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Evolutionary Game Design
Cameron Browne and Frederic Maire, Member, IEEE

Abstract—It is easy to create new combinatorial games but more
difficult to predict those that will interest human players. We ex-
amine the concept of game quality, its automated measurement
through self-play simulations, and its use in the evolutionary search
for new high-quality games. A general game system called Ludi is
described and experiments conducted to test its ability to synthe-
size and evaluate new games. Results demonstrate the validity of
the approach through the automated creation of novel, interesting,
and publishable games.

Index Terms—Aesthetics, artificial intelligence (AI), combinato-
rial game, evolutionary search, game design.

I. INTRODUCTION

W HILE games research has led to many important arti-
ficial intelligence (AI) breakthroughs over the last few

decades, these have generally come through the study of classics
such as Chess, Go, and Checkers, and used as their yardstick for
success the strength of the artificial player. Little attention has
been paid to measuring the quality of the games themselves or
asking such questions as follows.

• What makes a game interesting to play?
• Can we tell if a game is likely to become a classic?
The emergence of the games industry as a commercial

phenomenon makes these questions increasingly important, as
record numbers of designers produce record numbers of games
each year, but it can take years of play testing and commercial
enquiry to determine whether a game is likely to succeed.

A tool for automatically measuring the quality of a given
game could be of significant benefit to both game designers
and the industry. It could reduce development time by quickly
detecting flaws, and reduce the need for extensive play testing
which can require designers to prematurely reveal their proto-
types to external sources. Further, such a tool could direct the
automated search for new rule combinations, with a view to sug-
gesting interesting avenues for designers to pursue or even to
producing complete new games of meaningful quality.
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Pell [1, p. 10] states:

If we could develop a program which, upon considera-
tion of a particular game, declared the game to be uninter-
esting, this would seem to be a true sign of intelligence!
So when this becomes an issue, we will know that the field
has certainly matured.

With this in mind, we describe a framework called Ludi for
the measurement and synthesis of combinatorial games, and
three experiments designed to test the system and the validity
of the following hypotheses.

I. There exist fundamental (and measurable) indicators of
game quality.

II. These fundamental indicators may be harnessed for the
directed search for new high-quality games.

II. DEFINING GAMES

Of the many ways to define a game, Salen and Zimmerman
make the following useful observation: A game is a system in
which players engage in an artificial conflict, defined by rules,
that results in a quantifiable outcome [2]. This definition was
condensed from the findings of many prior studies, most of
which identified the following key elements:

• rules;
• play;
• outcome.
A game may therefore be expressed in terms of its means,

play, and ends. These three aspects are central to the design
of Ludi and its underlying model of game analysis, and will
provide a recurring theme throughout this paper.

A. Combinatorial Games

We focus on combinatorial games, which are:
• finite: produce a well-defined outcome;
• discrete: turn-based;
• deterministic: chance plays no part;
• perfect information: no hidden information;
• two-player.
The two-player requirement is debatable as solitaire puzzles

may constitute combinatorial games, in the sense that the puzzle
solver competes against the null player and indirectly the de-
signer who set the challenge. Multiplayer games with three or
more players fall outside the scope of combinatorial play due to
the social aspect of coalitions that may arise.

The term game will henceforth refer to a two-player combi-
natorial game throughout this paper. Such games are an ideal
test bed for the experiments as they are typically deep but de-
scribed by simple, well-defined rule sets.

Note that this is not a work in combinatorial game theory
(CGT), which is concerned with the analysis of games with a
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Fig. 1. Games of: (a) Tic-Tac-Toe and (b) Tic-Tac-Toe (3-D) won by White.

view to solving them or at least finding optimal strategies [3] and
developing artificial players able to challenge human experts.
Within the context of this study, the artificial player is of little
interest except as a means for providing self-play simulations.
While it must be of sufficient strength to provide meaningful
playouts, we are concerned primarily with the quality of the
game itself rather than the quality of the player.

B. Ludemes

Just as a meme is a unit of information that replicates from
one person to another [4], a ludeme is a game meme or unit of
game information. First coined by Borvo [5], this term describes
a fundamental unit of play often equivalent to a rule; ludemes
are the conceptual equivalent of a game’s components—both
material and nonmaterial—and are notable for their ability to
pass from one game or game class to another [6].

Ludemes may be single units of information, such as the fol-
lowing items that describe aspects of the game board shown in
Fig. 1(a):

(tiling square)
(size 3 3)

Conceptually related items may be encapsulated to form
higher level compound ludemes as follows:

(board
(tiling square)
(size 3 3)

)
Collecting rules into such compound ludemes is a convenient

way to describe games. For example, the essence of Tic-Tac-Toe
may be succinctly described as follows (assuming a two-player
combinatorial model):

(game Tic-Tac-Toe
(board
(tiling square)
(size 3 3)

)
(win (in-a-row 3))

)
The concept of an entire game as an item of information may

seem odd but it is valid; there exist many examples of iden-
tical games being discovered, fully formed, at similar times. The
most famous case is the independent discovery of Hex by math-
ematicians Piet Hein and John Nash in the 1940s [7]. A more
recent example is Chameleon, discovered by New Zealand and
USA designers within a week of each other in 2003. Such cases
may be examples of “memetic convergence” in action towards
optimal designs.

C. Recombination Games

Given a game in its ludemic form, it is a simple matter to
manipulate its rules to create variants and new games. For Tic-
Tac-Toe, such modifications might include the board size

(size 2 2)
or the target line length

(win (in-a-row 2))
However, a moment’s reflection will reveal that each of these

changes breaks the game, by making it unwinnable in the first
case and trivially winnable in the second.

Other manipulations might involve extending the board to
three dimensions, as shown in Fig. 1(b)

(size 3 3 3)
or inverting the end condition to give a misere version

(lose (in-a-row 3))
These variants are both more interesting but still trivially

solvable, and are more notable for their novelty value than any
inherent value as games. There is much room for improvement
in this branch of the -in-a-row family.

The difficulty of deriving an interesting game from
Tic-Tac-Toe does not just stem from the fact that it is it-
self flawed (it is drawish if played correctly). There is the
serious problem that rule sets for combinatorial games tend
to be highly optimized and fragile; authors strive for the sim-
plest rule sets that give the deepest playing experience, and
the slightest change will generally break a game. As in most
creative fields, it is easy to generate artificial content but much
more difficult to generate artificial content of human expert
quality.

Given that the rule sets of most existing games are highly opti-
mized—certainly the well-known ones—it is unlikely that such
simple manipulations of a game’s degrees of freedom will pro-
duce a better game in isolation. The designer would usually have
tested such obvious variants and discarded them as inferior. In-
stead, a more promising approach is to recombine the game’s
rules with rules from other games and look for the emergence
[8] of interesting, new rule combinations not previously consid-
ered. The idea that there preexist a multitude of games in the
form of optimal rule combinations waiting to be discovered res-
onates strongly with the Platonist view of mathematics [9]. The
question then becomes how to search this potentially huge de-
sign space effectively.

D. Game Distance

It can be useful to measure the distance between existing
games and a newly derived rule set, in order to determine
whether it constitutes a duplicate, variant, or completely new
game.

The distinction between a variant and a new game is subtle,
but may be achieved by representing both games as rule trees
(based on their ludemic descriptions introduced above) and
accumulating the total weighted difference between these two
trees. Differences between rule parameters are weighted lightly
whereas structural differences between the rules themselves are
weighted more heavily, in inverse proportion to their depth of
nesting; higher level rules generally have wider applicability
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Fig. 2. Framework of the Ludi system.

Fig. 3. Basic game model.

and are therefore generally more important. If the total dif-
ference between the two rule sets exceeds a certain threshold
value then the two games are considered to be distinct.

E. General Game Players

Given the possibility of creating a large number of rule sets, it
would be desirable to test them automatically through self-play.
General game players (GGPs)—software systems for playing
a range of games well rather than any one particular game ex-
pertly—are ideal for this purpose.

GGPs were first proposed several decades ago [10] but have
recently enjoyed a resurgence of interest as researchers come
to realize their potential value to the gaming and broader AI
communities. This includes GGP competitions run over recent
years in conjunction with international AI conferences [11].

F. Game Description Languages

Central to any GGP is the game description language (GDL)
that defines the scope of games understood by the system. There
is a delicate balance between defining a GDL that is powerful
and extensible enough to encompass a wide range of known and
not-yet-known games, yet also efficient, elegant, and compre-
hensible to human authors.

The most widely used GDL is probably the commercially
available Zillions of Games ZRF rule language [12]. ZRF au-
thors define games in a Lisp-like syntax using predefined key-
words, and may programmatically create complex rule struc-
tures through macros. More recently, the Stanford GDL used
for the AAAI GGP competitions [13] is a lower level language
that defines games using first-order logic.

III. THE LUDI SYSTEM

Ludi is a system for playing, measuring, and synthesizing
games within the scope of its GDL (Fig. 2). The main compo-
nents of the system are:

• GDL: defines the scope of games;
• GGP: interprets games and coordinates play;
• strategy module: informs move planning;
• criticism module: measures game quality;
• synthesis module: generates new games.

A. Ludi GDL

The Ludi GDL is a high-level game description language
based on the ludemic understanding of games outlined in
Section II. It is structured to follow the basic means-play-ends
model of games, extended to include the relationship between
the game and its players (Fig. 3).
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The Ludi GDL was devised with Kernighan and Pike’s prin-
ciples of good software design [14] in mind:

• simplicity;
• clarity;
• generality;
• automation.
It is a higher level language than the Stanford GDL and Zil-

lions ZRF, and although concise and conducive to human au-
thoring and machine manipulation, it lacks the universal gen-
erality of the Stanford GDL in particular. However, its hierar-
chical and well-defined nature makes it ideal for the intended
experiments, as it is much more likely that a structured tree-
based language will evolve sensible rule sets than an unstruc-
tured logic-based one. The Ludi GDL proved sufficiently rich
for this intended purpose that its somewhat limited scope was
not an issue.

The following example conveys the essence of the language:
(game Tic-Tac-Toe

(players White Black)
(board
(tiling square i-nbors)
(size 3 3)

)
(end (All win (in-a-row 3)))

)
This game (Tic-Tac-Toe) is played between White and Black

on a 3 3 square grid with orthogonal and diagonal adjacency,
and is won by the player to make a line of three pieces of their
color (if any). Unless otherwise stated, it is assumed that players
take turns placing a piece of their color on an empty board cell
each move.

Ludi GDL definitions closely correspond to a game’s ludemic
description, which is how a human designer would typically
conceptualize the game. A more detailed description of the lan-
guage is given in Appendix I and further examples of games
defined in the GDL can be found in Appendix II.

B. Ludi GGP

The core of the Ludi system is its general game player, as
shown in Fig. 2. The Ludi GGP is implemented in C++ and
provides the following functionality:

• rules parser;
• game object;
• user interface;
• play manager.
The rules parser loads and parses games defined in the Ludi

GDL. If a definition is valid according to the grammar, then the
corresponding ludeme tree is constructed and the single game
object initialized. The game object maintains a record of the
current board state and handles tasks such as the generation of
legal moves and testing for terminal conditions.

The user interface (Fig. 4) presents games uniformly and
anonymously so that quality judgments are made on the merits
of the games themselves rather than their visual attractiveness.
The interface provides a plain English translation of the current
rule set and a tutorial mode to help players understand new
games. In tutorial mode, legal placements are marked “ ” and

legal destination cells for movable pieces are similarly marked
“ ” when those pieces are clicked on.

The play manager coordinates play for one to eight human
and artificial players, although only two are used for this study.
This includes move scheduling, input handling, ko repetition
testing to avoid infinite loops, all players passing, and so on.

Moves for artificial players are planned using standard alpha
beta adversarial search with move ordering, beam width reduc-
tion, and iterative deepening [16]. Estimated values for nonter-
minal board positions are provided by the Strategy module, as
follows.

C. Strategy Module

The strategy module provides value estimates for given board
positions relative to each player. This is achieved through a set
of advisors working within certain policies.

1) Advisors: Advisors are evaluation functions that represent
some narrow but rational view of the board position [17], and
express whether a player’s position is favorable or unfavorable
within this perspective [18].

Ludi defines 20 such advisors for aspects such as mobility,
proximity to goal, attacking potential, connective potential, and
so on. Each advisor takes as input a board state, end condition,
and player color (Fig. 5) and has the functionality to return both
an estimate of that player’s positional value and whether the end
condition has been achieved, as required.

2) Policies: The contributions from each advisor are com-
bined using a weighted linear function [15] to provide an overall
value for board state

(1)
where is a vector of weights and the set of
advisor functions. The weight vector constitutes a policy that
describes the relative importance of each advisor for that game.

3) Policy Optimization: For efficiency, it is important that
only those advisors relevant to the game have nonzero weight.
The system is able to derive a default policy for each game based
upon its rules and to optimize that policy through self-play using
two-membered evolutionary search -ES [19].

Policy optimization threw up some surprising emergent
strategies, such as a small negative weighting on stack height
to disincline repetitive cycles in stacking games, which was
later incorporated into default policies where appropriate. A
null “fight or flight” policy is used for any player with no
specified end conditions, in which pieces are moved towards
enemy pieces to encourage engagement while maximizing their
movement potential to allow escape if necessary.

Although a high level of play cannot be claimed for all
games, this advisor/policy approach proved sufficient for exer-
cising rule sets defined in the GDL and providing meaningful
self-play simulations. All players, human and artificial, are
beginners at any newly created game.

IV. GAME EVALUATION

The criticism module measures games for quality through
self-play simulations, based on certain aesthetic criteria.
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Fig. 4. Ludi user interface.

Fig. 5. Advisor model.

A. Game Quality

The term quality in this context refers to the likelihood that a
given game will be of interest to human players. While players
generally know whether they enjoy a game, few can articulate
the reasons in concrete terms. Thompson [20] took a significant
step towards formalizing such concepts by defining four key
attributes that a game should possess:

• depth: games should hold lasting interest;
• clarity: their mechanics should not be confusing;
• drama: hope of recovery from bad positions;
• decisiveness: end quickly once a winner is certain.
Thompson also points out that games may be viewed as se-

quences of logic puzzles that players pose to each other, and
hence a good game should readily yield such puzzle positions.
Key attributes defined by other authors include interestingness
[21], uncertainty [22], interaction [23], and tension [24]. Origi-
nality in design is also of paramount importance.

Just as mathematicians strive for beautiful, aesthetically
meaningful abstractions [25], we are concerned not with the
sensual beauty of games but their intellectual appeal; the ele-
gance of the rules, how well they complement each other, and
the quality of the competition they produce. Contrary to Ellis
[26], the absence of flaws is a precondition for beauty.

B. Aesthetic Model

Birkhoff [27] describes the evaluation of visual art using func-
tions of certain aesthetic criteria, an approach later extended to a
complete algorithmic aesthetics system for the design and crit-
icism of aesthetically meaningful visual objects by Stiny and
Gips [28]. Similar principles can be applied to the aesthetic
measurement of games; in this case, the interpretation of an
object (game) will be a set of aesthetic measurements derived
through self-play, and the output of the algorithm will be a single
predicted aesthetic value. Importantly, Stiny and Gips distin-
guish between constructive and evocative modes for the under-
standing of objects within this system. In constructive mode ob-
jects are understood by the rules of their construction, and in
evocative mode they are understood by the associations, ideas,
or emotions they evoke.

Fig. 6 shows the player-centric aesthetic model of games de-
vised for this study. It is based on the basic game model of
Fig. 3 with the “play” component expanded to distinguish the
players’ strategic plans from their eventual moves. It is these
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Fig. 6. Player-centric aesthetic model of games.

plans that we would ideally like to measure as an indication of
the players’ engagement with the game, but this is of course
impossible. However, we can measure the resulting moves that
represent tangible realizations of those plans. As Perlis [29, p.
11] states: “We measure our understanding (and control) by the
extent to which we can arithmetize an activity.”

1) Aesthetic Criteria: The model is divided into intrinsic
and extrinsic aspects, with the latter further divided into quality
and viability. These define the three main categories of aesthetic
criteria:

• intrinsic: based on rules and equipment;
• viability: based on game outcomes;
• quality: based on trends in play.
Intrinsic criteria are the easiest to measure but are less useful

for indicating game quality than they are for specifying personal
feature preferences. Viability criteria, such as those proposed by
Althöfer [21], are robust and useful for quickly detecting flaws
in games. Quality criteria are the most subtle and difficult to
measure, but are the key to estimating the potential worth of
games that have proven viable.

2) Preferred Game Length: It is useful to define a preferred
game length which is the move number at which the cur-
rent game will ideally reach a natural conclusion. It might seem
sensible to adjust this value on a game-by-game basis according
to the estimated complexity of the game based on board size,
piece count, branching factor, and so on, but this has the unde-
sirable effect of rewarding very short games on smaller boards
and excessively long games on larger boards. Instead, we wish to
reward deep, involved passages of play emerging from simpler
rule sets and piece configurations; this follows more closely the
spirit of combinatorial game design and will reduce the running
time for the experiments while still allowing complex, elegant,
and (hopefully) interesting games to emerge.

We therefore standardized the preferred game length over all
games to 60 moves, based on the observation that two

human opponents taking 30 s per move on average will com-
plete such a game in 30 min on average, a figure that experience
suggests is reasonable (note that the GGP plays much faster than
this for most games).

C. Aesthetic Measurement

Aesthetic measurements are made for each game during a
number of self-play trials . The first few moves of each game
are made randomly (but legally) to encourage a more thorough
exploration of the move search space; random moves are not
included in the aesthetic measurements. Self-play trials that ex-
ceed twice the preferred game length are abandoned as draws.

Intrinsic criteria are measured before the trials start and vi-
ability criteria measured by the outcome of each trial. Quality
criteria measure trends in play during the trials through the use
of lead histories, as shown in Figs. 7 and 8. The white and black
dots indicate the relative positional strengths of both players fol-
lowing each move, while the thick lines represent the current
difference between the eventual winner and loser.

A total of 57 aesthetic criteria were implemented for Ludi,
consisting of the following:

• 16 intrinsic criteria;
• 11 viability criteria;
• 30 quality criteria.
We do not claim that this is a universal or canonical set of fea-

tures with which all games may be measured. Rather, we define
a large number of measurements based on observation, experi-
ence, and prior work, and experimentally determine which of
these are most relevant for the task at hand.

As it is not possible to describe all 57 measurements within
the space of this paper, we present a selection below by way of
example. For complete descriptions of all criteria, see [15].

1) Completion (Viability): Games should produce more vic-
tories than draws. The completion criterion simply mea-
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Fig. 7. Lead history of a dramatic game.

Fig. 8. Lead histories of (a) an uncertain game and (b) a certain game.

sures the total sum of games won by either player as a ratio of
all games played

(2)

A low completion rate indicates a flawed game that is either
drawish or tends to exceed the maximum move limit.

2) Duration (Viability): Games should neither be too short
nor too long. The duration criterion measures the average
discrepancy between the total moves made per game and the
preferred game length , which is set to 60

(3)

This measurement is useful for detecting pathological flaws
in both directions, that is, trivial games that end within a few
moves, and excessively long games that are difficult to conclude.
Game length is also one of Althöfer’s criteria [21].

Completion and duration are typical viability criteria: they are
simple, robust, fast to measure, and good indicators of whether a
game works at a fundamental level. We now outline two quality
criteria for comparison.

3) Drama (Quality): Players should have at least a hope of
recovering from bad positions if they are to maintain a vested
interest in a game. For example, Fig. 7 shows a game in which
the eventual winner spends several moves in a negative (losing)
position before recovering to win.

The drama criterion measures the degree to which the
winner of each game suffers a negative lead

(4)

where represents the board evaluation for the eventual
winner at move and represents the board evaluation
for the eventual loser at move . This equation therefore mea-
sures the average number of moves that the eventual winner of
each game spends with a negative lead, and the severity of each
such position.

4) Uncertainty (Quality): The outcome of each game should
remain as uncertain for as long as possible if all players are to
maintain a vested interest in it. For example, Fig. 8(a) shows
an uncertain game in which neither player develops a strong
advantage until its conclusion, while Fig. 8(b) shows a certain
game in which the eventual winner takes a strong early lead and
keeps it; this will probably be a very unsatisfying game for the
losing player.

The uncertainty criterion measures the degree to which
the estimated lead value for each move falls above or below the
expected average

(5)

The amount of uncertainty is indicated by the area enclosed
by the lead history plot and an imaginary line drawn from
to . A number of samples are made at regular in-
tervals across the completed game history, and the average dis-
tance measured between this interpolation line and
the estimated lead value at time . Samples that fall below the
interpolation line indicate greater uncertainty.

It can be seen that quality criteria such as drama and uncer-
tainty are more subtle, abstract, and difficult to measure than
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Fig. 9. Game life cycle.

the viability criteria; however, they are useful for estimating the
quality of viable games.

D. Criteria Efficiency

Some of the criteria not discussed here are significantly
slower to measure than others and require additional trial runs
in different modes. These “slow” criteria include measurements
related to puzzle detection, depth estimation, and robustness to
random, overly defensive, and obstructive players. Full details
of these modes are given in [15].

E. Aesthetic Coefficients

The weighted sum of all 57 criteria gives an estimated aes-
thetic score , which is the output of the aesthetic measure-
ment process for each game

(6)

The aesthetic weightings provide an aesthetic profile for
each game, and were determined empirically in Experiment II
(described shortly) which involved correlating aesthetic mea-
surements for a number of games with human player rankings
of those games. The bias term improves the accuracy of the
correlation. Criteria with a 0 weighting for a given game are not
invoked for that game, for efficiency.

V. GAME SYNTHESIS

The synthesis module creates new games through the evolu-
tion of rule sets using genetic programming methods.

Pell has previously demonstrated the automated generation
of Chess-like games using a method of constrained stochastic
context-free generation, in which the user specifies a number of

parameters and games are created by making statistical choices
at each decision point in the grammar according to these param-
eters [18]. Similarly, Rolle’s Morphling allows the user to inter-
actively experiment with rule variations of a game according to
certain rules [30].

Games created by these systems fall within the constructive
mode of understanding described by Stiny and Gips, as they are
directly constructed according to certain rules [28]. On the other
hand, we wish to create games using the evocative mode of un-
derstanding and search for those games that stimulate interest
in human players without having to make assumptions about
any rules necessary for their construction. For this purpose, we
chose an evolutionary approach to search the game design space,
which balances the exploration of the design space with the ex-
ploitation of existing knowledge [31].

A. Mating Games

Ludi uses a standard evolutionary approach [32] to create
games, except that all surviving offspring are returned to the
population and never culled from generation to generation. Fit-
ness determines order rather than survival, to encourage the
emergence of novel rule combinations.

Evolution continues until a given time limit is reached or the
desired number of new games created. The basic process is sum-
marized in Fig. 9 and explained below. It is worth noting that the
aim of this process is to produce a number of interesting indi-
viduals rather than a single optimal individual.

1) Population: The population is initialized with a number
of known games in order to encourage well-formed offspring,
as strictly random rule combinations are most unlikely to pro-
duce viable games. Members of the population all have a unique
name and remain sorted by estimated aesthetic value at all times.

2) Parent Selection: For each iteration, two parents are se-
lected from the population using stochastic universal sampling
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[33]. This method draws samples from the entire range but se-
lects fitter individuals more often, encouraging genetic diversity
while maintaining a reasonable standard of fitness.

3) Recombination: The ludeme trees of the two parents are
then crossed over to produce a child game using standard ge-
netic programming techniques [34]. One of the parents is chosen
at random to act as a template [35] and elements crossed over
from the second parent with 10% likelihood. Elements are only
crossed over to elements with which they are compatible, giving
a weak form of strong typing [36] that encourages the creation
of well-formed children. The Ludi GDL description of games
as high-level, hierarchical ludeme trees is ideal for this purpose.

4) Mutation: Elements of the child game are then visited
and mutated with 10% likelihood. This may involve adding,
changing, or removing elements and/or attributes within the
ludeme tree. Context-dependent constraints are again employed
to ensure that changes are compatible with element type,
and that deleted items are replaced with default values where
needed. Some repair functions [37] are used to correct obvious
errors.

5) Baptism: Each child is given a short name unique to the
population, using a Markov chain algorithm based upon letter
combination frequencies found within a list of source words
[14]. Ludi uses as its input a list of Tolkien-style names from
a public domain computer game [38] to produce names such as:
Oroth, Galdal, Etherond, Kemeneth, Valindor, Bered, Mor, and
so on.

B. Validity Checks

Each child game then undergoes a series of validity checks.
1) Rule Safety: The child is tested for rule safety [35] by

invoking the GGP to instantiate the corresponding game object,
in order to exploit its rigorous error checking systems.

Some rule optimization would typically be performed at this
stage, such as trimming impossible or irrelevant vestigial rules
[39], but Ludi forgoes this step for reasons given shortly. As
Perlis [29, p. 8] observes: “Optimization hinders evolution.”

2) Speed Test: The child is timed at search plies of 1, 2, 3,
and 4 and discarded if move planning exceeds 15 s per move.
This somewhat draconian measure ensures that slower games
do not unduly hold up the evolutionary process.

One concern is that the imposed speed limit will filter out
more complex games, typically those on larger boards with
more pieces and greater branching factors, and risk producing
simple children only. However, it was our specific intention to
produce elegant games in which simple rules combine harmo-
niously to produce complex move decisions rather than seeking
complexity in sheer volume of numbers; the validity of this
approach was born out in the experimental results.

3) Policy Choice: Perfunctory policy choice is achieved by
comparing all combinations of the child’s default policy with
both parents’ policies in round-robin matches and choosing the
most successful hybrid. The child is discarded if match games
take too long or more than half fail to produce a winner.

4) Inbreeding: The child is measured for distance from each
member of the population and culled if an overly close relative
is found.

C. Repopulation

All children that survive to this point are measured for quality
and inserted back into the population according to their pre-
dicted aesthetic score. These scores are only preliminary at this
stage but sufficient for ordering purposes.

A by-product of the aesthetic measurement is a viability test
that identifies games as nonviable if they:

• result in draws more often than not;
• are very unbalanced towards either player;
• have a serious first or second move advantage; or
• do not end within a reasonable number of moves.
Viable offspring have their policies optimized and are remea-

sured for quality as a postprocessing step. They are the suc-
cessful products of the evolutionary process and typically rep-
resent around 1% of all nonculled children.

1) Emergence: Since no rule optimization is performed and
all surviving offspring are returned to the gene pool, the popula-
tion will be rife with flawed rules and broken games. This seems
at odds with the general wisdom that decries the presence of in-
trons and bloat in the population [40] but proved necessary for
the success of this project.

Sanitizing the population had the effect of producing off-
spring that were mostly just slight variations of their original
ancestors, as it is highly unlikely that two given rule sets will
recombine and mutate to produce a viable, distinct, and supe-
rior child, due to rule fragility. Instead, it proved more effective
to flood the population with flawed genetic material that would
act as recessive genes and recombine in unexpected and hope-
fully serendipitous ways over many generations; this was where
true innovation emerged during the experiments.

VI. EXPERIMENTS

Three experiments involving game ranking, measurement,
and synthesis were then conducted to test the hypotheses.

A. Experiment I: Game Ranking

In order to distinguish good games from bad, it is first neces-
sary to determine which games interest human players. The aim
of the first experiment was to set a yardstick of human player
rankings for a database of 79 predefined sample games.

1) Method: Experimental subjects were presented with
survey software that randomly selected two games from the
database of 79, then required them to play both games against
the computer and nominate which of the two they found more
interesting. Paired comparisons were automatically e-mailed to
the authors.

2) Subjects: Fifty seven subjects participated in the survey,
recruited from online board gaming groups. All were at least 18
years of age.

3) Results: Rankings were induced from 628 paired compar-
isons by a cross-entropy (CE) method due to the second author,
F. Maire [15]. The 79 sample games were ranked from most
preferred to least preferred with a classification rate of 0.8997
(variance ), indicating that the derived game rank-
ings were consistent with almost 90% reliability.
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TABLE I
CORRELATION BY CRITERIA TYPE

B. Experiment II: Game Measurement

The purpose of Experiment II was to determine whether the
player rankings induced for the 79 sample games could be cor-
related with aesthetic measurements of those games.

1) Method: Each of the 57 aesthetic criteria were measured
for the 79 sample games through automated self-play trials,
conducted on two Windows desktop machines over a period of
two weeks. Some supervision was required to narrow the beam
search for slower games, in order to finish within the given time
frame.

2) Results: The aesthetic measurements were correlated
with player rankings using linear regression and standard
leave-one-out cross validation, to give the correlation
between ranking and aesthetic score. A set of 17 aesthetic
criteria were identified as the best combination of predictors
using another CE method due to the second author, F. Maire
[15].

Table I shows a baseline ranking correlation of with a
95% confidence interval of to using all 57
criteria as predictors. It can be seen that the intrinsic criteria in
isolation are poor predictors of game ranking but that
the quality criteria perform relatively well and viability
criteria even better as predictors of game ranking.

The best set of predictors involved 17 criteria drawn from all
three categories and proved to be an excellent predictor of game
ranking, with a correlation and 95% confidence interval of

to . The “puzzle quality” criterion was later
removed to produce a best set of 16 predictors with a significant
speed advantage but negligible loss of accuracy (Table I).

The relative importance of each predictor is indicated in
Fig. 10, based on the increase in error when each is removed
from the set. Six of these criteria stand out as most important:

• uncertainty;
• lead change (negative correlation);
• permanence;
• killer moves;
• completion;
• duration.
The survey participants appear to prefer stable games with

uncertain outcomes that end within a reasonable number of
moves, and in which strong moves are reasonably permanent.
Lead change is distinct from drama as it refers to lead change
frequency.

These results support hypothesis I: there exist fundamental
(and measurable) indicators of game quality, at least for this
group of subjects and this set of combinatorial games.

Fig. 10. Relative contributions of the best 17 predictors.

Fig. 11. Predicted score versus player ranking of synthesized games.

C. Experiment III: Game Synthesis

Experiment III was designed to test whether new, viable
games may be evolved from existing games, and whether
aesthetic measurements may be used to reliably rank them.

1) Method: Using the database of 79 sample games from
Experiment I as the initial population, a number of evolutionary
runs were conducted on three Windows desktop machines over
one week. The coefficients of the best 16 predictors were used to
predict aesthetic scores for new games, which were then ranked
and a follow-up survey, similar in format to that of Experiment
I, conducted to evaluate these predicted rankings.

2) Subjects: Twenty seven subjects participated in the
follow-up survey, recruited mostly from the 57 participants of
Experiment I.

3) Results: A total of 1389 new games were evolved from
the initial population of 79 sample games and 19 deemed vi-
able. A selection is listed in Appendix II; see [15] for complete
descriptions and analyses of the evolved games.

One hundred twenty seven paired comparisons were received
for the 19 viable games, and human player rankings were in-
duced as per Experiment I with a classification rate of 0.8283.

Fig. 11 shows a plot of the predicted aesthetic scores versus
actual player rankings of the new games, with a correlation
of and 95% confidence interval of to

. The relationship is negative as higher scores generally
correspond to lower (i.e., better) rankings, as expected. This in-
dicates a significant linear trend between the aesthetic measure-
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Fig. 12. Yavalath puzzle: White to play and force a win.

ments made by the system and player rankings for the 19 new
games.

These results support hypothesis II: these fundamental
indicators may be harnessed for the directed search for new
high-quality games, at least in the search for new combinatorial
games that this group of subjects find interesting.

VII. DISCUSSION

The first thing to note is the general success of the approach;
the system was able to correlate aesthetic measurements
of games with human player rankings and hence identify
those evolved games of most interest. Several of the final 19
games exhibit novel and interesting rule combinations, and
those ranked #1 and #2 by human players—Ndengrod and
Yavalath—have proven to be of exceptional quality and are
now commercially published [41].

Ndengrod combines Go-like surround capture with a
five-in-a-row goal. This combination works well, but is a redis-
covery of an existing game (Irensei) translated to the hexagonal
grid.

Yavalath, however, features an innovative rule that has not
previously been published: win by making four-in-a-row but
lose by making three-in-a-row before doing so. Bearing in mind
the assertion that good games should yield interesting puzzles
[20], Fig. 12 shows a Yavalath puzzle that demonstrates its
depth. Hint: Black can force a win with either move “ ,” so
White must make a counter forcing move to avoid this.

Analysis of Yavalath’s ancestry reveals that this innovative
winning condition came about from the serendipitous mating
of rules that were impossible in isolation. If such flawed rules
had been optimized out during the evolutionary process then
Yavalath would probably never have emerged.

Teiglith (#4), Elrostir (#5), Gorodrui (#7), and Valion (#16)
demonstrate the approach’s usefulness even with games of
average or below average appeal. While not overly successful
as games, each involves interesting rule mechanisms that
game authors might use as inspiration for future designs. See
Appendix II for GDL descriptions of the games mentioned in
this section.

Curiously, 63% of the final games (12 out of 19) featured
-in-a-row goals, as opposed to 29% (23 out of 79) in the ini-

tial data set. This may be a reflection of the prevalence of such
games in the initial data set, the superiority of the -in-a-row
advisor over other advisors, or simply indicate that this is a
robust rule that thrives in more contexts than others. In any
event, it shows that interesting games can indeed be derived
from Tic-Tac-Toe.

VIII. CONCLUSION

We demonstrate both the Ludi system’s ability to automat-
ically measure games for their potential to interest human
players, and its ability to create new high-quality games. This is
the first known demonstration of automated combinatorial game
design at a successful (publishable) level. However, we do not
claim to have defined a canonical set of aesthetic features with
which all games can be measured; rather, our results pertain to
a selection of individuals for which a particular set of aesthetic
measurements appear to resonate for a subset of combinatorial
games definable in the Ludi GDL. Our main contribution is to
demonstrate a practical approach to the problems of automated
game measurement and content (rule) generation; no doubt
many more such aesthetic features will be discovered in the
future over a much wider range of games.

Future work might also include expanding the GDL to
increase its scope and to seed the generative process with larger
data sets of games, such as the thousands described online at
[42]. Monte Carlo tree search methods such as UCT [43] could
overcome some shortcomings of the advisor/policy approach
during move planning to further increase the generality of the
system. It would also be interesting to extend the system to
perform not only game measurement and synthesis, but the
detection of flaws such as symmetry strategies [23] and their
correction.

Finally, we hope that game designers do not see in systems
such as Ludi a threat to this very human endeavor. Designers
can benefit tremendously from such tools and will, for the fore-
seeable future, hold the edge in unconstrained creativity.

APPENDIX I
THE LUDI GDL

This Appendix provides a functional description of the key
elements of the Ludi GDL. A complete formal definition of the
grammar is beyond the scope of this paper, but can be found in
[15].

Games are defined as recursive trees of elements of the fol-
lowing form:

(element [attributes] [(element …)s])

The first item of each element is its name which must be
unique within its current scope. Each element name must be ei-
ther a predefined keyword or a user-defined variable, such as
a named piece type, that has been previously described within
the game’s rule set. Italicized symbols indicate keywords, upper
case symbols indicate data types, capitalized symbols indicate
record types, and square brackets denote optional items. Ap-
proximately 200 keywords and 20 record types are defined and
implemented for the language.

The root of each rule tree is the main game ludeme

game � (game NAME [params]
players
board
rules
[support]

)

rules � { [pieces] [start] [play] end }
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Fig. 13. Some board types of size 4.

These main ludeme types are now briefly described.
1) Players Ludeme: Specifies the player names and direc-

tions (mandatory).

players � (players
{NAME � (NAME CompassDirection)}s

)

Each player has a unique name and is optionally associated
with a compass direction indicating direction of play. All games
in this study involved two players “White” and “Black.”

2) Board Ludeme: Specifies the board topology (manda-
tory).

board � (board [phase]
(tiling TilingType [i-nbors])
(shape ShapeType)
(size UINTs)
[(regions RegionRecords)]

)

Board cells may be phased to alternate color with neighbors,
such as the light and dark cells of a Chess board. Trivalent tilings
require three phase colors, as shown in Fig. 4. The following
tilings are supported:

• tri;
• square;
• hex;
• trunc-square (4.8.8 semiregular tiling).
Adjacency is assumed between orthogonal neighbors, while

the optional i-nbors flag indicates adjacency between indirect
(diagonal) neighbors. The following board shapes are sup-
ported:

• tri;
• square;
• hex;
• rhombus;
• trapezium;
• boardless.
The user defines one or more board dimensions depending on

tiling and shape, and may optionally define distinct regions of
cells for special purposes such as goal areas, promotion zones,
or connection targets. Fig. 13 shows some examples of sup-
ported board types of size 4.

Fig. 14. Complex move.

3) Pieces Ludeme: Specifies piece types and movement
(optional).

pieces � (pieces piece_defns [NAME] )

piece_defn � (NAME PlayerType
[(label STRING)]
[(value INT)]
[(state State)]
[(flags Flags)]
(moves move_defns)

)

move_defn � (move
[(priority UINT)]
[mandatory]
[(label STRING)]
[(dirn Direction)]
[(owner PlayerType)]
[(pre bool_function)]
(action {pass � actions})
[(post post_conditions)]
)

Defining piece behavior is the core of the language’s com-
plexity and where most of its 200 predefined keywords are used.
Each piece is identified by a unique name and associated with
one or more players, and may optionally be given a label for
display purposes, a value, a state, and a set of flags.

Each piece must have one or more move definitions, option-
ally marked as mandatory and/or ordered by priority if more
than one are provided. Moves may also be labeled for display
purposes (for example, when the current player must choose
from among a choice of moves), associated with a direction (ab-
solute or relative to the piece’s current orientation) and option-
ally marked with an owner.

The pre clause specifies preconditions that must exist for the
move to occur, and takes the form of a tree of keywords com-
bined with logical operators that may describe complex con-
ditions. The action clause defines the move itself which may
involve passing, adding a piece or moving a piece, possibly to
stack. The post clause specifies postconditions that are exercised
after the move, including:

• captures;
• conversions;
• rotations;
• displacement of neighbors;
• piece state updates;
• cell state updates;
• piece flag updates;
• score updates, and so on.
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The following example shows how complex move descrip-
tions may be constructed from these simple predicates.

(move
(pre

(and
(owner from)
(empty to)
(line)
(or

(not (� (num-between empty) 0))
(� (num-between enemy) 1)

)
)

)
(action (pop) (push))
(post

(capture
(if (�� (height current) 2)) d-nbors
)

(inc-state)
)

)

This movement rule states that the piece may be moved if it
belongs to the current player and is moved to an empty board
cell along a line that contains either no empty spaces or a single
enemy piece (or both). The piece is popped from its current po-
sition and pushed to its new position (i.e., it is moved), possibly
to stack. Following the move, all orthogonally adjacent stacks
of height 2 or more (enemy stacks by default) are captured and
the piece’s state is incremented. The piece’s state may be rel-
evant to another move type for this piece or even other pieces.
Fig. 14 shows such a move being executed.

Nonlinear move paths, such as knight moves, may be defined
in the pre clause by relating the move’s to and from cells using
a sequence of turtle directions, relative to either the piece’s cur-
rent orientation or a global direction:

• forwards;
• back;
• left;
• right.
If no pieces ludeme is defined then players add a piece of their

color at an empty cell each turn by default.
4) Start Ludeme: Specifies the initial board state (optional).

start � (
[place_clause]s
[in_hand_clause]s

)

The optional place_clauses specify pieces to be placed on
the board before the game starts. Numbers of specific pieces
may be placed at particular cells or regions, or relative to each
player’s home row, including specifiers for cell phase and some
symmetry operations.

The optional in_hand_clauses specify the number of partic-
ular pieces held in-hand and off the board by each player, which
may be entered into play as the game progresses.

If no start ludeme in specified, then the board is initially
empty and players hold an infinite number of each piece type
in hand.

5) Play Ludeme: Specifies other constraints on play
(optional).

play � ([can-pass])

The play ludeme specifies whether players may voluntarily
pass. This was the only constraint on play implemented for the
experiments, but other constraints of this type might include first
move equalizer, progressive move counts, play order, and so on.

If no play ludeme is specified then players cannot voluntarily
pass. However, they may be forced to pass if they have no valid
moves on a given turn, unless the no-move end condition is spec-
ified.

6) End Ludeme: Specifies terminating conditions (manda-
tory).

end � (end
end_clauses
[mover-wins � mover-loses � draw]

)

end_clause � (PlayerType ResultType
Tree < end_condition >

)

The end ludeme specifies a number of end_clauses and
optionally how to handle the case of a move triggering end
clauses for both players: mover-wins, mover-loses, or drawn
game. Each end_clause specifies a player (White, Black, or All
players), a result type (win, lose, or draw) and tree of logical
operators relating one or more end conditions of the following
types:

• connect: connect two or more target regions of the board,
according to optional piece, adjacency and stacking con-
straints;

• group: form a single connected group of a given size, ac-
cording to optional piece, adjacency, and stacking con-
straints;

• in-a-row: form a consecutive line of pieces, according
to optional piece and adjacency constraints;

• reach: reach the specified goal (cell, region, or board side)
with the specified number of the specified piece;

• capture: capture the specified number of the specified
pieces;

• eliminate: eliminate the specified player;
• score: reach the specified score;
• stack: achieve the specified stack size under certain con-

straints;
• state: achieve the specified cell or piece state;
• no-move: the current player has no moves.
The game ends as soon as any end condition is completely

met, and the specified player is awarded the specified result (win,
lose, or draw).

For example, the following game ends either when White
loses by forming a group of size 5 or when either player wins by
having no moves and either connecting their sides of the board
or forming a stack of height 4.

(end
(White lose (group 5))
(All win
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(and
(no-move)
(or

(connect own-regions)
(stack 4)

)
)

)
)

7) Support Ludeme: Specifies additional metadata for the
game (optional).

support � {
[advisors]
[description]
[aim]
[ancestry]
[ranking]
[viable]
[score]
}

These items fulfill the following roles:
• advisors: defines the policy for the game as a list of relevant

advisors and their relative weightings;
• description: includes a text description of the game for help

manual purposes;
• aim: includes a text description of the aim of the game,

which, together with the GGP’s tutorial mode, should help
new players learn the game quickly;

• ancestry: contains information on the game’s evolu-
tionary history including its immediate parents, generation
number, and average distances from its parents, members
of the initial population and members of the final popula-
tion;

• ranking: contains an estimated ranking of the game within
its population;

• viable: contains the estimated viability of the game ac-
cording to the viability test described in Section V;

• score: specifies the game’s estimated aesthetic score as
measured by the process described in Section IV.

APPENDIX II
GDL DESCRIPTIONS OF SYNTHESIZED GAMES

NDENGROD (#1)

(game Ndengrod
(players White Black)
(board (tiling hex) (shape trapezium) (size
7 7))

(pieces
(Piece All

(moves
(move

(pre (empty to))
(action (push))
(post (capture surround))

)
)

)
)
(end (All win (in-a-row 5)))

)

YAVALATH (#2)

(game Yavalath
(players White Black)
(board (tiling hex) (shape hex) (size 5))
(end

(All win (in-a-row 4))
(All lose (and (in-a-row 3) (not (in-a-row

4))))
)

)

TEIGLITH (#4)

(game Teiglith
(players White Black)
(board (tiling square) (size 7 7))
(pieces

(Stone All
(moves

(move
(pre

(and
(� (group-size to) (phase to))
(connected)

)
)
(action (pop) (push))

)
)

)
)
(start (place (Stone White) home))
(end (All win (no-move)))

)

ELROSTIR (#5)

(game Elrostir
(players White Black)
(board (tiling square i-nbors) (size 5 5))
(end (All lose (or (no-move) (in-a-row 3))))

)

GORODRUI (#7)

(game Gorodrui
(players White Black)
(board (tiling hex) (shape hex) (size 3))
(pieces

(Stone All (state 1)
(moves

(move (pre(empty to))(action (push)))
(move

(pre
(and

(enemy from) (empty to)
(� (� (piece-state) 1)
(distance))

)
)
(action (pop) (push))
(post (inc-state))

)
)

)
)
(start (in-hand (Stone All) 5))
(end (All lose (no-move)))

)

VALION (#16)

(game Valion
(players White Black)
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(board (tiling square i-nbors) (size 4 4))
(pieces

(Stone All
(moves

(move
(pre (�� (num-nbors to enemy) 1))
(action (push))

)
(move

(pre (and (empty to) (connected)))
(action (push))

)
)

)
)
(start

(place (Stone White) A1)
(place (Stone Black) D4)

)
(end

(All win (in-a-row 3))
(All lose (or (in-a-row 4) (group)))

)
)
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