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Abstract 

This article reports an enhanced solvent casting/particulate (salt) leaching (SCPL) method 
developed for preparing three-dimensional porous polyurethane (PU) scaffolds for cardiac 
tissue engineering. The solvent for the preparation of the PU scaffolds was a mixture of 
dimethylformamide (DFM) and tetrahydrofuran (THF). The enhanced method involved the 
combination of a conventional SCPL method and a step of centrifugation, with the  
centrifugation being employed to improve the pore uniformity and the pore interconnectivity of 
scaffolds. Highly porous three-dimensional scaffolds with a well interconnected porous 
structure could be achieved at the polymer solution concentration of up to 20% by air or 
vacuum drying to remove the solvent. When the salt particle sizes of 212-295, 295-425, or 425-
531 µm and a 15% w/v polymer solution concentration were used, the porosity of the scaffolds 
was between 83-92% and the compression moduli of the scaffolds were between 13 kPa and 28 
kPa. Type I collagen acidic solution was introduced into the pores of a PU scaffold to coat the 
collagen onto the pore walls throughout the whole PU scaffold.  The human aortic endothelial 
cells (HAECs) cultured in the collagen-coated PU scaffold for 2 weeks were observed by 
scanning electron microscopy (SEM). It was shown that the enhanced SCPL method and the 
collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-
coated PU scaffold. 
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1. Introduction 

Heart disease is a major cause of death in the western world. In the past three decades there has 
been a number of improvements in artificial devices and surgical techniques for cardiovascular 
diseases. The major drawback of current artificial devices is that they cannot grow and remodel 
as viable tissues. Tissue engineering offers the possibility of developing a biological substitute 
material in vitro with the inherent mechanical, chemical, biological, and morphological 
properties required in vivo [1].  

Scaffolds provide a matrix for guided cell proliferation and are able to control the shape of the 
regenerated tissue. A high porosity and a high pore interconnectivity of a scaffold are desired to 
minimize the amount of implanted material and to increase the specific surface area for cell 
attachment and tissue ingrowth [2-7]. Furthermore, scaffolds for cardiac applications need to be 
elastomeric and have properties that support cardiac function. In other words, the scaffold must 
be able to meet the difficult mechanical demands of cardiac tissue without cracking or 
disintegrating [8]. To achieve the needed elastomeric properties, polyurethanes (PU) as the 



typical synthetic polymers are used [3]. PUs have very high flexural endurance compared to 
most other elastomers, making them prime candidates for cardiac implants [9]. 

Although several methods have been developed to fabricate macro / micro porous polymer 
scaffolds, the solvent casting/particulate leaching (SCPL) method is the most commonly used 
one. This method is characterized by its simple operation and adequate control of the pore size 
and the porosity by selecting the particle size and the amount of the added salt particles. 
However, the distribution of the salt particles is often not uniform within the polymer solution. 
This is because the density of the liquid polymer solution and that of the solid salt are different, 
and the degree of direct contact between the salt particles is not well controlled [10]. As a result, 
the interconnectivity of pores in a final scaffold cannot be well controlled. Moreover, the 
polymer solution and the salt particles are mixed in such a way that the salt particles tend to be 
wrapped completely by the polymer solution. These wrapped salt particles cannot be easily 
leached out with water. Thus, most porous materials prepared by the SCPL method are limited 
to a thickness less than 4 mm [11].                                                                                                                          

The pore wall surface of a scaffold is also important for tissue engineering because the surface 
can directly affect cellular response and ultimately the tissue regeneration. Although synthetic 
materials have been used as tissue engineering scaffolds, they often lack biological recognition.  
An ideal tissue engineering scaffold should mimic the native extra-cellular matrix (ECM) and 
positively interact with cells, including enhanced cell adhesion, growth, migration and 
differentiation [12, 13]. To overcome this drawback of the synthetic polymers, naturally 
occurring polymers such as collagen have been widely used to modify the synthetic polymers 
for biological recognition for cardiac tissue engineering [8, 14]. 

This article reports the preparation of highly interconnected porous PU scaffolds by a simple 
and effective method, i.e., an enhanced SCPL method using the dimethylformamide (DFM)-
tetrahydrofuran (THF) mixed solvent system [15] and involving the use of centrifugation to 
improve the pore interconnectivity of the scaffolds. The effects of the processing parameters 
such as the polymer solution concentration, the solvent type, and the solvent evaporation 
method on the porous structure were examined by scanning electron microscopy (SEM) and the 
effects of salt particle size on the mechanical properties were investigated. Type I collagen 
acidic solution was introduced into the pores of the PU scaffolds to coat the collagen onto the 
pore walls.  Finally the HAECs were cultured in the collagen-coated PU scaffolds to study the 
cellular response of the scaffolds for potential cardiac tissue engineering. 

 
2. Martials and methods 
 
2.1  Preparation of porous PU scaffolds 
 
Porous PU scaffolds were prepared by combining conventional solvent casting/particulate 
leaching with centrifugation (Fig. 1). The polymer solution was prepared by dissolving 
polyurethane pellets (Zytar® Z1A1, Biomer Technology Ltd) into dimethylformamide (Sigma) 
/ tetrahydrofuran (Sigma) (volume ratio: 50:50) at room temperature. For comparison, solvent – 
dioxane was also used. The concentrations of the polymer solutions were 10%, 15% and 20%. 
The polymer solution was then poured into cylindrical polypropylene containers with desired 
diameters. Sieved salt particles (212-295 μm, 295-425 μm, and 425-531 μm) from a common 
table salt (Salpak Pty Ltd, Seven hills, Australia) were added into and mixed with the polymer 
solution. Subsequently the containers were centrifuged at room temperature at 2500 rpm for 10 
min. The optimised (or well-packed) salt amount in a polymer solution was determined by 



centrifugation of the salt particle-polymer mixture. Then extra polymer solution was removed 
with a glass pipette, or more salt particles were added and centrifuged until no pure polymer 
solution left. The formed salt-polymer mixture then was air-dried, vacuum dried, or freeze 
dried, followed by salt leaching in distilled water, freezing at -20 oC and further freeze drying, 
resulting in a three-dimensional interconnected porous structure. The details of the drying 
methods were as follows: the centrifuged mixture was air-dried for 7 days or vacuum dried for 3 
days. For freeze-drying, the centrifuged mixture was subsequently cooled down (not necessarily 
frozen) at -80 °C for overnight. After that, the solvent liquid or crystals were removed by freeze 
drying for a period of 2-3 days in a freeze-dryer (Martin Christ, Freeze Dryer, Alpha 1-2/LD). 
Collagen-coated PU scaffolds were prepared by dipping the PU scaffolds into a bovine collagen 
type I acidic solution (type I, pH 3.2, 0.3 tw%, Cellmatrix, Nitta Gelatin, Osaka), and 
subsequently vacuum-dried. The collagen coating was not cross-linked with glutaraldehyde due 
to its potential cytotoxicity. 
 

 
Fig. 1.  Steps of the enhanced SCPL method. 

 
2.2  Sample characterization 
 
2.2.1  Porosity of the PU scaffolds  
The porosity of a scaffold  was determined by measuring the dimensions and the mass of the 
scaffold and calculated using the following formula: 
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where p is the porosity, m is the mass of the scaffold, ρpolymer is the true density of the polymer 
and V is the volume of the scaffold. 
 
2.2.2  Scanning electron microscopy 
The porous structures (e.g. pore size and pore interconnection) of the PU scaffolds and the 
collagen-coated PU scaffolds were observed by scanning electron microscopy (SEM). For SEM 
observation, the scaffolds were cut with a razor blade and the scaffold samples were mounted 
onto aluminium stubs with a carbon tape and coated with a gold film on a sputter coater 
(BioRad SC500). The porous structures of the scaffolds were then examined using a scanning 
electron microscope (FEI QUANTA 200) with an acceleration voltage of 15 kV. 
 
2.2.3  Compressive testing of the scaffolds 
Compressive tests were performed on cubic shaped specimens of about 4×4×4 mm3 cut 
manually. The compressive strain-stress curve of a scaffold was measured at room temperature 
with a 50N load cell and at a cross-head speed of 0.5 mm/min on a Hounsfield testing machine 
(Model: H10K/M527).  The compressive Young’s modulus (kPa) was calculated by taking the 
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slope at the point of 20% compression (strain = 0.2) from a stress–strain curve. All the given 
values were means of more than five measurements (± standard deviation). 
 
2.3  In vitro cell culture evaluation 
 
2.3.1  Sample sterilization 
The scaffolds with dimensions of 4×4×4 mm3 were sterilized by soaking them three times in 
70% ethanol for 15 min each, then rinsed three times with potassium phosphate buffer solution 
(PBS) for 15 min before being left to dry overnight in a sterilized laminar hood for cell culture.  
 
2.3.2  Cell seeding and culture 
The HAECs (ScienCell Research Laboratories, Carlsbad, CA) at passage 4 were used for this 
study. The HAECs were first expanded by culturing in an endothelial cell medium (ScienCell 
Research Laboratories, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS) and 
1% penicillin/streptomycin solution (P/S). The medium was replaced after 24 hrs then every 2 
days and the cultures were maintained in a humidified incubator at 37 °C and 5% CO2. After the 
cells reached 80% confluency, they were harvested using a commonly used procedure. The 
harvested cells were then re-suspended in the culture medium at a density of 1×106 cells/mL. 
The cell suspension was then dropped into the collagen-coated PU scaffolds (50 µL/scaffold) 
and cultured in 24-well culture plates. After 1 h of incubation, 2 mL of culture medium was 
added to each well.  Fresh culture medium was added to each well after 12 h to replace the used 
medium and the cells were cultured under a 5% CO2 atmosphere at 37°C. The cell medium was 
changed every 2 days during the cell culture up to 2 weeks.  
 
2.3.3  Observation of the cells’ penetration and distribution 
Collagen-coated PU scaffolds with cultured cells were fixed with a 2.5% glutaraldehyde 
solution. The scaffolds were then processed by soaking in an osmium tetroxide solution for 1 h, 
then dehydrated through a series of ethanol solutions with graded concentrations, followed by 
two changes of 100% amyl acetate for 15 min each. The scaffolds were then dried using a 
supercritical point dryer (Denton Vacuum critical point dryer) and coated with a gold film 
before observation under SEM.  
 
3. Results and discussion 
 
3.1  Porous structures of the PU scaffolds made with and without centrifugation 
 
The conventional SCPL method tends to cause closed pores in the porous scaffolds, especially 
when the amount of salt particles added into the polymer solution is relatively small or when the 
polymer solution is relatively concentrated or viscous. For a given polymer solution, there 
should be an optimal salt content that leads to an optimal pore interconnectivity. If a salt content 
is lower than the optimal content, then the salt particles tend to be wrapped by the polymer 
solution and isolated pores will be formed. If the salt content is higher than the optimal content, 
then, there will be no enough polymer solution to fill the gap or space among the packed salt 
particles, leading to incomplete network of the struts of the porous scaffolds (i.e. some struts 
will not be formed in the porous scaffolds. The optimal salt amount corresponds to a state of 
saturation of the polymer solution with the salt particles. For the conventional SCPL method, it 
is difficult to find out the optimal salt amount. However, centrifugation when combined with 
the conventional SCPL method can result in the optimal salt amount due to optimal salt particle 
packing (Fig. 2).  
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Fig. 7. SEM micrographs showing the morphologies of the PU scaffolds prepared by the 
enhanced SCPL method using different solvent evaporation methods and different solvents at a 
salt particle size of 212-295 μm: (a) DMF/THF (50:50) – air drying, (b) DMF/THF (50:50) – 
freeze drying, (c) dioxane –air drying, (d) dioxane – freeze drying. 

 
 
3.3  Compressive modulus and porosity of the PU scaffolds 
 
Compressive tests were performed to evaluate the effect of the progen size on the compressive 
modulus of the PU scaffolds produced by the enhanced SCPL method with a 15% (w/v) 
polymer solution. Fig. 8 shows the compressive strain-stress curves for different particle sizes. 
The initial elastic deformation of the struts was followed by subsequent packing and folding of 
the scaffolds due to the buckling of the struts, typical of porous elastic scaffolds. The curves like 
those shown in Fig. 8 were used to determine the compressive modulus by taking the slopes. 
Fig. 9 (a) presents the increase of compressive modulus with the increase of salt particle size. 
The range of the compression moduli obtained with different salt particle sizes were between 
about 12 kPa for 212-295 µm and about 27 kPa for 425-531 µm. There was a relationship 
between the salt size and the porosity; an increase in salt particle size led to decrease in porosity 
(Fig. 8 (b)). This relationship may be related to the volume of pore space among the packed 
particles, which had the angular (non-spherical) shapes and a particle size range. A high porosity 
(>91 vol %) was obtained for the 15% polymer solution concentration and with the 212-295 µm 
salt size. Thus, an increase in the salt particle size led to a decrease of the porosity, and thus an 
increase in the compression modulus. It is known that the stiffness of the left ventricle of the 
heart is around 31 kPa [17], which is similar to the values found for our porous polymer 
scaffolds, suggesting that these scaffolds could be suitable for growing an endothlial cell layer 
for cardiac tissue engineering. 
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[8, 14]. Type I collagen acidic solution was introduced into the pores of the PU scaffolds to coat 
collagen onto the pore walls throughout the whole polymer scaffolds.  Collagen was observed 
clearly on the surface of the PU scaffold with the collagen coating (Fig. 10), although the 
porosity was decreased about 5% after the introduction of the collagen coating [20].  
 

 

 

Fig. 10.  SEM micrographs of a cross-section of the collagen-coated PU scaffold prepared with 
the enhanced SCPL method and with drying in air (salt particle size: 295-425 µm; using 15% 
w/v polymer solution of DMF-THF mixed solvent): (a) a general view; (b) a magnified view; 

(c) and (d) magnified views of the collagen coating on the PU scaffold.  

Recently, a new method was developed to nest a collagen micro-sponge into the pores of a 
polymer scaffold and the collagen micro-sponges were crosslinked [20]. The collagen micro-
sponges increased the wettability of the polymer surface, and facilitated cell attachment in the 
sponges. Although the collagen micro-sponges in the scaffold pores could increase the apparent 
surface area/volume ratio, the pore size, the porosity and the pore interconnectivity of the 
scaffolds would be decreased, making it more difficult for the cells to penetrate deeply into the 
scaffolds. Similarly, diffusion of nutrients and waste products into and out of the scaffold would 
also be limited [19]. Thus, our collagen coating may be better than collage sponges in the PU 
scaffolds. 

 

3.5  In vitro cell culture studies 
 
The HAECs were seeded into the collagen-coated scaffolds by adding drops of the cell 
suspension. The cells cultured for 2 weeks were observed by SEM. The penetration of the cells 
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