellite geometries for the 

one flight path shown in Fig. 4, the test was repeated 70 times where only the satellite geometry was varied 

each time at 20 minute intervals. Only 70 runs were chosen due to our simulation environment's limitations, 

however, this scenario may be thought of as an aircraft conducting an APV approach every 20 minutes, 

assuming each aircraft flies exactly the same path in the same conditions. Over all 70 simulation runs, the 

number of visible satellites was observed to vary anywhere from 6 to 10, with the average being 8. 

 

 Fig. 9 and Fig. 10 show the HPL and VPL which has been averaged over the 70 simulation runs. As can 

be seen in Fig. 9, the HPL for the GPS was approximately 11 m higher than for the filtered cases and in Fig. 

10 the GPS VPL was approximately 20 m higher. This was calculated to be an average reduction in HPL 

and VPL of 48.2% and 54.5% with GPS-IMU EKF, over GPS alone. To consider the availability of fault 

detection on this one simulated approach it was calculated that 85.5% of the time the GPS HPL or VPL 

exceeded the HAL or VAL requirements. In contrast, the availability of fault detection was 100% for both 

the GPS-IMU EKF and GPS-IMU-ADM EKF.  Although this is not an extensive availability analysis, the 

results show that fusing GPS with a low-cost IMU can achieve greater availability than GPS-only schemes. 

 

To consider the effect of including the ADM in the architecture, the HPL of the GPS-IMU-ADM EKF 

was calculated to be 2.7% lower than the GPS-IMU EKF and the VPL was 5.6% lower. This small 

reduction in HPL due to fusion of the IMU with the ADM may contribute to an increase in availability of 
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the fault detection function, however, without extensive Monte Carlo simulation the overall significance of 

this cannot be determined. Such small reductions in protection level may be more significant only if the 

performance requirements are much tighter or satellite visibility is poor.  

 

 

 
Fig. 9. Comparison between the average HPL of the GPS, GPS-IMU EKF and GPS-IMU-ADM EKF. 

 

 

Fig. 10. Comparison between the average VPL of the GPS, GPS-IMU EKF and GPS-IMU-ADM EKF. 

 

    In summary, whilst the fusing of the ADM with the IMU was shown to reduce the protection levels, 

this reduction may not be large enough to justify including an ADM in practical systems for general aviation 

considering the added complexity of the GPS-IMU-ADM EKF architecture over a GPS-IMU EKF. The 
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performance improvements are limited due to the new information that the ADM brings to the system being 

in the form of derivatives, which always have a component of error growing with time. Furthermore, the 

incorporation of the ADM may not be cost-effective in practical systems for general aviation since currently 

the use of aircraft dynamics and sensors to measure pilot inputs is not common.  

 

V. CONCLUSION 

This paper investigated augmenting GPS with a low-quality MEMS IMU and ADM fused together in a 

bank of EKFs using a NSS fault detection scheme. This was called the GPS-IMU-ADM EKF. Unlike past 

ABAS designs, the use of EKFs in a closed-loop configuration with a low-cost IMU and ADM were 

considered.  

 

By simulation of a general aviation aircraft on an APV approach, the performance of the GPS-IMU-

ADM EKF in detecting a ramp fault on one GPS pseudorange measurement was evaluated. By comparison 

with a GPS-only snapshot implementation of the NSS method it was observed that protection levels were 

reduced by 51% and the ramp fault was detected 37% sooner than the GPS-only implementation. This 

shows a potential benefit in using a filtered approach over a snapshot implementation since an improvement 

in fault detection availability may be gained. 

 

 The effect of including the ADM was evaluated by comparing the GPS-IMU-ADM EKF with a GPS-

IMU EKF. The GPS-IMU-ADM EKF gave a 2.7% reduction in horizontal protection level and 5.6% in 

vertical protection level as compared to a GPS-IMU EKF (averaged over 70 different satellite geometries in 

a 24 hour period) for a single APV approach. Even though the incorporation of the ADM showed a small 

reduction in protection levels (which may result in an increase in fault detection availability), this reduction 

may not be large enough to justify the effort and cost of including an ADM in practical systems. 

 

Further research could be made to assess fault exclusion performance, verify that the protection levels 

meet the statistical requirements through Monte Carlo simulation and investigate the performance over 
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different fault conditions and scenarios. One potential use for affordable ABAS for general aviation may be 

to enhance existing GPS-only fault detection solutions or to help overcome any outages in augmentation 

systems such as GRAS. Countries such as Australia which currently do not have an augmentation solution 

for general aviation could especially benefit from the economic and safety benefits of satellite navigation-

based APV approaches.   
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