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two-dimensional time fractional diffusion

equation ?

P. Zhuang a, F. Liu a,b

aSchool of Mathematical Sciences, Xiamen University, China
bSchool of Mathematical Sciences, Queensland University of Technology, GPO Box

2434, Brisbane, Qld. 4001, Australia

Abstract

Fractional diffusion equations have recently been used to model problems in physics,
hydrology, biology and other areas of application. In this paper, we consider a
two-dimensional time fractional diffusion equation (2D-TFDE) on a finite domain.
An implicit difference approximation for the 2D-TFDE is presented. Stability and
convergence of the method are discussed using mathematical induction. Finally, a
numerical example is given. The numerical result is in excellent agreement with our
theoretical analysis.
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difference approximation; stability; convergence.

1 Introduction

There has been increasing interest in the description of physical and chemical
processes by means of equations involving fractional derivatives and integrals
over the last decade [19]. Fractional differential equations provide a powerful
instrument for the description of memory and hereditary properties of differ-
ent substances. Fractional derivatives are used to model anomalous diffusion
[18]. Fractional kinetic equation equations have proved particularly useful in
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the context of anomalous slow diffusion (subdiffusion) [18]. Subdiffusive mo-
tion is characterized by an asymptotic long-time behavior of the mean square
displacement of the form

〈x2(t)〉 ∼ 2Kα

Γ(1 + α)
tα, t →∞, (1)

where 0 < α < 1 is the anomalous diffusion exponent. This process is usually
referred to as subdiffusive. A fractional diffusion equation can been used to
describe subdiffusion. Ordinary (or Brownian) diffusion corresponds to α = 1
with K1 = D (the ordinary diffusion coefficient). Subdiffusive motion is par-
ticularly important in the context of complex systems such as glassy and disor-
dered materials, in which pathways are constrained for geometric or energetic
reasons. Diffusion equations that use time fractional derivatives are attractive
because they describe a wealth of non-Markovian random walks [13].

The time-fractional diffusion equations (TFDE) is obtained from the classical
diffusion equation by replacing the first-order time derivative by a fractional
derivative of order α with 0 < α < 1 (in Riemann-Liouville or Caputo sense).
It represents anomalous sub-diffusion. It is a well established fact that this
is equation models various phenomena. Fractional differential model is much
more well-suited to physical problems than its differential parner since it makes
less unnecessary or over-restricted assumptions which may change the prob-
lem being solved. Metzler and Klafter [18] have demonstrated that fractional
diffusion equation describes a non-Markovian diffusion process with a memory.
Ginoa et al. [5] have prosented a fractional diffusion equation describing re-
laxation phenomena in complex viscoelastic materials. The fractional diffusion
equation has been treated in different contexts by a number of authors. Wyss
[21] considered the time fractional diffusion equation and the solution is given
in closed form in terms of Fox functions. Schneider and Wyss [20] considered
the time fractional diffusion and wave equations. The corresponding Green
functions are obtained in closed form for arbitrary space dimensions in terms
of Fox functions and their properties are exhibited. Gorenflo et al. [6] used the
similarity method and the method of Laplace transform to obtain the scale-
invariant solution of time-fractional diffusion-wave equation in terms of the
wright function. Liu et al. [10] considered time-fractional advection-dispersion
equation and derived the complete solution. Huang and Liu [8] considered
the time-fractional diffusion equations in a n-dimensional whole-space and
half-space. They investigate the explicit relationships between the problems
in whole-space with the corresponding problems in half-space by the Fourier-
Laplace transforms. Anh and Leonenko [2] presented a spectral representation
of the mean-square solution of the fractional diffusion equation with random
initial condition. Enzo et al. [3] and Luisa et al. [14] considered and proved the
solutions to the Cauchy problem of the fractional telegraph equation can be
expressed as the distribution of a suitable composition of different processes.
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However, published papers on the numerical solution of fractional partial dif-
ferential equations are sparse. Liu et al. [11,12] used fractional Method of Lines
to solve the space fractional diffusion equation, they transform this partial
differential equation into a system of ordinary differential equations. Fix and
Roop [4] developed a finite element method for a two-point boundary value
problem. Meerschaert et al. have done a lot of excellent works. They proposed
finite difference approximations for two-sided space-fractional partial differen-
tial equations [15] and fractional advection-dispersion flow equations [16]. Liu
et al. [13] considered a discrete non-Markovian random walk approximation
for the time fractional diffusion equation and discussed the stability and con-
vergence of the approximation. Meerschaert et al. [17] also proposed a finite
difference approximation for the two-dimensional space-fractional dispersion
equation. The standard discretization methods (backward scheme for time do-
main, and central scheme for spatial domain) cannot be used for solving the
time fractional partial differential equations. Yuste and Acedo [22] proposed
an explicit finite difference method and a new Von Neumann-type stability
analysis for the time fractional diffusion equation in one-dimension, and pub-
lished their results in SIAM J. Numer Anal. (Vol.42, No.5, 2005, 1862-1874).
However, they did not give the convergence analysis and pointed out that it is
not such an easy task when implicit methods are considered. Langlands and
Henry [9] also investigated this problem and proposed an implicit numerical
scheme (L1 approximation), and discussed the accuracy and stability of this
scheme. However, the global accuracy of the implicit numerical scheme has not
been derived and it seems that the unconditional stability for all the fractional
order has not been established. Thus effective numerical methods and error
analysis for the time fractional partial differential equations are still in their
infancy and quite limited. In this paper, we consider the two-dimensional time
fractional diffusion equation (2D-TFDE).

This paper is organized as follows: An implicit difference approximation (IDA)
is proposed in section 2,. In sections 3 and 4, the stability and convergence of
the IDA are analyzed respectively. Finally, some numerical results are given.

2 An mplicit difference approximation for the 2D-TFDE

In this section, we consider the following 2D-TFDE of the form

∂αu(x, t)

∂tα
= a(x, y, t)

∂2u(x, y, t)

∂x2
+ b(x, y, t)

∂2u(x, y, t)

∂y2
+ f(x, y, t) (2)

with initial condition and boundary condition are given as follow:

u(x, y, 0) = ϕ(x, y), (x, y) ∈ Ω, (3)
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u(x, y, t)|∂Ω = 0, 0 ≤ t ≤ T (4)

where Ω = {(x, y)|0 ≤ x ≤ L, 0 ≤ y ≤ M}, a(x, y, t) > 0, b(x, y, t) > 0.

The fractional derivative ∂αu(x,y,t)
∂tα

in (2) is the Caputo fractional derivative of
order α defined by

∂αu(x, y, t)

∂tα
=

1

Γ(1− α)

∫ t

0

∂u(x, y, ξ)

∂ξ

dξ

(t− ξ)α
, 0 < α < 1. (5)

Define tk = kτ, k = 0, 1, 2, · · · , n; xi = i∆x, i = 0, 1, 2, · · · , l; yj = j∆y, j =
0, 1, 2, · · · ,m, where τ = T

n
, ∆x = L

l
and ∆y = M

m
are time and space steps,

respectively. Let uk
i,j be the numerical approximation to u(xi, yj, tk) and fk

i,j =
f(xi, yj, tk), ϕi,j = ϕ(xi, yj), ak

i,j = a(xi, yj, tk), bk
i,j = b(xi, yj, tk).

In the differential equation (2), using

∂u(x, y, ξ)

∂ξ
=

∂u(x, y, ts)

∂ξ
+ O(τ), ts ≤ ξ ≤ ts+1

and

∂u(x, y, ts)

∂ξ
=

u(x, y, ts+1)− u(x, y, ts)

τ
+ O(τ),

the time fractional derivative term can be approximated by the following
scheme:

∂αu(xi,yj ,tk+1)

∂tα
= 1

Γ(1−α)

k∑

s=0

∫ (s+1)τ

sτ

∂u(xi, yj, ξ)

∂ξ

dξ

(tk+1 − ξ)α

≈ 1
Γ(1−α)

k∑

s=0

∫ (s+1)τ

sτ

∂u(xi, yj, ts)

∂ξ

dξ

(tk+1 − ξ)α

≈ 1
Γ(1−α)

k∑

s=0

u(xi, yj, ts+1)− u(xi, yj, ts)

τ

∫ (s+1)τ

sτ

dξ

(tk+1 − ξ)α

= 1
Γ(1−α)

k∑

s=0

u(xi, yj, ts+1)− u(xi, yj, ts)

τ

∫ (k−s+1)τ

(k−s)τ

dη

ηα

= 1
Γ(1−α)

k∑

s=0

u(xi, yj, tk+1−s)− u(xi, yj, tk−s)

τ

∫ (s+1)τ

sτ

dη

ηα

= τ1−α

Γ(2−α)

k∑

s=0

u(xi, yj, tk+1−s)− u(xi, yj, tk−s)

τ
[(s + 1)1−α − s1−α]

= τ−α

Γ(2−α)
[u(xi, yj, tk+1)− u(xi, yj, tk)]

+ τ−α

Γ(2−α)

k∑

s=1

[u(xi, yj, tk+1−s)− u(xi, yj, tk−s)][(s + 1)1−α − s1−α]
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where bs = (s + 1)1−α − s1−α, s = 0, 1, 2, · · · , n. Now, define

Lα
h,τu(xi, yj, tk) =

τ−α

Γ(2− α)

k∑

s=0

bs[u(xi, yj, tk+1−s)− u(xi, yj, tk−s)]. (6)

Then we have
∣∣∣∣∣
∂αu(xi, yj, tk+1)

∂tα
− Lα

h,τu(xi, yj, tk)

∣∣∣∣∣ ≤ C1τ
∫ tk+1

0

dξ

(tk+1 − ξ)α
≤ Cτ (7)

where C1, C are constants.

We have adopted a symmetric second difference quotient in space at level t =
tk+1 for approximating the second-order space derivative. Thus, the discretized
(2) takes the following form

uk+1
i,j − uk

i,j +
k∑

s=1

bs(u
k+1−s
i − uk−s

i )

= µ1Γ(2− α)ak+1
i,j (uk+1

i+1,j − 2uk+1
i,j + uk+1

i−1,j)

+ µ2Γ(2− α)bk+1
i,j (uk+1

i,j+1 − 2uk+1
i,j + uk+1

i,j−1) + ταΓ(2− α)fk+1
i,j

(8)

for i = 1, 2, · · · ,m−1, k = 0, 1, 2, · · · , n−1, where µ1 = τα

(∆x)2
and µ2 = τα

(∆y)2
.

Let r1 = r1(i, j, k) = µ1Γ(2− α)ak+1
i,j and r2 = r2(i, j, k) = µ2Γ(2− α)bk+1

i,j , we
can obtain the following implicit difference approximation (IDA):

−r1(u
k+1
i+1,j + uk+1

i−1,j) + (1 + 2r1 + 2r2)u
k+1
i,j − r2(u

k+1
i,j+1 + uk+1

i,j−1)

= uk
i,j −

k∑

s=1

bsu
k+1−s
i,j +

k∑

s=1

bsu
k−s
i,j + ταΓ(2− α)fk+1

i,j .

Hence, for k = 0:

−r1(u
1
i+1,j + u1

i−1,j) + (1 + 2r1 + 2r2)u
1
i,j − r2(u

1
i,j+1 + u1

i,j−1)

= u0
i,j + ταΓ(2− α)f 1

i,j;
(9)

for k > 0:

−r1(u
k+1
i+1,j + uk+1

i−1,j) + (1 + 2r1 + 2r2)u
k+1
i,j − r2(u

k+1
i,j+1 + uk+1

i,j−1)

= (2− 21−α)uk
i,j +

k−1∑

s=1

uk−s
i,j (bs−1 − bs)

+ bku
0
i,j + ταΓ(2− α)fk+1

i,j

(10)

where i = 1, 2, · · · , l; j = 1, 2, · · · ,m.
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Let

uk =




uk
1

uk
2

...

uk
l−1




, fk =




fk
1

fk
2

...

fk
l−1




, Φ =




Φ1

Φ2

...

Φl−1




(11)

where

uk
i =




uk
i,1

uk
i,2

...

uk
i,m−1




, fk
i =




fk
i,1

fk
i,2

...

fk
i,m−1




, Φi =




ϕi,1

ϕi,2

...

ϕi,m−1




, i = 1, 2, · · · , l−1; k = 0, 1, · · · , n.

The above equation can be written in matrix form





Au1 = u0 + ταΓ(2− α)f1,

Auk+1 =
k−1∑
j=0

(bj − bj+1)u
k−j + bku

0 + ταΓ(2− α)fk+1

u0 = Φ,

, (12)

where A = [Ai,j] is the matrix of coefficients. We can obtain the following
result.

Lemma 1 In (10), the coefficients bs(s = 0, 1, 2, · · · ) satisfy:

(1)bs > bs+1, s = 0, 1, 2, · · · ;

(2)b0 = 1, bs > 0, s = 0, 1, 2, · · · .

3 Stability analysis of the implicit difference approximation

We suppose that ũk
i,j, (i = 0, 1, 2, · · · , l; j = 0, 1, 2, · · · ,m; k = 0, 1, 2, · · · , n) is

the approximate solution of (9) and (10), the error

εk
i,j = ũk

i,j − uk
i,j, (i = 0, 1, 2, · · · , l; j = 0, 1, 2, · · · ,m; k = 0, 1, 2, · · · , n)

satisfies

−r1(ε
1
i+1,j + ε1

i−1,j) + (1 + 2r1 + 2r2)ε
1
i,j − r2(ε

1
i,j+1 + ε1

i,j−1) = ε0
i,j, (13)
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−r1(ε
k+1
i+1,j + εk+1

i−1,j) +(1 + 2r1 + 2r2)ε
k+1
i,j − r2(ε

k+1
i,j+1 + εk+1

i,j−1)

= (2− 21−α)εk
i,j +

k−1∑

s=1

εk−s
i,j (bs−1 − bs) + bkε

0
i,j,

(14)

which can be written as




AE1 = E0,

AEk+1 = (b0 − b1)E
k + (b1 − b2)E

k−1 + · · ·+ (bk−1 − bk)E
1 + bkE

0

E0,

, (15)

where

Ek =




Ek
1

Ek
2

...

Ek
l−1




(16)

and

Ek
i =




εk
i,1

εk
i,2

...

εk
i,m−1




, i = 1, 2, · · · , l.

Hence, the following result can be proved using mathematical induction.

Theorem 2 ‖Ek‖∞ ≤ ‖E0‖∞, k = 1, 2, 3, · · · .

PROOF. For k = 1,

−r1(ε
1
i+1,j + ε1

i−1,j) + (1 + 2r1 + 2r2)ε
1
i,j − r2(ε

1
i,j+1 + ε1

i,j−1) = ε0
i,j.

Let |ε1
p,q| = max

1≤i≤l−1;1≤j≤m−1
|ε1

i,j|, we have

|ε1
p,q| = −r1(|ε1

p,q|+ |ε1
p,q|) + (1 + 2r1 + 2r2)|ε1

p,q| − r2(|ε1
p,q|+ |ε1

p,q|)
≤ −r1(|ε1

p+1,q|+ |ε1
p−1,q|) + (1 + 2r1 + 2r2)|ε1

p,q| − r2(|ε1
p,q+1|+ |ε1

p,q−1|)
≤ | − r1(ε

1
p+1,q + ε1

p−1,q) + (1 + 2r1 + 2r2)ε
1
p,q − r2(ε

1
p,q+1 + ε1

p,q−1)|
= |ε0

p,q| ≤ ‖E0‖∞,

(17)
also, ‖E1‖∞ ≤ ‖E0‖∞.
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Suppose that ‖Es‖∞ ≤ ‖E0‖∞, s = 1, 2, · · · , k . Let |εk+1
p,q | = max

1≤i≤l−1;1≤j≤m−1
|εk+1

i,j |,
we also have

|εk+1
p,q | = −r1(|εk+1

p,q |+ |εk+1
p,q |) + (1 + 2r1 + 2r2)|εk+1

p,q | − r2(|εk+1
p,q |+ |εk+1

p,q |)
≤ −r1(|εk+1

p+1,q|+ |εk+1
p−1,q|) + (1 + 2r1 + 2r2)|εk+1

p,q | − r2(|εk+1
p,q+1|+ |εk+1

p,q−1|)
≤ | − r1(ε

k+1
p+1,q + εk+1

p−1,q) + (1 + 2r1 + 2r2)ε
k+1
p,q − r2(ε

k+1
p,q+1 + εk+1

p,q−1)|
= |(b0 − b1)ε

k
p,q +

k−1∑
s=1

(bs − bs+1)ε
k−s
p,q + bkε

0
p,q|

≤ (b0 − b1)|εk
p,q|+

k−1∑
s=1

(bs − bs+1)|εk−s
p,q |+ bk|ε0

p,q|

≤ (b0 − b1)‖Ek‖∞ +
k−1∑
s=1

(bs − bs+1)‖Ek−s‖∞ + bk‖E0‖∞
≤ {b0 − b1 +

k−1∑
s=1

(bs − bs+1) + bk}‖E0‖∞
= ‖E0‖∞,

(18)
also ‖Ek+1‖∞ ≤ ‖E0‖∞. 2

Hence, the following theorem is obtained.

Theorem 3 The implicit difference approximation defined by (9) and (10) is
unconditionally stable.

4 Convergence analysis of the implicit difference approximation

Let u(xi, yj, tk), i = 0, 1, · · · , l; j = 0, 1, · · · ,m; k = 0, 1, · · · , n be the exact
solution of the fractional partial differential equation (2) at mesh point (xi, tk)
. Define ηk

i,j = u(xi, yj, tk)−uk
i,j, i = 0, 1, · · · , l; j = 0, 1, · · · ,m; k = 0, 1, · · · , n

and ek = (ek
1, e

k
2, · · · , ek

m−1)
T . Using e0 = 0, where

ek
i =




ηk
i,1

ηk
i,2

...

ηk
i,m−1




, i = 1, 2, · · · , l − 1.

Substitution into (9) and (10) leads to

−r1(η
1
i+1,j + η1

i−1,j) + (1 + 2r1 + 2r2)η
1
i,j − r2(η

1
i,j+1 + η1

i,j−1) = R0
i,j, (19)
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−r1(η
k+1
i+1,j + ηk+1

i−1,j) + (1 + 2r1 + 2r2)η
k+1
i,j − r2(η

k+1
i,j+1 + ηk+1

i,j−1)

= (2− 21−α)ηk
i,j +

k−1∑

s=1

ηk−s
i,j (bs−1 − bs) + bkη

0
i,j + Rk+1

i,j

(20)

where

Rk+1
i,j = u(xi, yj, tk+1)− u(xi, yj, tk) +

k−1∑
s=1

bs [u(xi, yj, tk+1−s)− u(xi, yj, tk−s)]

−r1 [u(xi+1, yj, tk+1)− 2u(xi, yj, tk+1) + u(xi−1, yj, tk+1)]

−r2 [u(xi, yj+1, tk+1)− 2u(xi, yj, tk+1) + u(xi, yj−1, tk+1)]

=
k∑

s=0
bs [u(xi, yj, tk+1−s)− u(xi, yj, tk−j)]

−r1 [u(xi+1, yj, tk+1)− 2u(xi, yj, tk+1) + u(xi−1, yj, tk+1)]

−r2 [u(xi, yj+1, tk+1)− 2u(xi, yj, tk+1) + u(xi, yj−1, tk+1)]

−ταΓ(2− α)fk+1
i,j .

(21)
From (7), we have

1
Γ(2−α)τα

k∑
s=0

bs [u(xi, yj, tk+1−s)− u(xi, yj, tk−s)]

= ∂αu(xi,yj ,tk+1)

∂tα
+ O(τ),

(22)

u(xi+1,yj ,tk+1)−2u(xi,yj ,tk+1)+u(xi−1,yj ,tk+1)

(∆x)2

= ∂2u(xi,yj ,tk+1)

∂x2 + O((∆x)2),
(23)

u(xi,yj+1,tk+1)−2u(xi,yj ,tk+1)+u(xi,yj−1,tk+1)

(∆y)2

= ∂2u(xi,yj ,tk+1)

∂y2 + O((∆y)2).
(24)

Hence,

Rk+1
i,j = O(τ 1+α + τα(∆x)2 + τα(∆y)2) (25)

also

|Rk+1
i,j | ≤ C(τ 1+α + τα(∆x)2 + τα(∆y)2),

i = 1, 2, · · · , l − 1; j = 1, 2, · · · ,m− 1; k = 1, 2, · · · , n
(26)

where C is a constant.

Consequently, we obtain

Theorem 4 ‖ek‖∞ ≤ Cb−1
k−1(τ

1+α + τα(∆x)2 + τα(∆y)2), k = 1, 2, · · · , n,
where ‖ek‖∞ = max

1≤i≤l−1;1≤j≤m−1
|ek

i,j| and C is a constant.
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PROOF. Using mathematical induction method. For k = 1, let ‖e1‖∞ =
|e1

p,q| = max
1≤i≤l−1;1≤j≤m−1

|e1
i,j| , we have

|e1
p,q| ≤ −r1(|e1

p+1,q|+ |e1
p−1,q|) + (1 + 2r1 + 2r2)|e1

p,q| − r2(|e1
p,q+1|+ |e1

p,q−1|)

≤ | − r1(e
1
p+1,q + e1

p+1,q) + (1 + 2r1 + 2r2)e
1
p,q − r2(e

1
p,q+1 + e1

p,q−1)|

= |R1
p,q|

≤ Cb−1
0 (τ 1+α + τα(∆x)2 + τα(∆y)2).

(27)

Suppose that ‖es‖∞ ≤ Cb−1
s−1(τ

1+α +τα(∆x)2 +τα(∆y)2), s = 0, 1, 2, · · · , k−1
and |ek+1

p,q | = max
1≤i≤l−1;1≤j≤m−1

|ek+1
i,j |. Note that b−1

s ≤ b−1
k , s = 0, 1, · · · , k. We

have

|ek+1
p,q | ≤ −r1(|ek+1

p+1,q|+ |ek+1
p−1,q|) + (1 + 2r1 + 2r2)|ek+1

p,q | − r2(|ek+1
p,q+1 + |ek+1

p,q−1|)
≤ | − r1(e

k+1
p+1,q + ek+1

p−1,q) + (1 + 2r1 + 2r2)e
k+1
p,q − r2(e

k+1
p,q+1 + ek+1

p,q−1)|
= | k−1∑

s=0
(bs − bs+1)e

k−s
p,q + Rk+1

p,q |

≤ k−1∑
s=0

(bs − bs+1)|ek−s
p,q |+ |Rk+1

p,q |

≤ k−1∑
s=0

(bs − bs+1)|ek−s
p,q |+ C(τ 1+α + τα(∆x)2 + τα(∆y)2)

≤ k−1∑
s=0

(bs − bs+1)‖ek−s‖∞ + C(τ 1+α + τα(∆x)2 + τα(∆y)2)

≤
[

k−1∑
s=0

(bs − bs+1) + bk

]
b−1
k C(τ 1+α + τα(∆x)2 + τα(∆y)2)

= b−1
k C(τ 1+α + τα(∆x)2 + τα(∆y)2).

(28)
2

Because

lim
k→∞

b−1
k

kα = lim
k→∞

k−α

(k+1)1−α−k1−α

= lim
k→∞

k−1

(1+ 1
k
)1−α−1

= lim
k→∞

k−1

(1−α)k−1

= 1
1−α

.

(29)
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Hence, there is a constant C,

‖ek‖∞ ≤ Ckα(τ 1+α + (τ 1+α + τα(∆x)2 + τα(∆y)2)).

If kτ ≤ T is finite, then we obtain the following theory:

Theorem 5 Let uk
i,j be the approximate value of u(xi, yj, tk) computed by use

of the difference scheme (9) and (10). Then there is a positive constant C ,
such that

|uk
i,j −u(xi, yj, tk)| ≤ C(τ + (∆x)2 + (∆y)2),

i = 1, 2, · · · , l − 1; j = 1, 2, · · · ,m− 1; k = 1, 2, · · · , n.
(30)

5 Numerical results

Example 1.Consider the following two-dimensional time fractional diffusion
equation

∂0.4u(x,t)
∂t0.4 = 2t1.6

π2Γ(0.6)
∂2u
∂x2 + t1.6

12π2Γ(0.6)
∂2u
∂y2 + f(x, y, t), (x, y) ∈ Ω× (0, T ],

u|∂Ω = 0, u(x, y, 0) = sin πx sin πy, (x, y) ∈ Ω

(31)

where f(x, y, t) = 25t1.6

12Γ(0.6)
(t2+2) sin πx sin πy, Ω = {(x, y)|0 < x < 1, 0 < y < 1}

and ∂Ω is the the boundary of Ω. The exact solution of the above equation is
u(x, y, t) = (t2 + 1) sin πx sin πy.

The maximum error of the exact solution and numerical solution is defined as
follows:

E∞ = max
0≤j≤M

max
0≤k≤N

{
|u(xj, tk)− uk

j |
}

.

Table 1 The maximum error |uk
i,j − u(xi, yj, tk)| at t = 1.0

∆t ∆x = ∆y E∞
1
16

1
4

5.39188E-2

1
64

1
8

1.30699E-2

1
100

1
10

8.26645E-3

1
400

1
20

1.67537E-3
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Fig. 1. Numerical solution of the equation (32) when α = 0.6 and t = 1.0.

Table 1 shows the maximum absolute numerical error, at time t=0.1, between
the exact solution and the numerical solution of the IDA. From Table 1, it
can be seen that our numerical method (IDA) is in excellent agreement with
numerical solution, and our numerical method yields convergence with O(τ +
h2). These results confirm our theoretical analysis.

Example 2. Consider the following two-dimensional time fractional diffusion
equation

∂αu(x,t)
∂tα

= ∂2u
∂x2 + ∂2u

∂y2 , (x, y) ∈ Ω× (0, T ],

u|∂Ω = 0, u(x, y, 0) = sin πx sin πy, (x, y) ∈ Ω
(32)

Figures 1-4 give the numerical simulation of the solution of the equation
(32) and compare the response of the diffusion system at t = 1.0 when
α = 0.6, 0.7, 0.8, 0.9, respectively. From Figures 1-4, it can be seen that the
solution continuously depends on the time fractional derivative.

6 Conclusions

In this paper, the implicit finite difference approximation for the 2D-TFDE in
a bounded domain have been described and demonstrated. The implicit differ-
ence approximation is unconditionally stable and convergence. This method
and technique can be also applied to solve fractional differential equations.
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Fig. 2. Numerical solution of the equation (32) when α = 0.7 and t = 1.0.
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Fig. 3. Numerical solution of the equation (32) when α = 0.8 and t = 1.0.
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