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Abstract

Background: Promoter region plays an important role in determining where the tran-

scription of a particular gene should be initiated. Computational prediction of eukaryotic Pol

II promoter sequences is one of the most significant problems in sequence analysis. Existing

promoter prediction methods are still far from being satisfactory.

Results: We attempt to recognize the human Pol II promoter sequences from the non-

promoter sequences which are made up of exon and intron sequences. Four methods are used:

two kinds of multifractal analysis performed on the numeric sequences obtained from the din-

ucleotide free energy, Z curve analysis and global descriptor of the promoter/non-promoter

primary sequences. A total of 141 parameters are extracted from these methods and catego-

rized into seven groups (methods). They are used to generate certain spaces and then each

promoter/non-promoter sequence is represented by a point in the corresponding space. All the

120 possible combinations of the seven methods are tested. Based on Fisher’s linear discrimi-

nant algorithm, with a relatively smaller number of parameters (96 and 117), we get satisfactory

discriminant accuracies. Particularly, in the case of 117 parameters, the accuracies for the train-

ing and test sets reach 90.43% and 89.79%, respectively. A comparison with five other existing

methods indicates that our methods have a better performance. Using the global descriptor

method (36 parameters), 17 of the 18 experimentally verified promoter sequences of human

chromosome 22 are correctly identified.

Conclusions: The high accuracies achieved suggest that the methods of this paper are

useful for understanding the difficult problem of promoter prediction.

∗Corresponding author, e-mail: yuzg1970@yahho.com
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1. Introduction

Promoter region plays an essential role in determining where the transcription of a particular

gene should be initiated. Hence, promoter recognition – the computational task of finding the

promoter regions on a DNA sequence, is an important problem [?]. The accumulation of a huge

amount of genome sequence data in recent years makes the annotation process more and more

complicated for higher eukaryotes [?]. The RNA polymerase II (Pol II) promoter is a key region

that regulates differential transcription of protein coding genes. Computational analysis of Pol

II promoters may contribute to improved gene identification and to prediction of the expression

context of genes [?]. There is a need for prediction techniques that can rapidly and accurately

evaluate sequences for the presence of promoter sequences [?].

Existing promoter prediction methods are still far from being satisfactory [?, ?, ?]. The per-

formance of many current eukaryote promoter prediction methods has been unreliable with poor

specificity or poor sensitivity [?]. Many methods predict promoter sequences based on the reg-

ulatory sequence elements (RSEs) in them. But the RSEs are short and not fully conserved in

the promoter sequences, which results in a high probability of finding similar sequence elements

elsewhere in genomes, outside the promoter regions. That is why most of the promoter prediction

methods end up predicting a lot of false positions [?]. Fickett and Hatzigeorgiou [?] performed

an evaluation of the different promoter prediction methods on genome DNA and suggested that it

would be worth attempting nonlinear recognition methods, such as neural nets or quadratic dis-

criminant analysis. Following this direction, Gangal and Sharma [?] applied time series descriptors

and machine learning methods to human Pol II promoter prediction and got a higher accuracy

compared with other methods; Kanhere and Bansal [?] presented a novel prokaryotic promoter

prediction method based on DNA stability showing that the changing in the stability of DNA

provides a much better clue than the usual sequence motifs.

In this paper, we attempt to recognize the human Pol II promoter sequences from the non-

promoter sequences which contain exon and intron sequences. It should be noted that the aim of

the present paper is similar to that of Ref. [?], but the non-promoter sequences in Ref. [?] are

made up of coding sequences (CDSs) and intron sequences, while we use an existing database, the

Exon/Intron database, to extract non-promoter sequences. We first convert the promoter/non-

2



promoter sequences into numeric sequences according to the 10 unified free energy parameters

[?], which have been used to measure the stability of DNA [?]. Then a measure representation is

introduced for the numeric sequences. Multifractal analysis of the measure is next performed, which

results in the first 5 parameters. Analogous multifractal analysis [?] is also used on the numeric

sequences to achieve another 4 parameters. The Z curve method, which has been used in recent years

with some successes [?, ?], yields 96 parameters for the promoter/non-promoter primary sequences.

The protein-chain descriptor method was first proposed by Dubchak et al. [?] to predict protein

folding classes. Here we propose a global descriptor for the promoter/non-promoter sequences,

which yields 36 parameters for a global description of the primary sequences. Overall, a total of

141 parameters are extracted from these four different methods and categorized into seven groups

(methods). Fisher’s linear discriminant algorithm shows that the global descriptor method is the

most effective when used separately. Complete enumerations of all the possible combinations of

these seven methods (120) are tested to find possibly better results with a relatively smaller number

of parameters. Numerical results show that the methods with 96 and 117 parameters can produce

satisfactory results. Compared with five other existing tools, the higher sensitivity, specificity,

accuracy and correlation coefficient demonstrate that the methods proposed here are useful for

understanding the human Pol II promoter prediction problem. 17 of the 18 experimentally verified

promoter sequences of human chromosome 22 [?] are successfully identified by the global descriptor

method (with only 36 parameters).

2. Materials

2.1. Original data

We use two different data sets downloaded from two databases. The first set is the human Pol II

promoter sequences from Release 90 of the Eukaryotic Promoter Database (EPD) (www.epd.isb-

sib.cn). The EPD is an annotated non-redundant collection of eukaryotic Pol II promoters, exper-

imentally defined by a transcription start site (TSS) [?]. The EPD is a useful database when one

wants to deal with the Pol II promoter prediction problem and it is broadly tested by different pre-

diction tools [?, ?, ?, ?, ?]. A total of 1871 entries of human Pol II promoter sequences with window

size of 499 bp upstream and 100 bp downstream of TSS, which is the same as that used in Ref. [?],

are obtained from EPD. The sequences containing ’N’ are manually filtered out, which results in a

total of 1856 sequences. The second set is the non-promoter sequences of the human genome. For

this data set, we consider using the Exon/Intron Database (EID), which incorporates information on
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the exon/intron structure of eukaryotic genes [?] (http://hsc.utoledo.edu/bioinfo/eid/index.html,

hs35p1.EID.tar.gz). Firstly, the exon/intron sequences with ’n’ and length less than 600 are filtered

out. Then, we randomly select 1000 intron sequences from the file hs35p1.intrEID and 500 exon

sequences from the file hs35p1.exEID. A fragment of length 600 is then selected randomly from

each exon/intron sequence with length larger than 600. As the intron sequences are represented

by lower-case letters in the file hs35p1.intrEID, we transform them into upper-case letters to be

consistent with the promoter and exon sequences.

2.2. Conversion of the original data

Some studies suggested that various properties, such as stability, bendability and curvature,

of the region immediately upstream of the TSS differ from that of downstream region [?, ?, ?].

The upstream region is less stable, more rigid and more curved than the downstream region.

Kanhere and Bansal [?] predicted the prokaryotic promoter based on such difference in DNA

stability. We convert the original sequences into new numeric sequences according to the free

energy of dinucleotides. A sliding window with size of 2nt is used and moved one base pair for-

ward each time. The numeric sequences can be smoothed with a larger window size. For more

details on the smoothing method, one can refer to Ref. [?]. The free energy values correspond-

ing to the 10 unique dinucleotides are taken from the unified parameters proposed in Ref. [?].

They are: AA/TT = −1.00 kcal/mol, AT/TA = −0.88 kcal/mol, TA/AT = −0.58 kcal/mol,

CA/GT = −1.45 kcal/mol, CT/GA = −1.44 kcal/mol, GT/CA = −1.28 kcal/mol, GA/CT =

−1.30 kcal/mol, CG/GC= −2.17 kcal/mol, GC/CG= −2.24 kcal/mol, GG/CC= −1.84 kcal/mol.

The ten values are added by 2.24 kcal/mol (the negative of the smallest free energy) so that all

the values are larger than or equal to zero in order to construct a measure from the time series for

the multifractal method in the following analysis. For example, the free energy sequence for one of

the promoter sequences with a sliding window of size 2nt is given in Figure 1.
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3. Methods

3.1. Multifractal analysis (MFA)

Let Tt, t = 1, 2, · · · , N , be the numeric sequence of a promoter/non-promoter with length N .

First, we define

Ft =
Tt

NP
j=1

Tj

, (t = 1, 2, · · · , N) (1)

to be the frequency of Tt. It follows that
NP
t=1

Ft = 1. We define a measure μ on the interval [0, 1)

by

μ(dx) = Y (x)dx, (2)

where

Y (x) = N × Ft =
Tt

1
N

NP
j=1

Tj

, x ∈ [t− 1
N

,
t

N
). (3)

We denote the interval [ t−1N , t
N ) by It. It is easy to see that μ([0, 1)) = 1 and μ(It) = Ft. We call

μ(x) the measure representation [?, ?] for the numeric sequence of a promoter/non-promoter.

The most common algorithms of multifractal analysis are the so called fixed-size box-counting

algorithms [?]. In the one-dimensional case, for a given measure μ with support E ⊂ R, we consider
the partition sum

Zε(q) =
X

μ(B)6=0
[μ(B)]q, q ∈ R, (4)

where the sum runs over all different nonempty boxes B of a given side ε in a grid covering of the

support E, that is,

B = [kε, (k + 1)ε). (5)

The mass exponent τ(q) is defined [?, ?] as

τ(q) = lim
ε→0

lnZε(q)

ln ε
(6)

and the generalized fractal dimensions [?, ?] of the measure are defined as

D(q) =
τ(q)

q − 1 , for q 6= 1, (7)

and

D(q) = lim
ε→0

Z1,
ln ε

, for q = 1, (8)
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where Z1,ε =
P

μ(B)6=0
μ(B) lnμ(B). The generalized fractal dimensions are numerically estimated

through a linear regression of lnZε(q)/(q− 1) against ln ε for q 6= 1, and similarly through a linear
regression of Z1,ε against ln ε for q = 1 [?, ?, ?]. D(1) is called the information dimension and

D(2) the correlation dimension [?, ?].

The concept of phase transitions in multifractal spectra was introduced in the study of logistic

maps, Julia sets, and other simple systems. Evidence of a phase transition was found in the multi-

fractal spectrum of diffusion-limited aggregation [?]. By following the thermodynamic formulation

of multifractal measures, Canessa [?] derived an expression for the analogous specific heat as

Cq ≡ −
∂2τ(q)

∂q2
≈ 2τ(q)− τ(q + 1)− τ(q − 1). (9)

He showed that the form of Cq resembles a classical phase transition at a critical point for financial

time series.

The singularities of a measure are characterized by the Lipschitz-Hölder exponent α(q) [?], which

is related to τ(q) by

α(q) =
d

dq
τ(q). (10)

Substitution of Eq. (6) into Eq. (10) yields

α(q) = lim
ε→0

P
μ(B)6=0

[μ(B)]q lnμ(B)

Zε(q) ln ε.
. (11)

Again, the exponent α(q) can be estimated through a linear regression of {
P

μ(B)6=0
[μ(B)]q lnμ(B)}/Zε(q)

against ln ε. The multifractal spectrum f(α) versus α can be calculated according to a relationship

known as Legendre transformation [?]:

f(α) = min
q
{qα(q)− τ(q)}. (12)

We first construct a measure for the numeric sequences obtained in Section 2.2 according to

Eq. (2), then analyze the measure with the above multifractal method. The D(q), Cq, α(q) and

f(α) curves for one of the promoter, exon and intron sequences are shown in Figure 2. We select

5 parameters from MFA to distinguish between promoter and non-promoter sequences: D(2), C1,

Cmax (the maximum value of Cq), ∆α = αmax − αmin and ∆f = f(αmax)− f(αmin).

3.2. Analogous multifractal analysis (AMFA)

Analogous multifractal analysis is similar to multiaffinity analysis which is a useful method in

many fields. It was recently proposed in [?]. We denote a time series as X(t), t = 1, 2, · · · , N .
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First, the time series is integrated as

y0q(k) =
kX
t=1

(X(t)−Xave)
q, (q ∈ Z+, k = 1, 2, · · · , N) (13)

yq(k) =
kX
t=1

|X(t)−Xave|q, (q 6= 0, k = 1, 2, · · · , N) (14)

where Xave is the average over the whole time period and k ∈ [1, N ]. Then two quantities Mq(L)

and M 0
q(L) are defined as

M 0
q(L) = [


|y0(j)− y0(j + L)|

®
j
]
1
q , (q ∈ Z+) (15)

Mq(L) = [h|y(j)− y(j + L)|ij ]
1
q , (q 6= 0) (16)

where hij denotes the average over j, j = 1, 2, · · · , N − L; L typically varies from 1 to N1 in which

the linear fit is good. From the lnL vs lnMq(L) and lnL vs lnM
0
q(L) planes, one can determine

the relations:

M 0
q(L) ∝ Lh0(q) for q ∈ Z+, (17)

Mq(L) ∝ Lh(q) for q 6= 0. (18)

Linear regressions of lnM 0
q(L) and lnMq(L) against lnL will yield the exponents h

0(q) and h(q)

respectively.

The exponent h(q) has a nonlinear dependence on q. When q = 1, the methods are just those

reported in Refs.[?, ?] and these methods are used to study the length sequences from the complete

genomes by Yu et al. [?]. M 0(L) may be assessed to determine long-range correlation [?]. From

Ref. [?], the linear fit to get the exponent h(1) is better than that to get the exponent h0(1). Our

numerical results show that the exponents h(q) are more robust than the exponents h0(q), so we

suggest to use the exponents h(q). We have used h(q) in clustering the structure of large proteins

and it turns out to be a useful method [?].

Figure 3 gives an example in applying the AMFA to the free energy sequence of a promoter

sequence. It shows a good linear relationship between lnM(L) and ln(L). For different values of q,

we get the exponents h(q) from linear regressions of ln M(L) against ln (L) according to Eq. (18).

The exponent spectrum h(q) of the promoter sequence is shown in the right panel of Figure 3. We

extract four parameters from AMFA: h(−2), h(−1), h(1) and h(2).
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3.3. Z curve (ZC)

The concept of the Z curve representation of a DNA sequence was first proposed by Zhang and

Zhang [?], and was used to distinguish coding and noncoding DNA sequences [?, ?]. A new system

based on ZC, Z CURVE 1.0, for finding protein-coding genes in bacterial and archaeal genomes

has been proposed [?]. Recently, another new self-training system based on the ZC method,

ZCURVE V [?], for recognizing protein-coding genes in viral and phage genomes was reported.

In this paper, we apply the ZC method in distinguishing promoter and non-promoter sequences.

For convenience, we give a brief description of the methods in Refs. [?] and [?]. The frequencies

of bases A, C, G and T occurring in a promoter/non-promoter sequence with bases at positions

1, 4, 7, · · · ; 2, 5, 8, · · · ; 3, 6, 9, · · · , are denoted by a1, c1, g1, t1; a2, c2, g2, t2; a3, c3, g3, t3, respectively.

They are in fact the frequencies of bases at the first, second and third codon positions, which can

be called codon-position-dependent frequencies of mononucleotides. Based on the ZC [?], ai, ci, gi, ti

for each i can be used to construct three coordinates, denoted by xi, yi and zi according to the Z

transform [?]: ⎧⎪⎪⎨⎪⎪⎩
xi = (ai + gi)− (ci + ti),

yi = (ai + ci)− (gi + ti),

zi = (ai + ti)− (gi + ci),

(19)

where xi, yi, zi ∈ [−1, 1], i = 1, 2, 3.
We can use the above 9 parameters in the promoter/ non-promoter problem. We can also

consider the codon-position-independent frequencies of single bases, which results in the following

three coordinates: ⎧⎪⎪⎨⎪⎪⎩
x = (a+ g)− (c+ t),

y = (a+ c)− (g + t),

z = (a+ t)− (g + c),

(20)

where x, y, z ∈ [−1, 1], a, c, g and t are the frequencies for the bases A, C, G and T in a promoter/

non-promoter sequence, respectively.

In addition to the frequencies of codon-position-dependent mononucleotide, we also consider

the frequencies of phase-specific dinucleotides. We denote the frequencies of the 16 dinucleotides

AA, AC, · · ·, and TT occurring at the codon positions 1-2 and 2-3 of a promoter or non-promoter
sequence by p12(AA), p12(AC), · · · , p12(TT ); p23(AA), p23(AC), · · · , and p23(TT ), respectively. Us-
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ing the Z transform [?], the following 24 coordinates can be defined:⎧⎪⎪⎨⎪⎪⎩
xXk = (pk(XA) + pk(XG))− (pk(XC) + pk(XT )),

yXk = (pk(XA) + pk(XC))− (pk(XG) + pk(XT )),

zXk = (pk(XA) + pk(XT ))− (pk(XG) + pk(XC)),

(21)

where xXk , y
X
k , z

X
k ∈ [−1, 1], pk(XY ) = nk(XY )/[nk(XA)+nk(XC)+nk(XG)+nk(XT )], nk(XY )

are the occurring times of dinucleotides XY, X, Y=A, C, G, T, k = 12, 23.

We can also consider the frequencies of phase-specific dinucleotides and the frequencies of phase-

independent dinucleotides. For this purpose, a sliding window with size 2nt is used and moved

forward one base each time to count the number of times of the occurring dinucleotides. With this

method, 12 new coordinates can be defined:⎧⎪⎪⎨⎪⎪⎩
xX = (p(XA) + p(XG))− (p(XC) + p(XT )),

yX = (p(XA) + p(XC))− (p(XG) + p(XT )),

zX = (p(XA) + p(XT ))− (p(XG) + p(XC)),

(22)

where xX , yX , zX ∈ [−1, 1], p(XY ) = n(XY )/[n(XA) + n(XC) + n(XG) + n(XT )], n(XY ) are

the occurring times of dinucleotides XY, X, Y=A, C, G, T.

Gao and Zhang [?] compared various algorithms for recognizing short coding sequences of human

genes and they defined 48 quantities, which were the frequencies of phase-dependent tri-nucleotides.

In Ref. [?], Gao and Zhang used a sliding window with size 3nt and the window was moved forward

three bases each time to count the frequencies for the 64 tri-nucleotides. Now we move forward the

sliding window with size 3nt one base each time. The definition for the 48 coordinates is⎧⎪⎪⎨⎪⎪⎩
xXY = (p(XYA) + p(XYG))− (p(XY C) + p(XY T )),

yXY = (p(XYA) + p(XY C))− (p(XYG) + p(XY T )),

zXY = (p(XYA) + p(XY T ))− (p(XYG) + p(XY C)),

(23)

where xXY , yXY , zXY ∈ [−1, 1], p(XY Z) = n(XY Z)/[n(XYA)+n(XY C)+n(XYG)+n(XY T )],

n(XY Z) are the occurring times of trinucleotides XYZ, X, Y, Z=A, C, G, T. The difference

between Ref. [?] and here is in the calculation of n(XY Z); the present method can be regarded as

a phase-independent method.

3.4. Global descriptor of promoter/nonpromoter sequence (GD)

Dubchak et al. [?] proposed a method for predicting protein folding classes based on a global

protein chain description. The protein-chain descriptor includes overall composition, transition,
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and distribution of amino acid attributes. Similar methods have also been used in Refs. [?, ?, ?, ?].

In this paper, we propose the global descriptor of promoter/non-promoter sequences.

The global description contains three parts: composition (Comp), transition (Tran) and distrib-

ution (Dist). In order to explain the method, we suppose that a sequence consists of only two kinds

of letters (A and B). The composition is used to measure the frequency of occurrence of each kind of

letters in the sequences. For example, for the sequence: BABBABABBABBAABABABBAAAB-

BABABA, there are 14 As and 16 Bs, hence the frequencies for A and B are 100.00×14/(14+16) =
46.67, 100.00×16/(14+16) = 53.33, respectively. These two numbers represent the first part of the
global description, Comp. The second part, Tran, characterizes the percent frequency with which A

is followed by B or B is followed by A. For example, for the above sequence, there are 21 transitions of

this type, that is, (21/29)×100.00 = 72.14. The third part of the global description, Dist, measures

the chain length within which the first, 25%, 50%, 75% and 100% of certain type of letters is located,

respectively. For example, for the above sequence, the first, 25%, 50%, 75% and 100% of Bs are lo-

cated within the first, 6th, 12th, 20th and 29th nucleotides, respectively. The Dist descriptor for Bs

is thus: 1/30×100.00 = 3.33, 6/30×100.00 = 20.00, 12/30×100.00 = 40.00, 20/30×100.00 = 66.67
and 29/30 × 100.00 = 96.67. Likewise, the Dist descriptor for As is 6.67, 23.33, 53.33, 73.33

and 100.00. As a result, the global description for the above sequence is (Comp;Tran;Dist) =

(46.67, 53.33; 72.14; 6.67, 23.33, 53.33, 73.33, 100.00, 3.33, 20.00, 40.00, 66.67, 96.67). A more detailed

description of global description of sequences is given in Refs. [?, ?, ?, ?, ?].

The global description for the promoter/non-promoter sequences can be computed by a similar

procedure. As the sequences consist of four types of nucleotides (A, C, G and T), there are 4

parameters for Comp, 6 parameters for Tran and 20 parameters for Dist. Overall, a total of 30

parameters are used to give a global description of a promoter/non-promoter sequence.

The Entropy Density Profile (EDP) model is a global statistical description for a DNA sequence,

which employs Shannon’s artificial linguistic description for a DNA sequence of finite length like

an open reading frame (ORF) [?]. Zhu et al. [?] developed a new non-supervised gene prediction

algorithm for bacterial and archaeal genomes based on EDP. Here we describe such method briefly.

If pi(i = 1, 2, 3, 4) are the frequencies for the four types of nucleotides of a promoter/non-promoter

sequence, then an EDP vector S = {si} inferred from {pi} is used to represent the sequence with
an emphasis on the information content, where i is the index of the four kinds of nucleotides. The

EDP si is defined as [?]

si = −
1

H
pi log pi, i = 1, 2, 3, 4, (24)
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where H = −
4P

i=1
pi log pi is the Shannon entropy.

It was shown that P = p21 + p22 + p23 + p24 is a useful statistical quantity for analysis of DNA

sequences [?, ?], which was called a nucleotide composition constraint of genomes [?]. As a result,

we obtain 6 parameters s1, s2, s3, s4,H and P from EDP.

Overall, combining the above two description systems, we get 36 parameters for the global

descriptor of a promoter/non-promoter sequence.

4. Results and discussions

From the four different methods described above, we get a total of 141 parameters. We will test

their contributions in the promoter/ non-promoter problem. Then we will try to combine some of

them to see whether better results can be achieved.

For comparison of various methods, a benchmark should be set up. We use Fisher’s linear

discriminant algorithm [?, ?, ?] to calculate the discriminant accuracies. We divide all promoter

and non-promoter sequences into two sets randomly. A set of 90% of promoter/non-promoter

sequences is regarded as a training set, and the set of remaining 10% of promoter/non-promoter

sequences as a test set.

Fisher’s discriminant algorithm is used to find a classifier in the parameter space for a training

set. The given training set H = {x1,x2, · · · ,xn} is partitioned into n1 ≤ n training vectors in

a subset H1 and n2 ≤ n training vectors in a subset H2, where n1 + n2 = n and each xi is

a κ-dimensional vector, represented by one point in the κ-dimensional parameter space. Then

H = H1 ∪H2. We need to find a parameter vector w = (w1, w2, · · · , wκ)
T for the κ-dimensional

space such that {yi = wxi}ni=1 can be classified into two classes in the space of real numbers. If we
denote

mj =
1

nj

X
xi∈Hj

xi j = 1, 2, (25)

Sj =
X
xi∈Hj

(xi −mj)(xi −mj)
T , j = 1, 2, (26)

Sw = S1 + S2, (27)

then the parameter vector w is estimated as S−1w (m1 −m2) [?]. As a result, Fisher’s discrimi-

nant rule becomes: ”assign x to H1 if Z(x) = (m1 −m2)
TS−1w [x − 1

2(m1 +m2)] > 0 and to H2

otherwise” [?].
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