Randomized-controlled trial of nutritional counseling on body composition and dietary intake in severe chronic kidney disease

Katrina L Campbell PhD, Susan Ash PhD, Peter SW Davies PhD, Judith D Bauer PhD

Institute where the work was done:
Institute of Health and Biomedical Innovation, Queensland University of Technology (KLC, SA)
Department of Nutrition and Dietetics, Royal Brisbane and Women’s Hospital (KLC, SA)
Wesley Research Institute, The Wesley Hospital (JDB)
Children’s Nutrition Research Centre, Royal Children’s Hospital, University of Queensland (PSWD)

Corresponding Author:
Katrina L Campbell PhD B Hlth Sc (Hons)
Department of Nutrition and Dietetics
King’s College London
150 Stamford Street, London, SE1 9NH, UNITED KINGDOM

Phone: +44 2 07848 4269
Fax: +44 2 07848 4195
Email: katrina.campbell@kcl.ac.uk

Registered Trial: ACTRN012606000493549

Word count:
Abstract: 271
Manuscript body 3479

Running head: Nutrition intervention in pre-dialysis CKD
The authors have no conflict of interest to declare.
This study was funded in part by a Royal Brisbane and Women’s Hospital Foundation Seeding grant, Queensland University of Technology Postgraduate Research Award (PhD scholarship) and an Institute of Health and Biomedical Innovation Research Scholarship.
Abstract

Background: Progressive reduction in renal function results in an increased risk of malnutrition. Despite this, there is little evidence informing the impact of nutrition intervention on pre-dialysis chronic kidney disease (CKD, Stage IV and V).

Study design: Randomized-controlled trial

Setting and participants: Fifty-six (Male 62%; age mean (SD) 70.7 (14.0) years) CKD outpatients, were randomly allocated to intervention (n=29) or control (n=27) by concealed computer-generated sequence.

Intervention: Intervention group were provided with individualized dietary counseling with regular follow-up, aimed at achieving an intake of 0.8-1.0g/kg protein and >125kJ/kg energy; or control, receiving written material only.

Outcomes: Body composition, nutritional status and dietary intake

Measures: Change in body composition (body cell mass, BCM, measured by total body potassium, in 40/56 participants), nutritional status (Subjective Global Assessment, SGA) and energy and protein intake (three-day food record).

Results: Over the 12 weeks, the control group lost BCM (-3.3% (95% CI -6.9 to 0.4)), whilst the intervention group maintained (0.60% (-2.9 to 4.1)). The overall difference in change between treatment groups for BCM 3.6% (-1.0 to 8.7) and energy intake 17.7kJ/kg/day (8.2 to 27.2) and improvements in SGA ($X^2 (2) = 12.76 (P<0.01)$), favoring the intervention treatment. A large response to treatment allocation was demonstrated in female participants, with little change observed in males for either group.

Limitations: Power to detect sex differences, change in BCM and potential bias in ascertainment of SGA.

Conclusions: Structured nutrition intervention may provide beneficial patient outcomes including limiting deterioration in nutritional status and increasing dietary energy intake when
compared with control treatment for patients in pre-dialysis. Further investigations are warranted to determine the impact of such interventions on body composition.

Index words: Nutrition intervention; chronic kidney disease; pre-dialysis; randomized-controlled trial; body cell mass; dietary counseling

Registered Trial: ACTRN012606000493549
Introduction

Malnutrition is present in up to 48% of patients at the time of dialysis initiation\(^1\) and is an independent and significant predictor of morbidity and mortality.\(^2\) In Stage 4 chronic kidney disease (CKD) (glomerular filtration rate (eGFR) 15-30 mL/min/1.73m\(^2\)) the focus of the medical treatment shifts to managing metabolic disturbances and preparing patients for renal replacement therapy (RRT).\(^3\) requiring multidisciplinary care to manage symptoms, treat co-morbidities and prevent complications, including optimising nutritional status.\(^4\)

Deterioration in nutritional status often predates the onset of RRT.\(^5,6\) Patients with advanced CKD who are not receiving nutritional management demonstrate the greatest deterioration in nutritional status before RRT initiation.\(^7\) Considering this, there is a need for careful nutritional monitoring and appropriate dietary prescription and implementation of nutritional care at this time.\(^8\)

Studies in severe CKD prior to RRT have focused on dietary prescription, in particular, restricting protein to below recommended dietary allowance with an aim to provide better metabolic control, and potentially delay the progression to dialysis initiation. A significant number of studies, including four meta-analysis\(^9-13\) have investigated this relationship, yet, the efficacy of a low-protein diet to retard renal failure progression is conflicting and severely restrictive diets have poor compliance.\(^14,15\) It appears there may be no greater benefit of restricting protein below what is recommended for healthy adults.\(^16\)

Implementation of nutrition intervention refers to the type, duration, content and location of the nutrition care. Evidence from the Modification of Diet in Renal Disease (MDRD) study demonstrate dietary compliance increases with self-management interventions involving
patients with ongoing feedback, monitoring and support. The National Kidney Foundation Kidney Dialysis Outcomes Quality Initiative (K/DOQI) guidelines for nutrition care prior to dialysis recommend frequent nutritional counselling and monitoring, especially in patients presenting with an inadequate intake and/or signs of malnutrition.

To the authors knowledge, no controlled trial to date has been published to evaluate the effectiveness of implementation, with the aim to optimise nutritional status prior to dialysis, by promoting a controlled portion (0.8-1.0 g/kg), high energy (>125kJ/kg) intake. The purpose of this study was to determine if providing individual nutrition counseling with regular telephone follow-up improves body composition, energy intake and nutritional status compared with providing written material only.
Methods

Potential participants were approached upon consecutive entry into a pre-dialysis outpatient clinic at the Royal Brisbane and Women’s Hospital. Eligible participants met the following criteria: adult (>18 years); eGFR <30ml/min CKD; not previously seen by a dietitian for Stage IV CKD; an absence of communication or intellectual impairment inhibiting their ability to undertake the intervention; an absence of malnutrition from a cause other than CKD; and not expected require RRT within six months. Participants were randomly allocated to receive either individualised nutritional counselling (intervention group) or written education material (control group) via a computer-generated number sequence, concealed to the recruiting officer until after baseline assessment.

The intervention, administered by a single dietitian, aimed to provide an individualised dietary prescription (including energy (125-146kJ/kg/day), and protein (0.75 - 1.0g/kg/day))4, incorporating K/DOQI recommendations to provide intensive nutritional counselling with regular monitoring. The delivery of the intervention was guided by the medical nutrition therapy framework from the American Dietetic Association, and followed the structure provided in Figure 1.21,22 The intervention group were provided with an initial individual consultation at baseline, of up to 60 minutes duration, followed by telephone consultation, commonly 15 to 30 minutes duration, fortnightly for the first month, then monthly. The intervention utilised self-management principles: goal setting, menu planning, label reading and identification of foods containing protein, sodium etc, depending on requirements. Participants in the control group received generic nutrition information tailored for CKD (as provided in regular clinical practice).
The length of the intervention was 12 weeks following baseline assessment. No participants in either group voluntarily dropped out of the study following receipt of intervention, as per CONSORT flowchart in Figure 2.

Ethics approval was granted by the Royal Brisbane and Women’s Hospital and Queensland University of Technology Human Research Ethics Committees and informed consent was obtained from each participant. The following outcome measures included were collected at baseline (week 0) and week 12.

Body composition measurements

The primary outcome of this study was the assessment of body composition by total body potassium counting (TBK), a measure of body cell mass (BCM) the body’s functional metabolising tissue. TBK analysis was performed using a shadow shield whole-body counter (Accuscan, Canberra Industries, MA, USA), which requires the participant to lie supine on a bed that is moved under three sodium iodide detectors. Two 1100 second scans were performed on each participant with all personal metallic objects removed. The detectors count 1.46MeV gamma rays being emitted by the potassium-40 (40K). Background and sensitivity checks were completed daily and considered in each measurement. On the basis of repeated measurements of phantoms, the precision of TBK values from this apparatus was 2.3%. The minimal detectable difference of TBK is 4% is considered to be valuable research tool for monitoring progress following nutrition intervention.

Anticipated change in TBK was used to determine the sample size. Based on the premise that the minimum benefit that nutrition intervention will achieve is TBK maintenance, the control group in a previously reported study, demonstrated a reduction in TBK of around 5% (± 5)
over 12 weeks in Stage IV CKD (n=12). The sample size was calculated by comparing the two means (TBK maintenance vs. 5% loss). Based on 0.8 power to detect a significant difference (P = 0.05, two-sided), 20 patients were required for each study group. The aim was to recruit 60 participants to account for anticipated attrition and missing data.

Potassium is the primary intracellular cation and, as 98% of the body’s potassium is located within the BCM, it is possible to determine BCM from TBK analysis. BCM was calculated from TBK using the equation of Wang et al (2003): $\text{BCM (kg)} = \frac{(\text{TBK (g)} \times 9.18)}{39.1}$. The measurement of TBK to estimate BCM has been validated in CKD.

Nutrition assessment

Nutrition status was also assessed using Subjective Global Assessment (SGA). This tool provides a comprehensive appraisal of nutrition status assessing change in weight, gastrointestinal symptoms (anorexia, nausea, etc), food intake, and functional capacity; and physical examination, including subcutaneous fat and muscle stores. The SGA global rating classifies patients into category A (well nourished), B (moderately, or suspected of being malnourished) or C (severely malnourished) and is a well validated tool for diagnosis and prognosis of nutrition status in CKD. SGA assessment was ascertained by a single assessor, who was also the dietitian undertaking the intervention and dietary intake assessment.

Dietary intake

Dietary intake was assessed using a three-day food record. The participants were requested to estimate or measure all food and fluids consumed for those three days (two weekdays and one weekend day). Food records were verified by the dietitian with visual food models and household measures to ensure accuracy.
Food records were analysed using FoodWorks (Professional Version 3.02 Xyris Software, Brisbane, Australia) a computerized food composition database, based on the Australian Nutrient Database (AusNut, Department of Human Services and Health, Canberra). The software produced an average nutrient consumption per day by calculating the mean intake over the three days of recording. Mean protein and energy intake was calculated in units per kg of ideal body weight (calculated according to Ash et al 2006).4

Biochemistry

Biochemical analysis including albumin by BromoCresol Purple (normal range = 3.5 – 4.8 g/dL (35–48 g/L)), C-reactive protein (CRP, high sensitive, normal range 0 – 5 mg/L (0.0–0.5 g/dL), and creatinine (normal range 0.6 – 1.3 mg/dL (53-115mol/L)) was undertaken at a central laboratory. Estimated GFR was calculated using the abbreviated (4-variable) Modification of Diet and Renal Disease (MDRD) equation.30

Statistical analysis was carried out using SPSS Version 13 (SPSS Inc, Chicago, IL, USA) with the level of significance set at p<0.05. The analysis of the effect of the intervention proceeded as per treatment allocation, irrespective of how compliant participants were with the intervention protocol. Participants were excluded from the final analysis if they either died or moved onto RRT during the 12-week trial period (classed as ‘renal death’ or adverse event).

Each outcome measure was converted to a change score (Week 12 – Week 0). Assessment of change in outcomes by treatment group was analysis by analysis of covariance (ANCOVA), adjusting for baseline values. Baseline eGFR, body mass index (BMI), sex and co-
morbidities were identified as potential confounders and were added to each of the original ANCOVA models. Main effects and interactions were assessed. The final model only included covariates with a significant relationship.
Results

Sixty-six consecutive subjects were considered eligible upon entry into the pre-dialysis clinic during the recruitment period from September 2004 to September 2005. Informed consent was provided from 62 subjects (62/66, 94% consent rate), following this, six were excluded prior to baseline assessment (see CONSORT flowchart, Figure 2). Therefore, 56 patients (Male 62%; age mean (SD) 70.7 (14.0) years) received either intervention (n=29), or control (written material only, n=27). Data in Table 1 demonstrate there was no significant difference between participants allocated to either treatment or control group at baseline.

Of the 56 participants who received allocated intervention, no participants voluntary withdrew from the study, however, six were lost to follow-up (four died and two went onto receive maintenance dialysis, classed as “renal death” or an adverse event), and nine had missing BCM data during the intervention period. The baseline characteristics of the final sample with complete data were compared with participants who had incomplete BCM data, and those who reached renal death in Table 2. As demonstrated in Figure 2, there were more participants in the intervention group (5 of 29) experiencing adverse events than the control group (1 of 27). Of those who died, all four were from the intervention group; in three the identified cause of death was a cardiovascular event and one from an unknown cause. One from each group commenced dialysis, both due to issues in controlling blood pressure control. Of those who completed the intervention period, nine were withdrawn from BCM assessment (three from the intervention group, and six from control); four due to voluntary withdrawal from TBK and five were too large to comfortably undertake the measure due to size limitations of the TBK sensor.
The following results are from the analysis of the 50 participants who completed the study (intervention n=24, and control n=26).

Table 3 identifies mean change in BCM (absolute (kg) and relative (%)) and intake (energy and protein) over the treatment period. BCM change assessed in 82% (n=41) of the final 50 participants, showed a reduction in the control group and no significant change in the intervention group. The data was re-analysed with an estimate of BCM maintenance for all participants lost to follow-up. Relative (%) change in BCM persisted to be not statistically significant, with similar mean difference in change as demonstrated in Table 3 (unadjusted, 2.6% (-1.4 to 6.6) p=0.2; adjusted 3.7% (-0.4 to 7.8) p=0.07).

Energy intake significantly increased over the treatment period for the intervention group and decreased in the control group, with final intake values of 114.5 ± 25.6 kJ/kg and 102.7 ± 22.2 kJ/kg respectively. Conversely, mean protein intake did not change significantly between groups; however, the decrease in protein in the control group alone was significant. Final protein intakes were similar between the groups (intervention 0.98 ± 0.22 g/kg and control 1.00 ± 0.25 g/kg protein).

Most participants maintained their baseline nutrition status according to SGA over the 12-week treatment period. In the intervention group, 2 participants malnourished (SGA B) at baseline died, and the remaining 5 improved their nutritional status, resulting in no malnutrition in the intervention group at week 12. In contrast, the control group had an increase in the proportion malnourished from 2/27 (11%) at baseline, to 6/26 (22%, including
1 severely malnourished, SGA C) at week 12. This difference in change in SGA between the 2 groups was statistically significant $X^2 (2) = 12.76 \ (P<0.01)$.

Table 4 evaluates clinical variables between treatment groups and change over the treatment period. There was negligible difference in change between groups for CRP, eGFR and weight. The mean difference in change in albumin reached statistical significance, reflecting a significant decrease in the control group.

Adjusted estimates for change in BCM and intake are also provided in Table 3. BCM was adjusted for baseline BCM, BMI and sex. Change in dietary energy and protein intake was adjusted for baseline intake, comorbidity and sex. Therefore, sex was identified as a consistent confounding variable in a models for each of the outcome variables (main effect $p=0.005$ for BCM; interaction with treatment $p=0.004$ for both energy and protein intake). A significant sex interaction was identified for protein and energy intake when the interaction term was significant ($p=0.004$, for both), and remained so when the main effect of sex was included in the model and not significant ($p=0.4$ and $p=0.5$, respectively). This suggests an effect modification influencing the treatment outcomes. A descriptive comparison of response to treatment allocation comparing each gender is presented in Figures 3 to 5. These graphs indicate a large magnitude in change for females, in particular, with reductions in control group for BCM and energy intake, and negligible change for most outcomes in the males for each group.
Discussion

There is little literature to inform nutrition practice in CKD prior to dialysis. The outcome of this study supported the use of individualised self-management nutrition interventions with regular monitoring, as previously shown to achieve compliance in pre-dialysis CKD patients in the MDRD study. However, in this study the benefits of this intervention appeared to be restricted to females, with no difference in change following intervention in the males in this sample.

Malnutrition results in a reduced body cell mass (BCM) and concomitant expansion of extra cellular mass. It is the loss of this metabolically active component of body mass which creates the negative effects seen with malnutrition. A strength of this study is the use of TBK to measure BCM, therefore this measure was not influenced by changes in fluid status or non-nutritional factors. From the BCM data, the metabolically active tissue of the control group declined, and that of the intervention group was maintained. While this difference was not statistically significant, it was a clinically significant difference in BCM. Declines of this magnitude in BCM are associated with increased disability (reduced strength, immune and pulmonary function) and mortality. It is likely that a statistically significant difference was not evident due to the fact that the 3.5% mean difference in change observed was less than the 5% which the sample size was originally powered to detect.

As with BCM, change in SGA is not a commonly reported outcome measure in the CKD literature. SGA is most commonly used to determine the prevalence and prognostic significance of malnutrition. In Stage IV and V pre-dialysis, SGA B or C are significant independent predictors of poor outcome and related to higher mortality and morbidity. Malnutrition in pre-dialysis appears to be a predictor of progression to dialysis, increased rate
of acute hospitalisations and death, independent of GFR.36 Prior to this investigation, only one small intervention study (n=11) exists in pre-dialysis using SGA as an outcome measure. Patients received three-monthly nutrition intervention, and at 6 months, all well-nourished patients maintained nutritional status, and 2 of the 3 malnourished patients were reclassified as well-nourished.37 This intervention was not randomised or as intensive as the investigation featured in this paper, however, further supports the importance of intervention and follow-up to promote at least maintenance of nutritional status in pre-dialysis.

Dietary energy intake appeared to be an important intermediate outcome driving nutritional status changes in the treatment groups, as particularly evidenced by change for females in Figures 3 and 4. Sufficient energy and quality protein intake is essential for the maintenance of nitrogen balance.38 Although there is some evidence that protein intake >0.8g/kg may induce a faster rate of decline in GFR compared with low-protein diet,39 there are clear risks with provision of a restricted-protein diet (<0.6g/kg/day) that may include simultaneous reduction in energy intake and nutrition status parameters (TBK, weight, albumin etc).40, 41 In this study, the intervention promoting sufficient energy intake, whilst controlling protein intake, resulted in attenuating declines in nutritional status; a surrogate for potential improvements in mortality and morbidity outcomes.

Albumin significantly decreased in the control group and was maintained in the intervention group, resulting in a significant mean difference in albumin between the two groups at week 12. This magnitude of difference reflects the results of other nutrition support interventions in CKD.42, 43
In this study, there appeared to be significant effect modification by gender for each of the nutrition related outcomes, with no difference between treatment groups for males, while the females had a significant difference in change in all variables between groups.

The literature supports that nutritional markers predicting outcome can differ by sex. Observational studies, using TBK to monitor nutrition status over a longer period of CKD progression indicate a progressive reduction in BCM in females only.44 In the MDRD study, GFR correlated with dietary energy intake in women but not in men.45 Disparities have also been noted in an investigation to determine sex-specific associations between subjects with human immunodeficiency virus characteristics and change in body composition, in response to treatment.46,47 Finally, longitudinal and cross-sectional studies report a greater magnitude of change in fat-free mass in females with aging.48,49 A possibility is that the final phase of CKD decline prior to dialysis mimics a fast-track of the natural trajectory of FFM decline.50

Aside from the differences noted in the physiology between genders, the self-management focus of the treatment relies on patients self-efficacy and responsibility for their own care. Despite men and women reporting similar barriers to compliance with dietary prescription, women demonstrate better adherence to diets.51 Studies have indicated that locus of control is age-dependant, with older males relying more heavily on chance and other factors, rather than themselves for change.52 Females report a strong orientation toward self-management of health-care needs and were more likely to instigate behavior change.52 This observed gender difference may have implications for practice and requires future research to determine if it is a reflection of a ‘true’ response.
This study had a number of limitations, which include; the sample size, which was under powered to detect statistically a clinically significant change in BCM, short treatment duration (12 weeks); exclusion of patients close to dialysis commencement (those who potentially may benefit the most from the intervention), and was isolated to a single center. In addition, there is potential bias in the ascertainment of the SGA as it was performed by the same person delivering the intervention.

There was missing primary outcome data and adverse events which may have introduced bias. However, as demonstrated in Table 2, there appeared to be no systematic bias when comparing the baseline characteristics of those who reached renal death, had missing BCM data to those who completed the study with full data. The most notable discrepancy between the groups existed for BMI and co morbidities. BMI was notably higher in the participants with no BCM outcome data (29.5 ± 7.6 kg/m²) compared with those with full outcome data (26.9 ± 4.3 kg/m²). This can be partially explained participants with a large waist circumference being excluded from the TBK analysis due to size restrictions. Co morbidity index was higher in the group that did not complete the study due to death or dialysis, indicating this group was at higher risk of these complications from baseline. This stage of CKD is associated with a 3.2- and 5.9-fold increased risk of death⁵³, and mortality rates close to 50% over 5 years⁵⁴. Therefore, although the mortality rate in the intervention group in this study was high (4/29), it was to be expected in this kind of population.

By use of a rigorous design, this study demonstrated structured dietetic intervention may be effective in attenuating declines in nutritional status of pre-dialysis CKD patients. Utilising counselling via telephone follow-up limited the logistical barriers of patient contact, therefore
improving the ability for this research to be translated into practice. This study represents a foundation for which to build the evidence-base for models of dietetic care in pre-dialysis. Further recommendations for future research include conducting a cost-benefit analysis for the implementation of this service into pre-dialysis management and investigations into the benefit of nutrition intervention on improving body composition.

Conclusion

The provision of individual nutrition counseling and regular follow-up, with a focus on promoting intake produces beneficial patient outcomes. Declines in body cell mass in uraemia may be attenuated or reversed, supporting the development of optimal nutritional status in pre-dialysis CKD patients. However, the impact of intervention was significant only for females, who demonstrated a poorer response to the control treatment. The potential gender difference in response to treatment requires further investigation.
Acknowledgements:

We would like to acknowledge Dr Helen Healy at Director of Renal Medicine and Julie Hulcombe, Director of Allied Health at Royal Brisbane and Women’s Hospital, for their in-kind support and contribution to the study; and Justin Scott (Queensland Institute of Medical Research) for statistical support.

Author Contributions: KLC was the main author of the manuscript, initiated the study, collected the data and carried out the statistical analysis and interpretation. SA and JDB initiated the study, supervised the project, assisted in the statistical analysis and interpretation and writing the manuscript. PSWD assisted in the statistical analysis, interpretation and writing of the manuscript.
References

Table 1 Baseline characteristics (mean ± SD) of patients with pre-dialysis CKD randomised to Intervention (n=29) or Control (n=27) treatment

<table>
<thead>
<tr>
<th>Baseline Characteristics</th>
<th>Intervention (n=29)</th>
<th>Control (n=27)</th>
<th>p-value(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>69.5 ± 11.7</td>
<td>70.9 ± 11.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Sex, Male n (%)</td>
<td>17 (58.6)</td>
<td>17 (63.0)</td>
<td>0.8 (^b)</td>
</tr>
<tr>
<td>eGFR (ml/min/1.73m(^2))</td>
<td>23.1 ± 7.2</td>
<td>21.6 ± 6.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Serum Creatinine (mg/dL)</td>
<td>2.9 ± 1.0</td>
<td>3.0 ± 0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>BMI (kg/m(^2))</td>
<td>26.8 ± 4.7</td>
<td>27.6 ± 5.2</td>
<td>0.5</td>
</tr>
<tr>
<td>% weight change in 6 months</td>
<td>-1.8 ± 3.6</td>
<td>-0.3 ± 2.8</td>
<td>0.1</td>
</tr>
<tr>
<td>Charlson co-morbidity index</td>
<td>6.5 ± 1.9</td>
<td>6.7 ± 1.9</td>
<td>0.7</td>
</tr>
<tr>
<td>BCM (kg)</td>
<td>31.6 ± 7.3</td>
<td>32.3 ± 8.1</td>
<td>0.8</td>
</tr>
<tr>
<td>Nutritional status n (%)</td>
<td></td>
<td></td>
<td>0.2 (^b)</td>
</tr>
<tr>
<td>SGA A Well nourished</td>
<td>22 (75.9)</td>
<td>24 (88.9)</td>
<td></td>
</tr>
<tr>
<td>SGA B Moderately malnourished</td>
<td>7 (24.1)</td>
<td>3 (11.1)</td>
<td></td>
</tr>
<tr>
<td>Mean daily protein intake (g/kg)</td>
<td>1.07 ± 0.32</td>
<td>1.17 ± 0.35</td>
<td>0.3</td>
</tr>
<tr>
<td>Mean daily energy intake (kJ/kg)</td>
<td>101.8 ± 23.0</td>
<td>108.5 ± 25.2</td>
<td>0.3</td>
</tr>
</tbody>
</table>

eGFR = Glomerular Filtration Rate, BMI = Body Mass Index, BCM = Body Cell Mass, SGA = Subjective Global Assessment, QOL = Quality of Life

\(^a\)Independent samples t-test,

\(^b\)chi-square test for independence

\(^c\)To convert GFR in mL/min to mL/s, multiply by 0.01667; serum creatinine in mg/dL to mol/L, multiply by 88.4

\(^d\)from previously measured weight in medical notes
Table 2 Comparison of baseline characteristics (mean ± SD) of study participants who completed the study with full outcome assessment, missing body cell mass assessment and those reaching renal death prior to in pre-dialysis CKD (n=56)

<table>
<thead>
<tr>
<th></th>
<th>Complete outcome data (n=41)</th>
<th>Incomplete body cell mass (n=9)</th>
<th>Renal death(^a) during trial (n=6)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment group (n (%) in Intervention)</td>
<td>21 (51)</td>
<td>3 (33)</td>
<td>5 (83)</td>
<td>0.1</td>
</tr>
<tr>
<td>Age (mean ± SD)</td>
<td>69.7 ± 12.4</td>
<td>69.8 ± 10.0</td>
<td>71.6 ± 10.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Sex % M</td>
<td>64.9</td>
<td>53.8</td>
<td>50.0</td>
<td>0.7</td>
</tr>
<tr>
<td>eGFR (ml/min/1.73m(^2))(^a)</td>
<td>22.5 ± 5.8</td>
<td>22.7 ± 11.3</td>
<td>20.6 ± 2.5</td>
<td>0.8</td>
</tr>
<tr>
<td>BMI kg/m2 (mean ± SD)</td>
<td>26.9 ± 4.3</td>
<td>29.5 ± 7.6</td>
<td>25.6 ± 3.5</td>
<td>0.2</td>
</tr>
<tr>
<td>% weight change in previous 6 months</td>
<td>-0.73 ± 3.1</td>
<td>-1.29 ± 4.0</td>
<td>-3.60 ± 3.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Charlson co-morbidity index (mean ± SD)</td>
<td>6.2 ± 1.8</td>
<td>7.2 ± 2.0</td>
<td>8.5 ± 1.5</td>
<td>0.02</td>
</tr>
<tr>
<td>Nutritional status, n (%)</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGA A Well nourished</td>
<td>36 (88)</td>
<td>6 (67)</td>
<td>4 (67)</td>
<td></td>
</tr>
<tr>
<td>SGA B Moderately malnourished</td>
<td>5 (12)</td>
<td>3 (33)</td>
<td>2 (33)</td>
<td></td>
</tr>
<tr>
<td>Home setting, n (%)</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lives with partner</td>
<td>25 (61)</td>
<td>7 (78)</td>
<td>4 (67)</td>
<td></td>
</tr>
<tr>
<td>Lives alone</td>
<td>11 (27)</td>
<td>1 (11)</td>
<td>1 (16.5)</td>
<td></td>
</tr>
<tr>
<td>Lives with family or carers</td>
<td>5 (12)</td>
<td>1 (11)</td>
<td>1 (16.5)</td>
<td></td>
</tr>
</tbody>
</table>

* Renal death = refers to a composite of reaching dialysis or death prior to study close

\(^a\) GFR = Glomerular Filtration Rate, BMI = Body Mass Index, BCM = Body Cell Mass, SGA = Subjective Global Assessment, QOL = Quality of Life

\(^a\) To convert GFR in mL/min to mL/s, multiply by 0.01667
Table 3 Impact of nutrition counselling on nutrition-related outcomes, difference in mean change (95% CI)

between treatment groups (control from intervention), both adjusted and unadjusted values

<table>
<thead>
<tr>
<th></th>
<th>Change in Intervention (n=24)</th>
<th>Change in Control (n=26)</th>
<th>Mean difference mean (95%CI)</th>
<th>p-value</th>
<th>Adj r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCM (%) a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unadjusted</td>
<td>2.0 (-1.9 to 5.9)</td>
<td>-1.5 (-5.5 to 2.5)</td>
<td>3.5 (-2.1 to 9.1)</td>
<td>0.2</td>
<td>0.01</td>
</tr>
<tr>
<td>Adjusted (sex; BMI)</td>
<td>0.6 (-2.9 to 4.1)</td>
<td>-3.3 (-6.9 to 0.4)</td>
<td>3.6 (-1.0 to 8.7)</td>
<td>0.1</td>
<td>0.24</td>
</tr>
<tr>
<td>BCM (kg) a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unadjusted</td>
<td>0.5 (-0.7 to 1.8)</td>
<td>-0.5 (-1.8 to 0.8)</td>
<td>1.1 (-0.7 to 2.9)</td>
<td>0.2</td>
<td>0.01</td>
</tr>
<tr>
<td>Adjusted (sex; BMI)</td>
<td>0.1 (-1.1 to 1.1)</td>
<td>-1.2 (-2.3 to -0.0)</td>
<td>1.2 (-0.3 to 2.7)</td>
<td>0.1</td>
<td>0.32</td>
</tr>
<tr>
<td>Energy (kJ/kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unadjusted</td>
<td>11.4 (4.7 to 18.0)</td>
<td>-6.3 (-13.0 to 0.4)</td>
<td>17.7 (8.2 to 27.2)</td>
<td><0.001</td>
<td>0.34</td>
</tr>
<tr>
<td>Adjusted (CI; sex)</td>
<td>14.2 (7.6 to 20.8)</td>
<td>-7.9 (-14.3 to -1.6)</td>
<td>22.1 (12.8 to 31.5)</td>
<td><0.001</td>
<td>0.63</td>
</tr>
<tr>
<td>Protein (g/kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unadjusted</td>
<td>-0.07 (-0.15 to 0.02)</td>
<td>-0.11 (-0.19 to -0.03)</td>
<td>-0.04 (-0.73 to 0.16)</td>
<td>0.5</td>
<td>0.56</td>
</tr>
<tr>
<td>Adjusted (CI; sex)</td>
<td>-0.05 (-0.13 to -0.03)</td>
<td>-0.13 (-0.21 to -0.05)</td>
<td>-0.08 (-0.03 to 0.20)</td>
<td>0.1</td>
<td>0.44</td>
</tr>
</tbody>
</table>

BCM = Body Cell Mass; BMI = Body Mass Index; CI = Charlson Index

a n=41

b (note treatment group*sex interaction p<0.001; main effect of sex, not significant)
Table 4 Change in clinical variables during 12-week randomised controlled intervention in predialysis CKD by treatment group (intervention n=24, control n=26)

<table>
<thead>
<tr>
<th>Clinical variable (ideal value)</th>
<th>Intervention n=24 (mean ± sd)</th>
<th>Control n=26 (mean ± sd)</th>
<th>Mean difference in changea (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td>Week 0 73.5±16.1 Week 12 73.8±15.7</td>
<td>Week 0 76.9±18.0 Week 12 77.4±20.1</td>
<td>0.14 (-1.3 to 1.6)</td>
</tr>
<tr>
<td>eGFR (ml/min/1.73m²)b</td>
<td>23.4±7.9 22.9±6.8</td>
<td>21.7±6.2 21.4±7.2</td>
<td>0.30 (-1.75 to 2.34)</td>
</tr>
<tr>
<td>Albumin (g/dL)b</td>
<td>3.9±0.5 4.0±0.5</td>
<td>3.9±0.4 3.7±0.5</td>
<td>-0.23 (-0.4 to -0.05)c</td>
</tr>
<tr>
<td>C-reactive protein (mg/L)b</td>
<td>6.9±8.6 5.6±4.0</td>
<td>8.1±14.7 17.9±38.2</td>
<td>-11.16 (-13.02 to 35.35)</td>
</tr>
</tbody>
</table>

a ANCOVA, change in control – intervention (adjusting for baseline values)

b To convert GFR in mL/min to mL/s, multiply by 0.01667; serum albumin in g/dL to g/L, multiply by 10; C-reactive protein in mg/L to mg/dL, divide by 10.

c p<0.01
Legends

Figure 1: Summarised protocol used in this study for the intervention of pre-dialysis CKD patients adapted from ADA intervention protocol

Figure 2: CONSORT flowchart of participant progression through randomized controlled trial of nutrition intervention in pre-dialysis CKD patients

Figure 3: Mean change (± 95% CI) in body cell mass (%) following a 12-week randomised controlled trial of nutritional counselling, split by sex (n=41);
Control --- Intervention -----

Figure 4: Mean change (± 95% CI) in energy intake (kJ/kg) following a 12-week randomised controlled trial of nutritional counselling, split by sex (n=50);
Control --- Intervention -----

Figure 5: Mean change (± 95% CI) in protein intake (g/kg) following a 12-week randomised controlled trial of nutritional counselling, split by sex (n=50);
Control --- Intervention -----