
Identification and Analysis of Business and
Software Services—A Consolidated Approach

Thomas Kohlborn, Axel Korthaus, Member, IEEE, Taizan Chan, and Michael Rosemann

Abstract—Although the benefits of service orientation are prevalent in literature, a review, analysis, and evaluation of the 30 existing

service analysis approaches presented in this paper have shown that a comprehensive approach to the identification and analysis of

both business and supporting software services is missing. Based on this evaluation of existing approaches and additional sources, we

close this gap by proposing an integrated, consolidated approach to business and software service analysis that combines and

extends the strengths of the examined methodologies.

Index Terms—System architectures, integration and modeling, software architectures.

Ç

1 INTRODUCTION

1.1 Motivation

DUE to new communication and delivery channels,
global competition, and deregulation of markets,

companies from all over the world are able to conduct
business with each other. However, these changes in an
organization’s environment do not only provide chances
and possibilities, but also exhibit several threats and risks
since organizations are confronted with an increased
number of competitors. Additionally, the demand for new
customized products has resulted in a shorter time to
market, which influences the design and execution of
business functions and processes [1].

To deal with changes and to enhance the agility and

responsiveness of an organization, recent ideas promote the

restructuring of organizations based on core competencies

[2], [1]. Since companies focusing on core competencies are

highly specialized, they need to collaborate with external

partners to deliver a complete product or service to the end

user. Thereby, a business network or ecosystem of

collaborating companies emerges, wherein each company

focuses on its core competency as well as on collaboration to

fulfill customer demand. To expose standardized endpoints

that can be used to leverage a partner’s offered operations

within the network, the concept of service orientation can be

applied [3].
Generally, a service can be seen as an abstract resource

that represents a capability [4] offered by the service

provider that performs some kind of action on behalf of a

service consumer at some time and place and through some
channel [5]. Service orientation on the business level enables
organizations to expose and offer operations as business

services to business partners in order to facilitate on-
demand collaboration opportunities. A business service is a

specific set of actions that are performed by an organization
[6]. Since the operations of an organization can be analyzed
on different granularity levels, business services can

represent these operations on different levels as well.
Thereby, they are aligned with the capabilities of the
organization in order to reflect the actual operations of the

company [7].
Such an on-demand business needs to leverage its

existent technology [1]. To support the agility of organiza-

tions in that respect, service orientation on the technical
level fosters the utilization of software services and enables
a close business and IT alignment that typically has been

proven to be beneficial for an organization [8], [9]. Software
services expose application functionalities that can be
reused and composed based on business needs. A software

service describes part of an application system which can be
consumed separately by several entities. Hence, a software

service supports the execution of a business service.
Software services have found their most promising

incarnation in the form of Web services as the technological
implementation of a service-oriented architecture (SOA)

[10]. While the concept of SOA is not new, no common
definition has evolved yet [11]. Most publications allocate

the SOA concept merely to the technical domain [12], [13],
[14]. Some authors, however, also emphasize the potential
of applying the concept analogously in the business domain

to refine business models [15], [16]. A definition that is
applicable on both the business and the technical level and
thus supports this holistic SOA view is the one provided by

the Organization for the Advancement of Structured
Information Standards (OASIS) in their SOA Reference

Model [17]:

SOA is a paradigm for organizing and utilizing distributed
capabilities that may be under the control of different ownership
domains.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009 1

. pp. T. Kohlborn, A. Korthaus, and M. Rosemann are with the Business
Process Management Group, Information Systems Cluster, Faculty of
Science and Technology, Queensland University of Technology, 126
Margaret Street, Brisbane QLD 4000 Australia.
E-mail: {t.kohlborn, axel.korthaus, m.rosemann}@qut.edu.au.

. T. Chan is with the School of Information Technology, Faculty of Science
and Technology, Queensland University of Technology, 2 George Street,
Brisbane QLD 4000 Australia. E-mail: t.chan@qut.edu.au.

Manuscript received 15 July 2008; revised 21 Jan. 2009; accepted 17 Feb.
2009; published online 26 Feb. 2009.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSC-2008-07-0064.
Digital Object Identifier no. 10.1109/TSC.2009.6.

1939-1374/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10893166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Thus, the concept of service orientation is applicable on
the business level as well as on the IT level and can
therefore be seen as a comprehensive approach for the
complete enterprise [18], [1].

1.2 Research Questions

In order to achieve the benefits of service orientation,
comprehensive and detailed approaches must be in place
that can be utilized by organizations to identify and analyze
services in early phases of service adoption. Thus, two main
research questions arise:

1. What are underlying concepts of relevant, extant
methods and approaches for identifying and analyz-
ing services in an organization?

2. If shortcomings exist, how can these different
concepts be consolidated, enhanced, and extended
to provide an integrated and comprehensive guide-
line for the seamless analysis and identification of
business and software services in an organization?

The first question addresses the need to identify a
comprehensive, relevant set of service analysis approaches
that needs to be analyzed in order to compare the relative
strengths and weaknesses of the individual approaches.
Based on the answer to the first question, the second
research question focuses on the compatibility of the
underlying concepts for service analysis associated with
each approach. Should the evaluation reveal any gaps or
shortcomings of the analyzed approaches, an additional
literature review will have to be conducted to identify
suitable concepts to enhance or extend the approaches.

The remainder of this paper is structured as follows: In
Section 2, we derive criteria for the comparison and
evaluation of existing approaches, justify the selection of
the sample, and present the results of the analysis.
Subsequently, we derive requirements for a consolidated
approach and unify various concepts from the existing
approaches. In Section 3, we present our integrated
approach to the derivation of both business and software
services, which is illustrated by an application example.
Section 4 summarizes and concludes the paper.

2 COMPARISON AND EVALUATION OF EXISTING

APPROACHES

2.1 Derivation of Evaluation Criteria

In order to be able to assess how far existing approaches
meet the general requirements stated in Section 1, we had to
derive corresponding evaluation criteria. A review of the
related literature published by [13], [19], [20] built the
foundation for this task.

SOA concept. To analyze whether both service concepts
(business and software services) are supported, we selected
the SOA concept as a criterion reflecting whether an
approach’s primary focus is on the derivation of business
services (BS), software services (SS), or both (BS/SS).

Delivery strategy for SOA. To address organization-
specific requirements (e.g., the need to leverage existing
legacy systems), different delivery strategies for a SOA are
conceivable. Hence, we need to analyze whether a
particular approach supports the top-down strategy (T),

where services are derived based on the analysis of business
requirements [21], the bottom-up strategy (B), which
focuses on the derivation of services based on an analysis
of legacy systems on an as-needed basis [22], or the meet-in-
the-middle strategy (M), which combines the other two
strategies [23]. The delivery strategy criterion was included
to reflect which strategy an approach recommends to
implement an SOA. To provide information about the
particular starting point and focus of an approach, we
included a textual comment in our analysis.

Lifecycle coverage. Approaches also differ with regard to
their coverage of the SOA life cycle. While some proposed
SOA development approaches aim at offering support for
the full SOA life cycle, other approaches are more focused
on a subset of the activities to be performed in the life of an
SOA. In our analysis, we use a trivalent scale (0, +, ++) with
the following semantics: 0 stands for methods that focus on
service identification and analysis only, while + represents
methods with a service analysis and design focus, and ++
finally marks more comprehensive approaches that include
phases like implementation, etc.

Degree of prescription. A service analysis method can be
rather prescriptive and define a rigid, heavy-weight process
with lots of details, or it can describe a more lightweight,
flexible, less structured process that is adaptable and allows
for an agile approach. In our analysis, we use a trivalent
scale (0, +, ++) with the following semantics: 0 stands for
methods that are very lightweight, while + represents
methods with a moderate degree of prescription, and ++
marks highly prescriptive approaches.

Accessibility and validity. To be useful, a service analysis
approach should not only be well documented, but the
documentation must also be accessible and the validity of
the approach should be made clear. The documentation
should provide many details, examples, ideas, case studies,
etc., to provide useful guidance in practice. Sometimes,
methodologies proposed by vendors or industry players are
proprietary. Typically, detailed knowledge about these
approaches cannot be easily accessed, whereas nonproprie-
tary approaches are openly available. Moreover, this
criterion captures whether an approach has been validated
or illustrated by presenting real case studies, whether it
uses fictitious examples only or even remains on a purely
theoretical level without any examples at all. In our
analysis, we used a three-valued tuple to describe the
documentation (textual comment), the availability (trivalent
scale with 0 standing for a proprietary, not openly available
method, + representing a method that is at least partially
documented for public use, e.g., in the form of papers about
single activities that constitute the method, and ++ denoting
a fully open method), and the validation, e.g., in the form of
industry case studies, etc. (textual comment).

2.2 Selection of the Sample

After having defined the criteria for the comparison of extant
approaches, we had to identify those prominent service
analysis methods that were the most appropriate candidates
for our analysis. We did not aim at a representative sample,
but rather at a comprehensive mix of predominant
approaches reflecting the broad spectrum of different
characteristics. To this end, we made sure to not only

2 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

include academic work, but also approaches developed by
the largest providers of packaged business applications such
as IBM, Microsoft, and SAP. We ensured that the sample
included both top-down and bottom-up approaches. An-
other requirement was that each approach to be included
explicitly referred to the concept of service orientation. The
sources of the methods are manifold, as they range from
journals (e.g., [24]), to conferences (e.g., [19]), to books (e.g.,
[21]), to white papers (e.g., [25]).

The final sample of analyzed extant approaches can be
found in the first column of Table 1, which also shows the
characteristics of each approach with regard to a subset of
the selected criteria. The ordering of the list of approaches
in Table 1 allows the visual identification of different classes
of approaches according to the underlying SOA concept
(BS, BS/SS, and SS), which are separated by thicker lines in
the table. For the category of approaches that are only
concerned with software services (SS), subclasses can be
identified depending on the delivery strategy for SOA (T,
T/M, M, M/B, or B) separated by dashed lines.

2.3 Method Comparison and Evaluation

The comparison of the 30 extant service engineering
methods as reflected in Table 1 was conducted indepen-
dently by two coders, whereby the second coder restricted
the analysis to a random control sample. The results of the
coding process of the control sample were consistent with
the results of the original coder. In the following, we
describe our observations that resulted from the analysis of
the 30 methods for each criterion used in the comparison
process.

SOA concept. SOAs containing primarily business ser-
vices are less prevalent than SOAs for IT infrastructure.
Jones [15], OASIS [29], and Sehmi and Schwegler [7]
propose approaches that do not directly apply to the
concept of a business service. Nonetheless, the underlying
concepts can be adopted for the identification of business
services. Flaxer and Nigam [27] and IBM [26] explicitly
define business services, but a detailed approach for the
identification of these services is missing. Kaabi et al. [30]
identify business services based on goal-modeling, which
can then be supported by software services. All other
approaches focus on the derivation of software services,
although the term “business service” is used to distinguish
between services that encapsulate business logic and
services that encapsulate application logic.

Delivery strategy for SOA. The delivery strategy for SOA is
partially dependent on the underlying SOA concept.
Approaches which address the analysis of business services
postulate a top-down strategy for the delivery of services.
Regarding the scope and depth of these approaches, none of
them provides a detailed description of how to include
existing (legacy) systems into the analysis. For example,
Sehmi and Schwegler [7] propose a pure top-down
approach that describes how a business model can be
implemented using software services. As their method has
been incorporated in Microsoft’s Motion Methodology [50],
all details are not openly available. The starting points for
the business service analysis vary widely. Jones [15] and
OASIS [29] postulate a method that does not necessarily rely
on any models or documentations, but on the collaborative

analysis of the business of an organization. IBM [26]
addresses business services as provisions of business

components, whereas Flaxer and Nigam [27] propose
analyzing business entities to identify business components

and business services subsequently. A bottom-up strategy
for business services could not be identified.

KOHLBORN ET AL.: IDENTIFICATION AND ANALYSIS OF BUSINESS AND SOFTWARE SERVICES—A CONSOLIDATED APPROACH 3

TABLE 1
Comparison of Service Analysis Approaches

Approaches addressing the derivation of software
services postulate one of the three described delivery
strategies. The top-down approach is supposed to derive
a high quality SOA that is built on well-designed services
and service compositions. However, depending on the size
of the company and on the scope of the SOA initiative, a
top-down strategy may consume significant resources, such
as money and time, without showing an immediate out-
come, since the upfront analysis has to be conducted before
actually deriving services ([21], [36]).

Contrarily, a pure bottom-up strategy to deliver software
services typically comprises activities that analyze existing
legacy systems in order to define fine-grained services that
can be linked to business processes and business require-
ments [22]. Hereby, one can distinguish between two types
of bottom-up analyses. Noninvasive legacy approaches
encompass methods that do not change the structure of
the legacy code ([48], [51]). They propose building wrappers
around the functionalities and components of the legacy
system, so that they can be used in a service-oriented
environment. Invasive legacy approaches aim at self-
contained software services that encapsulate the function-
alities provided by the legacy systems by restructuring the
respective legacy code ([46], [22], [47]).

An interesting point is that most approaches postulate a
meet-in-the middle strategy that takes into account business
requirements as well as existing legacy systems to combine
the advantages of both strategies. Thus, the advantages of a
high quality SOA have to be weighed against reality
constraints applied by the legacy systems. Arsanjani [44],
as well as Zimmermann et al. [40], describe what an
overarching approach could look like, but they fail to go
into detail, as their approaches are proprietary.

Lifecycle coverage. Regarding the lifecycle coverage, it is
obvious that the scopes of the methods vary widely. While
certain methods specifically focus on the analysis phase
(e.g., [19]), others also address the service design phase
(e.g., [13]) or even address the complete lifecycle (e.g., [21],
[24]). However, as a unified, standardized life cycle for
services or when SOA is not prevalent in literature, authors
addressing the life cycle of a service propose such a life
cycle in the course of their publication.

Degree of prescription. Some of the approaches do not
provide any structured guideline or process to derive
services. These approaches give general suggestions about
what to do, but do not provide information on how it should
be done (e.g., [40]). Thus, they can be used or must be used
in a flexible manner, as detailed application steps are
missing. Nonetheless, most of the analyzed approaches
provide some kind of procedural model to identify business
services or software services. The steps or phases for the
identification are very approach specific. For example,
Rahmani et al. [49] propose a Model-Driven Architecture
(MDA) approach that focuses on the derivation of three
specific models (three phases) to identify services. Jones [15],
on the other hand, proposes four steps within his identifica-
tion framework that can be used to identify services.

Accessibility and validity. There is a strong correlation
between the documentation of the method within the
respective publication and the application in practice.

Typically, if the method has been applied in practice by
conducting a case study, the case study will be described
within the paper. If the method has not been applied in
practice, typically just basic examples are presented.

2.4 Conclusion from the Evaluation of the Existing
Approaches

Although service orientation is affecting different levels
within an organization, no unified way of how to identify
and analyze services could be identified. Our analysis of
existing approaches that have been formulated by aca-
demics as well as by industry vendors showed that the
scope and depth of these approaches vary widely. For
reasons of scope, we cannot provide a detailed analysis and
description of the strengths and weaknesses of each
approach in this paper, but we refer the reader to [52] for
those details.

The most important insight that came out of our
evaluation was that none of the examined approaches is
comprehensive and integrated enough to cover both main
SOA concepts (business and software services) to an
adequate extent. Hence, we recognized an urgent need for
a consolidated approach that provides guidance on the
derivation of both business services and supporting soft-
ware services to achieve a close business and IT alignment.
This conclusion is supported by the literature, where the
gap of a unified, consolidated approach has been stated in a
number of publications [19], [13]. As a consequence of the
proliferation of the service idea on both the business and the
software level, there is now a demand for service engineer-
ing methodologies that cover both business and software
services and provide an integrated, holistic approach to
ensure business and IT alignment and agility. Service
engineering in general is still regarded as a research
challenge in the literature about current SOA research
roadmaps (e.g., [53], [54]).

Having addressed the first research question, we had to
propose a holistic approach that provides an organization
with a methodology to not only understand and document
its existing capabilities from a service perspective, but more
importantly, to identify potential new services that may be
provided on either or both the business and technical levels
in order to answer our second research question.

2.5 Requirements for the Consolidated Approach

For the adequate design of the consolidated approach, we
derived the following requirements from our analysis of the
existing approaches.

For the consolidated approach, we chose the (T) strategy
for the derivation of business services because none of the
analyzed approaches provides any insight about possible
ways to define business services in a bottom-up manner.
For the derivation of software services, we propose an (M)
strategy since most organizations will have existing
application systems in place that cannot be easily replaced
and need to be addressed by an SOA initiative [44].

None of the existing approaches directly addresses the
identification of business services. Thus, for the design of
the consolidated approach, their underlying concepts had to
be adapted and enhanced by drawing input from additional
related sources. An approach that details how to derive

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

software services based on business services is missing as
well. Consequently, the consolidated approach needs to
address this transition, e.g., by proposing process decom-
position as an ancillary tool that can provide the additional
information required to identify software services.

Regarding the identification process, the consolidated
approach is intended to provide a structured guideline for
organizations introducing service orientation. Thus, it will
be divided into two parts (for the derivation of business and
software services, respectively) with different phases and
activities. Both parts comprise a preparation phase, an
identification phase, and a detailing phase. Additionally, a
prioritization phase will be described as a fourth phase
during the derivation of business services to provide the
link between the two parts. The inputs and outputs for each
phase will be described as well to derive a detailed
procedural model.

In addition to the criteria shown in the table, we also
analyzed which types of services are described by the
analyzed approaches and which service design principles
they recommend. Since these aspects do not directly
influence the structure of the consolidated approach, but
are nevertheless important foundations for its development
with regard to content, we will address them in the following.

The analyzed approaches describe different types of
services based on different objectives. As mentioned in
Section 1, business services can exist on different granular-
ity levels. However, no classification scheme could be
identified from the analyzed approaches. Only the analysis
of additional sources, such as Bieberstein et al. [55], who
structure business services according to their strategic
importance and organizational ownership (e.g., group
services, business unit services, team services, etc.), pro-
vided adequate details to classify business services.

In the case of software services, two different types of
services could be identified. On the one hand, atomic services
provide certain functionalities themselves and do not
depend on other services. Composite services, on the other
hand, combine atomic services to offer aggregated and/or
extended functionalities.

We further classified atomic services into three types:
utility services, task services, and entity services. Utility
services are typically business-logic agnostic [25] and serve
to provide reusable, cross-cutting functionalities related to
processing data within legacy application environments
[21], [56], [37], [13]. Entity services represent a business-
centric service with a service boundary encompassing one
or more business related entities. They often create business
objects and ensure abidance by business rules and data
completeness [13], [12], [25], [56], [19]. A task service is
directly related to a business task of a process. It is modeled
for specific processes to meet immediate requirements of
the organization and therefore contains specific business
logic. Encapsulated in a task service, one may provide
centrally accessible functionality that is used consistently
throughout the organization, e.g., for complex calculations
that have been encapsulated in libraries and business
frameworks traditionally [21], [12], [25].

Composite services can be categorized into two classes:
logic-aggregation services and data-aggregation services. A

logic-aggregation service or process service acts as the parent
controller of entity, task, and utility services [19]. Thus, it
invokes their operations based on the underlying process,
which it represents [25], and controls and maintains the
state of the process for its clients. The process logic and
related business rules are transferred to the sphere of
control of a process service, embedded in a process
definition accessible to the process service [21]. Data

aggregation services compose certain operations of entity
services to expose their functionalities as a package, which
enhances data consistency [57].

The aspect of design principles refers to the way desired
characteristics of SOAs, such as loose coupling, are
reflected in an approach. Most of the approaches do not
elaborate on how desired service characteristics can be
achieved. The use of service design principles can guide
the service derivation process and ensure that the resulting
services will feature the corresponding service character-
istics [56]. We consolidated and identified nine design
principles, namely, contract orientation, abstraction, auton-
omy, coupling, statelessness, cohesion, discoverability,
reusability, and composability [52]. Although some of the
principles focus more on realization issues (e.g., contract
design, implementation, etc.), a subset of these principles
should be applied during analysis to ensure a sound
service design right from the beginning and to avoid
misalignments or errors pervading through to the service
implementation activities [23].

Service contract design is very important since the
agreement on a service contract means the establishment
of a dependency relationship between service consumer
and provider [58]. A service contract establishes the terms
of engagement as well as any semantic information the
service owner wishes to make public [56], such as a
description of the operations that are exposed to the service
environment [59], [12].

Autonomy refers to the level of independence of a service.
This means a purely autonomous service has full control
over its environment, which results in increased reliability
and predictability since external unpredictable influences
are minimized [56]. Thus, a service’s contract should not
overlap with any other contract and the underlying
realization or implementation of one service should reside
under the control of that service [36]. Service normalization
is another aspect that aims at designing the operations in a
nonredundant manner [60].

The concept behind the principle of coupling is applicable
on different elements of a service and an SOA in general
and refers to the level of dependency between two or more
elements. The observable type of coupling can be identified
as the interdependency of multiple services and service
compositions. As soon as one service calls an operation
provided by another service, the service is dependent on the
functionality offered by the other service’s operation and
the services are coupled. Services that are loosely coupled
have a high reusability potential and are easy to maintain.
Thus, the coupling between services should be minimized
[36], [19], [45], e.g., by optimizing the allocation of
operations to services.

KOHLBORN ET AL.: IDENTIFICATION AND ANALYSIS OF BUSINESS AND SOFTWARE SERVICES—A CONSOLIDATED APPROACH 5

The idea of service cohesion refers to the strength of
functional relatedness between operations in a service.
Papazoglou and van den Heuvel [45] propose three levels of
service cohesion, among which functional cohesion is the
most preferable. Other types of cohesion can be analyzed by
regarding the input and output parameters of an operation
or the sequence of operation invocations. The functional
relatedness can be interpreted as the interdependencies
between operations or resources [19], [58].

The principle of reusability has a straightforward under-
lying concept: to make the service useful for more than one
single purpose. Thus, services should be applicable in
different situations and under unforeseen circumstances
and be used by different service consumers [23], [19]. This
can be achieved by defining an agnostic functional context
and defining the encapsulated logic as generically as
possible, so that the service is not bound to one single
usage scenario. Furthermore, the service contract should
encompass generic and extensible operations, so that, for
example, they are not restricted to one specific type of input
parameter [56].

All those requirements and consolidated principles or
foundations were incorporated in the design of the
consolidated approach, which will be presented in detail
in the remainder of this paper.

3 THE CONSOLIDATED APPROACH

3.1 Overview

This section describes the consolidated approach for the
identification and analysis of both business and software
services as visualized in Fig. 1. It combines the strengths of
the analyzed approaches as well as extending and adopting
certain facets to provide a comprehensive procedural model
for service analysis. Business services will be derived that
can (partly) be supported by IT functionalities represented
by software services. The approach is subdivided into two
main parts, each with different phases.

To illustrate the consolidated approach, we will recur-
rently revert to a typical example of an organization seeking
to understand and improve its service orientation approach.
The example refers to Dash Inc., a manufacturing organiza-
tion specializing in manufacturing standardized car dash-
boards for major car manufacturers. It has also been
delivering customized products to private end-consumers
as well as to organizations that modify car interiors. One
year ago, the organization decided to engage in an SOA
initiative, and a project team was formed with the goal of
analyzing how the organization could benefit from service
orientation. The example details the different activities of
the project team applying the consolidated approach.

6 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

Fig. 1. Phases, activities, and inputs/outputs for the derivation of business and software services.

3.2 The Derivation of Business Services

The first part covers the identification and analysis of
business services by detailing, adapting, and consolidating
existing service analysis approaches that focus on the
business domain of an organization. This part will be
structured into four distinct phases, each comprising a
specific set of activities that may use the outputs of previous
phases as inputs. Refer to Fig. 1 for an overview of the
inputs, activities, and outputs for each phase.

3.2.1 The Preparation Phase

The preparation phase serves as the foundation for service
identification [19]. First, the SOA strategy will be defined to
set the scope and objectives of the following analysis efforts.
As a start, one has to conduct a business context analysis
[42]. The objective here is to find key areas of the business
context that have to be supported by the SOA initiative.
This provides the underlying basis for the identification of
business and IT imperatives which serve as the motivation
or driver for the SOA initiative to be documented in the
SOA strategy [25], [42]. The SOA strategy influences the
selection of related and adequate business artifacts that
serve as the foundation for the service analysis phase.
Executive support and sponsorship, which is crucial for the
SOA initiative, may also be built upon the business context
analysis and the specification of an SOA strategy [42].

Second, a business ontology providing a shared vocabu-
lary among the involved stakeholders should be estab-
lished. Since an SOA initiative may affect various parts of
an organization, a common vocabulary helps to avoid
misunderstandings between any involved parties and can
be an essential step toward the integration of the business
perspective and the technical perspective within an
organization [21].

Third, an information base for service analysis needs to
be established, i.e., the business documents that serve as the
foundation for the identification and analysis of business
and software services have to be compiled [21], [19], [13].
The business documents may comprise details about the
enterprise architecture, capabilities, organizational struc-
ture and responsibilities, the stakeholders, business pro-
cesses, and entities, and should be enhanced and validated
by interviews with senior and top management.

Example (Dash, Inc.). At Dash Inc., the team recognized
that their company was the market leader in manufac-
turing standardized and customized dashboards in the
Australian market and the business strategy addressed
the need to maintain this position and to enhance
customer interaction, especially in the area of customized
products. The identification of the business and IT
imperatives showed that the integration of customers
in the organization’s processes should especially be
focused on to enhance customer satisfaction. An SOA
strategy (with value drivers such as “improve business
agility,” “improve customer integration,” etc.) was
formulated based on these imperatives, and executive
support for the service analysis effort was established.
The team was able to access an existing ontology and
decided to extend this ontology throughout the analysis
phase. To establish their information base, the Dash Inc.

team collected multiple documents including enterprise
architecture models, business process models, organiza-
tional charts, entity models, and application documenta-
tion that described the existing application landscape.
Based on interviews, it turned out that no realignment of
the documents with the existing ontology was required.

3.2.2 The Identification Phase

Having built the foundation, the service identification phase

comprises activities that lead to the derivation of a set of
business services. As a starting point, business capabilities
are identified and analyzed. Moreover, a domain analysis, a
stakeholder analysis, and an analysis of the interactions and
entities further support the identification of business
services.

According to [61], a business capability is a particular
ability or capacity that a business may possess or exchange
to achieve a specific outcome. However, a capability
abstracts from how the desired outcome is actually achieved,
but rather describes the externally visible behavior and the
expected level of performance [7]. Thus, the complete
organization can be seen as a federation of capabilities that
interact with one another to achieve a valuable outcome for
a business network. Capabilities can be used to develop a
business model that is particularly stable against changes in
the external and internal environment of an organization.
The reason for this is that capabilities are not affected by
changes in the organizational structure of an organization,
or by changes in the flow of the underlying processes as
long as the purpose or outcome remains the same [61].

Different structured and unstructured approaches to the
identification of capabilities within an organization as well
as related approaches based on process classification
frameworks can be found in the literature (e.g., [62], [7],
[63]). Capabilities can be modeled on different granularity
levels to establish a hierarchy of capabilities until fine-
grained business capabilities can be identified. This could
be done, for example, by interviewing several senior
managers of an organization and using APQC’s Process
Classification Framework [63], or the capability decomposi-
tion framework published by [7], as a guideline for
capability identification. The required depth of the decom-
position depends on the business needs that can be
addressed by the SOA strategy. Business capabilities should
be described and detailed by certain attributes, such as
input/output parameters, owners, entities, etc. [7]. These
attributes inform the process of determining appropriate
boundaries of business services and provide an overview of
how parts of the contract need to be designed related to
service performance. A capability model also visualizes the
relationships between all the different capabilities of an
organization [64].

Having established different layers of business capabil-
ities, one has to identify the boundaries of business services
which encapsulate certain capabilities and expose them to
the service environment. To avoid the proliferation of
business services, often, some capabilities should be
grouped together to form a business service that provides
cohesive functionalities and is loosely coupled to other

KOHLBORN ET AL.: IDENTIFICATION AND ANALYSIS OF BUSINESS AND SOFTWARE SERVICES—A CONSOLIDATED APPROACH 7

business services. This can be achieved by defining service
domains.

A service domain can be described as a sphere of control
that contains a collection of tasks to achieve related goals
[65]. The domain decomposition approach proposes to
establish a domain model on different levels of granularity
that visualizes the interactions among the different domains
as well as the interactions external to the domains [15]. Each
level is derived by decomposing a service domain on the
previous level.

The first step involves the definition of the service
domain’s scope, asking what the boundary is of a service
domain within an organization that comprises certain
capabilities. The objective of service domain modeling is
to represent what the organization does and to place
boundaries between the domains [27], [16], [26], [15]. Thus,
services that will be provided by a particular domain are
owned and managed by this domain. This step should
closely be aligned with any governance activities that
address ownership concerns [66].

The next step focuses on the interaction between
different service consumers and service domains [15]. The
objective is to identify and understand the external
stakeholders of the organization [67]. After the identifica-
tion of service domains and actors, the reasons for the
interactions between the domains themselves and between
the domains and the actors have to be identified [29], [15].

The fourth step concentrates on the allocation of
capabilities to the identified service domains and their
interactions. The domain decomposition and the capability
decomposition are orthogonal to each other. Based on this
first level of the domain model, one may already allocate
capabilities to certain domains using certain heuristics and
indicators, e.g., design principles such as low coupling and
high cohesion [64]. Furthermore, one can use the attributes
annotated to the identified capabilities to analyze the
belonging to domains. The allocated capabilities must
support the identified interaction between the domains.

The last step involves the decision of which domain
should be decomposed further. Each step of the approach
has to be performed for each specific domain of the
developed diagram derived on the previous level [15].

Each service domain can be regarded as a provider of
one or more business services. Since each domain on level k
is decomposed separately, it is possible that one identifies
domains that are shared on level k+1. This leads to the

identification of business services that are reused under
different circumstances within the organization [15]. The
classification of business services can be made according to
the strategic relevance of one specific service [55]. By
analyzing the different actors and interactions, one can also
identify certain virtual services, which are not core to the
organization and do not belong to a direct domain [15].

Example Dash, Inc. Since Dash Inc. had not documen-
ted any capabilities before, the project team decided to
identify the capabilities of the organization by interviewing
senior managers and utilizing the process classification
framework that had been developed during past BPM
projects. Hereby, they identified capabilities based on the
main clusters of the process classification framework. The
first cluster encompassed all processes that were related to
the design and development of new products or services.
The second cluster grouped capabilities based on the
generation of demand and the third cluster grouped
capabilities together that addressed the delivery of pro-
ducts and services. Subsequently, the team annotated
details such as interactions between capabilities, attributes
of single capabilities, underlying entities, the existing
owner and interrelationships.

Four primary domains were identified that represented
the business of Dash Inc., namely finance, logistics,
manufacturing and sales. Furthermore, three general classes
of stakeholders were identified to be relevant for the service
analysis phase: customer, supplier and logistic companies.
The customers of the organization included end-consumers,
car manufacturers and car customizers. The execution of the
first three steps described above resulted in the following
domain model (see Fig. 2).

The mapping between capabilities and domains was
supported by using the template visualized in Fig. 3.

The capabilities were allocated to the respective service
domains. Additionally, potential provider-consumer rela-
tionships between domains and external stakeholders
were indicated.

Finally, the first three steps were applied again to
decompose the domains even further until fine-grained
service domains were identified. The capabilities that had
been allocated to the high-level domains were reallocated to
the finer-grained domains. The boundary for each business
service was drawn based on entity mapping, ownership
considerations and interaction analysis. Subsequently, each
service domain was responsible for one or more business

8 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

Fig. 2. Capability decomposition [15].
Fig. 3. Mapping of domains and capabilities.

services. The ownership considerations were closely
aligned with the governance structure of Dash, Inc.

3.2.3 The Detailing Phase

At this stage, capabilities, domains and business service
boundaries have been identified. The detailing phase
comprises activities concerned with the relationships and
interactions between business services. The input for this
phase includes the identified business services as well as a
set of relevant business artifacts. Each business service has
a set of associated resources (e.g., process models, contract,
owner, etc.) and exposes one or more operations to its
environment that can be utilized according to the business
service contract as part of the business service specifica-
tion. Each operation has two underlying models, namely,
the interaction model and the operation model, which
describe the behavior of the specific business service
operation [16], [6].

Business Service Resources. Each business service has an
owner who is responsible for the specific service. The owner
of that specific business service is related to the service
domains that have been identified in the previous phase. A
business service comprises one or more capabilities based
on ownership concerns, functions, related interactions and
entities. At this stage, the underlying processes of the
capabilities have to be identified. The value or output of one
capability can be based on one single process as well as an
interaction between different processes. Consequently, the
design of a business process across a business network or
within a single organization (e.g., order-to-cash process) can
be modeled as a choreography of interacting business
services that may be under different ownership domains.

Operation Model. The operation model of a business
service operation details how the specific operation is
executed. Hereby, the processes utilized by the business
service operation as well as invocations of operations of
other business services to achieve the desired goal stated in
the business service contract have to be addressed. This
model does not need to be published to the service
environment since it is not necessary for the service
consumer to understand how the specific outcome of a
service is realized [6]. The operation model orchestrates the
identified processes based on the functionality that should
be provided by a business service operation. An orchestra-
tion describes the behavior that a service provider performs
internally to realize a certain provided service. This may
include the cooperation with external business partners and
the interaction with other services, although the focus lays
on the fulfillment of one service operation [3].

Interaction Model. The interaction model as part of the
service contract is used to define the commitments that have
to be made by the service consumer and provider [6]. The
interaction model can be derived using service blueprints,
which are known from the area of service marketing [68].
The so-called “line of interaction,” which reveals the
division of activities between the organization and its
customer, is the main focus of the analysis. Services are
always invoked by a service consumer. The participation
can range from a one-time invocation of the service to a deep
integration of the service consumer into the service delivery
process of the service provider [68]. The organization has to

analyze what parts of the service can or should be managed
by the customer and how the exception handling mechan-
isms have to be defined. One solution to overcome the risks
associated with extending the line of interaction toward the
consumer is an extensive standardized description of the
service contract [69]. The interaction model is the explicit
way a business service defines how the collaboration will be
realized [3]. The interaction can be modeled as a process,
indicating that the interaction between the service provider
and consumer is purely behavioral. The interaction model
for a business service operation represents a choreography
that can be seen as the external view on a collaboration
between a service provider and its consumer to achieve a
certain goal through a sequence of commitments [21]. It
abstracts from any tasks that the service provider performs
internally.

By providing these models for all identified business
services, interaction and dependency relationships between
those services can be visualized as an output of this phase.

Example (Dash, Inc.). In the following, the coarse-grained
business service “Quote service” will be used to exemplify
the activities that needed to be conducted. This service
was owned and managed by the service domain “Quot-
ing” within Dash, Inc. and derived from the capability
“Manage quotes.” The “Quote service” was classified as a
business unit service within the group service “Sales.” The
owner of the sales service was the head of the sales
department. The “Quote service” had four underlying
processes as shown in Fig. 4. The “Quote service” exposed
one operation, namely, “Quote processing.”

The operation model for the “Quote processing” service
operation at Dash, Inc. utilized all four processes and
specified which business service had to be subsequently
invoked. If a query was received from a customer, it would
be entered into the system before the technical feasibility
was clarified. A feasible query would be analyzed regard-
ing its relation toward a standardized product, a variant of
a product, or a fully customized product. Based on this
differentiation, a quote was created and transmitted to the
customer. If the customer accepted the quote, the business
service “Order processing” would be invoked.

With regard to the interaction model, the first task for the
service consumer was to send a query with adequate

KOHLBORN ET AL.: IDENTIFICATION AND ANALYSIS OF BUSINESS AND SOFTWARE SERVICES—A CONSOLIDATED APPROACH 9

Fig. 4. Detailing the quote service [3].

information to the organization. The query could be sent via
e-mail or could be received by phone. Based on the SOA
strategy, the project team had already considered offering
this service via the Internet to provide another communica-
tion channel between the customer and the organization. If
a query was received, the organization would analyze the
query for its feasibility and notify the customer in case the
query was not feasible. If it was feasible, a quote would be
created. The second task of the service consumer was to
accept or decline the quote. Alternatively, the customer
could also propose changes to the quote.

After the elements of the business service had been
specified, the project team decided to postpone the detailed
specification of the service until potential supporting soft-
ware services were identified. The detailing of the business
service was delegated to the top management and service
owner since they provided the specific knowledge about the
details of the service, e.g., billing, provision, etc.

3.2.4 The Prioritization Phase

When all business services have been detailed and
analyzed, the prioritization phase proposes activities that
enable an organization to structure their services based on
specific measures and the value they deliver for the
organization. This phase is used as a link to the second
part, which is concerned with the derivation of software
services.

A value classification enables the organization to gain an
understanding of which business services contribute most
to the value of an organization and its competitive
advantage. This information is fundamental to make
sourcing and funding decisions. A value chain or business
network analysis may enable the organization to under-
stand its core critical functions as well as supporting
functions.

There are different methods available for performing
service value analysis. Jones [15], for example, proposes a
service classification matrix for ad hoc service classification
based on the value a service delivers. A more structured
approach is the Analytical Hierarchy Process (AHP), which
is based on the principle of decomposing a complex
problem into finer-grained problems that can be “solved”
more easily and explicitly takes into account both financial
and nonfinancial data [70]. Hafeez et al. [62] propose the
application of the AHP to determine the key capabilities of
an organization. Thus, this approach can easily be adapted
to classify business services. Although the AHP uses a
structured and formalized approach, one has to keep in
mind that it is purely subjective in nature as it relies on
judgments made by human decision-makers.

Example (Dash, Inc.). At Dash Inc., the project team
decided to conduct a value analysis based on the service
domains and their underlying capabilities utilizing AHP.
The operating profit, sales growth and return on capital
employed were chosen as financial measures. Customer
satisfaction, market share, and new product introduction
were chosen as nonfinancial measures. Two AHP models
were developed to derive the relative importance of the
financial and nonfinancial measures of the distinct
business capabilities. A pair-wise comparison between

the measures was conducted to identify the priorities of
the different measures. The outcome of the AHP is
visualized in Fig. 5.

Based on the outcome of the AHP, the project team
concluded that the service “Logistics” had a low
financial performance and a low nonfinancial perfor-
mance, whereas the sales service had the exact opposite
characteristics.

3.3 The Derivation of Software Services

The second part of the consolidated approach describes
how software services can be identified and analyzed that
support business services in order to achieve close
business and IT alignment. Similar to the first part of
the consolidated approach, this part will be structured
into distinct phases, each comprising specific activities.
Refer to Fig. 1 for an overview of the second part of the
consolidated approach.

3.3.1 The Preparation Phase

The prioritized business services and the SOA strategy will
be used as an input to define the scope for software service
enablement and to identify which area within the organiza-
tion might benefit the most from service enablement [42].
Each of the business services has at least one underlying
process that describes the activities that have to be
performed in order to deliver the value or outcome of the
respective business service. In order to provide a basis for
the identification of software services, the respective
process has to be decomposed and enriched by the
information that has been the outcome of an application
analysis [40]. Based on the process decomposition and the
application analysis, the process has to be analyzed to rate
the potential benefits of service enablement. Manual
processes or processes that run stable in isolation might
not be the best candidates for service enablement [31]. The
outcome of the preparation phase is a set of business
processes that is suitable to be service enabled and that is
decomposed to the most granular process steps with
annotated roles and application systems.

Example (Dash, Inc.). Based on the analysis of the value
contribution of the underlying business service capabil-
ities, Dash, Inc.’s project team selected the “Sales”
business service and its underlying services to define
the scope of the software service enablement. The focus

10 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

Fig. 5. The outcome of the AHP [62].

lay on finding software services to support the business
services in terms of customer integration and flexibility.
Data flow and invocation calls were traced throughout
the applications to identify interfaces and interdepen-
dencies. Based on the processes of the business service,
detailed process models were developed. (In the following,
the already described “Quote service” will be used as the
foundation to derive software services. Specifically, the
process “Create quote (variant)” will be used to
exemplify the further analysis steps.) After the scope,
the applications, and the processes were specified, a
process-to-application mapping was conducted to analyze
the suitability of the process and application for service-
enablement. Hereby, the applications that were asso-
ciated with the “Sales” business service were annotated
to the respective process models. Furthermore, the
project team identified which process steps were
executed manually, semi-automatically, or fully auto-
matically. As the next step, the project team conducted a
suitability analysis for the application and processes. The
application related to the “Quote service” had been
developed in-house. Hence, the source code was avail-
able, as well as the knowledge to customize the source
code if required, so that the project team decided that the
application was suitable to be service enabled.

3.3.2 The Identification Phase

The identification phase purely targets the derivation of
software services. To this end, two main sources of
information are needed. On the one hand, entity models
are needed to derive entity services related to the core
business objects of each business service. On the other hand,
detailed process models should be in place to be analyzed
for service enablement. This phase comprises the following
steps mainly based on [21], [19]:

1. Identify corresponding entity. Taking the output of the
previous phase as an input for service identification,
one should first identify entity services since they are
very generic and reusable in nature. They are not
tightly coupled to processes, meaning that the
provided interface of that service is not process-
specific [21]. To define the boundary of an entity
service, one has to analyze the actual context of the
service. This can be achieved by examining the
selected process models. Processes might be ana-
lyzed to define the entities that are processed and the
operations that are used for processing the entity.
Furthermore, entity models [21], class-diagrams [49],
or brainstorming techniques [42], in combination
with the analysis of the selected process, can point to
preliminary entity services.

2. Analyze visibility and takeover of process steps. Having
identified the main entity of the process and the
corresponding potential entity service, the “line of
interaction” and “line of visibility” of the process
have to be analyzed, taking into account the interac-
tion model (cf. [19], [68]). The “line of interaction”
specifies the parts or functions of the process that may
be taken over by the service consumer. Especially
with multiple channels facing the consumer, one has

to decide what process functions may reside in the
sphere of control of the service consumer. The “line of
visibility” defines how much of the process should be
visible for the stakeholders. The stakeholders may
comprise external business partners (e.g., customers,
suppliers, etc.) as well as internal partners (e.g.,
subsidiaries). By analyzing process functions based
on their visibility and interaction potential with
stakeholders, one can identify potential groupings
of functionality that must/should be explicitly
exposed to the organization’s stakeholders by means
of services [19].

3. Identify potential service operations. Once the process
itself has been decomposed into its most granular
process steps, one has to identify potential service
operations. Each process step can be regarded as a
potential service operation [23]. However, all pro-
cess steps that represent solely manual tasks or
process steps that are executed by a legacy system
which cannot be service enabled have to be excluded
from the potential logic that can be encompassed by
a service.

4. Extract process logic. This next step encompasses the
extraction of process logic from the process itself. One
may extract business rules, conditional logic, excep-
tional logic, and sequence logic [21]. Some process
logic may not actually be visualized by an individual
action or process step, depending on the modeling
conventions (e.g., modeling language) an organiza-
tion has used while deriving the process models.

5. Define logical context(s). The remaining process steps
should be grouped based on their logical context [21].
Thus, the identified context confines the service
boundary. Hereby, the principle of service cohesion
plays the most important role as operations should be
grouped together that are functionally related [45].
Depending on the scope of the service identification,
one may address reusability and define service
operations that have a high potential to be consumed
in different scenarios [56]. However, any added
operations should still relate to the logical boundary
of the service. The design principle of coupling can be
applied to identify sequential dependencies between
operations. Sequential operations, which are only
dependent in one way, may be combined inside a
service. One may also identify process steps that are
recurring within that process, which can be grouped
together into a single service. New services may be
created as well, depending on new logical contexts
that may be identified. The visibility and takeover
potential annotated to the process steps may provide
a guideline for the grouping of process steps and,
consequently, for the definition of task and entity
services. Marks and Bell [43] propose developing two
different services if the service invokers can invoke
the associated operations of a service at different
times and in different contexts (similar to [19]).
Furthermore, one can identify services that are purely
technology-related and business logic-agnostic.
Thus, these services can be classified as utility
services. At this stage, we have identified task, entity,
and utility services.

KOHLBORN ET AL.: IDENTIFICATION AND ANALYSIS OF BUSINESS AND SOFTWARE SERVICES—A CONSOLIDATED APPROACH 11

6. Define compositions. In order to identify the potential
for composition and consolidation of services and to
evaluate the appropriateness of service boundaries,
usage scenarios for the service have to be developed
[21]. Furthermore, one can discover in which
situation logic is missing and can shift the related
business rules to task services or process services.
Consequently, new services may be created. The
main objective is to specify process services that
compose the task, entity, and utility services related
to the underlying process. Based on the visibility and
interaction analysis, one may create process services
that are exposed to a specific set of stakeholders [19].

Example (Dash, Inc.). Dash, Inc.’s project team identified

the “quote” entity to be relevant for the business service

by analyzing the process model. Based on the targeted

reusability considerations, the “quote” entity service

provided the CRUD-operations since these operations

were most often utilized by other software services in

different scenarios.
The results of the analysis of Dash, Inc.’s process

“Create quote” is visualized in Fig. 6.
Since all process steps within the “Create quote”

process were supported or executed by IT, all steps were
regarded as potential service operations. The project
team identified the parallel split after the process step
“Enter quote data” and documented this issue for
further analysis regarding the composition of services.
Since all steps focused on the manipulation of the
“quote” entity, the first draft of the logical boundary of
the service, based on regarding the service cohesion
principle, encompassed all process steps. Based on the

principle of reusability, the project team decided to
model the operations “Calculate price” and “Calculate
delivery date” as two separate services. That way, both
services could be utilized independently without invok-
ing the complete entity service. Furthermore, both
services were related to different underlying documents.
For example, the “Calculate price” service was regarded
as a task service that utilized different documents about
prices based on the specific customer. Since the
functionality of the entity service would not change if
the customer changed, the operations “Calculate price”
and “Calculate delivery date” were outsourced to two
separate task services. The “Calculate price” operation
was grouped together with the “Modify price” operation
to form the “Price” task service. Similarly, the “Calculate
delivery date” operation and the “Modify delivery date”
were factored into the “Delivery date” service. The
“Copy quote” operation comprised purely business-
agnostic logic. Hence, the project team classified this
operation as a separate utility service.

The project team focused on a close business and IT
alignment. Thus, the process was represented by one
process service that composed the entity and utility
services as well as the task services. Furthermore, the
process service invoked the operations of the composed
services based on the process flow. The interaction and
takeover analysis of the process steps identified that the
operations “Enter quote data,” “Calculate price,” and
“Calculate delivery date” were also executable by the
customer. The project team decided to encapsulate these
operations in a second process service that could be
utilized by customers independently of any sales
representatives or account managers. Thus, six services
were identified.

3.3.3 The Detailing Phase

After the services have been identified, one has to verify
that already existing services do not overlap with the newly
discovered ones. If the service or service operation already
exists, one has to decide if the existing service can be
extended or adapted. Services may already be in place if
processes have recurrent process steps. Thus, by analyzing
different processes in terms of communalities, one can
abstract from certain process steps and group them together
to form a service which can be shared by these processes.

New services should be detailed further in order to
identify additional overlaps with already existing services
and to make the services more reusable and autonomous.
Since a service can encompass one or more operations, one
can identify the input and output parameters in order to
minimize the coupling between different operations and the
underlying systems [19], [13]. Feuerlicht [60] proposes an
approach for service interface design that builds on the
principles of cohesiveness and coupling. This may lead to the
identification of operations that overlap within or between
services, which leads to the specification of new services or
operations. Hence, the newly identified services have to be
verified to ensure that these services do not already exist.

The identified operations and services should be
mapped to the existing application layer in order to identify
missing functionalities or the need for additional services
(gap analysis) [23]. For each operation candidate within the

12 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

Fig. 6. Analyzing the “Create quote” process [19].

identified software service, one has to analyze the under-
lying processing requirements and the application logic that
needs to be executed in order to make decisions about the
sourcing of the specific logic. One may also break down the
application logic requirements into smaller steps in order to
identify new operation candidates within a proposed
service [21]. However, it may be possible that all the
operation candidates identified in the previous phase are
supported by the application portfolio and do not need to
be revised. Finally, one needs to analyze the original service
compositions and determine whether any changes need to
be made concerning the inclusion of new services or
operations [21].

The last step of the service analysis phase includes the
exposure of the service candidates in a service repository.
This will be used during further analysis and identification
efforts to prevent a proliferation of services with the same
functionalities. For each service that has been identified and
verified, service-specific details have to be documented [13].
These details comprise the service identifier (e.g., the name)
including a service description, the service type, input and
output parameters, and the service consumers [19].

Example (Dash, Inc.). After the services were identified,
Dash, Inc.’s project team verified that the services did not
already exist. Since the project team split up into different
groups to identify services more efficiently, one team had
already fed their identified services into the service
repository. The entity service had already been specified
and could be reused. As the principle of targeted
reusability had been taken into account, the needed
operations were already defined. The other services were
new and had to be detailed further. To identify further
reusability potential, the different operations were de-
tailed regarding their input and output parameters. The
project team decided that the utility service “Copy quote”
should be made more reusable by extending the allowed
parameters. Thus, the service should not only copy quotes,
but different data types. Table 2 and Table 3 were created.

After the operations were detailed, the application
functionalities were mapped on the identified service
operations. By utilizing the list of the application’s
functionalities and components, the project team con-
cluded that no changes to the application functionality
had to be made other than providing an interface for the
potential services. However, this was not in focus of the

project team. Finally, all the newly identified and
detailed services were fed into the service repository to
provide other teams and projects with the possibility to
reuse already identified services. Hence, the first draft of
an SOA for Dash, Inc. was established. Internal service
domains were identified as well as external stakeholders.
These actors utilized the business services that had been
identified as well. The business services were owned and
managed by their respective service domains. The
processes underlying each business service were used
to identify process services that provided IT support for
certain operations that were exposed by their related
business service. The process services in turn composed
finer-grained tasks, entity and utility services. Their
functionalities were mapped on the IT systems to
identify reengineering requirements. Further projects
were founded to analyze the first draft of the SOA
regarding its benefits for Dash, Inc. in more detail.

4 CONCLUSIONS AND FUTURE WORK

In this paper, the results of a comprehensive analysis of 30
extant service identification and analysis approaches were
used to propose a structured, consolidated approach that
combines their relative strengths and suggests enhancements
and extensions based on the identified shortcomings of the
extant approaches. The paper pointed out how software
services can be used to support business services to achieve
close business and IT alignment. Additionally, the presented
approach provides an organization with a methodology to
not only understand and document its existing capabilities
from a service perspective, but more importantly, to identify
potential new services that may be provided.

Although the consolidated approach combines meth-
odologies that have successfully been applied in practice, its
applicability in different contexts of private and public
sector organizations needs to be validated. The first results
of a case study at an Australian Statutory Authority seem
promising and are currently leading to refinements regard-
ing the operationalization of the consolidated approach. We
have also started another case study at an Australian
government agency to gain further valuable insights
regarding the validity of the proposed approach, particu-
larly in the business service context. Finally, we are
investigating the application of our approach at one of
Australia’s leaders in banking, insurance, investment, and

KOHLBORN ET AL.: IDENTIFICATION AND ANALYSIS OF BUSINESS AND SOFTWARE SERVICES—A CONSOLIDATED APPROACH 13

TABLE 2
Detailing of Task, Entity, and Utility Services [19]

TABLE 3
Detailing of Process Services [19]

superannuation. We work with the insurance division of
that company to apply parts of the methodology in the
context of the reorganization and service-oriented imple-
mentation of a motor claims business process.

In addition to making refinements based on the empiri-
cal insights gained, we plan to extend our approach by
putting an emphasis on the consideration of important
aspects that have not been prominently featured in the
current version of our approach. This includes, for example,
the aspect of designing services to enable the establishment
of business performance models that will measure perfor-
mance based on the enactment of these designed Web
services within the SOA. Increased visibility into business
processes and business data has been characterized as an
often overlooked benefit of SOA-based approaches [71]. By
incorporating adequate activities and guidelines into our
methodology to enable organizations to come up with
business performance models and plan about things like
Business Activity Monitoring and event processing right
from the beginning, we aim to support organizations in
taking advantage of this opportunity from the outset to gain
greater business value from their SOA initiatives.

ACKNOWLEDGMENTS

Parts of this research have been funded by a research
project within the Australian Research Council (ARC)
Linkage Schema (grant code LP0669244), including finan-
cial support from SAP Research and the Queensland
Government. The authors would also like to thank Marlon
Dumas for being the initiator of this research and providing
valuable input.

REFERENCES

[1] L. Cherbakov, G. Galambos, R. Harishankar, S. Kalyana, and G.
Rackham, “Impact of Service Orientation at the Business Level,”
IBM Systems J., vol. 44, no. 4, pp. 653-668, 2005.

[2] J. Hagel III and M. Singer, “Unbundling the Corporation,” Harvard
Business Rev., vol. 77, no. 2, pp. 133-141, 1999.

[3] J.L. C. Sanz, N. Nayak, and V. Becker, “Business Services as a New
Operational Model for Enterprises and Ecosystems,” Proc. Eighth
IEEE Int’l Conf. E-Commerce Technology and Third IEEE Int’l Conf.
Enterprise Computing, E-Commerce, and E-Services (CEC-EEE ’06),
p. 61, 2006.

[4] W3C, “Web Services Glossary,” http://www.w3.org/TR/ws-
gloss, 2004.

[5] M. Dumas, J. O’Sullivan, M. Heravizadeh, D. Edmond, and A.T.
Hofstede, “Towards a Semantic Framework for Service Descrip-
tion,” Proc. IFIP TC2/WG2.6 Ninth Working Conf. Database
Semantics: Semantic Issues in E-Commerce Systems, 2001.

[6] J. Sanz, N. Nayak, and V. Becker, “Business Services as a
Modeling Approach for Smart Business Networks,” Technical
Report RJ10381 (A0606-001), IBM Research Division Almaden
Research Center, 2006.

[7] A. Sehmi and B. Schwegler, “Service-Oriented Modeling for
Connected Systems—Part 1,” The Architecture J., vol. 7, pp. 33-41,
2006.

[8] P.P. Tallon and K.L. Kraemer, “Investigating the Relationship
between Strategic Alignment and IT Business Value: The
Discovery of a Paradox,” Creating Business Value with Information
Technology: Challenges and Solutions, N. Shin, ed., pp. 1-22, Idea
Group Publishing, 2002.

[9] J.C. Henderson and N. Venkatraman, “Strategic Alignment:
Leveraging Information Technology for Transforming Organiza-
tions,” IBM Systems J., vol. 32, no. 1, pp. 4-16, 1993.

[10] G. Alonso, Web Services: Concepts, Architectures, and Applications.
Springer, 2004.

[11] M.W. A. Steen, P. Strating, M.M. Lankhorst, H.W.L. ter Doest, and
M.E. Iacob, “Service-Oriented Enterprise Architecture,” Service-
Oriented Software System Engineering: Challenges and Practices,
Z. Stojanovic and A. Dahanayake, eds. pp. 132-154, Idea Group
Publishing, 2005.

[12] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA. Service-
Oriented Architecture Best Practices, fifth ed. Prentice Hall, 2006.

[13] F. Kohlmann and R. Alt, “Business-Driven Service Modelling—A
Methodological Approach from the Finance Industry,” Proc. First
Int’l Working Conf. Business Process and Services Computing (BPSC
’07), pp. 180-193, 2007.

[14] C. Legner and R. Heutschi, “SOA Adoption in Practice-Findings
from Early SOA Implementations,” Proc. 15th European Conf.
Information Systems (ECIS ’07), pp. 1643-1654 2007.

[15] S. Jones, Enterprise SOA Adoption Strategies. Using SOA to Deliver IT
to the Business. C4Media, 2006.

[16] N. Nayak, A. Nigam, J. Sanz, D. Marston, and D. Flaxer,
“Concepts for Service-Oriented Business Thinking,” Proc. IEEE
Int’l Conf. Services Computing (SCC ’06), pp. 357-364, 2006.

[17] OASIS “Reference Model for Service Oriented Architecture 1.0,”
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm. pdf, 2006.

[18] C. Schroth, “The Service-Oriented Enterprise,” J. Enterprise
Architecture, vol. 3, no. 4, pp. 73-80, 2007.

[19] K. Klose, R. Knackstedt, and D. Beverungen, “Identification of
Services—A Stakeholder-Based Approach to SOA Development
and Its Application in the Area of Production Planning,” Proc. 15th
European Conf. Information Systems (ECIS ’07), pp. 1802-1814, 2007.

[20] E. Ramollari, D. Dranidis, and A. Simons, “A Survey of Service
Oriented Development Methodologies,” Proc. Second European
Young Researchers Workshop on Service Oriented Computing, 2007.

[21] T. Erl, Service-Oriented Architecture. Concepts, Technology, and
Design, fourth ed. Prentice Hall, 2005.

[22] H.M. Sneed, “Integrating Legacy Software into a Service Oriented
Architecture,” Proc. Conf. Software Maintenance and Reengineering
(CSMR ’06), pp. 3-14, 2006.

[23] S. Inaganti and G.K. Behara, “Service Identification: BPM and
SOA Handshake,” BPTrends, vol. 3, pp. 1-12, 2007.

[24] M.P. Papazoglou and W.-J. van den Heuvel, “Business Process
Development Lifecycle Methodology: Bridging Together the
World of Business Processes and Web Services,” http://infolab.
uvt.nl/pub/papazogloump-2006-89.pdf, 2006.

[25] SAP, “Enterprise Service Design Guide,” http://www.sap.com/
platform/netweaver/pdf/BWP_ES_Design_Guide. pdf, 2005.

[26] IBM, “Component Business Models,”http://www-935.ibm.com/
services/us/imc/pdf/g510-6163-component-business-models.
pdf, 2005.

[27] D. Flaxer and A. Nigam, “Realizing Business Components,
Business Operations and Business Services,” Proc. IEEE Intl Conf.
E-Commerce Technology for Dynamic E-Business (CEC-EAST ’04),
pp. 328-332, 2004.

[28] A. Sehmi and B. Schwegler, “Service-Oriented Modeling for
Connected Systems—Part 2,” The Architecture J., vol. 8, pp. 35-39,
2006.

[29] OASIS, “SOA Blueprints,” http://www.oasis-open.org/
committees/download.php/15965/05-12-00000.001.doc, 2005.

[30] R.S. Kaabi, C. Souveyet, and C. Rolland, “Eliciting Service
Composition in a Goal Driven Manner,” Proc. Second Int’l Conf.
Service Oriented Computing (ICSOC ’04), pp. 308-315, 2004.

[31] J.-H. Sewing, M. Rosemann, and M. Dumas, “Process-Oriented
Assessment of Web Services,” Intl J. E-Business Research, vol. 2, no.
1, pp. 19-44, 2006.

[32] M. Bell, Service-Oriented Modeling. Service Analysis, Design and
Architecture. John Wiley & Sons, 2008.

[33] D. Adamopoulos, G. Pavlou, and C. Papandreou, “Advanced
Service Creation Using Distributed Object Technology,” IEEE
Comm. Magazine, vol. 40, no. 3, pp. 146-154, Mar. 2002.

[34] Y. Kim and K.-G. Doh, “The Service Modeling Process Based on
Use Case Refactoring,” Proc. 10th Int’l Conf. Business Information
Systems (BIS ’07), pp. 108-120, 2007.

[35] Sun, “SOA RQ Methodology. A Pragmatic Approach,” http://
www.sun.com/products/soa/soa_methodology.pdf, 2006.

[36] B. Gold-Bernstein and W. Ruh, Enterprise Integration: The Essential
Guide to Integration Solutions. Addison Wesley Longman, 2004.

[37] A. Erradi, N.N. Kulkarni, and P. Maheshwari, “Service Design
Process for Reusable Services: Financial Services Case Study,”
Proc. Fifth Int’l Conf. Service-Oriented Computing (ICSOC ’07),
pp. 606-617, 2007.

14 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 2, NO. 1, JANUARY-MARCH 2009

[38] D. Quartel, R. Dijkman, and M. van Sinderen, “Methodological
Support for Service-Oriented Design with ISDL,” Proc. Second Int’l
Conf. Service Oriented Computing (ICSOC ’04), pp. 1-10, 2004.

[39] P. Allen, “The Service Oriented Process,” http://www.cbdiforum.
com/secure/interact/2007-02/service_oriented_process.php,
2007.

[40] O. Zimmermann, P. Krogdahl, and C. Gee, “Elements of Service-
Oriented Analysis and Design. An Interdisciplinary Modeling
Approach for SOA Projects,” http://www-128.ibm.com/
developerworks/webservices/library/ws-soad1, 2004.

[41] Z. Stojanovic, A. Dahanayake, and H. Sol, “Modeling and Design
of Service-Oriented Architecture,” Proc. Int’l Conf. Systems, Man,
and Cybernetics (SMC ’04), vol. 5, pp. 4147-4152, 2004.

[42] E.A. Marks and M. Bell, Service-Oriented Architecture. A Planning
and Implementation Guide for Business and Technology. John Wiley &
Sons, 2006.

[43] S.H. Chang and S.D. Kim, “A Systematic Approach to Service-
Oriented Analysis and Design,” Proc. Eighth Int’l Conf. Product-
Focused Software Process Improvement (PROFES ’07), pp. 374-388,
2007.

[44] A. Arsanjani, “Service-Oriented Modeling and Architecture. How
to Identify, Specify, and Realize Services for Your SOA,” http://
www.ibm.com/developerworks/library/ws-soa-design1, 2004.

[45] M.P. Papazoglou and W.-J. van den Heuvel, “Service-Oriented
Design and Development Methodology,” Int’l J. Web Eng. and
Technology (IJWET), vol. 2, no. 4, pp. 412-442, 2006.

[46] F. Chen, S. Li, and W.C. -C. Chu, “Feature Analysis for Service-
Oriented Reengineering,” Proc. 12th Asia-Pacific Software Eng. Conf.
(APSEC ’05), pp. 201-208, 2005.

[47] Z. Zhang, R. Liu, and H. Yang, “Service Identification and
Packaging in Service Oriented Reengineering,” Proc. 17th Int’l
Conf. Software Eng. and Knowledge Eng. (SEKE ’05), pp. 620-625,
2005.

[48] E. Nadhan, “Seven Steps to a Service-Oriented Evolution,”
Business Integration J., vol. 1, pp. 41-44, 2004.

[49] A.T. Rahmani, V. Rafe, S. Sedighian, and A. Abbaspour, “An
MDA-Based Modeling and Design of Service Oriented Architec-
ture,” Proc. Sixth Int’l Conf. Computational Science (Part 3) (ICCS ’06),
pp. 578-585, 2006.

[50] R. Merrifield and J. Tobey, “Motion Lite: A Rapid Application of
the Business Architecture Techniques Used by Microsoft Motion,”
http://msdn2.microsoft.com/en-us/library/bb736727.aspx, 2006.

[51] W. Al-Belushi and Y. Baghdadi, “An Approach to Wrap Legacy
Applications into Web Services,” Proc. Int’l Conf. Service Systems
and Service Management (ICSSSM ’07), pp. 1-6, June 2007.

[52] T. Kohlborn, “A Consolidated Approach for Service Analyis,”
master’s thesis, WWU Münster, http://eprints.qut.edu.au/
archive/00013682, 2008.

[53] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-Oriented Computing: State of the Art and Research
Challenges,” Computer, vol. 40, no. 11, pp. 38-45, 2007.

[54] K. Kontogiannis, G.A. Lewis, D.B. Smith, M. Litoiu, H. Muller, S.
Schuster, and E. Stroulia, “The Landscape of Service-Oriented
Systems: A Research Perspective,” Proc. Int’l Workshop Systems
Development in SOA Environments (SDSOA ’07), p. 1, 2007.

[55] N. Bieberstein, S. Bose, L. Walker, and A. Lynch, “Impact of
Service-Oriented Architecture on Enterprise Systems, Organiza-
tional Structures, and Individuals,” IBM Systems J., vol. 44, no. 4,
pp. 691-708, 2005.

[56] T. Erl, SOA: Principles of Service Design. Prentice Hall, 2007.

[57] A. Minhas and F. Vogt, “Service Orientation for a Dynamic
Enterprise,” Proc. Int’l Conf. Logistics and Supply Chain Management
(ILSCM ’06), pp. 1-7, 2006.

[58] C. Legner and T. Vogel, “Design Principles for B2B Services—An
Evaluation of Two Alternative Service Designs,” Proc. IEEE Intl
Conf. Services Computing (SCC ’07), pp. 372-379, 2007.

[59] J. O’Sullivan, D. Edmond, and A.T. Hofstede, “What’s in a
Service?” Distributed Parallel Databases, vol. 12, nos. 2-3, pp. 117-
133, 2002.

[60] G. Feuerlicht, “Design of Service Interfaces for e-Business
Applications Using Data Normalization Techniques,” Information
Systems and E-Business Management, vol. 3, no. 4, pp. 363-376, 2005.

[61] U. Homann, “A Business-Oriented Foundation for Service Orienta-
tion,” http://msdn2.microsoft.com/en-us/library/aa479368.
aspx, 2006.

[62] K. Hafeez, Y.B. Zhang, and N. Malak, “Determining Key
Capabilities of a Firm Using Analytic Hierarchy Process,” Int’l J.
Production Economics, vol. 76, no. 1, pp. 39-51, 2002.

[63] APQC, “Process Classification Framework v4.0.0,” http://www.
apqc.org/pcf, 2006.

[64] U. Homann and J. Tobey, “From Capabilities to Services: Moving
from a Business Architecture to an IT Implementation,” http://
msdn2.microsoft.com/en-us/library/aa479075.aspx, 2006.

[65] S. Jones, “Toward an Acceptable Definition of Service,” IEEE
Software, vol. 22, no. 3, pp. 87-93, 2005.

[66] P. Malinverno, “Service-Oriented Architecture Craves Govern-
ance,” Technical Report G00135396, Gartner Research, 2006.

[67] T. Donaldson and L. Preston, “The Stakeholder Theory of the
Corporation: Concepts, Evidence, and Implications,” The Academy
of Management Rev., vol. 20, no. 1, pp. 65-91, 1995.

[68] C. Lovelock and J. Wirtz, Service Marketing: People, Technology,
Strategy, fifth ed. Prentice Hall, 2004.

[69] S. Fließ and M. Kleinaltenkamp, “Blueprinting the Service
Company. Managing Service Processes Efficiently,” J. Business
Research, vol. 57, no. 4, pp. 392-404, 2004.

[70] T. Saaty, Decision Making for Leaders. The Analytical Hierarchy
Process for Decisions in a Complex World. RWS Publications, 1990.

[71] M. Pezzini, “Findings: Greater Business Process Insight Is an
Unexpected Benefit of SOA,” Technical Report G00153427,
Gartner Research, 2007.

Thomas Kohlborn received the MS degree in
information systems at the University of Mün-
ster, Germany, in 2008. The major subjects he
studied were information systems, business
studies, and controlling. He wrote his Master’s
thesis at the Queensland University of Technol-
ogy in cooperation with SAP Research Brisbane
and the Queensland Government, Department
of Public Works. Currently, he is enrolled at the
Queensland University of Technology as a PhD

candidate working on service analysis, design, and governance.

Axel Korthaus received the MS degree in
information systems from the University of Mann-
heim, Germany, where he also received the PhD
degree in 2001 and worked as a postdoctoral
lecturer and researcher until 2008. He currently
works as a postdoctoral research fellow at the
Queensland University of Technology and man-
ages a project about service ecosystems, which
involves SAP Research Brisbane and the
Queensland Government, Department of Public

Works, as partners. His main areas of interest include service-oriented
architectures and software engineering. He is a member of the IEEE and
the IEEE Computer Society.

Taizan Chan received the PhD degree from the
National University of Singapore in 1998. He is
currently a senior lecturer in the Faculty of
Information Technology at the Queensland Uni-
versity of Technology. His research interests
include economics of systems management, the
impact and value of IT, and enterprise systems
management. He is the author/coauthor of over
30 refereed publications in international journals.
He was a visiting senior fellow in the Wharton

School of Business, University of Pennsylvania, in 1995 and 2001, and a
visiting scholar in the Haas School of Business, University of California,
Berkley, in 2004.

Michael Rosemann received the MBA degree
in 1992 and the PhD degree in 1995 from the
University of Münster, Germany. He is a profes-
sor of information systems and a co-leader of the
Business Process Management Group at the
Queensland University of Technology, Brisbane,
Australia. He is the author/editor of six books,
more than 140 refereed papers, and an editorial
board member of seven international journals.

KOHLBORN ET AL.: IDENTIFICATION AND ANALYSIS OF BUSINESS AND SOFTWARE SERVICES—A CONSOLIDATED APPROACH 15

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

