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Abstract

Hot and cold temperatures significantly increase mortality rates around the world,
but which measure of temperature is the best predictor of mortality is not known.
We used mortality data from 107 US cities for the years 1987–2000 and examined
the association between temperature and mortality using Poisson regression and
modelled a non-linear temperature effect and a non-linear lag structure. We
examined mean, minimum and maximum temperature with and without humidity,
and apparent temperature and the Humidex. The best measure was defined as
that with the minimum cross-validated residual. We found large differences in the
best temperature measure between age groups, seasons and cities, and there was
no one temperature measure that was superior to the others. The strong
correlation between different measures of temperature means that, on average,
they have the same predictive ability. The best temperature measure for new
studies can be chosen based on practical concerns, such choosing the measure with
the least amount of missing data.

Key words: climate, mortality, weather, temperature, apparent temperature,
Humidex
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1. Introduction

Studies around the world have shown that daily mortality rates increase

significantly with both hot and cold temperatures (Ballester et al., 1997;

The Eurowinter Group, 1997; Keatinge et al., 2000; Donaldson et al., 2001; Braga

et al., 2001; O’Neill et al., 2003; Goodman et al., 2004; Basu et al., 2005; Barnett

et al., 2005; Schwartz, 2005; Analitis et al., 2008; Zanobetti and Schwartz, 2008;

Rocklöv and Forsberg, 2008; Anderson and Bell, 2009). The risks depend strongly

on climate and adaptation. People in colder climates tend to cope better in cold

weather (The Eurowinter Group, 1997; Barnett et al., 2005), whilst those in hotter

climates tend to cope better in extreme heat (Keatinge et al., 2000; Zanobetti and

Schwartz, 2008).

Ambient air temperature may not be the best predictor of skin temperature,

which is the main trigger of the body’s cooling and warming mechanisms (Fanger,

1972; Ashcroft, 2000). Attempts have been made to combine temperature,

humidity and wind to give a better estimate of the experienced temperature

(Epstein and Moran, 2006). One alternative temperature measure is apparent

temperature which combines mean temperature and dew-point temperature using

the equation (Zanobetti and Schwartz, 2008):

Apparent Temperature (deg F) = −2.653 + 0.994×Mean Temperature (deg F)

+0.0153 × [Dew-point temperature (deg F)]
2
. (1)

Maximum or minimum apparent temperature can be calculated using the same

equation, with maximum or minimum temperature in place of mean temperature

(Analitis et al., 2008). The aim of apparent temperature is to combine the effects

of heat and cold with humidity. This measure has been used in a number of

previous studies (Zanobetti and Schwartz, 2008; Baccini et al., 2008). For

example, a rise in apparent temperature in the warm season was associated with

increased all-cause mortality in adults using data from nine US cities (Zanobetti

and Schwartz, 2008). Similarly, a rise in maximum apparent temperature in the

warm season was associated with increased deaths in Europe (Baccini et al., 2008).
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Another measure that attempts to combine temperature and humidity is the

Humidex (Conti et al., 2005; Canadian Centre for Occupational Health and

Safety, 2009), defined as

Humidex (deg C) = Mean Temperature (deg C) + 0.5555 (6.11E − 10) ,

E = exp

[

5417.753

(

1

273.16
−

1

Dew Point Temperature (deg K)

)]

,

where deg K is degrees kelvin. The Humidex was designed by Canadian

meteorologists to describe the feeling of hot and humid weather for an average

person.

Temperature is strongly diurnal, and the range of temperatures during the day

can be quite wide. This range is measured by the daily maximum and minimum

temperature. The extremes of temperature will exert the most physiological

pressure and so could be the most important predictor of mortality. Maximum

temperature may also be a good measure of exposure because it often occurs in

the middle of the day, which could coincide with a peak time for outdoor activity.

Conversely, daily minimum temperatures are likely to occur at night when most

people are in bed. In areas with good home insulation and heating the minimum

temperature might therefore be a poor measure of actual exposure. The mean

temperature, which summarises the entire day, may be a better estimate of

exposure as it uses multiple observations per day and so should be less prone to

measurement error compared with the temperature extremes. Many previous

studies of mortality used average daily temperature (The Eurowinter Group, 1997;

Keatinge et al., 2000; Braga et al., 2001), although others investigated the impact

of minimum and maximum temperature (Schwartz, 2005).

Despite the great number of studies on the health effects of temperature, few

studies have tried to objectively determine which measure of temperature is the

best predictor of mortality. Metzger et al. (2009) examined mean, minimum and

maximum temperature, the heat index and spatial synoptic classification, and

chose the optimal combination of weather variables using the deviance and

residual checks. Similarly, Hajat et al. (2006) compared mean, minimum,
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maximum and apparent temperature, and selected the best measure based on the

deviance. In this paper we used cross-validation to pick the best model, as it gives

more realistic predictions for future studies compared with statistics generated

using the entire sample.

We aimed to find which temperature measure was the best predictor of mortality

in order to better understand the mechanism of temperature-related mortality and

to make recommendations for future studies. We compared seven temperature

measures: mean, minimum and maximum temperature; mean, minimum and

maximum apparent temperature; and the Humidex. We examined which measure

gave the most accurate prediction of daily mortality. We used mean temperature

based on the mean of minimum and maximum temperature because the mean

temperature over 24 hours had large amounts of missing data. We assessed

whether the predictive value of temperature depended on age, season and region,

and whether including relative humidity gave better predictions. We also assessed

whether there were any broad spatial patterns across the US in the best

temperature measures.

2. Materials and methods

We used data from the National Morbidity and Mortality Air Pollution Study

(NMMAPS) because it is publicly available, covers a wide range of climates, and

has a large sample size (daily data for the years 1987–2000). The locations of the

107 cities used are shown in the supplementary figure S1. We excluded one city

(Little Rock) because of a large amount of missing humidity data.

To summarise the correlations between the daily measures of temperature and

humidity we calculated the Pearson correlations in each city and then averaged

these correlations over the 107 cities.
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2.1. Poisson regression model

We used Poisson regression with over-dispersion to model the association between

temperature and daily counts of deaths. We selected Poisson regression as it is a

common method for evaluating the association between temperature and

mortality (Braga et al., 2001; Zanobetti and Schwartz, 2008). The Poisson model

for the daily number of deaths on day d in each city is,

Yd ∼ Po(µd),

log(µd) = αdowd + ns(d, λd) + ns(Temperature, λt, λl)

+ns(Humidity, λt, λl), d = 1, . . . , 5114,

where dow is a categorical term for day of the week (using a reference day of

Sunday) and ns(., λ) refers to a natural spline with λ degrees of freedom (Ruppert

et al., 2003). This term is used to control for secular trends and seasonal patterns

in mortality, a greater λd means a greater flexibility, which means a stronger

control for season. The temperature and humidity terms have the same two

degrees of freedom: one for the temperature or humidity measure (λt) and the

other for lag (λl), so that these effects are fitted using a non-linear surface

(Armstrong, 2006). This surface is able to incorporate the non-linear U-shaped

association between temperature and risk (with increases in risk at high and low

temperatures), and the possibly non-linear association between exposure to

temperature and a delayed (lagged) onset of death. We used a maximum delay of

25 days (Anderson and Bell, 2009). Because we did not know the best degrees of

freedom, we fitted models for: 5, 6 and 7 degrees of freedom per year; 4, 5 and 6

degrees of freedom for temperature; and 3, 4 and 5 degrees of freedom for lag. We

selected the best degrees of freedom from these 27 combinations using criteria

described below.

We examined 14 different temperature and humidity models. We fitted each

temperature measure without humidity: mean, minimum and maximum

temperature; mean, minimum and maximum apparent temperature; and the

Humidex. We combined mean, minimum and maximum temperature with mean
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humidity using the same natural spline basis as the temperature measure. In

order to examine a simpler humidity effect we also used same day humidity with a

natural spline using 3 degrees of freedom. As a “baseline” comparison we fitted a

model without any measure of temperature or humidity, but with the terms for

trend, season and day of the week. The models were fitted using the “dlnm”

package in the R statistical software (Gasparrini and Armstrong, 2009).

To examine whether the best temperature measure differed by age we fitted

separate models for the < 65-year, 65–74-year and ≥ 75-year age groups.

2.2. Cross-validation

We calculated the predictive ability of each temperature measure using 10-fold

cross-validation, which is a very robust model selection technique (Hen and

Kamber, 2006). Cross-validation splits the sample into training and validation

sets. The model is built using the training set and then tested using the validation

set. This means that the inference is less tailored to the current data set, and

cross-validation will give more realistic predictions for future studies (a key aim of

our study).

To perform 10-fold cross-validation we randomly assigned a number between 1 and

10 to every day between 1 January 1987 and 31 December 2000. This numbering

was done in random permuted blocks of 10 so that each number was equally

represented and spread evenly over time. For each city and model we then ran the

Poisson regression model 10 times, each time leaving out one of the 10 groups

(10% of the data). The predicted values were then compared to the actual number

of deaths to create the residuals. We used the squared Pearson residuals defined

as (Dobson and Barnett, 2008)

rc,d = (yd − µ̂d)
2
/

µ̂d , d ∈ Dc, c = 1, . . . , 10,

where yd is the observed number of deaths on day d, µ̂d is the estimated number

of deaths, and Dc is the set of days left-out for cross-validation c.
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We first averaged these daily residuals to give the mean for each left-out set:

rc =
∑

d∈Dc

rc,d

/

Nc ,

where Nc is the number of days left-out in cross-validation c. This mean reflects

the average difference between the observed and estimated number of deaths. The

smaller this mean, the better the model.

We repeated the above cross-validation fives times, each time using a different set

of randomly selected days. This was to ensure that our inferences were not

overly-influenced by a particular random sampling pattern.

We verified the ability of this cross-validation method to find the best set of

independent variables using a simulation study. In this simulation study we

randomly created three independent variables, only one of which was associated

with the randomly created dependent variable. We used a sample size of 5,114

days to match the NMMAPS data. We fitted seven different models (no

independent variables, single independent variable, pairs of independent variables,

all three independent variables) and found that the mean cross-validated residual

was clearly lower for the correct model.

2.3. Summarising the model residuals

To examine the average performance of the models we used a regression model

based on the mean residuals, r. In the following definition we use subscripts for

the mean residual from each model (a), city (b) and cross-validation (c). We

modelled the mean residual using

ra,b,c ∼ N(µa,b,c, σ
2), a = 1, . . . , 24, b = 1, . . . , 107, c = 1, . . . , 50,

µa,b,c = α+ βa + γb,c,

where ra,b,c is the observed mean and σ2 is the estimated variance of the

cross-validated residuals. The mean (µa,b,c) was modelled using a linear regression

equation with an overall intercept (α), a mean for each model (βa), and a mean
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for each cross-validation within each city (γb,c). The regression parameters were

given vague Normal prior distributions:

α ∼ N(0, 105),

βa ∼ N(0, 105), a = 1, . . . , 24,

γb,c ∼ N(γb, 10
5), b = 1, . . . , 107, c = 1, . . . , 50,

γb ∼ N(0, 105), b = 1, . . . , 107.

We compared the performance of the models by plotting the estimated mean

residual (α̂+ β̂a) and its 95% credible interval. Separate estimates were made for

each age group and in each season (and for all seasons combined). The seasons

were defined as Winter (December, January, February), Spring (March, April,

May), Summer (June, July, August) and Autumn (September, October,

November). We also created estimates for seven US regions (Industrial Midwest,

North East, North West, Other, Southern California, South East, South West,

Upper Midwest). The cities in each region are shown in Table S1. To examine the

variability in the best model in the same city we also estimated the mean

cross-validated residual in each city and year.

A great advantage of using cross-validation is that the estimated mean residual

(α̂+ β̂a) will increase when a variable is added to the model that has no

independent association with mortality. Standard likelihood based statistics, such

as the deviance (Hajat et al., 2006; Metzger et al., 2009), always improve when a

new variable is added to the model, even when that variable has no association

with the dependent variable. This makes it difficult to assess the difference

between models. A disadvantage of using the mean residual is that it is on an

unfamiliar scale (being a squared and standardised residual), so as an additional

measure of fit we used the Akaike information criterion (AIC, Akaike (1974)).

However, we note that the AIC assumes an equal sample size, which is not always

the true in the NMMAPS data because of some missing daily data for the

temperature measures and humidity.

These models were fitted using a Bayesian paradigm (Dobson and Barnett, 2008).
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We used the JAGS software to estimate the parameters (Plummer, 2008). We

used a burn-in of 1,000 Markov chain Monte Carlo iterations and a sample of

1,000 subsequent iterations. We checked the convergence of the chains using the

“coda” package in the R software (Plummer et al., 2009).

To examine geographical variation in the best predictors of mortality we selected

the temperature measure in each city associated with the smallest average

residual. The estimates from Anchorage and Honolulu were excluded from this

part of the analysis as these cities are too distant from the contiguous United

States. We used a support vector machine to find if there were regions where the

same temperature measure generally gave the best predictions of mortality

(Chang and Lin, 2008). We used the “e1071” package in R to make the estimates

(Dimitriadou et al., 2009), and plotted the results using ArcView version 9.2

(ESRI, Redlands, CA). Additionally, we interpolated the Pearson residuals for

each temperature measure using inverse distance weighting, again using ArcView.

We then overlayed these interpolated values and selected the temperature measure

that gave the minimum interpolated value at each location. We then created a

map showing the best temperature measure for each location across the entire US.

3. Results

Table 1 shows the average correlations between the daily temperature measures

and humidity. There were strong correlations (above 0.9) between most of the

temperature measures. These strong correlations mean that we should expect only

a small change in fit for different measures. Correlations between temperature and

humidity were generally smaller, with the largest correlation between apparent

temperature and humidity (correlation = 0.213).

Table 2 shows the mean cross-validated residual using data from all cities and

seasons for the various degrees of freedom. In oldest age group the smallest mean

residual used 5 degrees of freedom per year, 4 for temperature, and for 4 for lag.

In the other two age categories the the smallest mean residual used 5 degrees of

freedom per year, 4 for temperature, and for 3 for lag. The patterns in the AIC
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were similar to those for the residuals (Table S2), and for the AIC based on the 80

cities with less than 1% missing data (Table S3), and the mean cross-validated

residual based on the 80 cities with less than 1% missing data (Table S4). The

general pattern was an increased mean residual (and AIC) with increasing degrees

of freedom for all three natural splines, so simpler models were favoured on

average. From now on we show the results from each age group based on the

combination of degrees of freedom that gave the smallest mean residual.

Figure 1 shows the mean cross-validated residuals for the 14 models split by the

three age groups. The patterns in the < 65 and 65–74 year age groups were

similar, as a model without any measure of temperature or humidity did best, the

next best model used mean temperature, and the models including a surface for

humidity did worst. In the ≥ 75 year age group the best models were apparent

temperature and the Humidex; the models using a surface for humidity did poorly.

Figure 2 shows the mean cross-validated residuals in winter and summer for the

three age groups. In the two youngest age groups a model without any measure of

temperature or humidity did best. Mean temperature was the next best model in

summer in these age groups. In the ≥ 75 year age group the best models in winter

used minimum temperature or minimum apparent temperature, and the best

model in summer used mean temperature. In all three age groups the six models

including humidity were among some of the poorest fits in winter, but were more

comparable to the other models in summer. Figure S2 shows the results in spring

and autumn. For these two seasons a model without any measure of temperature

or humidity did best in the youngest age group. In the ≥ 75 year age group the

best model in spring used apparent temperature, and the best models in autumn

used apparent temperature or the Humidex.

Figure 3 shows the mean cross-validated residuals in the ≥ 75 year age group by

region (using all four seasons). There was great variability in the best model by

region. In the Upper Midwest and South West a model without any measure of

temperature or humidity did best. In the North West and South East the

Humidex did best. In the North East the best model used maximum temperature,

in the Industrial Midwest it was apparent temperature, and in Southern California
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mean temperature with humidity.

We examined the within-city variability by comparing the best model in each city

and year (1987–2000) for the ≥ 75 age group. We defined the best model as that

with the lowest mean cross-validated residual in each year. There were no cities

where the same model had the lowest mean residual in all 14 years. The most

consistent result was in Cayce, Iowa, where in 9 years out of 14 a model without

any measure of temperature or humidity did best. In 100 cities the same best

model was only selected in 6 years or fewer, indicating that there was little

consistency in the best model.

We found no evidence of spatial variation in the best temperature measure in

every season and age group. Many neighbouring cities had different best measures

of temperature. When using support vector machines the error rates of the regions

were high, as the predicted regions only correctly classified around 30% of cities.

We relaxed the parameters of the support vector machine which increased the

percent correctly classified to around 50%, but at the cost of producing multiple

regions with no clear spatial pattern. Inverse distance weighting also produced

multiple regions, indicating a lack of regional agreement. To reduce the influence

of individual cities we used the ranking of the temperature models within a city

rather than the mean residuals, but this still produced maps that were difficult to

interpret and showed no smooth geographic variation in the best temperature

measure. These results indicate that the best temperature measure was

city-specific with little regional influence.

4. Discussion

Our results demonstrate that no temperature measure was consistently the best at

predicting mortality in all age groups, seasons or regions. Instead we found

marked variation in the best temperature measure across age groups (Figure 1),

seasons (Figures 2 and S2) and regions (Figure 3). We also found variation in the

best model between neighbouring cities, and there was no geographic consistency

to the best models. We even found marked variation in the best model within
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cities in the ≥ 75 year age group, as there were no cities where the same model

gave the best fit in every year.

The lack of consistency in the best model could be due to the relatively small risk

of temperature-related mortality combined with the strong correlations in the

temperature measures (Table 1). The relatively small risk of temperature-related

mortality is evidenced by the results from the two youngest age groups where a

model without any measure of temperature or humidity did best (Figures 1 and

2). In the oldest age groups there was a clear advantage to including most of the

temperature measures, which reflects the greater risk posed by temperature in the

frailest people. However, even in the oldest age group there was great variation in

mean residuals by region (Figure 3) and there was no spatial consistency for the

best models.

A few general patterns were more consistent. The models that included humidity

as a separate variable tended to do worse, particularly when humidity was fitted

using a natural spline surface with the same lag length and degrees of freedom as

temperature. Models that included a simpler version of humidity by using the

same day humidity with 3 degrees of freedom did better, particularly in summer

(Figure 2). This suggests that effects of humidity are not as important or

long-lasting as the effects of temperature. The effect of humidity on mortality

should be secondary to the effect of temperature. Fanger estimated that a change

in relative humidity of 0% to 100% can be compensated for by a change in

temperature of only 1.5–3 degrees Celsius (Fanger, 1972). Increased humidity does

make it more difficult to cool down in hot weather, as the body’s evaporative

cooling mechanism is compromised (Ashcroft, 2000). The loss of this cooling

mechanism is potentially more serious in the elderly because of their increased

frailty and reduced ability to thermoregulate (Horowitz and Robinson, 2007).

Despite not providing a clear recommendation of which temperature measure to

use, there are some other useful messages in the results. We believe that the

choice of the temperature measure is far less important that other modelling

choices, such as the length of the lag and methods for dealing with non-linear risk

(e.g., spline or polynomial) (Armstrong, 2006). We recommend choosing the

14



temperature measure based on practical concerns, such as choosing the measure

with the least amount of missing data, or, if temperature is available from a

network of weather stations, choosing the measure that has the best spatial

coverage of the study area. The similarity of the temperature measures also means

that meta-analyses should not be too concerned about combining studies where

different measures of temperature have been used (Bhaskaran et al., 2009),

although between-study differences in lag lengths are likely to be important.

4.1. Limitations of the study

Whilst we tested a range of different degrees of freedom for the spline surfaces we

did not test different bases functions, e.g., tensor products, radials (Ruppert et al.,

2003), or methods that combine splines with a break-point for cold and hot effects

(Muggeo, 2008). This could be an interesting area for future study.

We had no information on wind and so we could not examine the predictive value

of a wind chill index. A strong wind can significantly reduce skin temperature,

especially for people who go outside without adequate protective clothing.

However, given the similarity in fit of the various models shown here we would be

surprised if adding wind caused a big improvement in fit.

An alternative method for combining the effects of different aspects of the weather

is the synoptic approach, where types of weather are classed into air mass groups

(Gosling et al., 2009). We did not examine this method here, however it is difficult

to imagine that a categorical model would do better than a model based on

non-linear changes in risk. Samet et al. (1998) did compare two synoptic

approaches with linear and non-linear regression methods, and found the synoptic

approach gave a significantly poorer model fit for one synoptic approach and little

difference with the other.

The NMMAPS data only contains three broad age groups, and the youngest age

group (< 65 years) groups children with adults. The effects of temperature may

be stronger in children than in adults (Gouveia et al., 2003), and there may also

be differences in the lag if negative health effects occur faster in children than
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adults. Our model assumed a common shape for the effects of temperature, and

hence the best measure of temperature needs further investigation in children.

We did not control for the effects of air pollution because we wanted to use the

maximum amount of temperature information, and the air pollutant data are not

available in all cities at all times in the NMMAPS study. Whilst it is known that

air pollution and temperature have an interactive effect (Ren et al., 2006; Nawrot

et al., 2007), there is also strong evidence for an independent effect of temperature

on mortality (Welty and Zeger, 2005; Nawrot et al., 2007; Zanobetti and Schwartz,

2008). A recent study that also used the NMMAPS data concluded that there are,

“separate and substantial mortality effects from temperature and from air

pollution” (Anderson and Bell, 2009).

An important question for our results is how generalizable they are to other

locations. We cannot be sure that these results are generalizable to other climates,

although the NMMAPS data covers a wide range of climates. Similarly, we cannot

be sure that these results are generalizable to other countries, because the

interaction between people and the weather is modified by many factors, including

housing conditions and clothing (Donaldson et al., 2001; The Eurowinter Group,

1997). Culture and adaptation to climate are also critical (Ashcroft, 2000).

Given the size of the data (covering cities, regions, seasons and age groups) it is

possible that we have missed an important association between temperature and

mortality in some smaller subgroup (e.g., winter in the < 65-year age group in

Southern California). So that interested readers can investigate such subgroups we

have made the mean cross-validated residuals available in a supplementary data

set.

4.2. Summary

We found large differences in the best temperature measure between age groups,

seasons and cities, and there was no one temperature measure that was superior

to the others. The strong correlation between different measures of temperature

means that, on average, they have the same predictive ability. The best
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temperature measure for new studies can be chosen based on practical concerns,

such choosing the measure with the least amount of missing data.
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Figure 1. Mean cross-validated residuals (and 95% credible intervals) for the 14

different models by age group: < 65 years (top row), 65–74 years (middle row),

≥ 75 years (bottom row). The smaller the residual, the better the model. App =

Apparent; Hum1 = Humidity with the same natural spline basis as temperature;

Hum2 = Same day humidity using a natural spline with 3 degrees of freedom.

Figure 2. Mean cross-validated residuals (and 95% credible intervals) for the 14

different models in winter (left column) and summer (right column) by age group:

< 65 years (top row), 65–74 years (middle row), ≥ 75 years (bottom row). The

smaller the residual, the better the model. App = Apparent; Hum1 = Humidity

with the same natural spline basis as temperature; Hum2 = Same day humidity

using a natural spline with 3 degrees of freedom.

Figure 3. Mean cross-validated residuals (and 95% credible intervals) for the 14

different models in the ≥ 75 year age group by region. Top row: North West,

Upper Midwest, North East. Middle row: Southern California, Industrial

Midwest, South East. Bottom row: South West. The smaller the residual, the

better the model. App = Apparent; Hum1 = Humidity with the same natural

spline basis as temperature; Hum2 = Same day humidity using a natural spline

with 3 degrees of freedom.
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Supplementary data

Figure S1. The locations of the 105 cities in the contiguous United States from the

National Morbidity and Mortality Air Pollution Study study. Anchorage and

Honolulu were included in the study but are not shown on this map.

Figure S2. Mean cross-validated residuals (and 95% credible intervals) for the 14

different models in spring (left column) and autumn (right column) by age group:

< 65 years (top row), 65–74 years (middle row), ≥ 75 years (bottom row). The

smaller the residual, the better the model. App = Apparent; Hum1 = Humidity

with the same natural spline basis as temperature; Hum2 = Same day humidity

using a natural spline with 3 degrees of freedom.
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Table 1: Average Pearson Correlations Between the Daily Temperature Measures and Humidity
for the 107 US Cities, 1987–2000.

Min Max AT Min AT Max AT Humidex RH
Mean temperature 0.963 0.971 0.955 0.933 0.962 0.988 −0.048
Min temperature 0.890 0.953 0.963 0.937 0.968 0.082
Max temperature 0.906 0.865 0.939 0.948 −0.146
AT 0.992 0.993 0.989 0.154
Min AT 0.975 0.973 0.213
Max AT 0.988 0.102
Humidex 0.051
Abbreviations: AT, Apparent Temperature; RH, Relative Humidity



Table 2: Mean cross-validated error by age group and the natural spline degrees of freedom: per year, for temperature and for lag. The smallest error in each age group is
shown in bold.
DF DF Age group
per tempe- < 65 65–74 ≥ 75
year rature DF lag = 3 DF lag = 4 DF lag = 5 DF lag = 3 DF lag = 4 DF lag = 5 DF lag = 3 DF lag = 4 DF lag = 5
5 4 0.8367 0.8375 0.8385 0.7547 0.7555 0.7562 0.9530 0.9523 0.9526

5 0.8374 0.8385 0.8397 0.7552 0.7563 0.7572 0.9534 0.9530 0.9535
6 0.8382 0.8396 0.8411 0.7559 0.7571 0.7583 0.9541 0.9540 0.9547

6 4 0.8397 0.8405 0.8414 0.7572 0.7580 0.7587 0.9537 0.9530 0.9533
5 0.8404 0.8415 0.8427 0.7578 0.7588 0.7598 0.9542 0.9538 0.9543
6 0.8412 0.8426 0.8441 0.7584 0.7597 0.7609 0.9549 0.9548 0.9556

7 4 0.8427 0.8436 0.8445 0.7599 0.7607 0.7614 0.9547 0.9541 0.9543
5 0.8434 0.8446 0.8458 0.7605 0.7615 0.7625 0.9553 0.9549 0.9554
6 0.8442 0.8457 0.8472 0.7611 0.7624 0.7636 0.9560 0.9559 0.9566

DF = degrees of freedom



Table S1: List of the 107 US cities by region.
Region City State Region City State
Industrial Midwest Akron OH Other Anchorage AK
(n = 20) Buffalo NY (n = 2) Honolulu HI

Chicago IL South East Atlanta GA
Cincinnati OH (n = 26) Baton Rouge LA
Cleveland OH Birmingham AL
Columbus OH Cayce SC
Dayton OH Charlotte NC
Detroit MI Columbus GA
Evansville IN Dallas/Fort Worth TX
Fort Wayne IN Greensboro NC
Grand Rapids MI Houston TX
Indianapolis IN Huntsville AL
Lexington KY Jackson MS
Louisville KY Jacksonville FL
Madison WI Knoxville TN
Milwaukee WI Lafayette LA
Muskegon MI Lake Charles LA
Pittsburgh PA Memphis TN
St. Louis MO Miami FL
Toledo OH Mobile AL

North East Arlington VA Nashville TN
(n = 19) Baltimore MD New Orleans LA

Biddeford ME Orlando FL
Boston MA Raleigh NC
Coventry RI Shreveport LA
Washington DC St. Petersburg FL
Jersey City NJ Tampa FL
Johnstown PA Tulsa OK
Kingston NY South West Albuquerque NM
Newport News VA (n = 10) Austin TX
Norfolk VA Corpus Christi TX
Newark NJ El Paso TX
New York NY Las Vegas NV
Philadelphia PA Lubbock TX
Providence RI Oklahoma City OK
Richmond VA Phoenix AZ
Rochester NY San Antonio TX
Syracuse NY Tucson AZ
Worcester MA Southern California Bakersfield CA

North West Colorado Spring CO (n = 7) Fresno CA
(n = 14) Denver CO Los Angeles CA

Modesto CA Riverside CA
Oakland CA San Bernardino CA
Olympia WA San Diego CA
Portland OR Santa Ana/Anaheim CA
Sacramento CA Upper Midwest Cedar Rapids IA
Salt Lake City UT (n = 9) Des Moines IA
San Francisco CA Kansas City MO
San Jose CA Kansas City KS
Seattle WA Lincoln NE
Spokane WA Minneapolis/St. Paul MN
Stockton CA Omaha NE
Tacoma WA Topeka KS

Wichita KS



Table S2: Mean cross-validated AIC by age group and by the natural spline degrees of freedom per year, for temperature and for lag. The smallest AIC in each age group is
shown in bold.
DF DF Age group
per tempe- < 65 65–74 ≥ 75
year rature DF lag = 3 DF lag = 4 DF lag = 5 DF lag = 3 DF lag = 4 DF lag = 5 DF lag = 3 DF lag = 4 DF lag = 5
5 4 17,215.0 17,219.2 17,223.8 16,542.6 16,547.6 16,552.4 20,540.3 20,537.4 20,538.3

5 17,218.5 17,224.1 17,230.0 16,546.4 16,552.7 16,558.9 20,542.3 20,540.5 20,542.5
6 17,222.5 17,229.5 17,236.6 16,550.2 16,557.9 16,565.5 20,545.0 20,544.4 20,547.5

6 4 17,230.3 17,234.5 17,239.2 16,558.7 16,563.7 16,568.6 20,543.7 20,540.9 20,541.8
5 17,233.9 17,239.5 17,245.4 16,562.7 16,569.1 16,575.2 20,546.1 20,544.4 20,546.4
6 17,237.9 17,244.9 17,252.0 16,566.6 16,574.3 16,581.8 20,549.0 20,548.5 20,551.6

7 4 17,245.9 17,250.1 17,254.7 16,575.3 16,580.3 16,585.1 20,548.6 20,545.7 20,546.6
5 17,249.5 17,255.0 17,260.9 16,579.2 16,585.5 16,591.7 20,551.2 20,549.4 20,551.4
6 17,253.5 17,260.4 17,267.6 16,583.1 16,590.8 16,598.4 20,554.2 20,553.6 20,556.7

DF = degrees of freedom



Table S3: Mean cross-validated AIC by age group and the natural spline degrees of freedom per year, for temperature and for lag. Based on the 80 cities with less than 1%
missing data for all temperature measures and humidity. Smallest AIC in each age group shown in bold.
DF DF Age group
per tempe- < 65 65–74 ≥ 75
year rature DF lag = 3 DF lag = 4 DF lag = 5 DF lag = 3 DF lag = 4 DF lag = 5 DF lag = 3 DF lag = 4 DF lag = 5
5 4 18,214.1 18,217.7 18,221.9 17,442.6 17,447.2 17,451.5 21,514.5 21,509.9 21,510.0

5 18,217.3 18,222.2 18,227.7 17,446.1 17,451.9 17,457.5 21,515.9 21,512.3 21,513.4
6 18,221.1 18,227.4 18,234.0 17,449.6 17,456.7 17,463.6 21,518.2 21,515.8 21,517.9

6 4 18,228.6 18,232.2 18,236.5 17,457.9 17,462.5 17,466.8 21,515.7 21,511.2 21,511.3
5 18,232.0 18,236.8 18,242.3 17,461.6 17,467.4 17,473.0 21,517.6 21,514.1 21,515.2
6 18,235.7 18,242.0 18,248.7 17,465.2 17,472.3 17,479.2 21,520.2 21,517.9 21,520.0

7 4 18,243.2 18,246.7 18,251.0 17,473.6 17,478.2 17,482.6 21,518.7 21,514.0 21,514.1
5 18,246.5 18,251.4 18,256.9 17,477.3 17,483.1 17,488.7 21,520.8 21,517.2 21,518.2
6 18,250.3 18,256.5 18,263.2 17,480.9 17,488.0 17,494.9 21,523.6 21,521.1 21,523.2

DF = degrees of freedom



Table S4: Mean cross-validated error by age group and by the natural spline degrees of freedom per year, for temperature and for lag. Based on the 80 cities with less than
1% missing data for all temperature measures and humidity. Smallest error in each age group shown in bold.
DF DF Age group
per tempe- < 65 65–74 ≥ 75
year rature DF lag = 3 DF lag = 4 DF lag = 5 DF lag = 3 DF lag = 4 DF lag = 5 DF lag = 3 DF lag = 4 DF lag = 5
5 4 0.8808 0.8816 0.8825 0.8088 0.8096 0.8103 0.9712 0.9702 0.9703

5 0.8814 0.8825 0.8838 0.8093 0.8104 0.8113 0.9715 0.9707 0.9710
6 0.8822 0.8837 0.8852 0.8100 0.8113 0.8125 0.9720 0.9715 0.9720

6 4 0.8838 0.8845 0.8855 0.8114 0.8123 0.8129 0.9715 0.9705 0.9705
5 0.8845 0.8855 0.8868 0.8120 0.8131 0.8140 0.9719 0.9711 0.9714
6 0.8853 0.8867 0.8882 0.8127 0.8140 0.8152 0.9725 0.9720 0.9725

7 4 0.8869 0.8876 0.8886 0.8143 0.8152 0.8159 0.9721 0.9710 0.9711
5 0.8876 0.8886 0.8899 0.8149 0.8160 0.8169 0.9726 0.9717 0.9720
6 0.8884 0.8898 0.8913 0.8156 0.8169 0.8181 0.9732 0.9727 0.9732

DF = degrees of freedom


