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Fig.1. Map of the former uranium mine in Mecsek Mountains, Hungary with 
indication of sampling points. 
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Andersonite Na2CaUO2(CO3)3·5H2O 

500 1000 1500 2000

R
am

an
 s

ca
tte

rin
g 

(a
.u

.)

wavenumber (cm-1)

1092

1080743
224

570351

833

1370
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Fig.2. Secondary uranium minerals collected in Hungary (the details are given in 
the text). 

Zippeite K4(UO2)6(SO4)3(OH)10·4H2O 
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Na-zippeite Na(UO2)2(SO4)(OH)3·4H2O 
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Fig.3. SEM and optical image of Na-zippeite particle measured with two stand-alone 
instruments. The optical image is rotated upside down. The adequate spectra 
(SEM/EDX - left and MRS – right) are presented below the images. 

Magnification: 500x 
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Magnification: 500x 

Fig.4. SEM and optical image of a U-rich particle recorded with two stand-alone 
instruments. The optical image is rotated upside down. The adequate spectra 
(SEM/EDX - left and MRS – right) are presented below the images. 
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Fig.5. SEM/EDX spectrum (left) and MRS spectrum (right) of three particles 
containing U(VI) species, probably UO3. The Raman spectra are kept in their 
original form, except the last plot (background subtracted).  
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ABSTRACT 

Samples of the secondary uranium minerals collected in the abandoned uranium 

mine at Pecs (Hungary) were investigated by two micro-techniques: scanning electron 

microscopy (SEM/EDX) and micro-Raman spectroscopy (MRS). They were applied to 

locate U-rich particles and identify the chemical form and oxidation state of the uranium 

compounds. The most abundant mineral was a K and/or Na uranyl sulphate (zippeite 

group). U(VI) was also present in the form of a trioxide; evidently in much lower 

content.than sulphate. Few particles with U3O8 and uraninite (primary mineral exploited 

formerly in this mine) were also detected. This research has shown the successful 

application of micro-Raman spectroscopy for the identification of uranyl mineral 

species on the level of individual particles.   

 

                                                 
* Corresponding author; email: elzbieta.stefaniak@ua.ac.be; tel. +3238202381; fax +3238202376. 
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1. INTRODUCTION 

 Uranium minerals have drawn the attention of scientists due to their hazardous 

nature and their commercial importance. Among the different analytical techniques 

involved in the study of uranium containing minerals, micro-Raman spectroscopy has 

been intensively applied due to the ease of operation and fast assessment of their 

molecular characteristics. Among the uranium oxides, thermodynamically the most 

stable forms are UO2, U3O8 and UO3, although UO2 may go through alteration process 

with the increase of U oxidation state [1]. In an aqueous environment exposed to air, the 

most stable species of U is uranyl ion UO2
2+ [2]. Its structure is nearly linear and while 

exposed to a laser beam, it gives a strong and sharp vibrational band due to the 

symmetric O-U-O stretch, which is usually present in the range 700-900 cm-1 of the 

Raman spectrum. The exact wavenumber depends on the ligands attached [3]. Among 

the uranyl minerals, a vast majority include carbonates, silicates, phosphates/arsenates 

and sulphates. Beside the uranyl ion and an oxy-acidic residue, the molecular structure 

involves also a simple one- or two-valence cation.  

 

There are over 200 uranium minerals discovered and classified to date [4]. They 

are divided mainly into “primary” and “secondary” minerals referring to their origin and 

occurrence. Primary uranium minerals (pitchblende or uraninite) are found most 

commonly in veins or pegmatites and also in flat-lying deposits in sedimentary rocks 

[5]. When exposed to weathering at or near the surface, the primary uranium minerals 

alter to form the bright-colored secondary uranium minerals. These are mainly uranyl 

phosphates, carbonates, sulfates, hydrous-oxides and silicates, produced as a result of 

complete oxidation of the primary minerals. They may be formed by ground-water 

solutions that have dissolved uranium from a broad area of slightly mineralized rocks 

and concentrated by precipitation in veins and fracture zones [5]. Most likely these 

minerals can be collected in the area of uranium mines, particularly where enrichment 

procedure is undertaken.  
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Uranium mining has always been a strategic issue of each country’s economy, 

quite often prioritized over the environment protection. Unfortunately, most uranium 

ores are low-grade (0.1-0.2%), leaving behind a huge burden of dump rocks and tailing 

wastes [6]. Enrichment procedure is usually drastic and involves e.g. the heap leaching 

or milling of the ore – both procedures involve leaching out of uranium by sulphuric 

acid or ammonium carbonate solution. Both also result in producing of tailing wastes in 

amount of 99.9% of the mined ore. The volume of sludge and its hazardous properties 

(radioactivity, acidity) remains a real threat to the environment, even a long time after 

mine closure. One of the examples is the former uranium mine at the foot of the Mecsek 

Mountains, close to the town of Pécs, in southern Hungary. Exploration of the ore and 

enrichment processing lasted for almost 40 years (1953-1997) and resulted in 19 million 

ton of waste rock and 28.5 million ton of uranium ore chemically treated, of which over 

20 million ton was turned into tailings [7]. For more that 10 years since the mine 

shutdown, the whole area has been under the strict control and subjected to remediation 

[8].  

Primary minerals exploited in this Hungarian mine were uraninite UO2 and 

coffinite (U,Th)(OH)4x(SiO4)1-x. These minerals contain U(IV) and are  not very mobile. 

Thus it remained attached to soil particles, so the hazard might be caused by soil dust 

re-suspension. As a result of mine activity, especially chemical treatment, the area 

became a source of secondary minerals containing uranyl ions UO2
2+, more soluble and 

less immobilized by soils.  

The task of our work was the determination of secondary U-minerals formed in 

the abandoned roads in the area of abandoned uranium mine in the Mecsek Mountains 

in Hungary. Because of their marginal significance in uranium ore mineralization their 

investigations were de-emphasized (there is a lack of information in the record of 

former investigation). These phases have been formed in the outcrops of the uranium 

ore mineralization and in the structure zone crossing ore bodies by oxidation of the 

primary mineral (uraninite). The precise knowledge of the secondary uranium minerals 

occurring in the closed down mine is important for remediation program following the 

mine closure (migration of U and stability of secondary minerals forming in the dump 

piles). 

To achieve this, a combination of two micro-analytical techniques: SEM/EDX 

and MRS was applied. A detection and recognition of U minerals in the shape of fine 

particles was facilitated by first recognizing U-rich particles with a help of BSE image 
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of SEM, followed by recording of X-ray spectra, and afterwards re-locating the same 

particles with a Raman microscope followed by measurement of molecular spectra. 

Both methods provide complementary results and mutual conformation of stand alone 

analyses; hence altogether it is a fast and easy tool for the recognition of U minerals at 

the single particles level [9].  

 

2. MATERIALS AND METHODS 

2.1. Samples 

 

Majority of uranium ore samples were collected in the former area of ore mine, 

Mines I.-V. (K1, K2, K3, KL-1275, KL-1148, SZAT-IV-1-1A and SZŐLŐS samples). 

Fig.1. presents a map of the ore location and the surrounding. The geological 

characterization of the western part of the mountains is described elsewhere [10]. One 

sample derives from Balaton Highlands (its provenance Badacsonyörs) (Fig. 2), The 

Upper Permian age Balaton Highlands Sandstone Formation contains the uranium ore 

mineralization,  according to studies t is unworkable ore mineralization,  

 

Two types of samples were collected: 1) yellow to green minerals assumed to be 

secondary uranium minerals; 2) samples in order to analyze single particle composition 

and detect the uranium minerals. Soil particulate matter was sampled in seven 

independent places: K1, K2, K3, KL-2175, KL-1148, SZŐLŐS, SZAT-IV-1-1A. The 

sampled material was crushed to reach the size below 2 mm.  

 

2.2. XRD analysis 

 

All samples were analysed by means of X-ray powder diffraction XRPD (Philips 

model PW 3710 based PW 1050 Bragg-Brentano parafocusing goniometer using CuKα 

radiation (λ= 0.15418 nm), graphite monochromator and proportional counter). The 

XRD scans were digitally recorded with a step size of 0.04o and evaluated for phase 

composition with full profile fitting method. XRD results were applied mainly to 

recognize secondary uranium minerals and to estimate the concentration of pure mineral 

phase and its contaminants. They were afterwards applied for MRS as reference 

materials. These were andersonite, meta-autunite, zeunerite, zippeite and Na-zippeite.  
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2.3. SEM/EDX measurements  

 

This technique was applied in order to locate U-rich particles with a help of BSE 

image. It was performed on a JEOL JSM 6300 Scanning Electron Microscope (JEOL, 

Tokyo, Japan) equipped with both a backscattered electron detector (BSE) and a 

secondary electron detector (SE). The grains of samples were attached to the carbon 

disks and directly placed in the chamber (without any other processing). Additionally, a 

Si (Li) X-ray detector PGT (Princeton Gamma Tech, Princeton, NJ, USA) was 

employed for acquiring the X-ray spectra from each U-containing particle (accelerating 

voltage: 30kV, beam current: 2nA). SEM/EDX measurements were followed by MRS 

therefore no coating was applied to avoid a contamination of the samples. To enable a 

further relocation of the same particle within the image of the two stand alone 

instruments, TEM grids were applied, as described elsewhere [9].  

 

2.4. MRS measurements 

 

The proper recognition of U-rich species in particulate matter must have been 

preceded with building up the spectral library. Each sample of pure uranium mineral 

was analysed first and their spectra were used as reference spectra. Afterwards, the 

single particle analysis of ore particulate matter was performed. Raman spectra were 

recorder with a Renishaw InVia micro-Raman spectrometer coupled with a Peltier 

cooled CCD detector. Excitation was provided by 785 nm laser. Samples were scanned 

using a synchroscan mode from 100 to 2000 cm-1 at a nominal spectral resolution of 

about 2 cm-1. The acquisition time for each scan as well as the number of accumulations 

varied in order to provide a better signal-to-noise ratio. Spectra were obtained using 

100x, 50x or 20x magnification objectives. Calibration was done using the 520.5 cm-1 

line of silicon. Data acquisition was carried out with the Spectracalc software package 

GRAMS (Galactic Industries, Salem, NH, USA). Spectral analyses were performed by 

comparison with spectra from an in-house library as well as a commercially available 

spectral library.  

 

3. RESULTS AND DISCUSSION 

3.1. Collection of secondary uranium minerals 
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Bulk analysis performed by XRD proved the presence of mainly uranyl 

minerals, occurring as large “blooming” agglomerates, shown in Fig.2. Single grains 

were selected from the bulk and measured by means of MRS, so the images in Fig.2 are 

accompanied by the appropriate Raman spectra. Each of the secondary uranium 

minerals exhibits a Raman activity from vibrations of uranyl group and oxyacidic anion; 

the relevant bands of symmetric stretching appear in the certain range of a Raman 

spectrum: 700-900 cm-1 for UO2
2+ and 900-1100 cm-1 for the anion component. The 

spectrum is also composed of symmetric bending vibrations of groups, as well as 

antisymmetric stretching or bending. Recognition of uranyl minerals by MRS should 

then be quite conclusive; in some cases, however, the Raman shifts might overlap, 

therefore exact spectral frequencies of vibrations attributed to reference samples are 

very helpful, if not essential.  

Andersonite, a green mineral of a formula Na2CaUO2(CO3)3 5H2O, is an 

uncommon secondary mineral, formed in the oxidized zone of uranium-bearing 

deposits. It may appear also as post-mining form, coating walls of mine caves and 

shafts. It is known for its greenish fluorescence under ambient office light and UV 

lamps [11]. Soluble in water, it occurs everywhere in uranium mines under dry 

conditions. Andersonite is sometimes found in sandstones hosted in uranium deposits, 

or formed by human interventions [12]. In the andersonite structure two symmetric 

stretching modes of CO3
2- are active (Fig. 2): 1080 and 1092 cm-1 [13]. In the region of 

higher shift values there are antisymmetric stretching bands of this group (1370 cm-1). 

833 cm-1 band is a result of symmetric stretching mode of UO2
2+; however it is likely to 

overlap with symmetric bending mode of a carbonate group. In case of uranyl 

carbonates there is always a potential overlap between these two, because a region of 

the symmetric bending modes of carbonates is 800-940 cm-1 [13]. The range 100-

500 cm-1 shows the symmetric bending modes of UO2
2+, of which 224, 570 and 743 

bands belong to andersonite. The shift at 351 cm-1 is unidentified.  

 

Autunite is a representative of a group of minerals called “autunite minerals” 

with a general formula M(UO2)2 (XO4)2 8-12H2O, where M is a common bivalent 

cation and X is P or As [5,14]. The main mineral, of which the group name is derived, 

autunite, is calcium uranyl orthophosphate Ca(UO2)2(PO4)2 .12H2O. The difference 

between meta-autunite and autunite is a number of water molecules attached; meta-

mineral contains only 8 water molecules. Further dehydration of meta-autunite leads to 
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the loss of more water molecules but no other mineral species is formed (just partially 

dehydrated meta-autunite). The species collected in the sampling territory appeared to 

be meta-autunite. The features of their Raman spectra are very similar to each other and 

are well represented (Fig.2). Uranyl stretching vibration is active at 833 cm-1 (strong 

band) and 816 cm-1 (weak band). 988, 1008 and 1111 cm-1 are likely to be assigned to 

(PO4)3- stretching vibrations. The shift at 635 cm-1 is probably due to water librational 

modes, while origin of 704 and 888 cm-1 bands remain unknown.  

 

Zeunerite has a structure typical for uranyl micas [14], with an arsenate 

equivalent of XO4 anion and a copper divalent cation attached; its formula is 

Cu(UO2)2(AsO4) 12H2O. Unlike other uranyl minerals, there are practically no Raman 

activity in the spectral range 900-1100 cm-1, we observe a strong band at 809 cm-1. It is 

a result of overlapping the symmetric stretching vibrations of both the uranyl and 

arsenate units. 886 cm-1 vibration is probably a result of antisymmetric stretching of 

AsO4. 319 and 447 bands belong also to the spectrum of zeunerite, and intense band at 

185 cm-1 is assigned to the OUO bending modes. 

 

From the rich group of uranyl sulphates, two representatives were collected in 

the former uranium mine in Hungary: zippeite and sodium zippeite. Like autunite, the 

mineral zippeite gave the name to the whole group of minerals, where the cation bound 

to the uranyl group can be substituted by any of the monovalent or divalent metals. A 

precursor of the system, zippeite of a formula K4(UO2)6(SO4)3(OH)10 4H2O is de facto 

K-zippeite, and the other species might be: Na-zippeite Na4(UO2)6(SO4)3(OH)10·4H2O, 

Ni-zippeite Ni2(UO2)6(SO4)3(OH)10·16H2O, Co-zippeite, Zn-zippeite etc. The Raman 

spectrum of zippeite presented in Fig.2 exhibits typical features for zippeite  [15-17] 

such as 1012 cm-1 shift attributed to a symmetric stretching vibration of (SO4)2- group 

and 1091 cm-1 of anti-symmetric one. An intense band of 842 cm-1, with two others 

overlapping from the shorter wavelength side, are caused by symmetric stretching of the 

(UO2)2+ group. The spectral region from 400 to 700cm-1 is usually attributed to bending 

activity of sulphate anions; however these bands are not very distinct except one at 

398 cm-1. There is also one more shift of unknown origin, which presence in the 

zippeite spectrum was not confirmed in the literature [15-17].  
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 Raman spectrum of sodium zippeite, shown in Fig.2, does not resemble the 

spectrum of the same mineral described elsewhere [16]. A typical (SO4)2-  stretching 

band is assigned to 1009 cm-1, but the position of (UO2)2+  symmetric stretching 

vibration is located at 825 cm-1 which is shifted to the lower wave number region in the 

Raman spectrum. This is rather not typical for uranyl sulphate because in most cases 

(K-zippeite, uranopilite) uranyl stretching band is visible around 840 cm-1 [18-20], 

however sometimes (UO2)2+  stretching vibrations appear at 812 cm-1 (the strongest shift 

in the spectrum of johannite) [20]. Our investigated sample can also be contaminated by 

other minerals fairly abundant in this area, such as quartz and pyrite. This may be 

reflected in the spectral range around 400 cm-1. On the other hand, this part of the 

spectrum is also assigned to the bending modes of a sulphate ion, which is consistent 

with the literature data [16]. The spectral region above 1000 cm-1 is attributed to 

antisymmetric sulphate stretching, particularly the bands 1099 and 1137 cm-1. It should 

be however emphasized that this Raman spectrum may be compromised by 

fluorescence, especially in the range between 1000 and 1700 cm-1. 

 

3.2 Single particle analysis 

The results of the bulk analysis were used to enhance the spectral library in order to 

facilitate recognition of uranium species on a single particle level. The particles 

containing uranium were first selected with SEM/EDX based on BSE features; 

afterwards, based on their shape, morphology and marked location, they were relocated 

under Raman microscope and their Raman spectra were recorded. The two analogous 

images, accompanied by the adequate spectra, are shown in Fig.3. They show a grain of 

Na-zippeite, the most abundant U-compound detected in the ore samples. Together with 

K-zippeite, this mineral comprised almost 50% of all recognized particles. Table 1 

contains the summary of the successful and less successful measurements. The second 

column contains the number of particles located in each sample with a help of BSE. In 

the third column there is a number of particles recognized by MRS, although it refers 

not only to their chemical composition but also to a successful relocation of the same 

particles analyzed first by SEM/EDX. The combination of these two micro-techniques 

is still challenging, especially when two stand alone instruments are used. The ultimate 

goal is to achieve ideal correlation of the two beams exposing the same spot [9].  
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In many cases, both relocation and recognition of U-species according to MRS 

was quite feasible, especially when the particles had a distinct bright color and were 

relatively isolated. Unfortunately, MRS spectrum was quite often affected by other 

components (aluminosilicates, pyrites, organic matter). Moreover, due to intense 

fluorescence, the Raman activity of uranium compounds was not recordable. One of the 

numerous examples is given in Fig.4. The Raman spectrum was compromised by 

fluorescence and the signal was weak and noisy, however the shift at 816 cm-1 should 

indicate the presence of U(VI) form. It is very likely to be attributed to zeunerite, since 

many particles in this sample (KL2175) contains arsenopyrite, which upon oxidation 

leads to formation of arsenates. Unfortunately the spectrum is too ambiguous to make 

any justifiable statement. 

 

 An intriguing species of uranium was detected in one sample among all the 

examined particles. Both SEM/EDX and Raman spectra of three selected particles are 

presented in Fig.5. Although Raman spectra are evidently influenced by fluorescence, 

the distinct Raman shift at 860 cm-1 clearly indicates (UO2)2+ presence. Moreover, this 

band is accompanied by two other weak ones: 1008 and 1048 cm-1, both probably 

resulting from vibration of SO4 group. However, the value of 860 cm-1 is rather too high 

for symmetric stretching vibration of uranyl group bound to a sulphate ion, as it was 

usually visible at lower wave numbers [15-20]. It is more likely to ascribe this band to 

UO3 Raman activity, although two neighbouring shifts should be expected, according to 

the literature data [21]. Such a high wave number shift of uranyl symmetric stretching 

vibrations is also noticeable in the complex of uranyl ion with organic ligands [22]; 

however this would be unlikely for uranyl ion to be preserved in this form in oxidized 

ore samples. UO3 is one of the most thermodynamically stable compounds in U-O 

system, which makes it resistant to chemical change in the environment and, on the 

other hand, quite immobilized. On the contrary to zippeites, this species was found only 

in one of seven examined spots. Moreover, the EDX spectra showed in Fig 5 point quite 

elevated amount of iron and sulphur. It is very likely that ubiquitous pyrites got 

oxidized into sulphates which would explain the presence of sulphate bands in the 

spectra. Unfortunately, due to high fluorescence, full recognition of chemical forms 

present in this rather doubtful.  

 

4. CONCLUSIONS 
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After more than ten years after closing down of the uranium mine in Hungary, this area 

is a rich source of secondary uranium minerals, mainly in the form of colorful 

agglomerates, among which andersonite, autunites and zippeites are most abundant. The 

risk of pollution is however related to their solubility and mobility under the natural 

conditions. Investigations of individual ore particles proved that uranyl sulphates (K- or 

Na-zippeites) were most abundant, occurring in various spots in the mine. Occasionally, 

other uranium forms were detected such as UO3 or U3O8; rarely some residual uraninite 

particles.  
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Figure captions: 

Fig.1. Map of the former uranium mine in Mecsek Mountains, Hungary. 

Fig.2. Secondary uranium minerals collected in the area of the former uranium mine by 

the city of Pécs, Hungary. 

Fig.3. SEM and optical image of Na-zippeite particle measured with two stand-alone 

instruments. The optical image is rotated upside down. The adequate spectra are also 

presented below. 

Fig.4. SEM and optical image of a U-rich particle recorded with two stand-alone 

instruments. The optical image is rotated upside down. The adequate spectra are 

presented below. 

Fig.5. SEM/EDX spectrum (left) and MRS spectrum (right) of three particles containing 

U(VI) species, probably UO3. The Raman spectra are kept in their original form, except 

the last image (background subtracted). 
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Table 1. Statistics of the measurements of U-rich ore particles collected in the 

abandoned uranium mine in Hungary.  

SAMPLE 
FOUND 

BY 
SEM/EDX 

RECOGNIZED 
BY MRS 

SPECIES 

K1 1 0 unknown (1) 
K2 5 5 Na-zippeite (1), zippeite (4) 

K3 9 5 
Na-zippeite (3), zippeite (1), uraninite (1), 

unknown (4) 

KL2175 4 0 
arsenopyrite(1), fluorescence (2), 

unknown (1) 
KL1148 10 10 zippeite (1), U3O8 (1), UO3??? (8) 

SZŐLŐS 14 0 unknown(3), fluorescence (10), burnt (1) 
SZAT-IV-1-1A 4 0 arsenopyrite (1), fluorescence (3) 
 

 

 

 


