QUT Digital Repository: http://eprints.qut.edu.au/

This is the post-print, accepted version of this article. Published as:

Thomson, Rachel and Carter, Robyn and Gilpin, Chris and Coulter, Chris and Hargreaves, Megan (2008) *Comparison of methods for processing drinking water samples for the isolation of Myocbacterium avium and intracellulare*. Applied and Environmental Microbiology, 74(10).

© Copyright 2008 American Society for Microbiology.

1 A Comparison of Methods for Processing Drinking Water Samples for the

2 Isolation of Mycobacterium Avium and intracellulare.

3 Rachel Thomson, Robyn Carter, Chris Gilpin, Chris Coulter, Megan

- 4 Hargreaves
- 5

6 Abstract

7 Several protocols for isolation of mycobacteria from water exist but there

8 is no established standard method. This study compared methods of

9 processing potable water samples for the isolation of *M.avium* and

10 M.intracellulare using spiked sterilized water and tap water

11 decontaminated using Cetylpyridinium Chloride (CPC) 0.005%. Samples

12 were concentrated by centrifugation or filtration, and inoculated onto

13 Middlebrook 7H10 and 7H11 plates, Lowenstein Jensen(LJ) slopes and into

14 Mycobacterial Growth Indicator tubes (MGIT) ± PANTA (polymyxin,

15 azlocillin, nalidixic acid, trimethoprim, amphotericin B). The solid media

16 were incubated at 32°, 35° and 35°C with CO₂ and read weekly. Results

17 suggest filtration of water for the isolation of mycobacteria is a more

18 sensitive method of concentration than centrifugation. The addition of

19 Sodium Thiosulphate may not be necessary and may reduce the yield.

20 M7H10 or 7H11 were equally sensitive culture media. CPC

21 decontamination, whilst effective in reducing growth of contaminants

- 22 also significantly reduces mycobacterial numbers. There was no
- 23 difference at 3 weeks between the different incubation temperatures.
- 24
- 25
- 26
- 27

28 INTRODUCTION

29 The isolation of Mycobacteria from both environmental and treated 30 drinking water samples was first reported in the early 1900s. However it has 31 only been in the last 3-4 decades that these environmental mycobacteria 32 have been recognized as pathogens of human disease. As compared to Mycobacterium tuberculosis, these organisms are generally of low 33 34 virulence and require a host defect for the establishment of disease (e.g. disseminated disease in AIDS patients, pulmonary disease in patients with 35 36 underlying structural lung disease). However there is a subset of patients 37 who develop pulmonary disease without an obvious immune defect or one that is yet to be defined. Nontuberculous Mycobacteria (NTM) have 38 been demonstrated in drinking water(1, 7, 11, 12, 15, 16, 18, 26, 35), 39 drinking water distributions systems(17, 18, 23, 32-34), hot water systems(4), 40 spas(6) and pools(14, 19). However several authors have failed to identify 41 42 NTM in water samples, often because of unsuitable isolation techniques. 43 Variable growth rates, specific growth requirements and different sources

44 of water samples (eg treated/surface/natural) are all variables that will 45 affect the choice of method for identification. Because of their slow 46 growth, pre-treatment methods are necessary to limit bacterial and fungal overgrowth and hence detect mycobacteria. However, the 47 pretreatment method chosen may also prevent the detection of certain 48 49 species of mycobacteria, reducing the rate of positive samples and number of colonies seen. A number of different protocols have been 50 51 described (29) but a standard protocol has not yet been established. 52 Du Moulin and Stottmeier(5) first described the use of Cetylpyridinium 53 chloride in 1978. They applied 0.04% to 1L samples of distilled water 54 seeded with dilutions of 5 day old cultures of mycobacteria grown in M7H9 broth and allowed them to stand for 24 hours, prior to filtration, 55 56 rinsing and applying membrane to M7H10 agar plates. Plates were incubated at 37°C (5-10%CO₂) for 60 days. A control group of samples 57 58 were processed the same way but without CPC treatment. Survival of 59 mycobacteria in spiked specimens varied from 1 to 100%, depending on the species - M.kansasii 18.4%, M.gordonae 8.4%, M.intracellulare 100%, 60 M.fortuitum 1.1% and M.bovis 39.9%. These authors actually reported 61 62 greater survival of M.intracellulare in treated (7400 viable units (vu)/L) vs untreated samples (440 vu/L). Schulz-Robbecke et al(27) compared 63 Cetylpyridinium chloride (CPC), sodium hydroxide (NaOH) and 64 65 formaldehyde (HCHO) for their efficacy as decontamination substances

for the isolation of mycobacteria from drinking water samples. They found 66 67 that 0.005% CPC had the highest recovery of mycobacteria and the 68 lowest contamination rates, using both spiked samples and environmental 69 samples. This finding was confirmed by Neumann et al(22). Glover et al(10) found that 0.04%CPC decontamination of tap water samples resulted in 70 less contamination than 1-3%NaOH or 5% OA, but also the highest number 71 of samples with no growth. CPC was applied at this concentration for 24 72 73 hours to sterile water seeded with MAC to a final concentration of 1.5X10³ 74 CFU/500ml. This resulted in a reduction of 89% in viable mycobacteria. 75 NaOH 1% and OA 5% resulted in reductions of 64% and 59% respectively. 76 Le Dantec(18) used membrane filtration followed by decontamination with Na dodecyl sulfate and NaOH, adjusting pH with 40% phosphoric 77 acid. Using M.gordonae spiked sterile tap water they showed that this 78 79 decontamination method reduced mycobacterial numbers to 1% of the 80 original number.

81

Falkinham(7, 8) has suggested that for drinking water decontamination
may not be required. In his study published in 2001(7) he processed
samples initially without decontamination but if plates were overgrown,
reprocessed them using CPC. Unfortunately it is not stated in the paper
how often decontamination was necessary. Only 15% samples grew slow

growing mycobacteria (3% M.avium, 1% M.intracellulare) and there were
2% rapid growers.

89

Other variables that may affect the yield of mycobacteria from 90 environmental water samples include sample volume, the use of Sodium 91 Thiosulphate to neutralize chlorine based disinfectants, method of 92 concentration (eg filtration vs centrifugation), culture media and 93 94 incubation temperature. 95 96 In Queensland the main mycobacterial pathogen associated with pulmonary disease is M.intracellulare followed by M.avium, M.abscessus 97 and M.kansasii. It has been postulated that patients acquire disease by 98 99 inhaling aerosols containing mycobacteria from environmental water sources and water outlets in their homes(20). Patients may also aspirate 100 101 contaminated water as a result of swallowing disorders or severe gastro-102 esophageal reflux disease(31). 103 104 This pilot study was undertaken to try and identify the best method of 105 processing water samples for the isolation of mycobacteria prior to a

106 larger environmental survey. The aim of this study was to compare

107 different methods of processing drinking water samples for the isolation of

108 species of mycobacteria pathogenic to humans, particularly

- 109 M.intracellulare and M.avium, with regard to concentration
- 110 (centrifugation vs filtration), culture media (LJ, 7H10, 7H11, MGIT and
- 111 MGIT+PANTA), and incubation temperature (32°C, 35°C, and 35°C+CO2).
- 112

113 METHODS

- 114 M. avium (ATCC 35765) and M. intracellulare (ATCC 13950) were
- inoculated in 7H9 broth (0.5 McFarland), correlating to concentration
- 116 1.5x10⁸ CFU/ml and diluted to a concentration of 100 CFU/500ml water.
- 117 <u>Control samples</u>.
- 118 Organisms (M.avium and M.intracellulare separately) were added to 8x
- 119 500ml samples of sterile water (sterilized by filtration to preserve
- 120 chlorination using MediaKap-2 Hollow Fibre Media Filter 0.2µm -
- 121 Spectrum Laboratories Inc.) to a final concentration of 100CFU/500ml.
- 122 Sodium Thiosulphate (0.5ml of 10% solution) was added to 4 of the
- 123 samples (2 M. avium and 2 M. intracellulare). Half of the samples were
- 124 processed by filtration and half processed by centrifugation. (Figure 1)
- 125
- <u>Filtration</u> was performed through 0.45µm cellulose nitrate filters (Sartorius AG 37070 Goettingen, Germany). Filters were then rinsed with 2ml sterile distilled water (SDW) and macerated in 3 ml SDW. From this 3ml, 0.1ml aliquots were then transferred in triplicate to LJ slants, M7H10 and M7H11 plates, sealed in gas permeable plastic bags for incubation at 32°, 35°
 - 6

131	and 35°C +CO2. 0.5 ml aliquots were transferred to 2 MGIT tubes, 1
132	containing PANTA (polymixin, azlocillin, nalidixic acid, trimethoprim,
133	amphotericin B).
134	
135	Centrifugation: Four - 500ml samples (2 containing Na Thiosulphate -1
136	M.avium, 1 M. intracellulare) were centrifuged in 250ml sterile bottles at
137	5000gx 20min at 25 °C. The pelleted cells were rinsed twice with
138	Phosphate Buffered Saline (PBS)(21). The resulting suspension was added
139	to sterile diluent to make 3ml and 0.1ml aliquots were used to inoculate in
140	triplicate each of the following: LJ slants, M7H10 and M7H11 plates. Plates
141	were sealed in gas permeable plastic bags and incubated as previously
142	indicated. Additional 0.5 ml aliquots were used to inoculate 2 MGIT tubes,
143	with and without PANTA.
144	
145	<u>Tap water.</u>
146	Tap water samples (4x 500ml) were collected after flushing for 2 minutes
147	from a single tap within the laboratory. These tap water samples were
148	spiked with M.avium (x2) and M.intracellulare (x2) to give a final
149	concentration of 100CFU/500ml. Samples were then decontaminated

- 150 with 0.005% CPC and incubated at room temperature for 30 minutes. Two
- 151 samples (1 M.avium, 1 M.intracellulare) were then processed by filtration
- 152 and 2 processed by centrifugation, as described for sterile samples.

153

154	All plates were read weekly. At three weeks all plates were photographed
155	digitally and colonies counted. Colonies from plates demonstrating
156	growth were stained to confirm acid fast bacilli, and morphologically
157	different colonies were subcultured on M7H10 agar and incubated at
158	35°C. Subcultured organisms were then identified to the species level
159	using multiplex PCR as described by Wilton and Cousins(36). All colonies
160	grown from the tap water samples were treated similarly.
161	
162	Data were analyzed using SPSS v12.0 for Windows 2003 (Apache Software
163	Foundation). Tests of association were performed using Fishers exact test
164	for Chi Squared 2x2 tables. Statistical significance was defined as a 2
165	sided p value<0.05. Colony counts were also compared using the Mann
166	Whitney U test as the values were not normally distributed.
167	
168	RESULTS
169	

- 170 There were 88 spiked sterile water cultures, and 44 spiked tap water
- 171 samples. 83.3% of all filtered samples grew mycobacteria compared to
- 172 12.1% of all centrifuged samples (p<0.0001).

173

174 Of spiked sterile samples not treated with Sodium Thiosulphate, 52.3%

175 grew mycobacteria compared to 43.2% of samples that were treated

176 (p=0.223). For filtered samples the addition of Sodium Thiosulphate did not

- 177 affect recovery. However, for centrifuged samples, 4.5% of treated
- samples were positive compared to 22.7% of untreated samples (p=0.058).
- 179 Colony counts were lower in filtered sterile samples with Sodium

180 Thiosulphate added (mean±SD: 151.7±169.8 vs 259.o±352.8 CFU/L;

- 181 however this was not statistically significant (p=0.178) Mann Whitney U test
- 182 (p=0.709) (Figure 2).

183 There was no overall difference between Middlebrook 7H10 and 7H11

184 with 12 and 13 of 18 filtered samples showing positive growth respectively

185 after 1 week. The LJ slants initially appeared less sensitive, but there was

186 no difference between it and the Middlebrook media at 3 weeks (**Table 1**).

187 There was no difference overall between the different incubation

188 temperatures (Table 2).

189

For filtered samples CPC decontamination did not appear to affect the number of positive cultures at 3 weeks - 86.4% of filtered samples treated with CPC were positive at final reading, compared to 81.8% of those untreated. However colony counts were significantly reduced in spiked tap water samples (Mean±SD CFU/L 7.4±8.5) compared to sterile samples

(205.4±262.4; p=0.0001). This equates to a mean reduction to 3.6% of
original numbers. (Figure 3)

197

198 At 3 weeks, 3 samples not treated with CPC were overgrown compared 199 to none of those treated. Nine of 88 (10.2%) spiked sterile samples grew 200 contaminants in addition to mycobacteria compared to 13/44 (29.5%) tap water samples. (p=0.012). These contaminants did not affect the 201 202 ability to isolate mycobacteria. Of the spiked sterile samples, in 2 of these 203 the plates had fungal overgrowth at week 4 – a week after they had 204 been photographed, and this was likely aerial contamination when the plates were inspected for photography. Of the remaining 7 - 4 plates had 205 single non-buff colonies, 2 had 2 colonies and 1 had 3. Whilst these were 206 not formally identified it is presumed they entered the system during the 207 processing of samples. 208

209

A number of samples grew morphologically different colonies on
Middlebrook plates. These were subcultured and then identified to the
species level using multiplex PCR and found to be the same organism.
PFGE was not performed on these isolates. All colonies grown from the tap
water samples were similarly processed. No other mycobacteria (other
than the spiked organisms) were identified from the tap water samples.

DISCUSSION.

219	In this study we have demonstrated that filtration is a more effective
220	method than centrifugation for isolating mycobacteria from water
221	samples. Apart from having a far greater yield it was also simpler and
222	more time efficient. To our knowledge there have been no published
223	direct comparative studies, but previous authors have been able to
224	isolate mycobacteria from water samples processed by centrifugation.
225	Perhaps it was our technique, but alternatively the success of previous
226	authors maybe related to much higher concentrations of mycobacteria in
227	the water being sampled. In this study low concentrations of target
228	organisms were used as may be expected to exist in suburban, treated,
229	water supplies (3, 7, 9, 12, 18).
230	
231	The majority of reported studies have processed samples with Sodium
232	Thiosulphate to neutralize residual chlorine(2). It is not known whether
233	neutralizing residual chlorine interferes with the ability to isolate
234	mycobacteria by increasing bacterial overgrowth, or whether the
235	presence of residual chlorine reduces the yield and diversity of species of
236	mycobacteria subsequently isolated. As most opportunistic pathogenic
237	NTM are relatively resistant to chlorine(18, 24, 25, 28, 30) the addition of

238 Sodium Thiosulfate may not be necessary and may increase

239 contamination rates.

240

241	The Thiosulfate anion characteristically reacts with dilute acids to produce
242	sulfur, sulfur dioxide and water: $S_2O_3^{2-}(aq) + 2H^+(aq) \rightarrow S(s) + SO_2(g) +$
243	$H_2O(I)$. Thiosulfate reduces the hypochlorite and in so doing becomes
244	oxidized to sulfate. The complete reaction is: $4NaClO + Na_2S_2O_3 + 2NaOH$
245	$\rightarrow 4\text{NaCl} + 2\text{Na}_2\text{SO}_4 + \text{H}_2\text{O}.(13)$
246	From our results it would appear that Sodium Thiosulphate may have some
247	antibacterial properties in water, perhaps by generation of sulfur, as
248	contamination rates and mycobacterial colony counts were less in those
249	treated samples. Though not statistically significant, this is an interesting
250	observation. Of importance, it would seem that for the purposes of
251	isolating mycobacteria from water, the addition of Sodium Thiosulphate is
252	unnecessary.

253

The addition of CPC to tap water samples spiked with *M.avium* and *M.intracellulare* resulted in 3.6% survival of organisms, but did not affect the number of positive samples using this concentration of organisms. The organisms used in our study were grown in 7H9 broth. It has been shown that antecedent growth conditions may affect susceptibility to chlorine based disinfectants. Water grown strains of *M.avium* were shown to be

significantly more chlorine resistant than those grown in medium(30). The
magnitude of reduction of growth we have shown may not necessarily
apply to water grown organisms from environmental or distribution system
samples.

264

265 There were no differences between the temperatures tested nor between the different solid media overall. However the Middlebrook media were 266 267 more sensitive at one week and provided the advantage of quantitation 268 of growth over LJ. The MGIT system has recently been introduced for the culture of clinical specimens, and has not been used widely for the 269 270 processing of water samples. Supplementation with PANTA (Polymyxin, 271 Amphotericin B, Nalidixic acid, Trimethroprim and Azlocillin) is used to reduce contamination. A further study utilizing raw tap water samples (ie 272 no decontamination) and the MGIT system (+PANTA to control 273 274 contamination) is currently underway. The MGIT without PANTA used in this study did not contain OADC enrichment which may explain the lower 275 276 yield using this system. 277

There have been a number of studies published using different methods to isolate mycobacteria from water samples, and no established standard. We have demonstrated that SodiumThiosulphate may not be necessary

and may interfere with growth. We have confirmed the findings of

282 previous authors that CPC controls contamination, but significantly

reduces mycobacterial growth also. Whilst it would be appealing to

284 process samples without decontamination, the utility of this method would

285 depend on the origin of the samples.

286

This study has added refinement to concentration and culture techniques 287 for the isolation of mycobacteria from water; however the major 288 289 challenge remains the need for decontamination to reduce bacterial 290 and fungal overgrowth. We and others have demonstrated that the addition of CPC is effective for this purpose; however we have quantified 291 the reduction in yield of M.intracellulare and M.avium, two of the main 292 pathogens associated with lung disease and found it is significant. Given 293 294 that that major environmental niche for *M.intracellulare* is in biofilms(7) and only small numbers are found in water samples, the detection of low 295 296 concentrations of organisms is important. Perhaps a metagenomic study may obviate the need for any decontamination and culture method, and 297 298 developments in this area are awaited with interest.

- 299 Table 1. Positive cultures for mycobacteria after concentration by filtration
- 300 using different culture media after 1 week and 6 weeks (n=66).
- 301
- 302

Culture	Week 1		Final Culture Result			
media						
	Contaminated	Negative	Positive	Overgrown	Negative	Positive
7H10 (n=18)	1	5	12	0	2	16
7H11 (n=18)	0	5	13	1	0	17
LJ (n=18)	2	16	0	0	1	17
MGIT (n=6)	0	6	0	0	5	1
MGIT+PANTA	0	3	3	0	2	4
(n=6)						

303 Table 2. Comparison of incubation temperatures for culture of

304 mycobacteria in both spiked sterile and tap water samples processed by

305 centrifugation or filtration.

306

Concentration	Incubat	Incubation Temperature				
	32 <i>°</i> C	35 <i>°</i> C	35 ℃+CO ₂	BACTEC		
Centrifugation						
Contaminated	2	2	3	0	7	
Negative	14	14	12	11	51	
Positive	2	2	3	1	8	
Total	18	18	18	12	66	
Filtration						
Contaminated	0	0	1	0	1	
Negative	0	0	0	7	7	
Positive	18	18	17	5	58	
Total	18	18	18	12	66	

307

309 Figure 1. Flow chart for processing of sterile water samples

- 311 Figure 2. Boxplot demonstrating Median CFU/L (black bar), middle 2
- 312 quartiles (box) and range (extent of bar) of CFU/L Mycobacteria in spiked
- 313 sterile water concentrated by filtration processed with and without the
- 314 addition of NaThiosulphate.
- 315
- 316

321 **References**.

- 322 1. Chang, C.-t., L.-y. Wang, C.-y. Liao, and S.-p. Huang. 2002.
- Identification of Nontuberculous Mycobacteria Existing in Tap Water
 by PCR-Restriction Fragment Length Polymorphism, Appl. Environ.

325 Microbiol. 68:3159-3161.

- Clesceri, L., A. Greenberg, and A. Eaton (ed.). 1999. Standard
 Methods for the examination of water and wastewater., 20th ed.
 American Public Health Association, Washington DC.
- Covert, T. C., M. R. Rodgers, A. L. Reyes, and G. N. Stelma, Jr. 1999.
 Occurrence of Nontuberculous Mycobacteria in Environmental
 Samples. Appl. Environ. Microbiol. 65:2492-2496.
- du Moulin, G., K. Stottmeier, P. Pelletier, A. Tsang, and J. Hedley-
- 333 Whyte. 1988. Concentration of Mycobacterium avium by hospital 334 hot water systems. JAMA 260:1599-601.
- 5. Du Moulin, G. C., and K. D. Stottmeier. 1978. Use of Cetylpyridinium
 Chloride in the Decontamination of Water for Culture of
 Mycobacteria. Appl. Environ. Microbiol. 36:771-773.
- Embil, J., P. Warren, M. Yakrus, R. Stark, S. Corne, D. Forrest, and E.
 Hershfield. 1997. Pulmonary illness associated with exposure to
 Mycobacterium-avium complex in hot tub water. Hypersensitivity
- 341 pneumonitis or infection? Chest 111:813-816.
- Falkingham III, J., C. Norton, and M. Le Chavallier. 2001. Factors
 influencing numbers of Mycobacterium avium, Mycobacterium *intracellulare* and other mycobacteria in drinking water distribution
 systems. Appl Environ Microbiol 67:1225-31.
- Falkinham, J. 2004. Environmental sources of Mycobacterium avium
 linked to routes of exposure., p. 26-38. *In B. J. Pedley S, Rees G,* Dufour A, Cotruvo J (ed.), Pathogenic Mycobacteria in Water. IWA
- Publishing, London.
 Galassi, L., R. Donato, E. Tortoli, D. Burrini, D. Santianni and R. Dei.
 Nontribute provide a pateriar in hearital water a reference.
- 2003. Nontuberculous mycobacteria in hospital water systems:
 application of HPLC for identification of environmental
 mycobacteria. J Water Health 1:133-139.
- Glover, N., A. Holtzman, T. Aronson, S. Froman, O. Berlin, P.
 Dominguez, K. Kunkel, G. Overturf, G. Stelma Jnr, C. Smith, and M.
 Yakrus. 1994. The isolation and identification of *Mycobacterium avium* complex (MAC) recovered from Los Angeles potable water, a possible source of infection in AIDS patients. International Journal of Environmental Health Research 4:63-72.
- Goslee, S., and E. Wolinsky. 1976. Water as a source of potentially
 pathogenic mycobacteria. Am Rev Respir Dis 113:287-92.
- Hilborn, E. D., T. C. Covert, M. A. Yakrus, S. I. Harris, S. F. Donnelly, E. W.
 Rice, S. Toney, S. A. Bailey, and G. N. Stelma, Jr. 2006. Persistence of

364		Nontuberculous Mycobacteria in a Drinking Water System after
365		Addition of Filtration Treatment. Appl. Environ. Microbiol. 72:5864-
366		5869.
367	13.	Holleman, A., and E. Wiberg. 2001. Inorganic Chemistry. Academic
368		Press: San Diego.
369	14.	livanainen E, N. j., Arbeit RD, Ristola M, Katila M-L, Von Reyn CF. 1999.
370		Isolation of mycobacteria from indoor swimming pools in Finland.
371		APMIS 107:193-200.
372	15.	Kubalek, I., and S. Komenda, 1995. Seasonal variations in the
373		occurrence of environmental mycobacteria in potable water.
374		APMIS 103:327-330.
375	16.	Kubalek, L. and J. Mysak, 1996. The prevalence of environmental
376		mycobacteria in drinking water supply systems in a demarcated
377		region in Czech Republic, in the period 1984-1989, European, Journal
378		of Epidemiology V12:471-474
379	17	Le Dantec, C., L-P. Duquet, A. Montiel, N. Dumoutier, S. Dubrou
380	.,.	and V. Vincent. 2002. Chlorine Disinfection of Atypical
381		Mycobacteria Isolated from a Water Distribution System Appl
382		Environ Microbiol 68:1025-1032
383	18	Le Dantec, C., L-P. Duquet, A. Montiel, N. Dumoutier, S. Dubrou
384	10.	and V. Vincent 2002. Occurrence of Mycobacteria in Water
385		Treatment Lines and in Water Distribution Systems Appl. Environ
386		Microbiol 68:5318-5325
387	19	Leoni F. P. Leanani M. T. Mucci and R. Pirani 1999. Prevalence of
388	17.	mycobacteria in a swimming pool environment Journal of Applied
389		Microbiology 87:683-688
390	20	Marras T K R I Wallace Ir I I Koth M S Stulbara C T Cowl
301	20.	and C. J. Daley 2005. Hypersensitivity Pneumonitis Reaction to
302		Mycobacterium avium in Household Water Chest 127:664-671
303	21	Murray P. e. a. 1999. Manual of Clinical Microbiology. 7th ed
394	۷۱۰	American Society for Microbiology, Washington DC
395	22	Neumann M. R. Schulze-Robbecke C. Hagenau and K. Behringer
396	<i>LL</i> .	1997 Comparison of Methods for Isolation of Mycobacteria from
397		Water Appl Environ Microbiol 63:547-552
308	23	Norton C D M W LeChevallier and L O Falkinham III 2004
300	20.	Survival of Mycobacterium avium in a model distribution system
<i>400</i>		Water Research 38:1/57-1/66
400	21	Payment P 1999 Poor efficacy of residual chlorine disinfectant in
402	27.	drinking water to inactivate water borne pathogens in distribution
402		systems Can Microbiol 45:709
404 404	25	Pelletier P. G. Du Moulin and S. KD. 1988. Mycobacteria in public
+04 /05	Z J.	water supplies: comparative resistance to chlorine. Microbiological
-105 /106		sciences 5.1.17-8
400		

407	26.	Pryor, M., S. Springthorpe, S. Riffard, T. Brooks, Y. Huo, G. Davis and
408		S.A. Sattar. 2004. Investigation of opportunistic pathogens in
409		municipal drinking water under different supply and treatment
410		regimes. Water Science & Technology 50:83-90.
411	27.	Schulze-Robbecke, R., A. Weber, and R. Fischeder. 1991.
412		Comparison of decontamination methods for the isolation of
413		mycobacteria from drinking water samples. Journal of
414		Microbiological Methods 14:177-183.
415	28.	Steed, K. A., and J. O. Falkinham, III. 2006. Effect of Growth in
416		Biofilms on Chlorine Susceptibility of Mycobacterium avium and
417		Mycobacterium intracellulare, Appl. Environ, Microbiol, 72:4007-4011.
418	29.	Stinear, T., T. Ford, and V. Vincent, 2004. Analytical Methods for the
419		detection of waterborne and environmental pathoaenic
420		mycobacteria, p. 55-73. In B. J. Pedley S. Rees G. Dufour A. Cotruyo
421		J (ed.), Pathogenic Mycobacteria in Water: a Guide to Public
422		Health Consequences, Monitoring and Management. World Health
423		Organisation, IWA Publishing, London.
424	30.	Taylor, R. H., J. O. Falkinham III, C. D. Norton, and M. W. LeChevallier.
425		2000. Chlorine, Chloramine, Chlorine Dioxide, and Ozone
426		Susceptibility of Mycobacterium avium, Appl. Environ, Microbiol.
427		66:1702-1705.
428	31.	Thomson, R. M., J. G. Armstrong, and D. F. Looke, 2007.
429		Gastroesophageal Reflux Disease, Acid Suppression, and
430		Mycobacterium avium Complex Pulmonary Disease. Chest
431		131:1166-1172.
432	32.	Tobin-D'Angelo, M. J., M. A. Blass, C. del Rio, J. S. Halvosa, H. M.
433		Blumberg, and C. R. Horsburgh Jr. 2004. Hospital Water as a Source
434		of Mycobacterium avium Complex Isolates in Respiratory
435		Specimens. Journal of Infectious Diseases 189:98-104.
436	33.	Torvinen, E., S. Suomalainen, M. J. Lehtola, I. T. Miettinen, O. Zacheus,
437		L. Paulin, ML. Katila, and P. J. Martikainen. 2004. Mycobacteria in
438		Water and Loose Deposits of Drinking Water Distribution Systems in
439		Finland. Appl. Environ. Microbiol. 70:1973-1981.
440	34.	Vaerewijck, M. J., G. Huys, J. C. Palomino, J. Swings, and F. Portaels.
441		2005. Mycobacteria in drinking water distribution systems: ecology
442		and significance for human health. FEMS Microbiology Reviews
443		29:911-934.
444	35.	von Reyn, C. F., J. N. Marlow, R. D. Arbeit, T. W. Barber, and J. O.
445		Falkinham. 1994. Persistent colonisation of potable water as a
446		source of Mycobacterium avium infection in AIDS. The Lancet
447		343:1137-1141.
448	36.	Wilton, S., and D. Cousins. 1992. Detection and identification of
449		multiple mycobacterial pathogens by DNA amplification in a single
450		tube. PCR Methods Appl 4:269-73.